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Collective Modes in Classical Mass-Asymmetric Bilayers
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Using the quasi-localized charge approximation (QLCA), we analyze the effects of asymmetry on the long-
wavelength longitudinal collective mode dispersion in a variety of strongly correlated electronic bilayer liquids,
most notably, the mass-asymmetric electron-hole bilayer in its Coulomb liquid and dipole liquid phases. We
point out the marked differences between the strong coupling (QLCA) and weak coupling (random-phase-
approximation) descriptions of the way the asymmetry affects the collective mode structure.

c⃝ 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

In order to better understand the collective mode behavior of Coulomb bilayers actually realized in laboratory
quantum well structures, there is a need to take into account the mass asymmetry. For example, in electron-hole
bilayers (EHBs), one can hardly ignore the marked disparity between the electron and hole masses. However,
how this asymmetry affects the mode structure depends on the value of the coupling parameter rs. Here we
study the strong coupling regime via a classical model. We calculate the longitudinal sound speeds and long-
wavelength finite-frequency (energy) gaps for closely spaced mass-asymmetric EHB and electron bilayer (EBL)
systems with the aid of the quasi-localized charge approximation (QLCA). The present study generalizes earlier
collective mode studies for symmetric EBLs [1–3] and EHBs [4–6], the latter both in its Coulomb liquid and
dipole liquid phases [7, 8].

It is instructive to first display the collective mode frequencies for bilayers in the Coulomb liquid phase with
n1 ̸= n2, Z1 ̸= Z2, and m1 ̸= m2. We introduce the parameters

p2 =
Z2n2

Z1n1
, q2 =

Z2m1

Z1m2
(1)

and the nominal 2D reference frequency:

ω2
1 =

2πn1Z
2
1e

2

am1
, πa2

√
n1n2 = 1. (2)

The longitudinal collective modes frequencies are calculated from the dispersion relation

||ω2δAB − CAB
L (k)|| = 0; (3)

k is the in-plane wave number. Introducing the convenient dimensionless notation k̄ = ka and r̄ = r/a, the
long-wavelength QLCA dynamical matrix elements are given as

C11
L (k → 0) = ω2

1

[
p2W + k̄ + U11k̄

2
]
, (4)

C12
L (k → 0) = ω2

1pq
[
−W + k̄ − d̄ k̄2 + U12k̄

2
]
, (5)

C22
L (k → 0) = ω2

1q
2
[
W + p2k̄ + p2U22k̄

2
]
; (6)
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where

W =
1

2

∫ ∞

0

dr̄ r̄(
r̄2 + d̄2

)3/2 g12(r) [1− 3
d̄2

r̄2 + d̄2

]
(7)

is the k = 0 interlayer correlation-generated finite-frequency contribution and

U11 =
5

16

∫ ∞

0

dr̄h11(r), U22 =
5

16

∫ ∞

0

dr̄h22(r), (8)

U12 =
5

16

∫ ∞

0

dr̄ r̄3(
r̄2 + d̄2

)3/2h12(r)−
9

16
d̄2

∫ ∞

0

dr̄ r̄3(
r̄2 + d̄2

)5/2h12(r) (9)

are intra- and interlayer correlation energy contributions to the dispersion; d̄ = d/a is the dimensionless layer
spacing; hij(r) is the equilibrium pair correlation function and gij(r) = 1 + hij(r) is the pair distribution
function. Eqs. (3) to (9) provide the collective mode frequencies for n1 ̸= n2, Z1 ̸= Z2, and m1 ̸= m2:

ω2
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q2
(
1 + p2

)2
p2 + q2

ω2
1 k̄ −

p2q2
(
1− q2

)2 (
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)2
(p2 + q2)

3
W

ω2
1 k̄

2

− 2p2q2d̄
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ω2
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ω2
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2 (10)
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p2

p2 + q2
(
1− q2

)2
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+
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ω2
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2. (11)

Note the emergence of the k = 0 finite frequency gap in Eq. (11), previously reported for symmetric Coulomb
bilayers [2–4]. Focusing on oscillation frequency (10), we observe that to lowest order in k,

