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Strongly coupled Yukawa trilayer liquid: Structure and dynamics
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The equilibrium structure and the dispersion relations of collective excitations in trilayer Yukawa systems in
the strongly coupled liquid regime are examined. The equilibrium correlations reveal a variety of structures in
the liquid phase, reminiscent of the corresponding structures in the solid phase. At small layer separation sub-
stitutional disorder becomes the governing feature. Theoretical dispersion relations are obtained by applying the
quasilocalized charge approximation (QLCA) formalism, while numerical data are generated by microcanonical
molecular dynamics simulations. The dispersions and polarizations of the collective excitations obtained through
both of these methods are compared and discussed in detail. We find that the QLCA method is, in general, very
satisfactory, but that there are phenomena not covered by the QLCA. In particular, by analyzing the dynamical
longitudinal and transverse current fluctuation spectra we discover the existence of a structure not related to
the collective mode spectra. This also provides insight into the long-standing problem of the gap frequency
discrepancy, observed in strongly coupled layered systems in earlier studies.
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I. INTRODUCTION

Many-particle systems with classical pairwise interparticle
interactions are fundamental model systems that are success-
fully used for the investigation of a wide variety of complex
phenomena. Depending on the choice of the interaction, these
systems can be related to different atomic or molecular ma-
terials in all possible (classical) phases. In the limit of weak
interaction, where the thermal motion of the particles domi-
nates the ideal gas model becomes valid. At the other extreme
of strong interactions, the thermal motion becomes irrelevant
and the crystalline solid phase can be reached, where localized
particle oscillations and lattice phonons govern the dynam-
ics. At intermediate interaction strength, where the potential
energy originating from the interparticle interaction becomes
comparable or even larger than the kinetic energy of the
random thermal motion but is not strong enough to form
crystalline structures, the so-called “strongly coupled liquid”
phase [1] is realized.

Relevant to our studies are the strongly coupled plasmas,
where the interparticle interaction acting between electrically
charged particles can be well approximated with the elec-
trostatic Coulomb interaction. In cases where a polarizable
background is present, the bare Coulomb force is screened.
This screening can be approximated by an exponentially de-
caying factor, as it was introduced by Debye and Hückel for
electrolytes [2] and adopted to a number of physical systems,
such as dusty plasmas and charged colloidal suspensions un-
der the name “Yukawa potential” [3]. The advantage of such
a Yukawa one-component plasma model system is that only
one particle component has to be described explicitly, the

contributions of all other constituents of a potentially complex
system are subsumed by the modified interaction.

The popularity of the strongly coupled Yukawa model has
rapidly increased with the developments in the field of charged
colloidal suspensions [4] and after the discovery of labora-
tory dusty plasmas and the realization of “plasma crystals”
in 1994 [5–7]. Since that time a large variety of systems
and phenomena have been investigated in great detail both
experimentally and by means of numerical simulations. For a
review of the early development in the field of dusty plasmas
see, e.g., Refs. [8–10].

The interest in charged multilayered systems started af-
ter pioneering works on Wigner crystals [11] realized with
electrons on the surface of superfluid He [12], semiconductor
heterojunctions [13], and cold ions in traps [14,15], which
was followed by a series of theoretical studies on Coulomb
systems [16–29]. This line of research experienced a further
boost after the discovery that macroscopic charged particle
ensembles, such as colloids in a liquid suspension or dust
particles in a gas discharge, when trapped in narrow regions
of space tend to self-organize into well-distinguishable lay-
ers parallel to the boundaries instead of filling the volume
homogeneously or in a closely packed configuration [30–36].
The more recent theoretical and numerical research triggered
by these experiments has focused on the ground-state struc-
ture [37–43] as well as on the collective excitations and
instabilities [44,45] in Yukawa bilayers. For multilayered sys-
tems, the ground-state structure [46–49] and its variation in
the presence of shear and magnetic field [50] have also been
studied. Besides Yukawa systems, multilayered configurations
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have been investigated in graphene [51,52] and hard sphere
systems [53,54] as well.

The collective excitations of layered systems were first
investigated by Das Sarma and Madhukar [13], who studied
a Coulombic bilayer at weak coupling in the random phase
approximation (RPA) and predicted an out-of-phase acoustic
excitation. Further studies revealed that at finite coupling the
collective mode spectrum of layered systems is qualitatively
different [22–24,55–57]. Thus its analysis requires a theoreti-
cal approach incorporating strong coupling effects.

Two theoretical approaches have proven to be success-
ful for the description and prediction of the collective mode
structure and wave dispersion properties of classical charged
particle systems in the strongly coupled liquid regime. Both
the Method of Moments [58–61] and quasilocalized charge
approximation (QLCA) [62–64] connect the static structural
properties of the particle ensembles to their dynamical, time-
dependent collective behavior.

In this paper, we investigate the properties of a system
where particles, interacting via the Yukawa potential reside
in three layers, constituting a “Yukawa trilayer.” We focus
on the strongly coupled liquid phase. In Sec. II we describe
the model system. The equilibrium structure of the system,
based on the analysis of the pair distribution functions, is dis-
cussed in Sec. III. In Sec. IV we invoke the QLCA theory and
derive the wave dispersion relations. Amongst other things,
we find a remarkable manifestation of the “avoided crossing”
phenomenon, known to occur in a variety of other physical
systems. Details of the molecular dynamics simulations are
given in Sec. V, and the results obtained through this method
are presented and compared with the QLCA predictions in
Sec. VI. In Sec. VII we address the issue of the unex-
pected anomalous behavior of the system in the domain of
small layer separations. Section VIII gives a summary of our
findings.

II. MODEL SYSTEM

We consider a system consisting of three identical two-
dimensional (2D) layers, infinite in the x and y directions,
where the particles can move freely, with no displacement al-
lowed in the z direction. The layer in the center is labeled “1,”
while the layers at the top and bottom positions, respectively,
are labeled “2” and “3.” The separation between the neighbor-
ing layers is d . The distance between any pair of layers is sAB.
Here, and in the sequel, A, B indices are used to identify the
layers. Each layer has an areal particle number density n =
ns/3, where ns is the total projected surface particle density.
We define the Wigner-Seitz (WS) radius a based on the total
density, i.e., πa2ns = 1. In the sequel, distances, including
the layer separation, are dimensionless, given in units of a.
Similarly, quantities of dimension of inverse distance, such as
wave numbers, etc., are made dimensionless and are given in
units of 1/a.

The particles interact through a pairwise Yukawa potential
φ(r) = q e−κr

r , where q is the particle charge (assumed to be
the same for all particles), κ is the screening parameter in
units of 1/a, and r is the three-dimensional (3D) distance.
Introducing the 2D (projected onto the x, y plane) distance ρ,

the interaction potential energies between particles in layers A
and B, ϕAB, become

ϕ11 = ϕ22 = ϕ33 = q2 e−κρ

ρ
, (1a)

ϕ12 = ϕ13 = q2 e−κ
√

ρ2+d2√
ρ2 + d2

, (1b)

ϕ23 = q2 e−κ
√

ρ2+4d2√
ρ2 + 4d2

. (1c)

The strength of Coulomb coupling is quantified with the
coupling parameter:

� = βq2/a, (2)

where β is 1/kB T , and kB is the Boltzmann constant. The
characteristic frequency of the system is the 2D nominal
plasma frequency ω2

p = 2πq2ns/ma, with m denoting the
common particle mass. In the following, frequencies are also
made dimensionless and are given in units of ωp.

