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PREFACE

The Advanced Study Institute on Strongly Coupled Plasmas was
held on the campus of the Université d'Orléans, Orléans-la-Source,
France, from July 6th through July 23rd, 1977.

15 invited lecturers and 50 other participants attended the
Institute.

The present Volume contains the texts of most of the lectures
and of some of the numerous seminars presented at the Institute.

The topic of strongly coupled coulomb-systems has been an
area of vigorous activities over the last few years. Such systems
occur in a great variety of physical situations: stellar and
planetary interiors, solid and liquid metals, semiconductors,
laser compressed plasmas and gas discharges are some of the most
important examples. All these systems have the common feature
that for one or more of their constituent charged particle liquids
the potential energy to kinetic energy ratio is not small, and
therefore the application of the traditional plasma perturbation
techniques is not feasible. Many ingenious theoretical schemes
have been worked out in order to attack both the related equilibrium
and nonequilibrium problems, and also various methods have been
borrowed from areas where problems not dissimilar to the ones
arising in coulomb-systems had already been tackled. At the same
time, computer simulations have led to a probably unparalleled
accumulation of data on the behavior of an ensemble of classical
charged particles. For the first time, the Institute assembled
workers from various disciplines who had been involved with diverse
aspects of the strongly coupled plasma problem. The lectures and
seminars presented in this Volume reflect the variety of approaches
and points of view, ranging from formal statistical mechanics and
kinetic theory to applied solid state and plasma physics.

The Institute was sponsored by the North Atlantic Treaty
Organization, which provided the lion's share of the financial aid
that made the Institute possible.

Additional co-sponsors were the Centre National de la
Recherche Scientifique (France) and the Department of Physics,
Boston College (U. S. A.) who helped us both by offering further
financial assistance and by furnishing their clerical and technical
services for the purpose of the organization and running of the
Institute. The Université d'Orléans made its campus facilities

vii



viii PREFACE

available. The National Science Foundation (U. S. A.) helped
participants with travel grants. Various organizations allowed
and encouraged the lecturers to use research funds provided by
them for the preparation of contributions to this Volume; amongst
them, special thanks are due to the Air Force Office of Scientific
Research on my own behalf and on behalf of other authors of this
Volume.

The organizational tasks from the very inception of the
Institute were shared by its Co-Director, Professor Marc Feix,
who later on assumed the primary responsibility for the day-to-day
functioning of the Institute. His contribution to bringing the
Institute into existence was indispensable and invaluable.

Special thanks are due to many individuals whose assistance,
cooperation and collaboration were essential at various stages of
the organization of the Institute and the preparation of this
Volume:

e to Dr. J. Hieblot of the C.N.R.S. for helping with all
organizational matters, and for the support received from the
C.N.R.S.;

® to Professor R. L. Carovillano of Boston College for making
Boston College facilities available;

® to Mr. P. Carini of Boston College, Assistant Editor of this
Volume, and Secretary of the Institute, for editing, proof-
reading and correcting manuscripts and for performing the
many arduous and thankless tasks that arose in the line of
his responsibilities;

® to Dr. D. G. Samaras of the AFOSR for encouragement;

® to Mrs. Judy Bredin for the difficult and unending task of
meticulously typing, re-typing and editing the manuscripts
of this Volume;

® to Miss Diep Chau, to Miss Sharon Thompson, to Miss Joyce
Vickery, and to Madame Dominique Lhuillier for clerical
help;

® to Dr. E. Fijalkow for his help with all local arrangements;

® to my wife, Suzana Kalman, and to Mrs. Laura Kruskal for
organizing social programs;

and to all the lecturers and participants for their contributions.

Gabor Kalman
Director of the Institute
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MICROSCOPIC KINETIC THEORY OF FLUIDS

Eugene P. Gross

Martin Fisher School of Physics
Brandeis University
Waltham, MA 02154

I. NTRODUCTION

We will be concerned with kinetic equations and time-dependent
correlation functions for neutral fluids and one component plasmas.
There has been a great deal of work in the subject in recent years.
We confine the discussion to theories that use the BBGKY hierarchy
in an essential way. Many, by no means trivial, restrictions will
be made. First, we limit ourselves to classical dynamics. Second,
we work in the linear response or small amplitude disturbance
domain. Third, the equilibrium correlation functions are used as
input, with no attempt made to compute them. Indeed, it is the
conjecture and hope of this type of theory that for dense gases or
strongly coupled plasmas the time dependent hierarchy can be trun-
cated at a relatively early stage. It is the use of exact equili-
brium distributions that is counted on to save us.

These lectures constitute a simplified account of our recent
paper "Formal Structure of Kinetic Theory" [Gross, 1976]. That
paper leans heavily on Boley's analysis [Boley, 1974, 1975] and ex-
tension of our earlier, more naive approach [Gross, 1972; Bergeron,
Gross and Varley, 1974]. In the present version we shift emphasis to
a modified cumulant approach, which clarifies the relation to older
kinetic theories of gases and plasmas. Ve pay attention to the
criteria for constructive approximations that lead to correct short
time behavior (Chapter IV). Extensive use is made of the notion of
a one body additive operator and of the associated dressed particle
approximations [Gross, 1974]. We use the hard sphere pseudo-Liouville
hierarchy to illuminate the structure of approximations to the smooth
potential hierarchy.
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The reader should consult the work of Resibois and Lebowitz
[Resibois and Lebowitz, 1975; Resibois, 1975; Resibois, 1976] for
the hard sphere case. It is very much along the lines of the present
discussion, is more detailed and goes farther. We also recommend
the study of the extensive work of Mazenko and his collaborators
[Mazenko and Yip, 1977]. The general relationship to the present
approach has been studied by Boley and by Lindenfeld [Lindenfeld,
1977]. However the connection at the higher approximation levels,
where the '"going gets rough" for all kinetic theories, is not clear.

It is appropriate to consider both the neutral fluid and plasma
systems from a unified point of view. The strongly coupled plasma
is characterized by major collisional contributions as well as by
Debye screening and plasmon effects [Hansen, this volume; DeWitt,
this volume]. It is more closely related to neutral liquids than
is the weakly coupled plasma. We will not obtain a new theory of
strongly coupled plasmas. Instead, using the modified cumulants,
we will reorganize the BBGKY hierarchy, so that short time and
distance features are automatically handled with any desired pre-
cision. The reorganization allows us to see where existing, semi-
intuitive approximations fit in, and helps to see what must be done
to validate or improve them.

