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Collective Modes in Strongly Coupled Binary Liquids
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We analyze the collective excitations in two- and three-dimensional binary Yukawa systems, consisting of two
components with different masses. Theoretical analysis reveals a profound difference between the weakly
and strongly correlated limits: at weak coupling the two components interact via the mean field only and the
oscillation frequency is governed by the light component. In the strongly correlated limit the mode frequency
is governed by the combined mass, where the heavy component dominates. Computer simulations in the full
coupling range extend and confirm the theoretical results.
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Recently there has been a great interest in the structural properties of binary and multi component Yukawa
systems, created by the emergence of the new directions in complex (dusty) plasma [1] and charged colloidal
suspension [2] research. Complex plasmas consist of highly charged mesoscopic grains immersed in the back-
ground of electrons and ions. It is the presence of the latter that, by screening the bare Coulomb interaction
between the grains, generates an effective interaction that in a good approximation can be represented by the
Debye-Hückel, or Yukawa potential ϕ(r) = Ze exp(−κr/a)/r, where κ = a/λD is the screening parameter,
Z is the electric charge, and λD is the Debye screening length. The strength of the coupling governing the be-
havior of the one component Yukawa systems (OCYS) is conventionally characterized by the nominal coupling
constant Γ = Z2e2/akT (a is the Wigner-Seitz radius and T is the temperature). Due to the screening (κ > 0)
the effective coupling constant Γ∗ (defined in [3–5]) may be substantially smaller. The high value of the grain
charge (Z ≫ 1) ensures that the system is in the strong coupling (Γ∗ ≫ 1) regime and consequently in the liquid
or solid phase. Both two-dimensional (2D) and three dimensional (3D) Yukawa systems are of interest, although
most of the experimental work has focused so far on 2D systems.

The asymmetry between the two components of a two-component binary Yukawa systems (BYS) is charac-
terized by three parameters: the mass ratio m2/m1, the charge ratio Z2/Z1, and the density ratio n2/n1. In a
complex plasma these parameters are not independent: most importantly, both the m2/m1 and the Z2/Z1 ratios
are determined by the relative grain sizes. Theoretically and in simulation models, of course, these parameters
can be separated; indeed they should be so distinguished, in order for one to be able to determine the differ-
ent physical effects brought about by mass, charge, etc. asymmetries. We have already shown in [6, 7] that
for the purpose of calculating the dispersion relation the charge, mass and density ratios can be reduced to two
asymmetry parameters p2 = (Z2n2)/(Z1n1) and q2 = (Z2m1)/(Z1m2). For the presentation of our results
we prefer using dimensionless quantities, which is achieved by introducing the length unit based on the Wigner-
Seitz radius as a =

√
a1a2, where a2DA = 1/

√
πnA and a3DA = 3

√
3/(4πnA), and the nominal plasma frequency

ω3D
1 =

√
4πZ2

1e
2n1/m1 and ω2D

1 =
√

2πZ2
1e

2n1/m1a.
Here we address the issue of the collective spectrum of a BYS, both in 2D and 3D. We find that the spectrum

consists of acoustic modes (ω → 0 for k → 0), with coupling dependent “longitudinal” and “transverse” sound
velocities sL,T and a number of optic modes (with gap frequencies ωG ̸= 0 for k → 0). These latter represent
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out-of-phase inter-species oscillations. We study the full excitation mode structure and we investigate how the
mass asymmetry, between the two species with Z1 = Z2 affects the sound speed and the optical mode gap
frequencies as the coupling strength Γ is varied from the weak coupling Γ∗ ≪ 1 to the strong coupling Γ∗ ≫1
regime and as the mass ratio m2/m1 is varied in a wide range.

Consider now a BYS, with masses and densities mA and nA (A=1,2), respectively. Each density can be
associated with a Wigner-Seitz radius aA and a nominal coupling constant ΓA = Z2

Ae
2/aAkT . In the calculations

we parallel the 2D and 3D results.
First we identify the ground state crystal phonon excitation mode structure based on the harmonic lattice

approximation. In this calculation a perfect periodic lattice is assumed with Nc particles in the elementary cell.
We concentrate on four different systems (see Fig. 1): (a) staggered rectangular (hexagonal) lattice (2D, κ = 1,
n2 = n1, m2 = Mm1, Nc = 2); (b) honeycomb lattice (2D, κ = 1, n2 = (1/2) n1, m2 = Mm1, Nc = 3);
(c) BCC lattice (3D, κ = 1, n2 = n1, m2 = Mm1, Nc = 2), and (d) FCC lattice (3D, κ = 3, n2 = (1/3) n1,
m2 = Mm1, Nc = 4). These configurations have been chosen because in the case of Z1 different from Z2 at the
selected n2/n1 ratios they seem to be reasonable candidates for the ground state lattice structure.

Fig. 1 Schematics of the investigated ground state lattice configurations. For explanation see text.