The state and the behavior of a system defined above is
completely determined by the following three parameters: κ ,
�, and the interlayer distance d .

The equilibrium structure and the collective mode spec-
trum of the trilayer system is investigated here in the strongly
coupled � � 1 liquid phase. The analysis is conducted for a
Yukawa potential with κ = 0.4. The system is described both
via numerical simulations [based on the molecular dynamics
(MD) approach] and theoretically by the QLCA, which has
been successfully used for a number of systems governed
by Coulomb and Yukawa, as well as other types of interac-
tions [63,65–68]. The MD simulations yield both information
about the structural properties and about the dynamical fluc-
tuation spectra which also reveal the collective excitations,
while the QLCA derives the mode structure and dispersion
relations from the static data obtained in the simulations.

III. STRUCTURE

The equilibrium structure of a trilayer in the liquid state
is well characterized by the set of pair correlation functions,
hAB(ρ), or the equivalent pair distribution functions (PDFs),
gAB(ρ) = 1 + hAB(ρ). (Note that the interlayer correlation
functions are given as functions of the projected distance ρ,
rather than the actual distance r). At strong coupling the sys-
tem shows a remarkable tendency to develop structures that
vary dramatically with changing layer separation. The correla-
tions in the liquid state are reminiscent of those characteristic
for the underlying structures that would form at the same d
value in the solid phase trilayer. In this respect, the trilayer is
similar to the bilayer [42,43], but for an additional degree of
freedom that allows for two possible relative configurations
(ABA and ABC stackings) of the top and bottom layers.
The corresponding two of the principal crystal structures, as
identified in Ref. [47] are the overlapping square (OS) and
the staggered hexagonal (SH) lattices, illustrated in Fig. 1.
With varying layer separation other types of structures (not
discussed here in detail) are also realized.

043206-2



STRONGLY COUPLED YUKAWA TRILAYER LIQUID: … PHYSICAL REVIEW E 102, 043206 (2020)

FIG. 1. The two principal trilayer lattice structures: (a) staggered
hexagonal (SH) lattice and (b) overlapping square (OS) lattice. Note
that in all figures axis labels represent dimensionless quantities, as
defined in the text.

The development of the correlations in the liquid phase
is illustrated in Figs. 2 and 3, where a sequence of PDFs at
decreasing values of d are displayed, for � = 160 and 10,
respectively. These figures present the intralayer PDFs g11(ρ)
and g22(ρ), as well as the interlayer PDFs g12(ρ) and g23(ρ).
The additional distribution functions g33(ρ) and g13(ρ) are
not shown as these are identical to g22(ρ) and g12(ρ),
respectively.

Focusing first on the high coupling, � = 160 case, at
the high d = 3 value we observe a structure resembling the
superposition of two bilayers [24], weakly correlated with
each other. The lack of strong correlations is demonstrated

FIG. 2. Intralayer (11, 22) and interlayer (12, 23) pair distribu-
tion functions for � = 160, at layer separations (a) d = 3.0, (b) d =
1.5, (c) d = 0.5, (d) d = 0.2. Note that g23(ρ → 0) > 1 at larger d
values and g23(ρ → 0) < 1 at smaller d values. In (a), g11(ρ ) and
g22(ρ ) nearly overlap, while in (d) all g(ρ )’s nearly overlap apart
from scale; see text for interpretation. Note that g33(ρ ) is not shown
as it is identical to g22(ρ ) and g13(ρ ) is not shown because it is
identical to g12(ρ ).

by g23(ρ) ≈ 1. Also, even though layer 1, on one hand, and
layers 2 and 3, on the other, are in different environments,
this difference is not significant enough to induce a difference
between g11(ρ) and g22(ρ): all the intralayer PDFs overlap
and they exhibit correlations typical for an isolated 2D layer.
The interlayer PDF g12(ρ) shows that particle positions in
layer 1 are staggered with respect to those in layers 2 and
3. These latter, in turn, tend to be positioned on top of each
other in identical structures. These features are revealed by
(i) g12(ρ = 0) < 1, (ii) g23(ρ = 0) > 1, and (iii) g12(ρ) ex-
hibiting an out-of-phase and g23(ρ) exhibiting an in-phase
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FIG. 3. The same as Fig. 2 for � = 10.

behavior with respect to the extrema of g11/22/33(ρ). These
features are indicative of an underlying OS crystal structure
(see Fig. 1) of layers 2 and 3.

The correlations between the layers become much more
emphasized as d is decreased to d = 1.5. Now, g23(ρ) as-
sumes a very high peak at ρ = 0, showing a strong overlap
between the particle positions in layers 2 and 3. All this is
consistent with a continued OS structure. The g23(ρ = 0) � 1
behavior may also be interpreted as an effective attraction
between the top and bottom layers (mediated by the middle
layer).

Further decrease of d to d = 0.5 changes the structure
substantially. Now g23(ρ = 0) = 0 and g23(ρ) is out-of-phase
with respect to g22(ρ). These are signatures of the SH phase.
However, the also visible strong separation of g11(ρ) and
g22(ρ) and the development of an anomalous double peak
(i.e., two closely spaced peaks on a broad shoulder) in the

FIG. 4. An overview snapshot of the trilayer system for � =
1000, at d = 0 from MD simulation. The lattice structure is still
nearly hexagonal, but the occupation of the lattice sites is random.
Particle symbols indicate the actual layer, which is being occupied
by the particle. This image is to be contrasted with Fig. 1(a), which
depicts an ordered trilayer system.

latter are formations difficult to reconcile with either of the
two simple lattice structures. These features seem to be related
to the emergence of the so-called striped phase, a phase that
has been encountered in many frustrated equilibria. Here the
frustration is due to the competition between the direct inter-
action between layers 2 and 3, and their indirect interaction
mediated through layer 1. The association of this domain
with a striped phase is further suggested by the results of
preliminary MD simulations on the solid phase of a trilayer,
which indicate that such a striped phase is indeed manifest
there in the 1.0 > d > 0.5 domain. The appearance of striped
phases have been reported during the melting of 2D crystals
in Ref. [69] and near the critical density in 2D and quasi-2D
Coulomb systems in Ref. [70].