II. LIOUVILLE'S EQUATIONS AND MICROSCOPIC PREPARATIONS

A. Microscopic Initial Conditions

We are interested in studying the solutions of Liouville's
equation

o ¢ (o 4 t) +LF. =0 F_ d dq. =1
5 WPy or Y B N ’ Ny %P1 - Y T
(2.1)

where L is the Liouville operator for smooth two body interactions

>
N /b,
d 3vV__2d 1 4. -4
- LR -a). vt g

p1\ ™ 3 99 9B 2 it R 2

The standard initial value problem of mathematical physics prescribes
Fy at t = 0 in the entire phase space (I' space). We call this a
microscopic preparation of the system. The point to be stressed

is that many experimental situations involve just such a preparation.
This point of view is in contrast to that of older approaches to
kinetic theory. It has come to the fore in modern theories of
linear response and light and neutron scattering from fluids and
plasmas [Berne, 1971].
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Denote the Gibbs equilibrium distribution for a classical
system by

e-eH g 12 1
® = , H= ——+V , 06=—
Z i1 2m kBT
Z = J o] dp1 .o qu = J ® ar (2.3)

The Gibbs distribution is annulled by the Liouville operator, viz.
Ld = 0, and is thus a constant of motion.

One type of preparation of the system is to imagine that the
system was exposed in the past to a static external potential, i.e.

N >
U =] U,
i

for t < 0. At t = 0 the external potential is switched off. We
are interested in the 'relaxation' of the system. Assuming that
the system is in its most likely state, we take the initial state
to be the Gibbs distribution in the presence of the potential.
-62U(q.,)
1%y

F (t = 0) = e‘e(H*'U)/zU -de

N U

Zy

-62U(d,)
J e ar (2.4)

Linear response theory studies deviations from ® to the first power

of the magnitude of U, but allows arbitrarily rapid and temporal
variations. In addition, since U can be quite irregular, disturbances
can be everywhere in space.

To first order in U we have

(]
1l

Fﬁ(t 0) =2[1 + FN(t = 0)]

N >
-6y I U(qy) - <IU@ap> - (2.5)
i=1

FN(t = 0)

where <A> denotes the thermodynamic average f d A dTl.

The initial deviation is thus one body additive. We can
imagine a more general, fictitious preparation where the Hamiltonian
for t < 0 was also momentum dependent, viz.

N
> >
H+ ) UGpys a;) -
i=1

Hy
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This leads to the most general one body additive preparation in
phase space as the linear response initial condition.

For free particles even if the initial preparation is one body
additive in only the coordinates, it becomes one body additive in
momentum as well in the course of time.

At this point we establish the correspondence between the
solutions of the Liouville equation and the time correlation func-
tion used in the theory of neutron and light scattering. This is
similar to the relation between the Heisenberg and Schrodinger
pictures in quantum mechanics. Suppose we are asked to compute a
time correlation function for a system in equilibrium. Define

<A(0) B(t)> = f ® A(0) B(t) dT (2.6)

® and dT' can be expressed in terms of phase coordinates at t = O.
All quantities can be equally well expressed in terms of phase
coordinates at time t.

Lt g ar (2.7)

<A(0) B(t)> = f ¢ A(0) e"* B(0) ar, = f oA e

On the other hand one can look at these time correlation
functions from the point of view of solutions of the Liouville
equation (Schrodinger picture). With FN = o(1 + FN) the formal
solution is

FN(t) =e FN(t = 0) (2.8)
The expectation value of B is given as
B(t) = f 28 &M F (t = 0) T (2.9)

Since L$ = 0, integration by parts yields

Lt

B(t) = J ¢ Fy(t = 0) e B(0) dT (2.10)

Thus if we take FN(t 0) = A(0) we obtairn <A(0) B(t)>.

In sum, the equilibrium time dependent correlation functions
may be computed by solving the Liouville equation with a suitable
microscopic initial condition involving (usually) one body or two
body additive functions. Then one takes an inner product with a
function of the same type. The inner product has the Gibbs & as a
weight function and involves integration over phase space.

Let us discuss some of the implications of these elementary
considerations for the reduced distributions of hierarchy theory
(singlet, doublet, etc.). We are interested in distribution func-
tions that are symmetrical with respect to particle permutation.
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Introduce the singular phase space function (distribution)

@0 = ) 8(py - B) 83, - X (2.11)
a=1

ThlS is a one body additive quantity, labelled parametrically by

p and X. This is at some fixed time, and we will mainly use the

Schrodinger picture. The equilibrium singlet distribution is de-
fined as

<N(p %)> = f ® dINGPX) = p, 6 ()
(2.12)

The doublet distribution is obtained by removing the self-interaction,
i.e.

NGBL, D) = NG NG - 8 - 1) 8(x - *) NGR)
(2.13)
Then
NGEh, > = o) 06N 0, G XD (2.14)

> >
where pz(x, xl) is the equilibrium pair distribution function.

Usually we w111 use the slightly ambiguous notation, p for a
phase momentum, pl for a parameter.

N(12) = N(1) N(2) - §(1 - 2) N(L) (2.15)
> >] > ->1

i.e. p, p° are replaced by pl, p2 and x, X by ;1;2

The same quantities are used to define time dependent distri-
bution functions in a Schrodinger picture. Thus

fl(l; t) = J N(1) FN(t) dar
f2(12; t) = J N(12) FN(t) ar . (2.16)
The deviations from equilibrium may be written as

fl(l; t) = <N(1) FN(t)>

Ez(lz; £) = <N,(12) F(t)> (2.17)

Suppose now that FN(t = 0) is one body additive.



8 E. P. GROSS

N . N
F(t=0)= ) w@a qy) - <} lP(;a, ZOL)
a=1
= ON(I) ¥(@) , ON(1) = N(1) - <N(1)> (2.18)

where the bar indicates the integration dpl dxl.

The microscopic preparation at the level of FN fixes all of
the reduced distributions. We have

ELst=0) =0y 8 + {0,y % - 0%}

- () 0(py) VB, Xy (2.19)

We note that this already involves the equilibrium pair distribution.
If one wants to use the usual self-contained singlet kinetic
equations (Boltzmann, Vlasov, etc.), to compute time correlation
functions, one must employ initial conditions of the preceding type.
The doublet distribution satisfies

£,12; £ = 0) = foyGi%xy) - popy (iy%p 4Ry 86y (o) VD)

+0,(x %) (0 ¢y {V() + V(@) (220

and involves the triplet equilibrium distribution. This would be
used as an initial condition in a theory which is self-contained
at the level of the second BBGKY equation. The standard second
cumulant, defined by

c2(12; t) = f2(12; t) - fl(l; t) f1(2; t) (2.21)

leads to a linearized cumulant
c, (125 t) = £,(12; t) - py ¢(py) £,(2; t) = py ¢(py) £,(15 t)
(2.22)

For an interacting system 32(12; t = 0) is not zero. This
fact is important for truncation schemes. The schemes fix a relation
between a higher order and lower order distribution functions. This
relation is maintained as an approximation at all times (in violation
of the exact situation), including t = 0. In a systematic micro-
scopic theory this defect of conventional truncation schemes is
overcome.

