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We have carried out million-particle equilibrium molecular dynamics simulations of 3-dimensional Yukawa
liquids in order to determine the shear viscosity coefficient. The computations have been executed on Graphics
Processing Unit (GPU) architectures with our largely parallelized code. The results cover the strongly coupled
liquid phase, with Γ up to the vicinity of the freezing transition, for the 1 ≤ κ ≤ 3 domain of the screening
parameter of the Yukawa potential. The good agreement of the present results with those obtained from earlier
simulations of significantly smaller systems (consisting of several hundred to several thousand particles) verifies
that the viscosity data derived in these smaller scale simulations are also acceptable.
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1 Introduction
The shear viscosity and, generally, shear flows [1-4] have been attracting considerable attention. As regards to
strongly coupled dusty plasmas [5-7], in the first experiments a sheared velocity profile was created around a laser
beam [8, 9]. In the studies reported in [10] two displaced, parallel counter-propagating laser beams were used
to realize a planar Couette configuration in a 2D dusty plasma layer. In another experiment the non-Newtonian
behavior of a 3D complex plasma in the liquid state was identified [11]. More recently, detailed dusty plasma
experiments demonstrated the presence of viscoelastic response [12] and revealed the wave-number dependence
of the viscosity in 2D [13]. Experiments in the crystalline phase have identified the slipping of individual crystal
lines to be the primary mechanism for relaxing an applied shear stress [14]. Stationary flows at high shear rates,
and the complex viscosity, derived from the effect of a periodic shear, were studied in [15].

Calculation of the shear viscosity coefficient η has been the topic of several works [16-21] both for three-
dimensional (3D) and two-dimensional (2D) Yukawa liquids. In [22], besides calculations of the “equilibrium”
(small shear rate) static viscosity, predictions for the shear-thinning effect (typical for complex molecular liquids)
were given at high shear rates. The frequency dependence of the complex shear viscosity, which combines the
dissipative and the elastic components of the complex response of matter to oscillating shear stress was computed
for 3D Yukawa liquids in [23].

Regarding the dependence of the static viscosity on the coupling parameter, η(Γ), all previous studies give,
in agreement, a “U-shape” curve, explained by the prevailing kinetic contribution to the momentum transport at
low coupling and a prevailing potential contribution to the momentum transport at high coupling (e.g. [17]). The
coupling value, where the minimum of the viscosity occurs, has been found to increase with increasing κ. A
recent analysis [20] of the previous simulation results has found that differences as large as a few times 10% exist
between the results of different authors. As the Yukawa system [24] is also used as a reference for calculations of
viscosity of systems like liquid metals and warm dense matter through mapping of these systems with the Yukawa
model [25], verification of the available data and obtaining more accurate values for η are clearly important.
All the above mentioned simulation studies concerned systems of several hundred to several thousand particles,
which, especially in 3D raises the question whether the results approximate well the properties of “large” systems.
Thus simulations on larger systems are definitely needed, and indeed, this is the aim of our present investigations.
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We report viscosity data obtained from million-particle simulations carried out on Graphics Processing Units
(GPU) [26-30], which are becoming widespread for scientific computations these days.

We model the dusty plasma system as a one-component plasma with a polarizable background. The pair
interaction potential energy is given as

φ(r) =
Q2

4πε0

exp(−r/λD)

r
, (1)

where Q is the particle charge and λD is the Debye length. The system of interest here is fully characterized by
the coupling parameter Γ = Q2/4πε0akBT and the screening parameter κ = a/λD, where a = (3/4πn)1/3 is
the Wigner-Seitz (WS) radius, n is the particle number density, and T is the temperature (e.g. [24]). Our system
is idealized in a way that dynamical effects of the plasma environment (Langevin dynamics) are neglected.

2 Molecular dynamics on graphics cards

We have developed a molecular dynamics (MD) simulation code for the NVIDIA Compute Unified Device Ar-
chitecture (CUDA) [31] that allows massive parallel computing, thereby permitting relatively large systems to be
simulated on PC class computers, compared to the traditional Central Processing Unit (CPU) computations. We
adapt a classical molecular dynamics simulation code using periodic boundary conditions and finite range inter-
actions (introducing a cutoff radius in the force calculation), to CUDA environment, in order to derive the shear
viscosity (η) of 3D Yukawa liquids via simulating a million-particle system. From the computational methods
available for the calculation of η (see e.g. [20]) we chose the equilibrium molecular dynamics approach, because
of its fundamental nature.

The most time consuming part of the MD simulations is the calculation and summation of interparticle forces
(needed in the integration of the equations of motion), thus designing this part of the code requires careful
optimization to achieve a good performance. Our implementation relies on the method described in [32], and
utilizes fast, on-chip-cached constant memory to calculate the distances of particle pairs. Constant memory is
limited to 64 KB on current graphics cards, and provides optimal performance if multiple threads access the same
data at the same time. The simulation cell is divided into subcells, similarly to the chaining mesh approach [33],
but in this case particle data are sorted based on the identifier of the subcell it belongs to, therefore particles in the
same subcell occupy contiguous global memory blocks, which is required for efficient GPU memory operations.
If constant memory is filled with particle positions, and each of the thousands of concurrent computation threads
add up forces acting upon a single particle, multiple threads from adjacent subcells can process the same particle
concurrently, when forming particle pairs to progress with calculations. Due to the strictly limited size of constant
memory (it can only hold positions of ≈ 2700 particles, considering that double precision data type has to be used
for sufficient precision), all the particles can only be covered in multiple blocks that are first copied to constant
memory, and then processed by the specific kernel.