Finally, when the layer distance is reduced to a very small
value, d = 0.2, an entirely new structure emerges: all the four
PDFs show the same behavior, only their peak amplitudes
differ. This is the signature of the onset of a substitutional dis-
order. In this situation, the effect of the interlayer separation
on the interlayer interaction becomes marginal, the particles
tend to lose their layer identity and to occupy their sites in
adjacent layers almost randomly. This structure is illustrated
in Figs. 4 and 5, where both the 2D projection from a high-�
simulation and a schematic side view of a disordered trilayer
are portrayed. The substitutional disorder develops gradually
with decreasing layer separation or with decreasing � (cf.
Figs. 4 and 5); when it is complete at d → 0 the layers
become statistically indistinguishable. The emergence of the
substitutional disorder is the consequence of the requirement
that at finite temperature (finite �) the Gibbs free energy of the
system be minimized. A disordered state is obviously advan-
tageous for maximizing the entropy, while the disadvantage it
presents from the point of view of minimizing the interaction
energy is small at low interlayer separations [25].
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FIG. 5. Side view of an arbitrarily chosen vertical row of parti-
cles in the SH crystal: (a) ordered and (b) substitutionally disordered.

The PDFs at the lower coupling value, � = 10, displayed
in Fig. 3, reveal significantly weaker correlations, as expected.
The trends, as functions of the layer separation, however, are
similar to the high � case; at d = 3.0 [see Fig. 3(a)] the particle
positions in separate layers are almost uncorrelated: g12(ρ) ∼=
1 and g23(ρ) ∼= 1 for most ρ values, except at small ρ. With
decreasing d , there is a pronounced decay of g12(ρ) at small ρ,
and in Fig. 3(d), by reducing d to smaller values, we observe
the onset of the substitutional disorder earlier.

IV. COLLECTIVE MODE SPECTRUM:
QLCA CALCULATION

We now proceed to the identification of the collective
modes and to the derivation of their dispersion relations. As
we have pointed out above, this is to be done within the
framework of the QLCA. Following this approach, one has
to calculate the dynamical matrix CAB

μν . Here A, B are the layer
indices, and μ, ν are the 2D Cartesian indices. For the system
considered here CAB

μν is a 6 × 6 matrix, the elements of which
are expressed in terms of the gAB(ρ) PDFs:

CAB
μν (�k) = δAB

∑
D=1,2,3

MAD
μν (0) − MAB

μν (�k), (3)

where δAB is the Kronecker delta and

MAB
μν (�k) = q2ns

3ma

∫
ψAB

μν (�r)ei�k·�rgAB(ρ) d�r. (4)

Here q2ψAB
μν (�r) = ∂2ϕAB (�r)

∂rμ∂rν
, thus

ψAB
xx = e−κr

r5
[x2(κ2r2 + 3κr + 3) − (1 + κr)r2], (5a)

ψAB
yy = e−κr

r5
[y2(κ2r2 + 3κr + 3) − (1 + κr)r2], (5b)

ψAB
xy = e−κr

r5
[xy(κ2r2 + 3κr + 3)]. (5c)

Due to the isotropy of the liquid phase the wave vector �k
can be fixed to �k = (k, 0), parallel to the x axis, without the
loss of generality and will be treated as a scalar variable in
the following. Setting r2 = ρ2 + s2, where ρ2 = x2 + y2, we

have

MAB
μν (k) = ω2

p

6π

∫ ∞

0

∫ 2π

0
ψAB

μν (ρ, s, θ )eikρ cos θgAB(ρ)ρ dρ dθ.

(6)

Performing first the angular integration, we define the
kernel functions

KAB
μν (kρ, r) = 1

6π

∫ 2π

0
ψAB

μν (ρ, s, θ )eikρ cos θdθ. (7)

Here x = ρ cos θ , y = ρ sin θ . Note that in Eq. (5) and in the
sequel s and r are understood to depend on the indices AB.
With the chosen direction of �k, reflection symmetry and the
explicit xy factor in Eq. (5) makes the integrals of the ma-
trix element with ψxy vanish. Defining also P(κr) = κ2r2 +
3κr + 3 and Q(κr) = 1 + κr we arrive at

KAB
xx (kρ, r) = 1

6π

e−κr

r5

∫ 2π

0
(Pρ2 cos2 θ − Qr2)eikρ cos θdθ

= e−κr

3r5

[(
J1

kρ
− J2

)
Pρ2 − Qr2J0

]
, (8)

KAB
yy (kρ, r) = 1

6π

e−κr

r5

∫ 2π

0
(Pρ2 sin2 θ − Qr2)eikρ cos θdθ

= e−κr

3r5

[
J1

kρ
Pρ2 − Qr2J0

]
. (9)

The J’s are the respective Bessel functions of kρ. In the k → 0
limit, these expressions reduce to

KAB
xx (k → 0) = KAB

yy (k → 0) = e−κr

3r5

(
1

2
Pρ2 − Qr2

)
. (10)

The elements of the M matrix can now be expressed in terms
of the integrals

MAB
μν (k) = ω2

p

∫ ∞

0
KAB

μν (kρ, r)gAB(ρ)ρ dρ. (11)

The dynamical matrix is a real symmetric matrix with real
eigenvalues. It is valued in the space which is the direct prod-
uct of the 3D layer space and the 2D Cartesian space. Due to
the isotropy of the liquid state, when �k points along the x axis
the matrix can be diagonalized into two diagonal, longitudinal
(or [xx]) and transverse (or [yy]), 3 × 3 submatrices.

Both of the submatrices have the form(E Y Y
Y F D
Y D F

)
. (12)

The explicit expressions for the eight distinct matrix elements
are presented in the Appendix.

A further unitary transformation, consisting of a 45◦ rota-
tion about the 1-axis in layer space can cast the C matrix into
the following semidiagonal form:⎛⎜⎝ E

√
2Y 0√

2Y F + D 0

0 0 F − D

⎞⎟⎠. (13)

Then the eigenvalues become

α1 = F − D, (14a)
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FIG. 6. Illustration of the three longitudinal and three transverse
eigenvectors with �k taken along the x (horizontal) direction. Two
sets of modes exist, each either with longitudinal (L) or transverse
(T ) Cartesian polarizations. A mode: particles in all the three layers
move in the same direction, M mode: particles in the middle layer
(1) move in one direction, while those in layers 2 and 3 move together
in the opposite direction, S mode: particles in the middle layer
remain stationary, while those in layers 2 and 3 move in opposite
directions with respect to each other. The arrows represent the dis-
placements of the particles within the respective layers.

α2 = E + D + F − √
�

2
, (14b)

α3 = E + D + F + √
�

2
, (14c)

with their corresponding eigenvectors (in the original coordi-
nate system):

�v1 = (0,−1, 1), (15a)

�v2 =
(

−−E + D + F + √
�

2Y
, 1, 1

)
, (15b)

�v3 =
(

−−E + D + F − √
�

2Y
, 1, 1

)
, (15c)

where � = (F + D − E )2 + 8Y 2. It should be kept in mind
that the matrix elements in the above formulas are valued
either in the longitudinal or in the transverse subspaces. Thus,
in terms of their Cartesian polarizations there are three longi-
tudinal (L) and three transverse (T ) eigenmodes. Out of each

FIG. 7. QLCA dispersion curves of the six collective modes of
the trilayer system, for moderate coupling � = 10, and high coupling
� = 160 values, at d = 3.0.

the three modes one is acoustic (A), while the two remaining
ones are gapped (optic) modes. Their polarizations in layer
space are distinguished by the relative displacements of the
layers. In the A mode the particles in all the three layers move
in the same direction; in one of the gapped modes, labeled
S , particles in the middle layer 1 remain stationary, while
particles in layers 2 and 3 move in opposite directions with
respect to each other; in the other gapped mode, labeled M,
particles in the middle layer 1 move in one direction, while
those in layers 2 and 3 move together in the opposite direction.
These polarizations are schematically illustrated in Fig. 6.