Another way of studying linear response theory is to have

FN = ® for t < 0, and to add the impulse function p(k) §(t) to the
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Hamiltonian [Martin, 1968]. Here
L >
ik -x.
p(k) =) e i
i

is the Fourier component of the density. The linearized Liouville
equation is

3 -
(ﬁ + L) FN = FN(O) §(t)
> > >
FN(O) = -ik - j(k) ©
+ N i-lz-x1
mj(k) = Zp., e (2.23)

The initial condition is proportional to the one body additive
longitudinal current. The quantity [/ p*(k) ¢ FN(t) dl' is the density
susceptibility.

B. Short Time Behavior of FN(t) and Restricted Function Spaces

For smooth potentials the short time behavior may be studied

by solving the Liouville equation as a power series in time.
2
= _ t .2

FN(t) = FN(O) tL FN(O) + 27 L FN(O) + ... (2.24)
If the initial condition FN(O) is completely general, one can say
nothing at all. Since we are dealing with a first order equation
in time the Liouville operator and thus just the first term in t
completely characterizes the system. There is no possibility of
finding a 'model' Liouville operator to compute the general N point
time dependent correlation function.

Going to the other extreme of very special initial distributions,
there are drastic simplifications. There are many 'model' operators
which can replace the Liouville operator with some defined accuracy
if one is intersted only in computing particular inner products.

Suppose
iﬁ'ai

e

F(0) =
N 1

o~

i

and to order N

t2
> > > \2
Fy () = J N@) $1 - it -t (—2) 2e dp, dx
m
2

21!

> — —, ik-X
ik NA2)|v@A2) T, v(A2) 1%
m 3% 3X2

_x
!
2! 1

(2.25)
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It is clear that the interactions drive the initial distribution
out of the one body additive space in the course of time. As ome
proceeds further new spaces are brought in, but the terms in the
lower order spaces are also modified. One is led to ask whether
one can develop approximation schemes that are based on arbitrarily
constraining the functional form of the N body Liouville distribution
for all times.

Let the approximate FN be constrained to be a sum of a finite
number of functions
M
Fo= ) a (0¥ (B .. gy (2.26)
N n=1 B n-1 N

The Y, are orthonormal with respect to the Gibbs ¢ as weight factor.
One finds a set of linear first order equations for the a,(t). For
example, for a given wave vector kK one can choose the f1ve hydro~-
dynamic functions which are Fourier components of the density, cur-
rent and total energy density. One can then fit the microscopic
initial conditions for the computation density autocorrelation
function. This leads to the Euler perfect fluid equations with the
exact sound speed for the interacting system.

Nossal and Zwanzig [Nossal and Zwanzig, 1967; Nossal, 1968]
extended this set to include momentum and energy fluxes, in a search
for high frequency collective modes in liquids. Whenever there is
only a finite number of functions there is a discrete set of purely
imaginary eigenvalues for each wave vector k.

The discrete set of eigenvalues becomes a quasi continuum
when one includes the continuously indexed (by P and K) of one body
additive functions. This leads to the modified Vlasov equation
with the direct correlation function replacing the bare potential.
This way of obtaining the equation was introduced by Zwanzig [1968;
1967] and by Akcasu and Duderstadt [1969; 1970].

One can also augment the function set by modifying the one body
additive kinetic energy density to a function that includes the
potential energy density. This has been studied by Bergeron
[Bergeron and Gross, 1975], Gross and Lindenfeld [Gross and
Lindenfeld, to be published; Lindenfeld, 1975]. It is also at the
root of the successful semi-phenomenological theory of Forster and
Jhon [1975].

One also obtains a qua51cont1nuum by including mode-mode
coupling functions of the type wu(k - Kl) wg(ﬁl) Here the wa(ﬁ)
are hydrodynamlc functions and the system is continuously indexed
by k and kl [Keyes and Oppenheim, 1973; 1973; Gotze and Lucke,
1975].
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In the present lectures we proceed along the route of gener-
alizing the space of one body additive functions by defining larger
and larger orthogonal spaces using n body additive functions. This
turns out to be close to the standard older treatments of the BBGKY
hierarchy, except for improvements at short times and distances.

With any chosen set of functions, one can formally close the
theory with the aid of a memory matrix. Following Zwanzig and
Mori, one divides the function space into the given part and an
orthogonal part. If the orthogonal part has a vanishing initial
condition, it can be formally eliminated to yield a memory matrix.
A self-contained, but non-Markoffian description is obtained for
the chosen set. When the set is the one body additive functions,
this becomes a theory of the operator that is a rigorous replacement
for the Boltzmann operator for the singlet distribution.

C. Stationary Variational Principles

A natural and flexible way to implement the program of con-
straining the functional form of FN(t) is in terms of a stationary
variational principle [Gross, 1973; Hopps, 1971; 1976; Phythian,
1972; Mostellor and Duderstadt, 1974]. Let us work with the Laplace
transform

F(S) = J e 5t Fo(t) dt

FN(t) = ni jc—im F(8) e~ 4as (2.27)

Liouville's equation becomes

(S+ L) F(S) = F,. = F(t = 0) (2.28)

0]
Suppose we want to compute the time correlation function

J & dl' Gg F(S). We treat the Liouville equation as a constraint

with a Lagrange multiplier function G(S). Thus, we consider the

functional

J=J<1>drco f(S')—J@dI‘ é{(s+L)§-FO} (2.29)

Variation with respect to G(S) yields the Liouville equation, while
the independent variation with respect to F yields

(s - L) G(S) = 6 (2.30)
The stationary value of J is
3| = f ¢ dr G, F(s) (2.31)
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This quantity has only a second order error for small deviations
from the exact solution. The trial functions F and G are to be
chosen to satisfy the initial conditions. (It is possible to find
a new form for J to bypass this necessity). In the systematic
approximation schemes to be discussed, this means that we are to
solve the problem twice, with different initial conditions for F
and for the adjoint G. This increases the accuracy of the estimate
of the correlation function that is desired.

There is a Schwinger (norm independent) form of the variation
principle that is particularly powerful. It uses the functional

Jg = <GFy> <FG>/<G(S + L) ¥> (2.32)
For example, with Fy = p(k), Gy = p(-k), is treated as a real
variable); we take the simple non-interacting trial functions
F=(+1)lF E=(¢-1)"1e¢
0 0o °’ 0 0

This leads to the same density autocorrelation function as is ob-
tained with the full one body additive trial function in the first
variational principle. Very little use has been made of these
properties of variational principles.