ω2
+(k → 0) = ω̃2k̄, (12)

where

ω̃2 =
q2

(
1 + p2

)2
p2 + q2

ω2
1 = 2πn

⟨Z⟩2e2

a⟨m⟩
(13)

is a characteristic frequency related to the average atom in the virtual crystal approximation [9–11]; ⟨Z⟩ and ⟨m⟩
are defined to be the average charge and mass:

⟨Z⟩ = Z1n1 + Z2n2

n1 + n2
, ⟨m⟩ = m1n1 +m2n2

n1 + n2
. (14)

This behavior has also been noted for binary Yukawa systems [12]. Clearly the heavier mass is dominant in (12).
The marked contrast between the formally correlation-independent QLCA frequency (12) and its weak coupling
(RPA random-phase-approximation) counterpart [13]

ω2
RPA(k → 0) =

(
ω2
1 + ω2

2

)
k̄ =

(
1 + p2q2

)
ω2
1 k̄, (15)

(where the lighter mass is dominant) is a consequence of the localization of the particles inherent in the QLCA.
For the special case q2 = 1, the QLCA frequency (12) is identical to the RPA frequency (15). We turn now to the
special case of mode dispersion in the EHB in both the Coulomb liquid and dipole liquid phases.
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Mass-Asymmetric EHB Coulomb liquid

(n1 = n2 = n, Z1 = +1, Z2 = −1 and m1 ̸= m2)

ω2
+(k → 0) =

4πne2d̄

a (m1 +m2)
k̄2 +

4πne2

a (m1 +m2)
[U11 − U12] k̄

2 (16)

ω2
−(k → 0) = −2πne2

a

[
1

m1
+

1

m2

]
W +

2πne2

a

[
1

m1
+

1

m2

]
k̄ − 4πne2d̄

a (m1 +m2)
k̄2

+
2πne2

am1m2 (m1 +m2)

[(
m2

1 +m2
2

)
U11 + 2m1m2U12

]
k̄2 (17)

For the EHB, note that W < 0. In deriving Eq. (16) from (10), we observe that at p2 = −1, the virtual atom
frequency (12) disappears leaving an acoustic dispersion comprised of the RPA term (proportional to d̄) and a
correlational term.

The effect of mass asymmetry in EHBs was first considered some time ago [13, 14]: Using the self-consistent
field approximation (SCFA), Eguiluz et al [13] noted that the acoustic plasmon is dominated by the heavier hole
mass, in accordance with the first right-hand-side member of Eq. (16). Subsequently, Liu et al [15], within the
framework of a Singwi-Tosi-Land-Sjolander mean-field theory description, conjectured the emergence of a soft
mode associated with a charge-density-wave, thought to possibly preempt the onset of excitonic bound states
discussed below.

The acoustic frequency (16) indicates the possible occurrence of an instability (ω2 < 0) for d < dc =
a(U12 − U11), pertaining to the transition from the Coulomb liquid to dipole liquid phase. To demonstrate
that this reasonably well reconciles with the Monte Carlo (MC)-generated phase diagram of Ref. [8], one can
estimate the QLCA dc first by observing that at high layer separations d/a ≥ 2, there is no appreciable interlayer
correlation [8]. Thus, dc/a ≈ −U11 = a|E11|/e2 = O(1), where E11 is the in-layer correlation energy per
particle. One would expect that such an instability is the precursor to transition from the EHB Coulomb liquid
phase to the dipole liquid phase. The above order-of-magnitude estimate of dc is consonant with the Ref. [8] MC
prediction dc/a ∼ 1 − 1.5. In the absence of particle correlations (h11(r) = h12(r) = 0), we observe that the
k = 0 finite frequency energy gap ∝ W vanishes and Eqs. (16) and (17) morph into the actual RPA ω ∝ k

√
d

acoustic and Eq. (15) ω ∝
√
k frequencies for the EHB [4, 13].

