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Abstract – In a system consisting of two different charged species we identify the excitation
of a second, low-frequency plasmon. At strong coupling the doublet of high-frequency (first)
and low-frequency (second) plasmons replaces the single-plasmon excitation that prevails at weak
coupling. We observe the formation of the second plasmon from the acoustic Goldstone-type mode
associated with a short-range interaction as the range is extended to infinity.
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The existence of plasmons in many-body systems in-
teracting through a Coulomb potential (plasmas, electron
gases, etc.) with a characteristic oscillation frequency, the
plasma frequency ωp =

√

4πZ2e2n/m (with the symbols
having their usual meaning) was first observed by Tonks
and Langmuir [1]. Its theoretical analysis started with the
work of Vlasov [2,3] who realized that the unique behav-
ior of the Coulomb interaction required a novel theoretical
approach. Landau’s subsequent criticism [4] of some as-
pects of Vlasov’s work led to a deeper understanding of the
wave-particle interaction and the ensuing damping mech-
anism. The identification of the plasma oscillations as a
collective excitation —in fact, the very idea of collective
excitations and the notion of collective coordinates— is
due to the pioneering series of works by Bohm, Gross and
Pines [5–8]. It was also Bohm and Gross (BG) [5,6] who
determined the eponymous k-dependent positive disper-
sion of the plasmon, caused by the random motion of the
particles. Soon, however, it became clear that both the
Vlasov treatment and the BG dispersion share an under-
lying theoretical foundation (which later was reformulated
in many different guises [7,9–11] and has commonly be-
come known as the Random Phase Approximation (RPA))
and are appropriate for weak coupling only. The appro-
priate parameters that characterize the coupling strength
for classical systems are Γ = Z2e2/akBT and for quantum

systems rs = a/aB (a is the Wigner-Seitz radius, aB the
Bohr radius and T the temperature). Motivated by the
case of the electron gas in metals where the condition
rs < 1 is mildly violated, it was Singwi et al. [12] who have
made the first serious attempts to study the effect of strong
coupling on the properties of the plasmon. However, the
first systematic and reliable analysis of this problem, pri-
marily through Molecular-Dynamics (MD) computer sim-
ulation was done by Hansen et al. [13–16]; in particular
in [16] the change of the BG behavior to a negative dis-
persion, the hallmark phenomenon of strong coupling, was
verified, which was predicted and investigated by a num-
ber of workers [17–20] around the same time. A different
theoretical approach, the Quasi-localized Charge Approx-
imation (QLCA), geared for the study of strongly coupled
Coulomb systems [21,22] combined with advanced MD
computer simulations has led to a thorough investigation
of the plasmon dispersion. Experimentally, the plasmon
dispersion of the electron gas has been mapped in various
condensed-matter situations at low or moderate coupling
values; with the advent of complex (dusty) plasma ex-
periments, the way to directly observing strongly coupled
plasmon behavior in the laboratory has opened up.

Looking at the problem from a more general point of
view, we focus first on a system governed by a short-range
interaction (e.g. by a Yukawa potential, ϕ(r) ∝ e−κr/r).
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Such a system exhibits three ω(k → 0) ∼ k acoustic
Goldstone-type excitations [23], one of which is a lon-
gitudinal mode. This, however, is not the case for a
plasma with long-range (i.e. κ = 0) Coulomb interac-
tion. The fundamental work of Anderson [24] has shown
that this zero-mass Goldstone boson acquires a mass to
transform itself into the finite-mass longitudinal plasmon
with ω(k → 0) = ωp. It has also been demonstrated by
Lange [25] that the argument that associates the genera-
tion of a Goldstone boson with a broken symmetry fails
for long-range interaction. Moreover, it turns out that,
protected by the Kohn sum rule [26], the plasmon is an ex-
tremely robust excitation, unaffected by correlations, i.e.
Γ and rs independent.