ITTI. CONVENTIONAL APPROACHES TO THE BBGKY HIERARCHY

A. Standard Cumulant Theory

In this section we emphasize some features of the conventional
derivations of kinetic equations for systems with smooth potentials
and for hard spheres. One aim is to pinpoint those features that
must be present in a good microscopic theory. A second aim is to
exhibit as close a connection as is possible between modern and
older theories [Wu, 1966; Klimontovich, 1967].

For both the smooth potential and hard sphere systems, after
writing the appropriate hierarchy of equations, one introduces
cluster functions or cumulants by the definitions

f2(12) = c2(12) + fl(l) fl(2)

f3(123) = c3(123) + 02(12) f1(3) + c2(23) fl(l)
+ 02(31) f1(2) + fl(l) f1(2) f1(3) cen (3.1)

These definitions hold at each time t. In equilibrium
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<€ (1)> = o, ¢(p.) , <£,(12)> = ¢(p,) ¢(p.) P, (X, x,)
1 0 1 2 1 2 27172

<£5(123)> = 6(p;) $(Py) $(py) P4(K XKy (3.2)

with Maxwellian and static distribution functions. The corres-

. eq s . > > > > >
ponding equilibrium cumulants are denoted by cgq(%X1%3), Ceq(xlX2X3),
etc. There is then a straightforward pattern og analysis which we
will sketch for the case of the one component plasma (OCP).

For the one component plasma, with a compensating background,
it is convenient to scale with_lengths measured in terms of the
Debye length Ap = (kgT/4T pg e2)1/ , times measured in terms of the
inverse Elasma frequency Wp and velocities measured in terms of
(kgTo/m) /2 To have a close correspondence with the usually employed
reduced distributions, we define

s 0

Here ny is the density in Debye units (no = Pp XB). The Gibbs
distribution is now

N

F =n.° J N(1,2,...8) Fy dT (3.3)

o= T ¢(p) e "
a=1
‘2/2 ~-3/2 Y > >
o(p) = e P "“2m , V=g I wdE - %D
173 P
v = 1/]x] . (3.4)
Here
2
Y=g Ay s Yng = /4T (3.5)

Y is the ratio of the Landau close collision length to the Debye
length. The hierarchy, with the compensating background takes the
form [Fisher, 1964] N 3
W(x, - x,)
3 > ) 1 1 2 3 -
<ac + Py 3§i> 1D =% TR 5, {F,12) - F; (1)}

WG, - %)
) 1 1 3 9 >
fae + spa} rya2 - & [ 5%, 5%, 1+2>]

. [F3(12§) - F,(12)]
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- 9 > 0 1 2 ) )
S . (12) = p = + p 5 - — = - ~=r> (3.6)
0 1 axl 2 sz axl Bpl 392

The equilibrium plasma hierarchy has been the subject of much
study. To first order in 7Yy, except at small distances, one finds
the Debye-Huckel pair distribution. For small Y, with the neglect
of the triplet cumulant, there is an elegant discussion by Frieman
and Book [1963]. A study of the coupled equations for the doublet
and triplet cumulants has been made by O'Neil and Rostoker [1965].
There is a large literature on obtaining the static correlation
functions when Y is not small. This is one oS the concerns of the
present Volume. The use of truncations of the standard cumulants
does not appear to be a productive technique.

Let us now examine the linearized time dependent hierarchy.
The linearized cumulants are defined by

F(I) ¢ , F,(12) = &,(12) + ¢, E(2) + ¢, E1)

F3(123)

S5(123) + [0 §,(23) + E(1) 0,05 N(x,yx,)

+ cyclic perm]

> > _ > >
n(xlxz) =1+ ceq(x1x2) (3.8)
The hierarchy is > = _
3 ., > 9 | ~ . 1 W(x; - x)) 9¢,(12)
(g + By 5 ) 8D - V@) ED) = 55— .
3 ~
{5 - V@) - v(@2) + 5,42} ¢,(12) = BHA2) (3.9)
Here V(1) is the Vlasov operator, defined by
=4
p WGy - xy) B0y
V(1) ¢(1) = (3.10)

= = ¢(3)
4 o%, 35,

The right hand side of the doublet equation is

W (X, X,) 90
- 172 ] 21 -~
H,(12) = {1 + P@2)Hy 3}-{1 [cb = - Pz] c(1)

+ {1 +P@a2)} }“_1'"
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* ey GipRy) 0 E) + E5,(12D)]

+ ceq(§1§2) 9,V(1) EM) (3.11)

There are several noteworthy points. All terms on the right
hand side are of order of Y or higher. When one eliminates 52(12)
the right hand side of the singlet is of order Y. The process of
introducing cumulants rearranges the hierarchy so as to bring out
medium terms, with each member of a pair acted upon independently
by a Vlasov operator. The second member is unaffected In a y
expansion, the plasma scaling suggests that we give priority to
the medium terms [Rosenbluth and Rostoker, 1960]. The direct binary
1nteract10n Sp(12) is unaltered, an oversimplification arising
from the c3 ~ 0.

We now outline the standard solution when the triplet cumulant
and the direct interaction are neglected in the equation for the
second cumulant. One introduces spatial Fourier transforms by

V(&) = J ik- xtp(x) dx (3.12)

The Green's function for the Vlasov equation obeys (for t > 0)

ik, _ L 9())

2] > > > -> 1
(5 -ikyepp <p,|G(k 5 ©)]p,)> —= U(k,)
ot 1 1 1 4 4 1 831

: J<33|G<Kl; ©)|p, > dpy = 8(p, - B;) 6(t) (3.13)

With the approximations indicated, the doublet equation involves the
sum of Vlasov operators acting independently on the members of the
palr. Thus the solution of the doublet equation with

(plﬁlpzﬁz, t = 0) = 0 is [Dupree, 1961]

t —_—

,,,—+->—> -> > . PR bq > > _'—>

g, K Pk, ©) = f <pylGGys € - £")[py><p,[G(kys t - ') p,>
0

R ol i .
Hz(p3klp4k2, t') dt (3.14)

One must add a solution of the homogeneous equation to find a
solution satisfying the microscopic initial condition to compute
time correlation functions. The analytic structure involves the
product, at the same time, of two Vlasov Green's functions. This
feature reappears in all 'dressed particle' generalizations.

~

H2 involves only the singlet distribution function. Thus when
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we insert the solution for 82 into the right hand side of the first
BBGKY equation we obtain a generalized (non Markoffian) kinetic
equation for the singlet distribution.

