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The generation of higher harmonics of the magnetoplasmon frequency which has recently been reported
in strongly coupled two-dimensional Yukawa systems is investigated in detail and, in addition, extended to
two-dimensional Coulomb systems. We observe higher harmonics over a much larger frequency range than
before and compare the theoretical prediction with the simulations. The influence of the coupling, structure, and
thermal energy on the excitation of these modes is examined in detail. We also report on the effect of friction on
the mode spectra to make predictions about the experimental observability of this new effect.
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I. INTRODUCTION

The behavior of two-dimensional (2D) systems is of
continuing interest in many fields of physics as the reduced
number of dimensions gives rise to a number of peculiar
properties. In highly correlated systems, where the potential
energy due to the interaction dominates over the thermal
energy (for recent overviews see [1,2]), 2D many-particle
systems exhibit a strongly collective behavior which manifests
itself, e.g., in anomalous transport properties of 2D liquids
[3—7]. Correlational effects are also responsible for additional
shear mode excitations of 2D liquids [8,9] which do not
occur in weakly coupled systems but have been experimentally
observed in strongly coupled dusty plasmas [10,11].

Subjecting a 2D many-particle system to a perpendicular
magnetic field gives rise to yet another line of research into the
physics of low-dimensional systems [12]. The magnetic field
effectively “mixes” longitudinal and transverse excitations,
leading to two hybrid modes, the magnetoplasmon and the
magnetoshear, which have, in recent times, been studied in
Coulomb and Yukawa systems [13-15]. These modes are
well understood from a theoretical perspective, including
descriptions based on the quasilocalized charge approximation
(QLCA) [16,17] or in harmonic lattice approximations [9,15].

However, besides these established modes, 2D Yukawa
systems at strong coupling have recently been found to support
additional high-frequency modes. These modes appear as
higher harmonics of the magnetoplasmon in nondissipative
2D Yukawa systems [18] and are reminiscent of the classical
Bernstein modes [19]. Unlike these, however, the observed
higher harmonics are not a pure magnetic effect but are,
additionally, fundamentally affected by the strong correlations
between particles, as was demonstrated in Ref. [18].

In this work, we put the theoretical predictions of our earlier
work [18] to the test by using more detailed simulations
and observing considerably more high-frequency modes. In
addition, we include the Coulomb case of vanishing screening
in our analysis, and demonstrate that the higher harmonics are
also generated under these circumstances, which are not only
quantitatively but also qualitatively different from screened-
interaction systems [2]. Finally, we assess the possibility
of experimental verification by investigating the relative
intensities of the modes and including dissipative effects in
our simulations.
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The remainder of this article is structured as follows. In
Sec. II, we introduce our model and give details of the
numerical procedure and the system of units. Section III
introduces the longitudinal and transverse fluctuation spectra
and the means by which they are computed. The results for
nondissipative and dissipative systems are presented in Sec. [V
before we summarize our findings in Sec. V.

II. MODEL AND DETAILS OF THE NUMERICAL
SIMULATION

Our model system consists of N point particles situated
in a quadratic simulation box in the x,y plane with side-
length L. The particles are uniform in mass m and charge ¢ and
are subject to periodic boundary conditions to avoid surface
effects. The particles propagate according to the coupled
equations of motion,

mfiZFi+qfiXB+Si, (1)

where the force F; follows from the Yukawa potential created
by all other particles,

N o—"/*D
o 47150 Z ( )

2)

r=ri—r;

Here, Ap denotes the Debye screening length and the primed
sum indicates the omission of the term j = i. For Ap — oo,
we recover the well-known one-component plasma (OCP).
The magnetic field is oriented perpendicular to the plane of
the particles, B = Be_, and the Langevin term S; in Eq. (1) is
defined as

S,' = —mi\_zi‘i + R,‘. (3)

This Langevin term is only included in the simulations with
friction v, and R;(#) is a Gaussian white noise [20] with zero
mean and the standard deviation

(Rq,i(to)Rp, (1o + 1)) = 2kpT 08;;8ap 8(1), “4)

where o, 8 € {x,y} and T is the temperature.

Equation (1) is solved simultaneously for N = 4080 par-
ticles using standard molecular dynamics simulation with
integrators adopted to the influence of the magnetic field [21].
When friction is included in the simulations, we apply an
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additional Ornstein-Uhlenbeck process in momentum space
[22,23]. For Coulomb systems, the appropriate Ewald summa-
tion techniques to calculate the forces are employed [24,25].
Starting from a random configuration of particles, the system
is brought into equilibrium by a repeated rescaling of the
particles’ momenta according to the desired temperature
T. After equilibrium conditions are realized, the system is
advanced only according to Eq. (1).