The question we address now in this letter is: what
happens then in a (three-dimensional) binary Coulomb
system, composed of two species of different masses and
charges? Choosing the Yukawa system again as a start-
ing paradigm, we observe that the system now exhibits,
in addition to the longitudinal acoustic mode, a longitu-
dinal optic mode, which at k = 0 has frequency ω∗ and is
degenerate with its two transverse counterparts (cf. the
corresponding discussion on the 2D system in [27]). Fol-
lowing Anderson’s argument, we now expect that with
the Coulomb interaction switched on, the acoustic excita-
tion acquires a mass, i.e. develops a finite frequency, and
becomes a new excitation ω(k → 0) = ω− which hence we
refer to as the low-frequency second plasmon. It is less
obvious what happens to the gapped longitudinal excita-
tion at ω∗. What we show below is that the Coulomb in-
teraction lifts the longitudinal/transverse degeneracy and
elevates the longitudinal gap frequency from ω∗ (while
leaving the transverse excitation frequency at ω∗) to gener-
ate a second massive excitation, the high-frequency (first)
plasmon at ω(k → 0) = ω+. While it is this scenario that
is expected and verified below for strongly coupled sys-
tems, the weak-coupling theories [2,3,5–7] do not in fact,
show this behavior at all. The well-known RPA dispersion
relation provides a single finite-frequency plasmon, at the
combination of the plasma frequencies of the individual
components (see below, eq. (5)).

To analyze more rigorously the excitation spectrum of
the strongly coupled system we consider a model of a
three-dimensional strongly correlated binary Coulomb liq-
uid (BIM —Binary Ionic Mixture), consisting of two kinds
of, say, positively charged particles of charges Z1e and Z2e,
masses m1 and m2, and concentrations c ≡ c1 and c2, re-
spectively. The two ionic species are immersed in a rigid,
neutralizing background. A great deal of work has al-
ready been devoted to investigating the properties of such
a system in different dimensions [28–35]. The problem
of how correlations affect the plasmon dispersion was first
raised by Hansen et al. [16,23,36,37] and it was shown that
correlations lift the plasmon frequency from its low cou-
pling ω0 value. In [36,37] the notion of the hydrodynamic
plasma frequency ω̄ (see below eq. (6)) was introduced,
as a candidate for a second excitation. The issue was

reconsidered in [21,22] on the basis of the QLCA (see be-
low), where a high-frequency and a low-frequency longi-
tudinal and an additional transverse gapped modes were
identified (cf. eq. (4) below). However, the full under-
standing and the full physical portrayal of these modes
were lacking. While over the past decade the QLCA has
been tested and corroborated on a number of Coulomb
and Yukawa systems [38–41], no such data are available
for binary systems. Thus, the excitation spectrum of bi-
nary Coulomb systems is still poorly understood. There is
even less understanding of the transition from the weakly
coupled to the strongly coupled regime. Here we attempt
a full new analysis of the collective excitations of the
system. Our main interest lies in the liquid state, but
we will extend our investigation to the crystalline solid
phase as well, primarily with the goal of establishing the
link between the excitation spectra in the liquid and solid
phases.

Our primary approach is to study the system by MD
simulations. We accompany the simulations with a com-
pact re-formulation of the QLCA. The combination of
these two methods, whose results are in very good agree-
ment, yields a full description and understanding of the
hitherto unexplored and somewhat unexpected structure
of the collective excitation spectrum of binary Coulomb
systems. It also gives an insight into the link between
this spectrum and the spectrum of a similar system with
a short-range Yukawa interaction, see, e.g., [42].

Our MD code is based on the Particle-Particle Particle-
Mesh (PPPM) method [43], and uses N = 10000 particles
for the liquid-phase calculations, and somewhat differ-
ent number of particles in the case of lattice configu-
rations, to ensure the matching of the simulation box
and a perfect (bcc or fcc) lattice. For liquid-phase con-
ditions the initial positions of the particles are set ran-
domly, for solid-phase simulations particles are set at
lattice sites. In the measurement phase of the simulation,
that comprises ∼ 2.6 × 106 time steps, data are collected
for the three pair correlation functions, gAB(r), as well
as for the microscopic density and current fluctuations,
for the two species. The Fourier transform yields from
these data (see, e.g., [15]) the dynamical partial structure
functions, SAB(k, ω), as well as the partial longitudinal
and transverse current fluctuation spectra, LAB(k, ω) and
TAB(k, ω), respectively. Collective modes are identified as
peaks appearing in these spectra. With the above num-
ber of simulation particles and the time covered by the
simulations we obtain a good signal-to-noise ratio of the
measured quantities, and a good resolution of the dynam-
ical spectra over a wide range of the parameters, even at
relatively low coupling, a domain that is less accessible
computationally.