Attempts to solve the doublet cumulant equation, including
both the direct binary collision and medium terms, have produced
an extensive literature [Gould and DeWitt, 1967; Guernsey, 1964;
Kihara and Aono, 1963; Aona, 1968; Honda, Aono and Kihara, 1963].
For the weak coupling limit, Y < 1, the Landau length, mean particle
separation, and Debye lengths are well separated. The bare Coulomb
interaction leads to the Landau kinetic equation with a logarith-
mically divergent upper length. With a Debye screened binary
interaction this large distance divergence is avoided. The retention
of solely the medium terms leads to the kinetic equation of Balescu,
Lenard and Guernsey, with a logarithmic divergence at small distances.
We will not go into this problem and will be content to establish
equations at the double cumulant level. As was the case for the
equilibrium cumulant theory, the standard cumulant truncation cannot
be expected to yield a good kinetic theory for strongly coupled
plasmas.

How can we estimate the accuracy of the usual cumulant trun-
cations for the short time description of time correlation functions?
Let us take the situation where the initial distribution is a
general one body additive function N(px), and examine the t2 response
of the singlet distribution function. We need

3. (1) 3%f, (1)

1 and R

ot _ 2 :
t=0 ot £=0

The initial conditions are given as

£,(1; 0) = <N(1) N(px)>
£,(12; 0) = <N(12) N(px)>

£,(123; 0) = <N(123) N(px)> (3.15)

The second time derivative of the singlet response involves the
first time derivative of f2(12) which is computed from the second
hierarchy equation. With the correct initial condition for f,(12),
the streaming term is accurate. So the inaccuracy of

32£(1)
2

ot £=0

is given by
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> -> > -
3V(x1 - X2) 9 ov (xl X3) P
[] dx2 dp2 dx3 dp3 3 aﬁi afl aﬁi c(123; t=0)

1
(3.15")

In the usual (small Y) theory c(123; t = 0) is set equal to zero,
but with the exact microscopic initial condition it is not zero.

The standard cumulant approach giveg theories of both the
static and time dependent correlation functions. The simple trun-
cations yield a theory for small Y, but the path to a theory valid
for Y > 1 is obscure. One may try a 'memory function' approach, in
which the chain of equations starting with

8c2(12; t)
ot

is solved formally with the singlet distribution treated as an
inhomogeneous term. 82(12; t) is to be inserted in the singlet
equation to obtain a non-Markoffian kinetic equation for fl(l; t).
This leads to an ugly theory for two reasons. First, the initial
values of all of the higher order cumulants enter explicitly.
Second, the 'vertex' structure is complicated, since every equation
of the cumulant hierarchy involves many lower order cumulants, in-
cluding the singlet distribution. We will see that both of these
difficulties are avoided in the systematic microscopic theory.

We examine what happens when we carry out the standard procedure
but use different cumulants. The time dependent Kirkwood super-
position approximation [Rice and Gray, 1964; Stillinger and
Suplinskas, 1966; Mortimer, 1968; Jordan, 1974] can be used to
define a triplet cumulant by

D3 = F3 - F2(12) F2(23) F2(31)/F1(1) F1(2) F1(3) (3.16)
There are a number of ways of extending this to define higher order
'Kirkwood' cumulants. The KSA is not nonsensical for both small

and large interparticle separations, even for systems with strong
short range forces. It is therefore a possibility for a preliminary
unified microscopic theory of fluids and plasmas.

When one writes the linearized doublet equation in KSA (D = 0),
one f1nds that SO(12) is replaced by S(12) where S(12) involves
-4n n (x x ) in place of the bare interaction w(xlxz) Here
n2(§1%2) is the equilibrium pair distribution in the KSA. The new
feature is that the effective interaction is medium dependent, and
for a plasma is screened at the Debye length. A second feature is
that the medium terms that replace the Vlasov operators are more
complicated and are no longer one body additive. When a member of
the pair (1,2) interacts with a medium particle the interaction
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depends on the spatial position of the other member. This is
clearly a geometric effect which is entirely reasonable. The new
terms do go over to a sum of Vlasov operators when Yy > 0. We
expect that these qualitative features of the KSA will be retained
in a correct microscopic theory.

B. Hard Sphere Hierarchy
We now examine the kinetic theory of hard spheres.

The key point is that in the hard sphere limit the duration of
a collision vanishes. This is true in the many dimensional phase
space description as well as in ordinary space. Of course this
simplification only holds in classical physics. In quantum scat-
tering the boundary condition implies nonlocal effects and the
distinction between smooth and hard core potentials is not so sharp.
We encounter the standard Boltzmann operator for a pair of particles
of mass m = 1.

.+ A

_> A
[9(pij°qij) b, .

T = 8(lqy,l - a) 5

> ~
(3.17)

Here 6(x) is the step function. 6(x) = 0 for x < 0 and 6(x) =1
for x > a. a is the hard sphere diameter.

-> _ > -> ~ _ > >
pij = pi - pj s qij = qij/lqijl (3.18)

The exchange operator bij operates according to the rule

> -> > > > >
bij f(pl . Pi’ qi’ . pj’ qj) .. qN)
-> >F -> >F - ->

= f(p; .- P; 9> Py 940 - qy) (3.19)

where the final momenta ;z, 3? obey

->F _ -> (-> ~ ) ~
ol +@..-4.)4 (3.20)
Py TP T Py 7 day0 Gy '

The operator T(ij) has a simple intuitive content [Ernst, Dorfman,
Hoegy and van Leeuwen, 1969]. The directions of colliding particles
are arranged for forward time propagation; there is the standard
'collision cylinder' factor and a factor indicating action only
when the spheres are in contact. We then have a pseudo-Liouville
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equation
N
] -> 9 1 —
sct L Pise -5 L T} F =0 (3.21)
ot L td 83& 2 i N

This is a description that goes back at least to Kirkwood
[1946] and Grad [1949]. 1Its practical importance has emerged
forcefully in the papers of Lebowitz, Percus, and Sykes [1969] and
of Ernst and Dorfman [1972]. There is an analytically distinct
collision operator that propagates events backward in time. This
maintains the overall reversibility, but is not important for our
considerations, since we are interested in forward propagation.

The pseudo-Liouville hierarchy is very similar to the smooth
potential hierarchy. It is

3 > 2 = (13 7.