In the following, lengths are given in units of the Wigner-
Seitz radius a = [nmw]~'/2, where n is the areal number density
of the particles. Time is given in multiples of the inverse of the
nominal angular plasma frequency w, = [ng?/(2egma)]'/>.
The system is characterized by four dimensionless parame-
ters:

(1) the temperature T of the particles, given in terms of
the system’s nominal (i.e., Coulomb) coupling parameter I’ =
q*/(4megakpT);

(2) the inverse of the Debye screening length Ap, normal-
ized by the Wigner-Seitz radius, k = a/Ap;

(3) the strength of the magnetic field, expressed as the ratio
B between the angular cyclotron frequency w. = ¢ B/m and
the nominal angular plasma frequency, 8 = w./w,;

(4) the strength of friction, given by v = V/w,.

III. COLLECTIVE MODES

The collective excitations of the strongly coupled, inter-
acting particles can be analyzed through the microscopic
excitation spectra. The dispersion, i.e., the relation between
the wavelength and the wave frequency of the collective exci-
tations, can be obtained from the analysis of the autocorrelation
(ACF) of the density and current fluctuations. For the Fourier
components of the density fluctuations, we have [26]

N
o(k,t) = Zeik-r,-(t). 3
j=1

The dynamical structure factor S(k,w) follows as (assuming
k = ke, and dropping the vector notation for k)

Stk,w) =

1 2
v Tll)ngo TIE{p(k,t)}I , (6)

where F; denotes the temporal Fourier transform.
The current operator is given by [26,27]

N
Jk,ty =" v;() explikx;(1)]. (7)

Jj=1

Separating longitudinal [A(k,?)] and transverse [t (k,?)] cur-
rents, one arrives at the microscopic quantities [28]

N

Mk,t) =Y vj explikx;], (8)
j=1
N

t(k,t) = Z vjy explikx;], )

j=1
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from which one can then obtain the fluctuation spectra L(k,w)
and T (k,w) analogously to Eq. (6) [replacing p(k,?) by A(k,?)
and t(k,t), respectively]:

1 )

L(k,w) = el Tlggo FIE{A(k,t)}I , (10)
11 )

T(k,w) = mN Tlgr;o 7Ifz{r(k,t)}| . (11)

The dynamic structure factor S(k,w) can be shown to be
related to L(k,w) as [29]

2
Stk,w) = %L(k,w). 12)

S(k,w), therefore, contains no additional information over
L(k,w), so we concentrate on L(k,w) and T (k,w) in the
following [30].

Our main interest lies in the mode spectra in the high-
frequency range. We numerically evaluate the microscopic
fluctuations (8) and (9) at multiples of the minimum wave
vector kmin = (2 /L)e, as dictated by our use of periodic
boundary conditions. The data are subsequently Fourier
analyzed and the periodogram estimate of the power spectrum
density is computed to obtain L(k,w) and T (k,®). Our simula-
tions are typically thermalized for 20 000 plasma periods and
data are collected during 400 000 or more plasma periods. The
spectra are computed for different values and combinations of
the coupling I', screening &, magnetic field 8 and friction v.

IV. RESULTS

In this section, we study the generation of the higher
harmonics in detail. Using more accurate data, we confirm the
theoretical formula of the mode spacing reported in Ref. [18]
in Sec. IV A and then discuss the effect of the coupling, the
structural properties and the thermal energy on the higher
harmonics in frictionless systems in Sec. IV B. In Sec. IVC,
we include dissipation and stochastic noise in our simulations
to gauge the prospect of experimental verification.

A. Dependence of the spectrum on

To obtain a first overview of the collective excitations,
we depict in Fig. 1 several results for the longitudinal and
transverse wave spectra at different strengths of the magnetic
field for a Yukawa system with x =2 and I' = 200. The
density plots in Fig. 1 show the sum of transverse and
longitudinal excitations. For the unmagnetized case (top row),
the mode spectrum is well known and accurately described,
e.g., within the QLCA [8]. The two branches associated with
strongly coupled, unmagnetized Yukawa and Coulomb liquids
(transverse and longitudinal branch) are not discernible on the
scales of Fig. 1. Athigher frequencies, the mode spectra appear
structureless (cf. right columns of Fig. 1).