The QLCA is based on the premise that in the strongly
coupled phase, particles are trapped in local potential
minima and that the oscillation of these quasi-localized
particles governs the formation of the collective modes.
The dispersion of the modes is described in terms of the
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dynamical matrix C:

Cµν
AB(k) = −

1

4π

∫

d3r{ω2
ABψµν(r)e−ik·r[1 + hAB(r)]

− δAB

∑

C(all)

Ω2
ACψµν(r)[1 + hAC(r)]}

+ δABδµν
∑

C(all)

1

3
Ω2

AC ,

ψµν(r) =
1

r3

(

3
rµrν

r2
− δµν

)

−
4π

3
δµνδ(r). (1)

The indices A, B designate the species; hAB(r) is the pair
correlation function between particles in species A and B.

ω2
AB =

4πe2ZAZB
√

nAnB√
mAmB

,

Ω2
AB =

4πe2ZAZBnB

mA
(2)

are the nominal plasma and Einstein frequencies, respec-
tively. In this letter we are interested in the longitudinal
modes only, in particular their behavior at k = 0, where
the salient features of the mode structure come into focus,
and

CL
11(0) = ω2

11 +
1

3
Ω2

12, CL
22(0) = ω2

22 +
1

3
Ω2

21,

CL
12(0) =

2

3
ω2

12 =
2

3
Ω12Ω21;

CT
11(0) =

1

3
Ω2

12, CT
22(0) =

1

3
Ω2

21,

CT
12(0) = −

1

3
Ω12Ω21, (3)

The L and T superscripts designate longitudinal and
transverse elements. The collective modes are obtained
as the roots of the characteristic equation ||C−ω2I|| = 0.

We introduce now the asymmetry parameters p and q
with p2 = Z2n2/Z1n1, and q2 = Z2m1/Z1m2, and express
all frequencies in the unit of ω1 ≡ ω11 =

√

4πZ2
1e2n1/m1,

with Z = Z2/Z1 and m = m2/m1 for the charge and
mass ratios, respectively. Now the resulting gap frequen-
cies become

ω2
± =

1

2
(B ±

√
∆),

ω2
T ≡ ω2

∗ =
1

3
(p2 + q2),

B = 1 + p2q2 +
1

3
(p2 + q2),

∆ = B2 −
4

3
q2(1 + p2)2. (4)

ω+ and ω− are the longitudinal plasmons, while ωT is a
doubly degenerate gapped transverse mode. In addition
we observe the appearance of the doubly degenerate trans-
verse acoustic mode with a sound speed s of the order of
s ∼ ω̄a (ω̄ is defined below). Note that the gap frequencies

Fig. 1: Gap frequencies in relation to the RPA plasma
frequency ω0 =

√

1 + p2q2.

are ordered as ω+ > ωT > ω−. They satisfy a generalized
Kohn sum rule [44], which, however, does not protect them
from the unexpectedly complex dependence on the system
parameters.