(i 3. 2 +3, 5% - T(u)) £,(125 t) = [T(13)
. :

+ T(23)] f3(1z§; t) ... (3.22)

Introducing standard linearized cumulants, the first non-equilibrium
equation becomes

<ait + El 5}%—) £(1; v) - pp IV £(1; t) = T(12) E2(1—2_; t)

AN¢D) f() = -Ta2) {9, £(2) + %, £(1)} (3.23)

The term on the left hand side, a medium term, is proportional
to the density, and replaces the Vlasov term. It is in fact the
linearized Boltzmann-Enskog operator. It rearranges velocities and
acts even on spatially homogeneous singlet distributions. This is
noteworthy, since the most rudimentary approximation, (neglect of
the second cumulant), leads to the Boltzmann equation with its long
time irreversible behavior, velocity relaxation, hydrodynamical
limit, etc. These are things that emerge at the level of the
doublet equation, (with neglect of ¢4 and of medium terms), for the
smooth hierarchy. The way in which the Boltzmann-Enskog equation
for hard spheres emerges as a limit of the doublet equation for
smooth potentials has been studied extensively. The use of the
pseudo-Liouville hierarchy yields immediate results and enables us
to penetrate more deeply into the structure of the theory.
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Remarkable results were obtained by Ernst and Dorfman by pro-
ceeding to the next step. The second hierarchy equation, rewritten
in terms of cumulants, is

] - 9 > 0 = ~
+tpy p - T(12)> c,(12; t)
( ;—El 2 a?z 2
- Py T(3) [E,(21) b, + E,(23) ¢,]

- Py 6(23)[52(12) $3 + 82(13 9,1 = H,(12) (3.24)

Note that the medium operators for the doublet cumulant are
Boltzmann operators acting between one of the doublet particles
and a particle of the medium. In this scheme the position of the
other member of the doublet doesn't enter, i.e. we have one body
additive operators. In addition, there is a direct interaction
T(12). So the formal structure is identical to that for smooth
potentials. We employ a solution procedure similar to the one that
leads to the Balescu equation. But the 'dressing' of each particle
interacting with the medium now has irreversible hydrodynamic
behavior at long wavelengths. We have

Hy(12) = pT(12)[$; £(2) + ¢, £(1)]

+ T(13) {ceq(12) 51(3) + ceq("s'l) El(z)} +172

+ [T@3) + T(23)] 63(123) (3.25)

In the lowest order in the density only the first term enters.

Ernst and Dorfman use a more rudimentary set of cumulants, and their
approximation neglects the terms in Ceq and C3 We then write the
formal solution as

- )
c(12, t) = [;1 + pl 3} J 1) + p2 FER 7, - po JB(2)

-1 - -
- T(lz)] * py T(12) [9; £(2) + ¢, £(1)]  (3.26)

and insert it into the singlet equation. (The initial condition

is ignored.) The density independent T(12) in the propagator is
treated by iteration. In the lowest approximation where T(12) is
neglected one has an exact solution in terms of the eigenfunctions
of the linearized hard sphere Boltzmann-Enskog equation. The

higher order terms may be treated in the same way. Ernst and
Dorfman kept one additional term in the series and made contact with
earlier ring diagram theories of the long time tails for correlation
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functions (to the lowest order in density). In addition, by
analyzing the implications of the ring terms for hydrodynamic
behavior, they uncovered nonanalytic behavior in the dispersion
relations for long wavelength collective modes.

The structure of the corrections to the Boltzmann operator is
that of second order perturbation theory, just as for the Balescu
theory. The situation is reminiscent of the theory of the chemical
bond. The weak but inverse power law van der Waals forces arise
in second order perturbation theory. The stronger, exponential
short range forces arise in first order. The long time effects
have little to do with the microscopic preparation question. The
important point is that the energy denominators for the hard sphere
case exhibit hydrodynamic behavior, including damping. This is not
the case for the Balescu theory which uses Vlasov propagators to
represent medium interactions.

IV. FUNCTION SPACE AND ALGEBRAIC RELATIONS

A. Function Space and Cumulants

We return to the initial preparation and short time considera-
tions of Chapter II and develop a systematic way of dealing with the
problem. We do this in a way that has a clear relation to the
conventional schemes of Chapter III.

Start with one body additive functions N(1). Construct a
linear function space with unity as the first element and define
an inner product; using the Gibbs weight factor

<A|B> = J ® dT A*B (4.1)
The second set of functions is

T(1) = SN(1) = N(1) - <N(L)> , (4.2)
and each function is orthogonal to unity. T(1l) is parametrized by
the variables 31 and il. The functions T(l) are not mutually

orthogonal. In fact we have

<T(1) T(2)>

<N(12)> - <N(1)><N(2)> + §(1 - 2)<N(1)>

_ > > 2

= {0, Gi%y) - pp 010, + 5 - D oy - (4.3)
It is of course possible to find linear combinations that are

mutually orthogonal, in an infinite number of ways. We would then
avoid the use of projection operators needed to maintain consistency.
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One simple choice is the one body additive set

> N > ii()i.;a
E (k) = azl h (p,) e

parametrized by the indices n and E. Here hn(sd) are normalized
Hermite polynomials. (We use a one dimensional notation for
simplicity.) We find

>, > - ~ > o>

<E (D [E (> = [8 oy + 8 8 B0 8K
(4.5)
where 52(k) is the Fourier transform of the pair distribution. Thus

E_ (k) E. (k) E, (k)

0 1 2
T s s s (4.6)
Py + p(k) /po Po

is an orthonormal set in the one body additive space. We have
only to subtract equilibrium averages for K = o to make them
orthogonal to unity.

However the T(l) are more convenient for general arguments.
Define a projection operator for the functions T(1l) by

P, = [T(D)><I|z [2><1 (D) | 4.7)
The one body inverse Zl is defined by
<T(1)|T(5)><E|z1|3> = 8(1 - 3) (4.8)
This integral equation is readily solved to yield
-> ->
<ilz,[2> = [8Q1 - 2)/0y ¢;1 - B(x; - x,) (4.9)

Here B(X) is the Ornstein-Zernike direct correlation function,
defined by the integral equation

h(x) = B(x) + o J B(|Xx - x'|) h(x") dx’

R = [o,D/p21 - 1 4.10)
We have

Py F (B, oo ) = |T@)><1|z, |2><1 @) |Fp> (4.11)

Note that the extra term in the inverse lies in the purely
spatial sector viz. belongs to the lowest (constant) Hermite poly-
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nomial.

The next step is to introduce two body additive functions

vaz) = 1 8(py - p) §(pg - By) 83y - %) 845 - Xy)
a#B
(4.12)

which are used to define the usual doublet distribution. We have
N(12) = N(1) N(2) - 6(1 - 2) N(1)
SN(12) = N(12) - <N(12)> (4.13)
The two-body additive set contains the one body additive functions,
and will be divided into these and an orthogonal part. This very
natural mathematical division is the key to finding new cumulants
to treat short-time and short-distance behavior. We write

T(12) = SN(12) - A(123) SN(3) (4.14)

and fix A(123) by requiring that T(12) be orthogonal to T(3) = 8N(3)
for all values of the arguments 1, 2, 3., i.e.

<T(12) [6N(3)> = 0 (4.15)
This leads to
A(123) = <6N(12)|5N(Z)><Z|z1|3> (4.16)
This has the explicit form
> >
pz(xlxz)

5 ] [6, L= 3) + 9, 62 - 3]

A(123) = K(§1§2§3) 9,9, + [
(4.17)

0

where K is a spatial function involving the triplet static correlation
function as well as the direct correlation function. Note again
that the main complications occur in the spatial sector.