The six calculated dispersion curves (DC), obtained with
the aid of the input of the MD generated PDFs are displayed in
Figs. 7 through 10 for moderate (� = 10) and high (� = 160)

FIG. 8. QLCA dispersion curves of the six collective modes of
the trilayer system, for moderate coupling � = 10, and high coupling
� = 160 values, at d = 1.5.
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FIG. 9. QLCA dispersion curves of the six collective modes of
the trilayer system, for moderate coupling � = 10, and high coupling
� = 160 values, at d = 0.5.

coupling values and for four different layer separations, d =
3.0, 1.5, 0.5, 0.2, corresponding to the three different equilib-
rium structures discussed in Sec. III. They are represented by
six continuous DCs, portraying the six algebraic solutions. At
the same time, the coloring of the DCs follows the polariza-
tions of the modes, which in general are not continuous along
these lines. More precisely, the polarization remains constant
along the DC only if the mode in question is an eigenmode
of a k-independently diagonalizable 2 × 2 submatrix. This is
the case for the Cartesian L and T modes and for the mode
with S layer-space polarization. This behavior is illustrated in
Figs. 11 and 12.

We note in passing that the physical reason for the S
mode to decouple is that it represents the oscillations of a

FIG. 10. QLCA dispersion curves of the six collective modes of
the trilayer system, for moderate coupling � = 10, and high coupling
� = 160 values, at d = 0.2.

FIG. 11. Close-up of the QLCA dispersion of the A and M
modes for � = 160, at d = 1.5. Note the avoided crossing and switch
of polarizations between the modes.

bilayer [23], composed of layers 2 and 3, in the presence of
a dynamically inert layer 1.

In contrast to the above, the submatrix representing the
A and M modes cannot k-independently be diagonalized,
and consequently these modes remain entangled with each
other. The root of the difference is that the 2 ⇔ 3 sym-
metry that prevails in the S parent submatrix is broken in
the M/A submatrix. Moving along the respective DCs, the
mode polarizations change with k, up to the k value where
the two dispersion curves approach, but do not cross, each
other. These are the so-called “avoided crossing” (AC) points,
a well-known occurrence in many physical systems [71,72].

FIG. 12. Close-up of the QLCA dispersion of the SL and ST
modes for � = 160 at d = 1.5. The simple crossing indicates that
the two modes do not interact.
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Here the AC behavior is mathematically governed by the
Y matrix element, creating an AC point whenever Y (k) = 0
occurs. Whether this may or may not happen depends on the
system parameters, primarily on the layer separation d .

The AC-like behavior is clearly visible in Figs. 8 and 9.
The details of a set of ACs are enlarged in Figs. 11 and 12. In
Fig. 11(a) the transverse A and M DCs approach each other
at k ≈ 2.4 and k ≈ 4.2, where the layer-space polarizations
are exchanged and the curves show repulsive trajectories.

At the AC points the lower (upper) branches of the disper-
sion curves also develop local maxima (minima), which are
separated from each other by a frequency gap. Both of these
features are known to entail important physical consequences:
the extrema lead to the appearance of van Hove singularities
in the density of states, while the gap affects the transparency
of the system. All these issues are planned for further discus-
sion in a separate publication.

As already pointed out, on the two sides of the AC points
we identify the modes by the continuity of the polarizations
of their eigenvectors, rather than by the continuity of the
algebraic solutions. Equivalent phenomena, albeit at different
k values, can be observed for the longitudinal polarizations
in Fig. 11(b). A similar effect of interchanging eigenmodes
in DCs relating to other strongly coupled plasma systems has
also been found in Ref. [73].

The two limiting behaviors at k = 0 and at k → ∞ of the
DCs are of interest. At k → 0 according to Eq. (10), the longi-
tudinal and the transverse matrix elements become identical,
which means that the longitudinal and transverse gaps become
degenerate, as they should, due to the isotropy of the system.
The two gap frequencies at this point become

ω2
S (0) = F (0) − D(0)

= −Y (0) − 2D(0)

=
∫ ∞

0
[K12(r)g12(ρ) + 2K23(r)g23(ρ)]ρ dρ, (16a)

ω2
M(0) = −3Y (0)

= 3
∫ ∞

0
K12(rg12(ρ))ρ dρ, (16b)

KAB(r) = e−κr

3r5

(
1

2
Pρ2 − Qr2

)
. (16c)

Thus the gap values depend on the interlayer correlation
functions only. Remarkably, the M gap is fixed by the g12

alone. In contrast, the S-gap value in addition to the expected
g23 is affected by correlations with layer 1 as well, even
though this latter is dynamically inert. How close the two
gap values are to each other is determined by the difference
between g12 and g23.

At k → ∞ the DCs approach one of the Einstein frequen-
cies �A (the oscillation frequency of a particle in layer A in the
presence of the frozen environment of all the other particles)

�2
A =

∑
B=1,2,3

MAB
xx (0) = 1

2

∑
B=1,2,3

MAB
yy (0), (17)

which yields

�2
1 =

∫ ∞

0
[K11(r)g11(ρ) + 2K12(r)g12(ρ)]ρ dρ, (18a)

�2
2 =

∫ ∞

0
[K22(r)g22(ρ) + K12(r)g12(ρ)

+ K23(rg23(ρ)](ρ)ρ dρ. (18b)

A further case of interest is the d → 0 limit, where, be-
cause of the substitutional disorder, all the PDFs have to
become identical, as also verified by the MD simulations:
g11(ρ) = g22/33(ρ) = g12(ρ) = g23(ρ). (cf. Sec. III). In this
case, the eigenvalues become (E − Y, E − Y, E + 2Y ). E +
2Y represents the acoustic (A) mode, while E − Y represents
the S and M modes that degenerate into a single gapped
mode. In view of the equality of the PDFs and recalling
Eq. (3), we have

ω2
S,M(k) = 3M11(0), (19a)

ω2
A(k) = 3[M11(0) − M11(k)]. (19b)

Thus, the degenerate single gapped mode is independent
of k. Exploiting 3M11 = M total, where M total is the M matrix
calculated for a projected single layer, the gap frequency turns
out to be identical to the Einstein frequency �total of the
projected single layer. As to the AL and AT modes, they
become the corresponding acoustic modes of the projected
single layer.

V. MOLECULAR DYNAMICS SIMULATION

In the MD simulations the Newtonian equations of motion
of each particle with mass m and charge q are integrated,
restricted to in-plane motion only, applying the velocity-Verlet
scheme using a time step of �t = 0.02/ωp. The interparticle
Yukawa forces are summed up for particle pairs with 3D
spatial separations smaller than a cutoff radius, chosen to
be Rcutoff = 34a, taking into account the periodic boundary
conditions. The N = 6000 particles are first assigned in three
equal parts to one of the layers with random initial in-plane
positions in a square simulation cell. A velocity back-scaling
“thermostat” is applied for the initial 20 000 time steps, after
which the measurements are started without any thermostat
for a period of 200 000 time steps. PDF and dynamical fluctu-
ation data are recorded during this “measurement” phase.