In the weak-coupling approximation (RPA), as already
noted, there would exist only one excitation frequency,

ω0 =
√

ω2
p1 + ω2

p2 =
√

1 + p2q2. (5)

The hydrodynamic (or virtual average atom) fre-
quency [27] introduced by Hansen et al. [45] is

ω̄ =
√

q2/(p2 + q2)(1 + p2). (6)

While this frequency plays a role in the low-frequency
acoustic spectrum of the system (similarly to Yukawa sys-
tems [27]), it is not part of the spectrum displayed above.
In fig. 1 we portray the three predicted gap frequencies
in relation to the RPA plasma frequency ω0, showing
the remarkable differences brought about by the strong
coupling. The special role of the q = 1 structure is vis-
ible as an ω+ = 1, ω− = ωT = 1/

√
3, p-independent

separatrix, representing a quasi–one-component behav-
ior [16,22,27,36,45,46].
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Fig. 2: Z and m dependences of the gap frequencies (lines)
together with MD results for solid (crosses) and strongly cou-
pled liquid (circles) cases. Parameters are indicated in the
panels.

In the following sequence of graphs we compare the
QLCA predictions with the behavior of the system deter-
mined by MD simulations over a range of coupling values.
We characterize the strength of the overall coupling by the
value of Γ ≡ Γ1 = Z1e2/a1kBT , where a3

A = 3/(4πnA).
Depending on Z2 and c2, the actual coupling strength

can be quite different. A fair measure of its value
can be gleaned by observing where the freezing of the
liquid sets on. We have found that defining Γeff =
〈Z〉2e2/(a0kBT0) = c5/3(1 + p2)2Γ provides a reasonably
uniform liquid/solid phase boundary at Γeff ≈ 174, where
〈Z〉 = (Z1n1 + Z2n2)/(n1 + n2), T0 is the temperature,
and a0 is the Wigner-Seitz radius calculated from the total
density n1 + n2. Our Γ values range from weak/moderate
coupling (Γ = 1) moving up into and beyond the crys-
tallization regime (Γ > 150). For the lattice structure in
the solid phase, for c = 0.5 we expect the lattice structure
to be bcc, for c = 0.75 to be fcc. The stability of these
lattices at zero temperature has been tested: for the bcc
0.278 < Z < 3.596, for the fcc 0.731 < Z < 1.512.

In fig. 2 the predicted Z and m dependences of the gap
frequencies are shown for different concentrations along
with MD simulation results for high Γ values. Shown are
also the matching of the liquid gap frequencies with the

Fig. 3: Dynamical partial structure functions for a series of
coupling parameters Γ for Z = 0.8, m = 0.02, c = 0.75 and the
lowest wave number accessible in the simulation: ka = 0.188,
where a =

√

a1a2. The two spectra in the front represent solid
(fcc) systems with Γ = 10000 and 300, respectively.

corresponding values in the crystalline solid. In the bcc
there is a one-to-one agreement between the liquid and
solid gap frequencies; in the fcc there are additional optic
modes, due to the increased number of particles inside the
unit cell (cf. [27]). The overall agreement with the theo-
retical prediction is very good: the analytic description of
the mode structure seems to be well confirmed.

It should be emphasized that the QLCA gap frequencies
are formally Γ independent and the detailed structure of
the correlation functions does not enter eqs. (5). (This is
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Fig. 4: (Color online) Color map in the background is the sum
of current fluctuation spectra, L11 + L22 + T11 + T22, from
MD simulations for Z = 0.7, m = 5, c = 0.5, and Γ = 100.
The black lines overlaid are dispersions relations for the same
system computed by QLCA.

not true for the k += 0 behavior, not shown here.) The only
feature that has been exploited is that gAB(r = 0) = 0;
nevertheless the strong-coupling approximation is inherent
in the model, because the QLCA is built on the localiza-
tion assumption, a hallmark of the strong coupling.

More insight into how strong coupling affects the dy-
namics of the system can be gleaned from fig. 3, where
we show the dynamical partial structure functions L11(ω),
L22(ω), T11(ω), T22(ω), L(ω) representing the spectra of
the longitudinal, T (ω) of the transverse current fluctua-
tions. We present sequences of graphs for a selected set of
parameters where the effect of the increasing strength of
the coupling can be followed, from low coupling (Γ = 0.2)
into well in the crystalline phase. We observe that at
low Γ values the system exhibits RPA behavior, where
only one gapped mode ω0 survives. The characteristic
strong-coupling behavior with the appearance of the ω+