In the the magnetized case (lower three rows of Fig. 1), two
features are immediately noticeable: i) The two modes from the
unmagnetized case are now replaced by the upper- and lower-
hybrid modes (UH and LH) with the k — 0 limits wi™ =0
and wi™ = w, [9]. ii) The qualitatively new feature reported in
Ref. [18] is the emergence of multiple new branches at higher
frequencies. These are higher harmonics reminiscent of the
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FIG. 1. (Color) x = 2.0,T" = 200, 8 = 0.0,0.5,1.0,1.5 (from top row to bottom row). Left: Collective excitation spectra, L(k,w) + T (k,w).
Right: L(w) and T (w) at four values of k (ka = 1,2,3,5, lowest to highest curve).

Bernstein modes which have been observed half a century ago
in strongly magnetized ideal plasmas [19]. Typical for these
modes is that their frequencies are equally spaced, appearing
at multiples of the cyclotron frequencies w, and that they are
undamped and exist in the entire wave number range.

The present modes show a number of fundamental differ-
ences which are caused by correlation effects: all modes are
damped, and they appear only beyond a critical wave number
which increases with the mode number. The most important
difference is the mode frequency. Instead of being spaced by
the cyclotron frequency w,, here the modes appear at multiples
of the magnetoplasmon frequency. The frequency of these
“dressed Bernstein” modes, w,, n = 2,3, ..., were found to
be well described by the relation [18]

wr (k) X nwi o, 0] (B.K) = WX(B) + 203 (k). (13)
Here, the dominant single-particle oscillation frequency is
denoted by wp, the Einstein frequency, which strongly varies
with « but also weakly depends on I" [31]. Some values of
wg (T, k) are collected in Table 1.

In Ref. [18], the data allowed to detect higher harmonics of
the magnetoplasmon up to the third order [(n = 4 in Eq. (13)].
The present data show higher harmonics up to n =7 (cf.
Fig. 1, third row). This provides us with the opportunity to

verify the validity of Eq. (13) to a much higher precision.
To this end, we depict in Fig. 2 the combined mode spectra
for § = 1.0 in two different systems. The solid lines indicate
the theoretical prediction of Eq. (13). A very good agreement
between the theory and the simulations is evident. In addition,
Fig. 2(a) illustrates that the generation of the dressed Bernstein
modes also occurs in a Coulomb system in which the particle
interaction is long ranged. This feature substantially expands
the scope of the higher harmonics generation to other fields in
plasma physics, including, e.g., ionic plasmas in traps [32,33]
and electron-hole plasmas in semiconductors, e.g., [34].

TABLE L. The Einstein frequencies wg as calculated from QLCA
[2] for various combinations of I" and «.

K r wg/w,
0 100 0.62
1 150 0.52
2 40 0.40
2 100 0.36
2 200 0.34
3 600 0.20
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FIG. 2. (Color) Combined mode spectrum L(k,w) + T (k,w) for
a) k = 0.0, =100 and b) x = 2.0, T" = 200, and B8 = 1.0. Black
lines are the theoretical prediction for higher harmonics according to
Eq. (13).

We now quantify the higher harmonics in more detail.
Figure 3 shows the frequency and oscillator strengths of the
higher harmonics and the magnetoplasmon at ka = 2.0 and
fixed I' and B. The agreement between relation (13) and the
peak position from the simulations is again excellent (Fig. 3a),
both for the OCP and a typical Yukawa system with x = 2.
Note that no free parameter enters the theoretical prediction
and that the differences in the theoretical predictions are only
mediated by wg.

A quantity of central interest is the relative intensity of
the generated higher harmonics. These values provide one
with a first estimate of the required experimental sensitivity
to observe the described effects. Figure 3b shows the relative
intensities at ka = 2.0 for the Yukawa and Coulomb spectra.
Evidently, the data points are well described by a decay of
the form 10261 The first of the higher harmonics (i.e.,
n = 2) appears with an intensity of about one hundredth of the
magnetoplasmon. Such intensities are observable against the
background noise in typical dusty plasma experiments [10].