We need a projection operator P2 onto the space of the T(12)

P, = |T(12)><12|z,[34><1(38) | (4.18

Here 22 is the two body inverse, defined by

<122, [38><1(38) |1(56)> = 3 [6(5 - 1) 8(6 - 2)

+ 8(5 - 2) §(6 - 1)] (4.19)
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We will not write down the detailed expressions until we need them.

One can proceed to complete the function space by the Gram-
Schmidt procedure. Starting with the three body additive functions
N(123) one defines functions T(123) that are orthogonal to unity,
T(1) and T(12). There is a three body inverse Zg and a projection
operator P3. The detailed formulae are quite complicated and are
given elsewhere.

Before proceeding to an examination of the algebraic structure
of the theory, we note some properties of the Liouville operator.
We reexpress the matrix element

_ - - > 9 V. 9
<A|L|B> = ® dI' A* e - - == 3> | B
l I J (ql PN)(g"POL aqa aa'a pa)
1 J 3 9 3¢ 3
= - % | dar A* ) - 5| B
g a(aga 33, ~ 33 apa>

1 I OA* 3B  0A* OB
=+5 | dl ¢ ) [ = - ==
0 6} <8POL aqu, aqa aﬁ"OL)

= _1
=-3 <{A%*, B}P B> (4.20)

’

in terms of the Poisson-Bracket. This form is responsible for the
unexplicitly simple form that some of the matrix elements take.
Thus operating to the right we have for our singular basis functions

<T@ [L|T(2)< = oy 6 - 2) ¢, B, wg (4.21)
2

<N(1) |L|N(23)> = -2 pz(§2§3) 6,04

[S(1 - 2) L(2]3) + 8(1 - 3) L(3|2)] (4.22)

where
> >
9 1n pz(xlxz) 3

1
+ = iR
1 ) 0%, Bﬁi

(4.23)

My

->
L(1|2) = Py 3

<N(12) [LIN(3)> = -2{6(1 - 3) p,(X,x,) 956, L(3[2) + 12 2}
(4.24)
The formulae for <T(1)|LIT(23)>, <T(12)|L|T(3)> are more

complicated, since one must add the one body part. The binary
collision matrix element is surprisingly simple. We find
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<T(12) |L|T(34)>

[6(3 -1) 84 - 2)

+ 8(3 - 2) 8(4 - 1)1<N(34)>L(3]4)

+ ¢1¢2[1 + P(12)][1 + P(34)] ¢4 §(3 -1)

oR
> > > > 9 1 3 9
[R3(X3"2x4) P3 3%, T 6 9%, 333] (4.25)
> > > > > > > > > >
R3(x1x2x4) = 03(xlx2x4) - pz(xlxz) pz(xlxz)/p0 . (4.26)

A phase space function is expanded as
Fe(®) = [T()> A (15 t) + |T(12)> 4,(12; ©)
+ |T(123)> A;(123; £) + ...

An(t =0) T A (4.27)

where the A,(t) are amplitudes. The most common microscopic pre-
parations have only the lowest A, different from zero initially.
We will be interested in cumulants, defined with the T functions

A5 v) = <T(l)|FN(t)>
A,(125 t) = <T(12) [F(£)>
A,(123; t) = <T(123)|FN(t)> ,etc. (4.28)

The connection between the amplitudes and cumulants is formally
simple in virtue of the orthogonality of the spaces

A, (15 £) = <T(1)|T(2)> A (25 t)
8,(12; t) = <T(12) |T(34)> A,(34; t) (4.29)

Thus if we want to work entirely with cumulants, the expansion of
FN(t) is

Fy (t) |T(T)><T|z1|5> A, (25 t)
+ |1(12)><12]2,|34> 8,(34; t) + ... (4.30)

Now Al(l; t) may be written as

25
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<T(1) eVt Fg>

Al(l; t)

<o) e T@)> AYT) + <T() [T @2

. Ag(l'_i'; £) + ... (4.31)

This introduces time dependent correlation between the T
functions. We also have

b, (12; t) = <1(12) e M |T(T")> Ag(T')
+<r(12) [ 1@ 2> AT 0 (4.32)

These correlation functions have been introduced by Mazenko [1973;
1974]. The function space point of view, as pointed out by Boley,
is a simple way of generating them to any order.

A;(t) is just the usual singlet distribution and in general
depends on all the initial amplitudes. But the simplest microscopic
preparations pick out only a few of the correlation functions.

We write the evolution operator for the Liouville equation as
G(t) = e~Lt, Then the projections P, G(t) Fg give the cumulants
A, and the projections P, G(t) Py = Gp(t) are the correlation
functions. We now proceed to use this algebraic notation. It should
be noted that the present point of view allows us to see explicitly
what the form of Fy(t) is for any approximation. It is thus suitable
for use in conjunction with the variational principles discussed in
Section A.

B. Algebraic Aspects of the General Theory
Consider the operator equation for G(t) = e—'Lt
(4 +L) 6 =0 , GO =1 4.33)

and the Laplace transform or resolvent operator é(S) = (S + L)_l
(S +1L) G(S) =1 (4.34)

where 1 is the symmetrized identity operator in N body space.

Using a projection operator P and its complement Q, P + Q = 1, we

operate first with P, then with Q, from the left

(S + PLP) PG + PLQ - QG = P
(S + QLQ) QG + QLP - PG = Q (4.35)
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Formal elimination of the second equation yields

1
S + QLQ

In the time domain this is the formal Zwanzig-Mori solution as
applied for example to the cumulant Al(l; t).

1

§—176£6 Q (4.36)

(s + PLP) - PLQ QLP|{ PG = P - PLQ

From these_formulae, taking right hand projections we find
(S + PLP + M) PGP = P

M = -PLQ(S + QLQ) L qQuP 4.37)

Here M is the memory operator associated with P.

Clearly the utility of the formalism depends on the choice of
the projection operators. 1If P is to be a very small part of the
function space, too much is thrown into the determination of the
memory operator. The choice of Py as the one body additive space
is a very natural one in kinetic theory since we then have a self
contained singlet equation for free particles. This comes from
the 'static' term P;LP; and the memory function is zero. If Py
only includes hydrodynamic microscopic quantities we have to work
with a memory function even in the free particle limit.