first plasmon and the ω− second plasmon takes place
around Γ = 40, while the transverse modes appear later,
around Γ = 100. (Note, however, that these Γ values
are appropriate for the chosen system parameters only,
and they vary with the change of the system parameters.)
There seems to be a “no-man’s land”, somewhere between
Γ = 10 and Γ = 40, where virtually no collective exci-
tation exists. A remarkable feature can be observed in
the L22(ω) (2 is the light component) graph: the develop-
ment of a very well defined Fano-like sharp minimum, at
an ω value adjacent to ω−; a somewhat similar feature in
the response (rather than in the equilibrium fluctuation
spectrum) of an electron-ion plasma has been reported by
Murillo [47]. A discussion and attempted explanation of
this phenomenon will be presented elsewhere [48].

While the focus of this letter is a presentation and dis-
cussion of the k = 0 gapped excitations, it is instructive to
examine a sample of the full ω(k) dispersions. This is done
in fig. 4, where for a representative set of parameters the
MD result is portrayed for the liquid phase, accompanied
by theoretical dispersion curves calculated with the aid
of the QLCA. We observe the appearance of the acoustic

Fig. 5: Longitudinal dispersion curves calculated for binary
Yukawa bcc lattices for a series of κ = a/λD and Z = 1, m = 5.

doubly degenerate transverse mode with a sound speed s
of the order of s ∼ ω̄a. We also note the two ω(k → ∞)
actual Einstein frequencies, which can be calculated to be

Ω2
E1 =

1

3

(

ω2
11 + Ω2

12

)

, Ω2
E2 =

1

3

(

ω2
22 + Ω2

21

)

. (7)

Finally, it is instructive to explore the details of the
transition from a Yukawa system with κ += 0 to the sin-
gular Coulomb (κ = 0) case. A sequence of dispersion
curves illustrating the process as described in the intro-
ductory paragraph is given in fig. 5. While the transition
is discontinuous at k = 0, it becomes quasi-continuous in
the k > κ domain.

In summary, we have shown that in the strongly coupled
phase of a binary system of charged particles the excitation
spectrum of collective modes dramatically changes from
the simple structure that exists in the domain of weak
coupling: the single plasmon with the combined plasma

frequency ω0 of the two species ω0 =
√

ω2
p1 + ω2

p2 is re-

placed by the doublet of a new type of excitations, a high-
frequency first plasmon ω+ and a low-frequency, second
plasmon ω−. This second plasmon is generated by the
Anderson mechanism from the longitudinal acoustic Gold-
stone boson that one would have in a system with a short-
range interaction. There is, however, no smooth transition
from the weak coupling ω0 to the strong coupling ω+. In
the intermediate coupling domain no collective excitation
can be discerned.

As to the remaining part of the spectrum, we have con-
firmed the existence of transverse excitations, consisting
of a set of doubly degenerate acoustic modes and a set
of doubly degenerate gapped modes. The acoustic speed
is governed by the oscillation frequency of the “virtual
atom” [27] (hydrodynamic frequency [45]).

The physical systems that come closest to the real-
ization of the simplified model investigated in this pa-
per are brown dwarf interiors [49,50], carbon-oxygen stars
in their helium shell burning phase [37,51], and trapped
Be+-Xe+44 ionic mixtures [30], as well as mixtures of
fermion gases, such as those constituted by electrons in
transition metals [52] and in heavy-fermion systems [53].
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A., Phys. Rev., 176 (1968) 589.
[13] Pollock E. L. and Hansen J. P., Phys. Rev. A, 8 (1973)

3110.
[14] Hansen J. P., Phys. Rev. A, 8 (1973) 3096.
[15] Hansen J. P., McDonald I. R. and Pollock E. L.,

Phys. Rev. A, 11 (1975) 1025.
[16] Hansen J. P., McDonald I. R. and Vieillefosse P.,

Phys. Rev. A, 20 (1979) 2590.
[17] Kalman G., Kempa K. and Minella M., Phys. Rev. B,

43 (1991) 14238.
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