B. Dependence of the spectrum on the interaction, temperature,
and structural order

The frictionless Yukawa system is (at fixed magnetization
B) characterized by two parameters: The inverse temperature
(Coulomb coupling parameter) I' and the interaction range
(inverse Debye length) «. The influence of the temperature is
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FIG. 3. (Color online) k = 2.0, I' = 200, and x = 0.0, I' = 100
at B = 1.0, ka = 2.0. a) The peak position of the nth mode. The
straight lines are the theoretical predictions (13) with wg/w, =
0.62 (« = 0.0) and wg/w, = 0.34 (x = 2.0). b) The peak intensity
normalized to the intensity of the magnetoplasmon (n = 1). An
exponential decay is shown by the straight line.

investigated by changing, at a fixed value of «, the coupling
parameter I".

In Fig. 4, different situations are depicted for a system
with k = 2, ranging from intermediate coupling (I" = 10;40)
to strong (I' = 200) and very strong coupling (I' = 1000).
Note that for ' = 1000, the system is already far in the
microcrystalline regime, I'rej = I'/ I'pelting ~ 2.4. The de-
creased thermal background makes the fundamental and higher
harmonics stand out very clearly at strong coupling, and the
signal-to-noise ratio is higher in these cases. For example,
harmonics with n > 3 are far easier to distinguish at I' = 1000
than at I' = 40. The intensity ratio M = I,/I, between the
intensity of the nth harmonic and the fundamental is, however,
clearly decreased for stronger coupling [35]. This indicates
that a certain degree of disorder is required for an effective
generation of higher harmonics, which in turn might depend
on anharmonic effects that are less important in highly ordered
systems.

Having established the influence of the temperature (inverse
coupling), we now determine the influence of the interaction
range. To this end, in Fig. 5, we show the combined mode
spectra at a fixed I' = 100 for different values of x and two
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FIG. 4. (Color) B = 0.7,k = 2.0, " = 10,40,200, 1000 (from top to bottom). Left: Collective excitation spectra, L(k,w) + T (k,w). Right:
L(k,w) + T (k,w) at two fixed values of ka = 2.0; 5.0 and values of I" as before.

values of ka. The curves appear very similar, with comparable
signal-to-noise ratios and similar relative intensities of the
higher harmonics. This is despite the strong differences in
structural order among the systems reflected in the different
radial pair distribution functions (RPDF, inset of Fig. 5) defined
as

2 /
gllrh) = % <Z 8(r — r,-,-|)>. (14)
i.j

The sole effect of an increase in « on the higher harmonics
is a systematic shift toward smaller frequencies. This result
is not unexpected and indeed predicted by Eq. (13): With
increasing k, the particle oscillations decrease in frequency as
the interparticle potential becomes more lenient. The Einstein
frequency, therefore, diminishes with increasing « (cf. Table I)
and, consequently, so do the frequencies at which the higher
harmonics appear.

So far we have investigated the influence of I' and
k on the higher harmonics. A change of either of these
parameters also affects the structural properties of the system.
By changing I' and « simultaneously in such a way that
the RPDF remains practically unchanged [31,36-38], we
can compare systems with identical structural properties. We
achieve this by fixing the ratio of the temperature to the point

of (micro)crystallization, I'/ I'pelting = 'rel [39,40]. Systems
corresponding to the same I but different I' have thus the
same structural order but different thermal energy.

The results are presented in Fig. 6, where a fixed value
of I is maintained for systems with different values of «.
A combination of the two previously described effects is
observed: The higher harmonics shift toward lower frequency
with increasing «, and decay more slowly albeit with a
decreased signal-to-noise ratio with increasing temperature
(inverse coupling).

In conclusion, we find that the generation of higher
harmonics is nearly independent of the intricate details
of the structure and the range of the interaction between
the particles (except for a systematic frequency shift) but,
instead, is dominated by the thermal energy available to the
system.

C. Influence of dissipation on the higher harmonics. Prospects
for experimental observation

Besides noise resulting from the measurement itself, many
physical systems are also influenced by fluctuations due to
the coupling to their surroundings. In many cases, these
fluctuations and dissipation effects are well described by a
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FIG. 5. (Color online) Combined mode spectra at ka = 2.0;5.0
for identical temperature (I" = 100) and « = 1.0;2.0; 3.0 (highest to
lowest curve), B = 1.0. The curves are shifted vertically for clarity.
The inset shows the RPDF g(r).

constant friction and stochastic noise, an approach which has
been used extensively in the description of, e.g., dusty plasmas.
We now introduce dissipation and stochastic noise in our MD
simulations to estimate the effect of friction-induced noise on
the fluctuation spectra. In other words, we now include the
term (3) in Eq. (1).