From the MD simulations, the collective mode dispersion
is determined by examining the current fluctuation spectra.
Due to the structural isotropy of a liquid system, the modes
may have only two, longitudinal or transverse, Cartesian po-
larizations. The periodicity implied by the boundary condition
requires that the possible magnitudes of the wave vector k are
kn = nkmin, with n being positive integers and kmin = 2π/H ,
where H is the linear size of the simulation box.

The longitudinal and transverse current fluctuation spec-
tra (current correlation functions) L(k, ω) and T (k, ω), are
defined as

LAB(k, ω) = 2π√
NANB

〈̃λA(k, ω )̃λB(−k,−ω)〉, (20a)

TAB(k, ω) = 2π√
NANB

〈̃τA(k, ω )̃τB(−k,−ω)〉, (20b)
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FIG. 13. Longitudinal current fluctuation spectra at k = 0.32 for
� = 160, at d = 3.0, (a) L11, (b) L22, (c) L12, (d) L23. The labeling of
the peaks identifies the corresponding mode.

where the A, B indices represent the layers; NA, NB are the par-
ticle numbers of each layer, in our case NA = NB. λ̃A(k, ω) and
τ̃A(k, ω) are the Fourier transforms of λA(k, t ) and τA(k, t ).
In order to improve the signal-to-noise ratio of the data we
average multiple spectra obtained from subsequent time series
for the microscopic quantities, which is represented by the
〈· · · 〉 notation in Eq. (20). The microscopic currents are

λA(k, t ) =
NA∑
j=1

vx, j exp (ikxx j ), (21a)

τA(k, t ) =
NA∑
j=1

vy, j exp (ikxx j ), (21b)

where the subscript j labels the particles, and the summation
runs over all particles in layer A.

L(k, ω) and T (k, ω) obey the reality condition that
requires, e.g., L(k, ω) = L∗(−k,−ω), where * represents
complex conjugate. Thus LAA(k, ω) and TAA(k, ω) are real
valued, but LAB(k, ω) and TAB(k, ω), in general, may be com-
plex. However, in a liquid, where the system obeys inversion
symmetry, LAB(k, ω) and TAB(k, ω) are also real.

The dispersion relation for the modes is determined by
identifying the peaks in the fluctuation spectra.

VI. COLLECTIVE MODE SPECTRUM: MD SIMULATIONS

The six modes predicted by the QLCA and discussed
in Sec. IV can be identified from the analysis of the eight
distinct longitudinal and transverse current fluctuation spec-
tra LAB(k, ω) and TAB(k, ω), with AB = 11, 22, 12, 23. The
11, 22 peak signatures are necessarily positive, but the 12, 23
peaks may have positive or negative signature, depending
on whether in that particular mode the two layers involved
oscillate in-phase or out-of-phase.

These structures are illustrated in Fig. 13 that shows MD
simulation results for the LAB(k, ω) spectra, for k = 0.32, � =
160, at d = 3.0. At this k value the positions (frequencies) of

the peaks are well separated. A similar picture emerges for the
T (k, ω) correlation functions.

The longitudinal and transverse polarizations appear au-
tomatically separated in their respective L and T fluctuation
spectra. At the same time we observe that in each of the com-
puted spectra (LAB and TAB) the contribution of the principal
oscillation modes (A, M, S) appear mixed. As an example,
L11 contains two peaks, one originating from the AL and
one from the ML modes both with positive signs, while the
same modes contributing to L12 show, respectively, positive
(for AL) and negative (for ML) peaks. Making use of this
parity property one can apply simple linear combinations in
order to separate out the contribution of a selected mode:

L11 − L12 → ML mode,

L11 + L12 → AL mode,

L22 − L23 → SL mode,

The last relationship, in fact, represents according to Eq. (13)
the exact diagonalization that fully decouples the S mode. The
others are heuristic constructions that almost fully cancel the
presence of the other modes in the spectrum. A supplementary
method that we also apply in certain situations consists of
creating a linear combination of all the four current fluctua-
tion spectra with coefficients whose values are determined by
optimization to achieve the best separation of modes.

Dispersion curves obtained from the MD simulations for
each of the collective modes, together with their correspond-
ing QLCA counterparts are displayed in Figs. 16 through 19.
The organization of these figures is as follows. Each figure
depicts the pair of the L and the T spatial polarizations of
one of the three basic A, M, and S modes, for two values
of the layer separation, d = 1.5 and d = 3.0. Additionally,
in Figs. 14 and 15 we display for d = 0.2 and d = 1.0 the
dispersions of the in-phase AL and AT modes. Dispersion
curves for the gapped modes for lower than d = 1.5 values
are not shown for reasons explained below. The blue square
symbols correspond to the peak positions of the MD generated
L and T current fluctuation spectra, with vertical bars showing
the full width at half maximum based on a Gaussian fit to the
spectral peaks. The red lines represent the QLCA dispersion
curves. The plots are given for moderate � = 10 and high
� = 160 coupling values.

In assessing the reliability of the QLCA we observe that the
agreement between the MD and QLCA results is much more
pronounced at � = 160 than at � = 10. This is expected,
since the QLCA is a strong coupling approximation. There is
also a difference in the quality of match between the behavior
of the acoustic and gapped modes. Focusing on the acoustic
modes, for the longitudinal polarization there is an overall
good, for low k values excellent, agreement between the MD
and QLCA results in all cases. For the transverse polarization,
good agreement is obtained only for high �, because in a
weakly coupled liquid no transverse (shear) excitation can
exist. Even at strong coupling, the T mode does not extend
down to k = 0, rather cuts off at a small, but finite k value,
as also noted in several earlier studies [63,68,74–77]. With
increasing k values, the error bars grow longer and thermal
effects make the dispersion deviate, especially in the weaker
coupling case, from the QLCA prediction.
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FIG. 14. Collective mode dispersion comparison between MD
(blue squares) and QLCA (red lines) for the A mode, for � = 10
at different d values in the range 0.2 � d � 3.0. The vertical bars
indicate the Gaussian width of the spectral peaks, as explained in
the text.

As to the gapped modes, they can be identified in the MD
data only in the strong coupling case. There the agreement is
between good and fair, better for the high-frequency M than
the lower-frequency S modes.

For high �, the MD simulations also show the existence of
some anomalous branches in the spectrum, not predicted by
the QLCA. For the sake of clarity, these modes are not dis-
played in the subsequent figures, but are discussed separately
below.

The roton minimum that was predicted in Ref. [78] to occur
in the dispersion at higher k values in all strongly coupled
plasma systems is indeed visible in all graphs at high �,
although the QLCA has the tendency to underrepresent the
oscillation amplitudes of the dispersion curves: this feature
has also been noted earlier [79].