To reduce arithmetic operations, the arithmetically intensive calculation of forces over particle pair distances
has been optimized by eliminating redundant floating point operations. Division and square root function are not
native operations, but can be translated into composition of different instructions: division consists of reciprocal
and multiplication, while square root consists of reciprocal-square-root and reciprocal [34]. Due to the way these
operations occur in the original algorithm, after decomposition, several costly reciprocal calculations become
redundant, and can be omitted, while other reciprocals involving parameter λD can be precalculated. In cases
specifically requiring distance of particle pairs (now substituted by its reciprocal), it comes as the result of a
single multiplication of the original squared, and previously calculated reciprocal-square-rooted values.

Apart from the force calculation, most tasks of the simulation can be traced back to parallel primitive building
blocks, for example reduction is used both in kinetic energy computation, or in calculating stress autocorrelation
function components (see later). Conveniently, the CUDA-specific Thrust library [35] provides such algorithms
exposed through high level interfaces (including a fast radix sort), similarly to the C++ standard template library,
therefore both hiding unnecessary implementation details, and accelerating the development process.
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To obtain the shear viscosity we first calculate the off-diagonal element of the pressure tensor:

P xy =
N∑

i=1



mvixviy −
1

2

N∑

j "=i

xijyij
rij

∂φ(rij)

∂rij



 , (2)

where N is the number of particles, rij = |rij | = |rirj | = |(xij , yij)|, and m is the particle mass. The shear
viscosity coefficient is determined from the Green-Kubo integral [36]:

η =
1

V KT

∫ ∞

0
cη(t)dt , (3)

where Cη(t) = 〈P xy(t)P xy(0)〉 is the stress autocorrelation function and V is the volume of the system.
The simulation uses periodic boundary conditions. The symmetry of the system in the x, y, and z directions al-

lows improving the signal-to-noise ratio of the measured quantities: we compute Cη(t) for the other off-diagonal
elements (P yz and P zx) as well, and average the resulting η values. The upper limit of integration in equation
(3) is replaced by the time when the noisy Cη(t) first crosses zero.

3 Results

The results presented here have been obtained from simulations of systems comprising N = 106 particles. We
used GeForce GTX 590 and Tesla C2050 GPUs for our computations.

Fig. 1 (a) Shear viscosity of the 3D Yukawa liquid at (a) κ = 1, (b) κ = 2, and (c) κ = 3. SH: Saigo and Hamaguchi [17],
SC: Salin and Caillol [18], DH: Donkó and Hartmann [20]. Left scale: viscosity values normalized by the plasma frequency
(η′), right scale: viscosity values normalized by the Einstein frequency (η∗). The error bars shown for selected (Γ, κ) pairs
correspond to the standard deviation (σ) of the results derived from four independent simulations.

The simulation time covers ωpt ∼ 500 − 5000, where ωp =
√

nQ2/ε0m is the plasma frequency. Fig. 1
shows our simulation results for the shear viscosity φ, together with those obtained in previous studies. We use
normalization both by the plasma frequency and by the Einstein frequency ωE :

η′ =
η

mnωpa2
and η∗ =

η

mn
√
3ωEa2

. (4)
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The use of the Einstein frequency (the osciallation frequency of a test charge in the frozen environment of the
particles of the system) has been pointed out to be more appropriate for Yukawa systems, as ωE depends on the
screening parameter κ (see e.g. [37]). The values of ωE are taken from [38].

Fig. 1 also displays shear viscosity values obtained in previous studies of Saigo and Hamaguchi [17], Salin
and Caillol [18], and Donkó and Hartmann [20]. In [17] and [18] equilibrium MD simulations were used to
compute the shear viscosity, while in [20] two different nonequilibrium techniques were applied. In these studies
the number of simulation particles was N = 250 - 1000 (typically 250) [17], N = 128 - 864 (typically 500) [18],
and N = 1000 - 64,000 (typically 8000) [20]. The number of particles, N = 106, is significantly higher in the
present runs. The good agreement between the present data and those given in previous papers, as seen in Fig. 1,
confirms that the viscosity data obtained from smaller-scale simulations can be considered acceptable, which is
the main conclusion of our work. To test the accuracy of our computations we have carried out four independent
simulation runs for selected (Γ, κ) pairs. Standard deviations below ≈ 15% were found for all cases.

Our computations have been limited to the Γ ≥ 1 range of the coupling parameter. We have also attempted
to explore the Γ < 1 domain, however, here we have found that the autocorrelation function Cη(t) decays
progressively slower, thus much longer simulation times are unavoidable to access this domain of coupling.
Extended simulation time would of course help improving the accuracy of the viscosity values over the whole Γ
domain.

4 Conclusions
In conclusion, we have demonstrated by million-particle Molecular Dynamics simulations the effectiveness of
Graphics Processing Units for computing physical properties of strongly interacting many-particle systems. The
shear viscosity data derived from our computations have generally been in good agreement with the results of pre-
vious simulation studies, which used orders of magnitude smaller systems. Our studies confirm that simulations
of relatively small systems already yield meaningful results.
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[11] A.V. Ivlev, V. Steinberg, R. Kompaneets, H. Höfner, I. Sidorenko, and G. E. Morfill, Phys. Rev. Lett. 98, 145003 (2007).
[12] C.-L. Chan and Lin I, Phys. Rev. Lett. 98, 105002 (2007).
[13] Y. Feng, J. Goree, and B. Liu, Phys. Rev. Lett. 105, 025002 (2010).
[14] C. Durniak and D. Samsonov, Phys. Rev. Lett. 106, 175001 (2011).
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