In Fig. 7, we depict the longitudinal fluctuation spectrum
L(k,w) for fixed values of k, B and I', while varying the

k=10I= 90 k=30I=600 —

k=20I=200 —

Tyl = 0.48

10"
1073

L(k,w)+T(k,w)

L(k,w) +T(k,w)
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FIG. 6. (Color online) Combined mode spectra at ka = 2.0;5.0
for identical structural properties corresponding to I'y; = 0.48 but
different k = 1.0;2.0;3.0 (highest to lowest curve), § = 1.0. The
inset shows the RPDF g(r).

FIG. 7. (Color online) I' = 200, k = 2.0, 8 = 0.5: Combined
mode spectra for different values of the friction strength, from
v = 10~ (top curve) to v = 10! (lowest curve).

magnitude of the friction v. As expected, the inclusion of
friction has a twofold effect: a) The overall noise level in
the spectrum is increased and begins to overlap the higher
harmonics and b) the peaks in the spectra become increasingly
broader with higher friction.

The noise resulting from the friction clearly dominates the
intrinsic noise for the data depicted in Fig. 7. The high-w limit
of the spectra increases linearly with the friction coefficient.
From the data presented in Fig. 7, we conclude that at a
moderately coupled liquid state, I' =200 and x =2, the
detection of the second harmonic is possible at § = 0.5 and a
friction of v ~ 0.01 (note that v is given here in units of the
nominal plasma frequency).

We now give estimates for the plasma parameters re-
quired to observe the generation of higher harmonics under
experimental conditions. The main obstacle in attaining our
simulation conditions in experiments are the required high
magnetic fields. Combining the formulas for the cyclotron
frequency w. and the plasma frequency wy, and solving for the
magnetic field, we obtain (in SI units)

Bﬁj%27x1Wﬂ(§>2 ng}

m3

where p is the mass density. Typical 2D dusty plasma pa-
rameters are R = 1-10 um, p ~ 1g/cm® and @ = 0.1-1 mm,
giving rise (for 8 ~ 0.074) to a required magnetic field of
about 20T, which is at the edge of current experimental
possibilities. That number can be reduced by using lighter
particles or compressing the system to decrease the interpar-
ticle spacing (an increase of the average density by a factor
of, e.g., 2 lowers the magnetic field requirements by 40%).
Also note that the required magnetic field is independent of
particle charge, which, however, enters into the coupling para-
meter I
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The dissipation in 2D dusty plasma experiments can be
quite low, a typical value is v & 0.02 [3]. Thus, according
to our simulations, friction at this rate should not prevent
the generation of the higher harmonics. It is, however, not
uncommon to experience friction rates in excess of v = 0.1, at
which the observation of the higher harmonics is not possible.
In conclusion, the observation of higher harmonics appears as
a possible experimental venue but poses several challenging
restraints on the experimental setup.

V. SUMMARY

In this work, we have compared the previously derived
theoretical description of the mode spacing of the higher
harmonics with extended MD simulations and found excellent
agreement over a wide range of coupling strengths and
interaction range. We have also, for the first time, demonstrated
that the generation of higher harmonics is present in strongly
correlated systems with Coulomb interaction as well, which
is especially interesting in the light of additional possibilities
for experimental verification. The relative intensities of the
higher harmonics have also been investigated and were found
to decay, to a very good approximation, exponentially with the
order of the harmonics. Finally, we have included dissipation
in our simulations and estimated the maximum acceptable
level of such friction for experiments. Combining estimates

PHYSICAL REVIEW E 83, 046403 (2011)

for the strength of the magnetic field and the maximum friction
levels, we conclude that the experimental observation of higher
harmonics is possible but challenging.

Finally, we expect that our results are also of direct
relevance for strongly correlated quantum plasmas. In the
case of magnetized ideal quantum plasmas the “traditional”
Bernstein modes have been predicted theoretically long ago
by Horing et al. [41] and were observed experimentally in
electron-hole plasmas, e.g., [42]. In recent years strongly
correlated quantum Coulomb systems, including liquid states
and Wigner crystals of electrons [34], holes [43], and excitons,
e.g., [44], moved into the focus of research. It is expected that
these systems, if placed into a strong magnetic field, should
exhibit a similar spectrum of “dressed Bernstein modes” as
their classical counterpart studied in the present paper.
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