In some of the dispersion curves discontinuous jumps
from one branch to a neighboring one can be observed (It
should be kept in mind that the modes are labeled by their
polarizations). In Figs. 17(c) and 19(c), e.g., this behavior
is the clear verification1 of the AC phenomenon—a remark-
able feature of the trilayer—taking place between two QLCA

1This part has been authored by G.J.K., P.H., and Z.D.

FIG. 15. The same as Fig. 14 for � = 160. Compare the avoided
crossing points in panels (e) and (g) at k = 2.6 with their counterparts
in panels (a) and (c) in Fig. 17. See also Fig. 12 for the details of
the predicted QLCA behavior. Other apparent AC points at lower d
values lack simple interpretation, as explained in the text.

modes [cf. Fig. 8(b)]. In other cases non-QLCA excitations
are also involved (see below and Sec. VII), whose details are
of little interest here [cf. Fig. 15(a)–15(d)].

As noted above, additionally to the 2 × 3 modes predicted
by the QLCA, an unexpected feature is revealed by the MD
simulations. It is the appearance for � > 50 of two optical
branches, one with L, one with T polarization. They are illus-
trated in Fig. 20, where in contrast to the predicted two modes
we see the appearance of three branches for each polarization.
The two anomalous branches seem to be satellite excitations
to the ML and MT modes, respectively (and designated as
MLX and MT X branches). They share the k = 0 gap fre-
quency and the layer polarizations with their parent ML and
MT modes. What distinguishes them, though, is the slope
of their dispersion curves at k → 0: it is downward, while the
parent modes’ dispersion curves always have an upward slope.

We believe that the source of this phenomenon can be
found in the development of microcystals in the strongly
coupled high � liquid. The collective modes supported by the
crystal lattice are identical to those appearing in the liquid,
but for the fact that the lattice is anisotropic, while the liquid
is not. As a result, the propagation characteristics of the modes
depend on the angle φ between the �k and a chosen principal
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FIG. 16. The same as Fig. 14 for the M mode, for � = 10,
at d = 1.5 and d = 3.0 values. d < 1.5 layer separations are not
shown, for reasons explained in the text.

axis of the lattice. Since the orientation of the microcrys-
tals should be random, the QLCA-calculated ML and MT
modes for the microcrystals may be regarded as, in a certain
sense, an angular average over φ [43]. Such an average results
in an upward slope, because this very same feature is exhibited
by the dispersion curves in an overwhelmingly large angular
domain of the unit cell [80]. On the other hand, what we
see as the MLX and MT X satellites can be understood as
follows. There are propagation angles along which either of
the lattice equivalents of the ML and MT modes develops
a dispersion substantially different from the QLCA-generated
average. This is shown in Figs. 20(b) and 20(d) calculated for
an OS crystal lattices structure at φ = 0◦ and φ = 45◦. It is
the imprints of the L and T projections of these anomalous
dispersions that appear as the MLX and MT X satellites,
respectively, as illustrated in Figs. 20(a) and 20(c). We note
that no satellites develop for the S modes, as may be seen
in Figs. 20(e) and 20(g), because their lattice equivalents

FIG. 17. The same as Fig. 16 for � = 160. Compare the avoided
crossing points in panels (a) and (c) at k = 2.6 with their counterparts
in panels (e) and (g) of Fig. 15. See also Fig. 12 for the details of the
predicted QLCA behavior.

FIG. 18. The same as Fig. 16 for the S mode, for � = 10.

never qualitatively deviate from their QLCA value [Figs. 20(f)
and 20(h)].

Our discussion in this section has covered the behavior of
the gapped modes in the domain d > 1.0. When d drops be-
low the d = 1.0 value, their good agreement with the QLCA
ceases. What seems to happen is that the peaks belonging
to the two gapped modes in the L and T fluctuation spectra
weaken, and when d = 1.0 is reached they virtually disappear.
At the same time, a broad double-peaked feature appears in
the spectrum, extending way beyond the QLCA-predicted gap
values. We will refer to this structure as the “envelope”: its
properties will be discussed in the next section.

VII. ENVELOPE FORMATION

In this section we describe and interpret the formation of
the envelope, a structure that emerges at low layer separations
in the current fluctuation spectra and replaces the peaks which
are associated with the gapped modes.

A typical set of the current fluctuation spectra for the low
d = 0.2 value is displayed in Figs. 21 and 22. The observed
spectral pattern is significantly different from the one seen in
Fig. 13 for large interlayer separations. The spectra now con-
sist of two major domains. First, there are the high-amplitude
peaks representing the AL and AT acoustic modes where

FIG. 19. The same as Fig. 16 for the S mode, for � = 160.
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FIG. 20. Comparison of current fluctuation spectra between the
liquid for � = 160, (left column) and the lattice for � = 1000, (right
column) phases at d = 1.5. Displayed are (a, b) L11(k, ω), (c, d)
T11(k, ω), (e, f) L22(k, ω), and (g, h) T22(k, ω) spectra. In the liquid
spectra black lines show the corresponding QLCA mode dispersions:
ML in (a), MT in (c), SL in (e), ST in (g). The MD simulations
are for the OS lattice system and for propagation directions φ = 0◦

and φ = 45◦, as indicated for the corresponding spectral features.
The amplitudes are given in arbitrary units, therefore numerical
values at the color bars are omitted. The color scale is logarithmic
and covers three orders of magnitude.

all the layers oscillate in phase. As discussed in Sec. IV,
as d → 0 these modes morph into the respective acoustic
excitations of a 2D layer and are of no interest for the pur-
pose of this section. Second, we observe that the peaks that
would correspond to the QLCA-predicted gapped modes are
absent. Instead, the feature to be noted is the appearance of
the smaller positive (for the intralayer correlations) or nega-
tive (for the interlayer correlations) bumps, emerging beyond
the domain of the QLCA gap excitations (ω ≈ 0.6). These
features constitute the main body of the structure referred
to as the “envelope.” In order to focus now on the process
of the disappearance of the gapped modes we will study
the previously introduced differential spectra (T11 − T12, etc.),
where the acoustic excitations are absent. The evolution of the
fluctuation spectra as the interlayer distance is reduced can
now be traced through the sequence of MD generated graphs

FIG. 21. Longitudinal current fluctuation spectra L11, L22, L12,
and L23 at a small layer separation, d = 0.2, k = 0.32 for � = 160.
Note the different patterns compared to the large d case shown in
Fig. 13.

for the range d = 1.5 through d = 0.2, presented in Figs. 23
and 24.

From these and the previous set of data the main features
of the envelope can be summarized as follows:

(1) The envelope has similar intralayer structures in
all the LAA/TAA and similar interlayer structures in all
the LAB/TAB correlation functions. The respective structures
become identical in the d → 0 limit. This is expected, because
the envelope dominated domain is governed by the substitu-
tional disorder.

(2) In the intralayer LAA/TAA-s the envelope necessar-
ily has a positive value, but in the interlayer LAB/TAB-s
it always assumes a negative value. The intralayer am-
plitudes are nearly twice (exactly twice in the d → 0
limit) of the interlayer amplitudes. These features en-
sure that the envelope does not show up in the total

FIG. 22. The same as Fig. 21 for the transverse current fluctua-
tion spectra T11, T22, T12, T23.
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FIG. 23. The evolution of T11 − T12 for � = 160 with decreasing
d values. (a) d = 1.5, (b) d = 1.0, (c) d = 0.5, (d) d = 0.2. Note the
transmutation of the M mode peak into the envelope.