Mass-Asymmetric EHB Dipole Liquid

The calculation of the long-wavelength collective mode frequencies for the dipole liquid phase is more intri-
cate. Here, one proceeds by evaluating the finite-k dynamical matrix element

C12
L (k) = ω2

1pq
[
k̄ exp(−kd) + Ũ12(k)−W

]
(18)

Ũ12(k) =
1

2

∫ ∞

0

dr̄ r̄(
r̄2 + d̄2

)3/2h12(r) [1− J0(kr) + 3J2(kr)]

−3

2
d̄2

∫ ∞

0

dr̄ r̄(
r̄2 + d̄2

)5/2h12(r) [1− J0(kr) + J2(kr)] , (19)

first in the d̄ → 0 limit; this entails invoking the approximation G12(r) = g11(r) +G(r), where G(r) represents
a steep Gaussian contribution: g12(0) = G(0) ∝ Γ/d̄3 [8]. The subsequent small-k expansion then follows.
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After some algebra, one obtains

ω2
+(k → 0, d → 0) =

33

16
k̄2ω2

D
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dr̄
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g11(r), (20)
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1
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]
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1
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+
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2 − 33

16
k̄2ω2

D

∫ ∞

0
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g11(r); (21)

ω2
D =

2πnµ2

a3 (m1 +m2)

is the characteristic dipole frequency [16]; µ = ed. Evaluation of the gap term in (21) proportional to W provides
the Kepler frequency, the classical equivalent of the bound-state energy

ω2
−(k = 0, d → 0) ≈ e2

πd3

[
1

m1
+

1

m2

]
. (22)

We note that the small-k behavior of the plus (+) mode is acoustic with slope proportional to the interlayer
spacing d [16, 17]. This is in marked contrast to the

√
d dependence featured by the RPA contribution to the

Eq. (16) acoustic mode [4], indicating that this mode portrays the density oscillation of the dipole. The (–)
collective mode spectrum features the k = 0 finite frequency energy gap formula [see Ref. 4 for its symmetric
EHB counterpart] which, in the dipole liquid phase, is dominated by the prominent Gaussian-like peak in the
interlayer pair correlation function at r = 0 [4, 8]. Thus, the emergence of the Kepler frequency (22). Here, in
contrast to the acoustic speed of the plus mode, it is the lighter particles (the electrons) that play the dominant
role. Our calculated sound speed from Eq. (20) for the closely spaced EHB is in perfect agreement with the
sound speed formula reported for the 2D dipole liquid with repulsive interaction potential [16, 17]

φ(r) = µ2/r3 (23)

In summary, we have used the quasi-localized charge approximation (QLCA) to describe the longitudinal col-
lective mode dispersion in strongly coupled Coulombic asymmetric bilayer liquids. Two mode frequencies are
identified to which we assign (±) labels. The (–) mode exhibits the ubiquitous finite-frequency k = 0 energy gap
first reported by us quite some time ago for the symmetric bilayer liquid; in the asymmetric configuration, the
magnitude of the gap is dominated by the lighter species. For the most general configuration where the charges,
masses, and densities of the two layers differ, the lowest order (in k) correlation-independent contribution to the
(+) mode, while it resembles the weak coupling RPA oscillation frequency in its ω ∝

√
k dependence, in fact,

differs markedly from the RPA: in the strong coupling regime, the plasma oscillation is dominated by the heavier
species, in sharp contrast to the weak coupling regime where it is the lighter species that is dominant. This behav-
ior has also been noted for binary Yukawa systems [12]. For the special case of the mass-asymmetric EHB in its
Coulomb liquid phase, the (+) mode is acoustic (ω ∝ k) consisting of an RPA contribution softened by combined
intralayer and interlayer correlation energy contributions. Our preliminary QLCA analysis indicates that for a
given coupling strength, there is a critical layer spacing dc = O(a), below which ω2

+(k → 0) < 0, suggesting a
phase transition from the Coulomb liquid to dipole liquid, in accordance with the Monte Carlo-generated phase
diagram of Ref. [8]. In the dipole liquid regime, the (–) mode is identified as the Kepler frequency, here domi-
nated by the lighter species; the (+) mode is acoustic with phase velocity governed wholly by the average dipole
potential energy in accordance with what has been reported by us for the 2D point dipole system [16].
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