The lattice dispersion relation is obtained from the dynamical matrix D(k), which is computed using the
standard method (e.g. [8]) of summing contribution from up to 106 neighbors:

DAB
µν (k) =

1
√
mAmB

∑
f

ΨABf
µν exp

[
ik ·

(
RBf

0 −RA0
0

)]
, with ΨABf

µν = −∂2ϕAB

∂µ∂ν
(RBf

0 −RA0
0 ), (1)

where f runs over unit cells within a large cutoff radius, A and B enumerate the particles within a unit cell, µ and
ν are Cartesian coordinates, k is the wave vector, R0-s are the equilibrium position vectors of the particles.

The maximum number of excitation modes is given simply by the product of the dimensionality number (2 or
3) and Nc. Degeneracy due to structural symmetries can reduce the observed mode number. Illustrative examples
for the staggered rectangular and for the honeycomb lattices (Fig. 1a,b) are shown in Fig. 2 for two mass ratios,
k is parallel to the horizontal x-axis as it appears in Fig. 1.

Fig. 2 Dispersion relations for staggered rectangular (a,b) and honeycomb (c,d) lattices at mass ratios M = 2 and 20.

For the staggered rectangular lattice there are 2 distinct, “longitudinal” and “transverse”, optic modes (des-
ignating these modes thus is justified, in general, in the k → 0 limit only); for the honeycomb lattice there are
4 optic modes, but the longitudinal and transverse gap frequencies are degenerate, due to the k → 0 rotational
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symmetry of this structure. The honeycomb also illustrates that in the case of Nc > 2 a new feature, a mass ratio
invariant mode, appears that represents a polarization where the “heavy” particle (m2) is at rest, and the “light”
particles (m1) move around it. In this case the mass of the heavy species does not come into play, resulting in the
observed invariance.

To extend our analysis into the strongly coupled liquid phase we use molecular dynamics (MD) simulations
and the quasilocalized charge approximation (QLCA) calculations [7, 9], matching them with the lattice calcula-
tions for Γ → Γm the solidification value.

Fig. 3 Longitudinal (sL) and transverse (sT ) sound speeds vs. mass ratio for: (a) 2D hexagonal (staggered rectangular) and
honeycomb lattices, (b) 3D BCC lattice, finite temperature solid (MD at Γ1 = 10 000) and liquid (MD at Γ1 = 120), (c)
3D FCC lattice and finite temperature solid. Lines are fitted to lattice values using formula (2). Filled symbols show QLCA
results. (taken from [10])

Focusing first on the acoustic modes, in general a good agreement between the different theoretical and numer-
ical approaches is found, as shown in Fig. 3. Sound speeds obtained by lattice summation can be approximated
with very high accuracy by the functional form

s(M) ∝ s(0)√
1 + n2

n1
M

, (2)

derived from the QLCA formalism.
We generate 3D and 2D MD simulation data from which we obtain the acoustic speeds, over a wide range

of Γ values extending well into the crystalline solid region (see Fig. 4). In the strong coupling limit the QLCA
calculations predict that sL,T are governed by the “average atom frequency of the virtual crystal” [11, 12]:

s2L,T ∝ e2
⟨Z⟩2

⟨m⟩
(n1 + n2), with ⟨X⟩ =

∑
niXi∑
ni

(3)

We can see a rather dramatic decrease of the sound velocity with increasing Γ from the moderately coupled to
the strongly coupled regions. For high Γ, near Γm the agreement of the MD results with the QLCA predictions
is excellent. There is also an almost perfect agreement near Γm between these two values pertaining to the liquid
and the crystal lattice values. The small discrepancy, visible for the 3D n2 = (1/3)n1 case can be attributed to
the anisotropy of the sound velocity in the FCC lattice: the liquid results correspond to angle-averaged values,
while the lattice result is given along the chosen {001} direction.

Turning to the optic modes, we observe the general behavior as noted before: gap frequencies ωG = ω(k →
0), show pairwise degeneracy for systems with k → 0 rotational symmetry (honeycomb (see Fig. 2), BCC and
FCC). The mass ratio dependence of the gap frequencies is shown in Fig. 5. We also observe the appearance of
the invariant frequency for the honeycomb and the FCC.

Our analysis shows that for the system without pairwise degenerate gap (staggered rectangular) the QLCA
calculation predicts a single gap with frequency value being the square average of the lattice gaps ω2

G,QLCA =
1
2 (ω

2
G,1+ω2

G,2). For the system with one degenerate gap (3D BCC) the QLCA calculation can well reproduce the
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lattice value. However, the QLCA approximation in its present form does not reproduce the mass ratio invariant
mode, where members of the same species oscillate against each other, at all. Currently, there are no conclusive
MD results concerning the behavior of the optic modes in the liquid phase.

Fig. 4 Longitudinal sound speed vs. Γ1 in different systems, obtained from MD simulations. 2D: (a) hexagonal (staggered
rectangular), (b) honeycomb. 3D: (c) BCC, (d) FCC. M = m2/m1=5 for all cases. The dotted lines indicate the theoretical
high Γ limit; the continuous lines represents the results of the QLCA calculations. (taken from [10])

Fig. 5 Gap frequencies vs. mass ratio for all four systems based on lattice and QLCA calculations using pair distribution
functions from MD simulations at Γ1 = 120.
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