2D L and T current fluctuation spectra, since Ltotal =
1
3 [L11 + L22 + L33 + 2Re(L12 + L13 + L23)], which has the
well-known AL peak only.

(3) The amplitude of the envelope is much smaller than
that of the A mode.

(4) The shape has a characteristic double-peaked fea-
ture. For high �, it exhibits a low-amplitude peak at a low
frequency ω ≈ 0.3 and a high-amplitude peak at a high fre-
quency at ω ≈ 0.8. For low � it shows a central ω = 0 peak
and a high-frequency ω ≈ 0.8 peak.

(5) At the high � value, the range, the amplitude and the
shape of the envelope are all grossly insensitive to k over a
broad range of k values.

All these features are consistent with the observation dis-
cussed in Sec. III, noting that as d → 0 substitutional disorder
renders the layers indistinguishable. Remarkably, they also
point at a possible relationship between the envelope and
the velocity autocorrelation function (VAF) Z (ω) [81], where
Z (ω) is the Fourier transform of Z (t ):

Z (t ) = 〈�vi(t )�vi(0)〉. (22)

To see this more clearly, we compare the MD generated
VAFs for the trilayer system with those of the envelope. The
same features can be found both in the longitudinal and in
the transverse spectra; here we use the transverse fluctuation
spectrum.

For the sake of simplicity, the comparison is done in the
d = 0 limit. At this point some digression on this limiting
process may be useful. As d → 0, i.e., as the system becomes
a 2D layer, all the features of the spectra extant at d � 1
survive. In the absence of substitutional disorder that would

FIG. 24. The same as Fig. 23 for T22 − T23 Note the transmuta-
tion of the S mode peak into the envelope.

mean the survival, in addition to the acoustic modes, of the
out-of-phase modes as well. With substitutional disorder, it
would mean the continued presence of the envelope. On the
other hand, neither of these features are observed in the spec-
trum of a 2D layer. This apparent paradox led the authors of
Ref. [57] to the erroneous conclusion that no gapped excita-
tions can exist in a layered system in the liquid state. In fact,
the resolution of the problem lies in the realization that the un-
expected structures show up only in the partial (not total; see
our earlier comment) fluctuation spectra. As long as d is finite,
groups of particles in different layers are distinguishable and
therefore these structures represent measurable quantities. At
d = 0, when the groups are not distinguishable, they do not;
they are useful mathematical constructs, nevertheless.

Two sets of spectra are displayed in Figs. 25 and 26, both
for low and high � values. The apparent agreement between
the envelope and the VAF functions suggests a strong con-
nection between them. Even the diffusive peak at ω → 0 that
appears in the VAF in the low � case is present in the enve-
lope. Even though one may suspect that the connection with
the VAF (a one-body entity) suggests an N-dependent single
particle rather than a collective behavior, we have verified in
separate computations that the envelope profile is independent
of the particle number used in the MD simulation.

While a cogent theoretical explanation for the link between
the envelope and the VAF is lacking at this time, the conclu-
sion for the existence of such a relationship, presumably via
the onset of substitutional disorder at low d values, seems to
be well-founded. Moreover, preliminary computational tests
on a perfect ordered lattice have shown that an envelope-like
structure forms, when an artificially induced substitutional
disorder is generated. Also, further investigations of a bilayer
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FIG. 25. Comparison between T11 − T12 and Z (ω) for � = 10, at
d = 0.

system at small d values have confirmed a behavior very
similar to the one found here, with the appearance of the same
kind of an envelope. All this requires further investigation and
clarification and will be discussed in a separate publication.

Finally, the evolution of the gap frequency as a function
of the layer separation is portrayed in Fig. 27. The QLCA
curve in the diagram is based on Eq. (16). In addition to the
MD simulation data, a few frequency values obtained from
calculations through the harmonic phonon approximation for
the respective SH and OS ideal lattice structures, appropriate
for the layer distances indicated, are also given. The results
of the lattice calculations and those of the QLCA are quite
close to each other in most situations, except at very low layer
separations where the QLCA values are substantially lower.
The reason for the discrepancy should be sought in the fact
that the QLCA calculation based on the actual PDF reflects
the effect of the substitutional disorder, while the lattice dis-

FIG. 26. The same as Fig. 25 for � = 160.

FIG. 27. Gap frequency values for the S and M modes at differ-
ent d values, for � = 160. The S1, M1 points are obtained from the
QLCA theory (with the implicit assumption that the gapped modes
are excited for all d values.); the S2, M2 points are the results of the
MD simulations; the S3, M3 points are obtained from lattice disper-
sion calculations; at d = 3.0 and at d = 0.2 a SH, at d = 1.5 an OS
crystal structure is assumed (cf. Sec. III). The S2 and M2 points in
the shaded area originate from peaks in the current fluctuation spectra
generated by the envelope, rather than by a collective mode.

persion, based on the idealized crystal lattice model, does not.
The MD data are in good agreement with the calculated values
for higher d values, but not in the shaded small d domain, for
reasons discussed in this section. As d → 0 the MD points
for both modes converge to ω = 0.8, the characteristic peak
value of the envelope, while the QLCA gap frequency equals
the Einstein frequency of a projected 2D layer at ω = 0.6.

In previous papers on strongly coupled Coulomb bilayer
liquids [23,27,28] the high-frequency peak of the envelope
was erroneously identified to be the d → 0 continuation of
the peak associated with the gapped collective mode of the
bilayer (cf. Fig. 27). This led to the incorrect conclusion that
the gapped mode survives all the way to d = 0, but with a
sizable discrepancy between the MD results and the QLCA
predictions, resulting in a gap frequency at about 1.4 times
higher than the predicted value. In fact, as can be gleaned from
Fig. 27, a similar gap discrepancy could be arrived at for the
trilayer as well through an incorrect inference from the data
points. The correct interpretation of the data has to be sought
along the line presented in the foregoing discussions.

VIII. CONCLUSION

In this paper we have studied the equilibrium structure and
the dynamics of the collective excitations of a Yukawa trilayer
in the strongly coupled liquid state. The study has been done
for κ = 0.4 screening parameter value. Both analytic and MD
simulation techniques have been used, the former based on the
QLCA method. The equilibrium structure has been found to
reveal a variety of liquid phases, depending on the distance
between the layers. These phases emulate the different under-
lying ground-state structures that would form in a trilayer in
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the solid state at the same layer separation. In this respect, the
trilayer is similar to the bilayer, but for an additional degree of
freedom that allows for two possible relative configurations
of the top and bottom layers: they can be either shifted with
respect to each other (ABC stacking) or be in an overlapping
configuration (ABA stacking). In the latter case an effective
attraction, mediated by the middle layer, between these two
layers is observed. At smaller (d < 1) interlayer distances the
system develops a substitutionally disordered state, in which
particles in a given layer of the underlying lattice occupy the
“wrong” lattice position belonging to a neighboring layer.

In the collective mode spectrum we have identified six
modes distinguished by their Cartesian polarizations (longi-
tudinal or transverse) and by the relative movements of the
layers, which can be either in-phase with an acoustic disper-
sion, or out-of-phase with an optic (gapped) dispersion. There
are two gapped modes, associated with two gap frequencies,
corresponding to two different relative movements of the
layers. In the dispersion of these modes we find a notable
manifestation of the “avoided crossing” phenomenon, known
mostly in other physical contexts. At the relatively low, down
to � = 50 value there is a rather surprising presence of solid
microcrystals, witnessed by the appearance of the imprint of
anisotropic lattice modes in the collective mode spectrum.
At larger interlayer distances, the analytic QLCA predictions
match the MD results well. However, when the interlayer
distance drops below d ≈ 1, the nascent substitutional disor-
der then quenches the gapped modes, which vanish from the
excitation spectrum. Instead, a structure emerges in all the cur-
rent fluctuation spectra, covering a broad frequency range that
extends beyond the typical frequencies of the gapped modes.
We have referred to this feature as the “envelope.” While its
origin is not well understood at this time, it seems to be related
to the developing substitutional disorder. The morphology of

the envelope strongly suggests that it derives from the velocity
autocorrelation function of the system, whose spectral form it
closely mirrors.

In this study we have identified a few issues, whose impact
on the behavior of layered systems in general may be of
relevance, meriting future investigations:

(i) The formation of a striped equilibrium phase
(ii) The development of substitutional disorder
(iii) The condition for the appearance of the avoided cross-

ing points in the mode dispersions
(iv) The formation of microcrystals, their effect on the

mode spectrum in the liquid phase
(v) The “envelope” phenomenon, the role of the velocity

autocorrelation function in the fluctuation spectra.
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APPENDIX: C-MATRIX ELEMENTS

In the following formulas CAB
μν is given in units of ω2

p. ρ

is the projected 2D distance, r ≡ rAB is the full 3D distance;
they are connected by r2 = ρ2 + s2

AB, where sAB is the distance
between layers A and B. The AB subscripts match the indices
of the gAB PDFs they are linked to. Note that P and Q stand
for P ≡ P(κr), Q ≡ Q(κr):

C11
xx =

∫ ∞

0

e−κr

3r5

(
1

2
Pρ2 − Qr2

)
g11(ρ)ρ dρ +

∫ ∞

0

e−κr

3r5

(
1

2
Pρ2 − Qr2

)
g12(ρ)ρ dρ +

∫ ∞

0

e−κr

3r5

(
1

2
Pρ2 − Qr2

)
g13(ρ)ρ dρ

−
∫ ∞

0

e−κr

3r5

{[
J1(kρ)

kρ
− J2(kρ)

]
Pρ2 − Qr2J0(kρ)

}
g11(ρ)ρ dρ, (A1)

C22
xx =

∫ ∞

0

e−κr

3r5

(
1

2
Pρ2 − Qr2

)
g21(ρ)ρ dρ +

∫ ∞

0

e−κr

3r5

(
1

2
Pρ2 − Qr2

)
g22(ρ)ρ dρ +

∫ ∞

0

e−κr

3r5

(
1

2
Pρ2 − Qr2

)
g23(ρ)ρ dρ

−
∫ ∞

0

e−κr

3r5

{[
J1(kρ)

kρ
− J2(kρ)

]
Pρ2 − Qr2J0(kρ)

}
g22(ρ)ρ dρ, (A2)

C12
xx = −

∫ ∞

0

e−κr

3r5

{[
J1(kρ)

kρ
− J2(kρ)

]
Pρ2 − Qr2J0(kρ)

}
g12(ρ)ρ dρ, (A3)

C23
xx = −

∫ ∞

0

e−κr

3r5

{[
J1(kρ)

kρ
− J2(kρ)

]
Pρ2 − Qr2J0(kρ)

}
g23(ρ)ρ dρ, (A4)

C11
yy =

∫ ∞

0

e−κr

3r5

(
1

2
Pρ2 − Qr2

)
g11(ρ)ρ dρ +

∫ ∞

0

e−κr

3r5

(
1

2
Pρ2 − Qr2

)
g12(ρ)ρ dρ +

∫ ∞

0

e−κr

3r5

(
1

2
Pρ2 − Qr2

)
g13(ρ)ρ dρ

−
∫ ∞

0

e−κr

3r5

[
J1(kρ)

kρ
Pρ2 − Qr2J0(kρ)

]
g11(ρ)ρ dρ, (A5)
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C22
yy =

∫ ∞

0

e−κr

3r5

(
1

2
Pρ2 − Qr2

)
g21(ρ)ρ dρ +

∫ ∞

0

e−κr

3r5

(
1

2
Pρ2 − Qr2

)
g22(ρ)ρ dρ +

∫ ∞

0

e−κr

3r5

(
1

2
Pρ2 − Qr2

)
g23(ρ)ρ dρ

−
∫ ∞

0

e−κr

3r5

[
J1(kρ)

kρ
Pρ2 − Qr2J0(kρ)

]
g22(ρ)ρ dρ, (A6)

C12
yy = −

∫ ∞

0

e−κr

3r5

[
J1(kρ)

kρ
Pρ2 − Qr2J0(kρ)

]
g12(ρ)ρdρ, (A7)

C23
yy = −

∫ ∞

0

e−κr

3r5

[
J1(kρ)

kρ
Pρ2 − Qr2J0(kρ)

]
g23(ρ)ρ dρ. (A8)

[1] S. Ichimaru, Statistical Plasma Physics, Volume I: Basic Princi-
ples, Frontiers in Physics (CRC Press, Boca Raton, FL, 2004).

[2] P. Debye and E. Hückel, Phys. Z. 24, 185 (1923).
[3] H. Yukawa, Proc. Physico-Math. Soc. Jpn. 3rd Series 17, 48

(1935).
[4] D. H. Van Winkle and C. A. Murray, J. Chem. Phys. 89, 3885

(1988).
[5] J. H. Chu and Lin I, Phys. Rev. Lett. 72, 4009 (1994).
[6] H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher,

and D. Möhlmann, Phys. Rev. Lett. 73, 652 (1994).
[7] A. Melzer, T. Trottenberg, and A. Piel, Phys. Lett. A 191, 301

(1994).
[8] A. G. Khrapak, S. A. Khrapak, O. F. Petrov, V. E. Fortov, and

V. I. Molotkov, Phys. Usp. 47, 447 (2004).
[9] G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009).

[10] M. Bonitz, C. Henning, and D. Block, Rep. Prog. Phys. 73,
066501 (2010).

[11] E. Wigner, Phys. Rev. 46, 1002 (1934).
[12] C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).
[13] S. Das Sarma and A. Madhukar, Phys. Rev. B 23, 805 (1981).
[14] T. B. Mitchell, J. J. Bollinger, D. H. E. Dubin, X.-P. Huang,

W. M. Itano, and R. H. Baughman, Science 282, 1290 (1998).
[15] J. J. Bollinger, T. B. Mitchell, X.-P. Huang, W. M. Itano, J. N.
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