Rewrite the preceding formulae as

(s + L11 + Mll) G11 = P1 s

~ -1
M, = -P,LQ;(S+Q LQ)  QLP (4.38)

The next step is to introduce two body additive functions. These
include the space P; and a space P, orthogonal to P;. The space Qy
is orthogonal to both P; and P,. The equation

(S +Q LQ) Q6+ QL - PG=20Q (4.39)
is now broken up into (Q2 = Ql - P2, P2 Ql = P2, Q2 Ql = Q2)

(s + P2 L P2) P2G + P2 L Q2 QZG + P2 LP P1G = P2

1
(s + Q2 L Q2) QZG + Q2 L P2 . P2G = Q2 (4.40)
When the Liouville operator is two-body additive we only connect
adjacent spaces. So Q2 L P1 =0
{S+P2LP2+M22}P2G—P2—P2LP1-PlG
1

P2l %53q, 10,2 (4.41)
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This is the algebraic counterpart of the doublet cumulant equation
with the information on higher cumulants hidden in the two body
memory function

v 1
Y22 = P2t Q53,1 22 (4.42)

and in the inhomogeneous term involving Qp. The singlet cumulant
equation is

(S + P LPl)P6+P LP, - PG=P ) (4.43)

1 1 1 2 2 1

Let us consider the sequence generated by PlaPl, multiplying
by Py from the right. This removes many inhomogeneous terms. We
see that the one and two body memory functions are connected by

~ ~ -1
M,. = -P LPZ{S+P LP +M22} P, LP (4.44)

11 1 2 2 1
To evaluate the inverse operator is equivalent to solving the doublet
cumulant equation. There is a 'static' part, P,LP,, not involving
the Laplace transform variables S. It contains medium modifications
of the direct two body interactions. So this in itself is a dif-
ficult problem, i.e. it involves solution of a complicated doublet
equation. The memory function Mj, contains the information re-
lating to the elimination of the higher order cumulants. If one
neglects it entirely one has the two body additive approximation
which is the same as truncating the BBGKY hierarchy by setting
A3(t) equal to zero at all times.

The preceding argument is easily generalized. One finds a
memory operator for the A, cumulant which is connected to the one

for A4 by
~ -1

Mnn = Pn M Pn = -Pn L Pn+l{S + Pn+1 L Pn+1 + Mn+1,n+1}

. P L P (4.45)

This is the algebraic version of Boley's continued fraction repre-
sentation.

We next turn to the notion of a one body additive operator.
Examples are the free streaming operator and an operator that is
the sum of Vlasov operators acting separately on the arguments of
a function like A,(1 ... n; t). We define the operator Lj by
first noting its action on a one body additive function

LO|N(1)> = <1|rR|3>|N(3)> (4.46)

The matrix <1|R|3> completely characterizes the operator Lo. The
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definition is completed by giving its matrix elements in the entire
function space, e.g.

LOIN(l) N(2)> = <1|R|3>|N@3) N(2)> + <2|R[3>|N(1) N(3)>, etc.

(4.47)
A one body additive operator has the property
= > i =
Pm Lo 1 0 m > 2 i.e. Ql L0 P1 0 (4.48)
Lo P2 has components in both Pl and P2 but we still have
= > i =
Pm Lo P2 0 m > 3 i.e. Q2 Lo P2 0 (4.49)

We now use some algebraic identities. Starting from the well
known

-1 -1
(s + Lo) {1+p LO(S +Q Lo) }

s+ L™t L

1+ 6+ L) Ye Lis+L) Y (4.50)
1 Yo 0

170
we find
Q, (S +Q, L )‘1 =Q, (S + 1L )'1 (4.51)
1 170 1 0
With the definitions
PO -1 ~ -1
Gy = (s + LO) . I, = {s + Ql(LO + Ll)} (4.52)
the same identity yields
~ -1 Ty - -1
L=+ L) {1-0 L I;}={1-1I 0 LHs+gq L}
(4.53)
This has the formal solution
Q. TQ =Q{l+¢ q L. .} Yé q
1 1 1 01 171 0 °1
~ ~ -1
= Q1 Go Ql[1 + Ql Ll Q1 GO] Q1 (4.54)
So
~ - ~ -1 ~
Mpp =P L QI+ 6,0 Ly Q17 Q) G Qp LBy

=-P; L Q 60 Q1 + Eo Q L Ql]_l Q LB (4.55)

=
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The same type of expression holds for any n, viz

~ ~ -1 ~
Mnn _Pn L Qn[]' + G0 Qn L1 Qn] GO Qn L Pn

~ ~ -1
—Pn L Qn Go[l + Qn L1 Qn GO] Qn L Pn (4.56)
Let us now discuss how existing theories fit into this frame-
work. The first class of theories works at the M71 level. 1In the
cumulant language this means at the level where A2 is approximated
as a linear functional of Al. The kinetic equation is

(s + P1 L P1 + Mll) PlG P1 = P1 (4.57)
where P{LP; is easily computed without any split of L and involves
the direct correlation function. Thus neglecting ﬁll entirely
yields the one body additive theory i.e. the modified Vlasov
equation. The Forster-Martin weak coupling theory [Forster and
Martin, 1970; Forster, 1974] takes L equal to the free particle
streaming one body additive operator, and retains only the first
term of a geometric series, viz

~ oo ~ .

Mo, P, LP GyP,LP (4.58)
A primitive dressed particle approximation also uses the first
term for ﬁll' But Ly is a modified Vlasov operator. It is chosen
as the one body additive extension of the relation

Pl L P1 = Pl Lo P1 (4.59)
viz _
> d 8]3’(;1 ~ ;3) 3 =
LOIN(1)> =Py ° 3};{ N> - T, 3, [N(3)>  (4.60)

This yields a modified Balescu equation. For this type of approxi-
mation one can proceed to analyze the geometric series for M;q1 (as
in the early days of the Brussels school) [Prigogine, 1962; Balescu,
1963; Resibois, 1966]. Thus the next term has the form

+ P1 L P2 G0 P2 L1 P2 G0 . Q1 L P1 (4.61)

and describes scattering of excitations by the residual Ll.

It is tempting to choose Ly so that the resolvant (S + LO)—1
has a hydrodynamic pole structure. This leads to theories similar
to those first explored by Nelkin [Kim and Nelkin, 1971; Ortoleva
and Nelkin, 1969; 1970]. They are semi-phenomenological and one
does not know how important the corrections are (although they can
be estimated by studying the geometric series). The parameters in
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such a model can be fixed using the variational approach. This type
of approach overemphasizes the coupling to collective excitationms.
The propagator (S + LO)‘l acts in the two particle space and involves
a product of two one body propagators at each time. One can set up
a nonlinear integral equation for the time dependent propagator if

it is assumed to be the exact S dependent one body streaming plus
memory kernel. But it is not clear that the results would be satis-
factory even if the equation could be solved.

Another class of theory works at the @22 level. The simplest
one is the two body additive theory where My, ¥ 0. One still has
to analyse the doublet cumulant kernel given by (S +P, L P2)‘1 to
obtain Mjj. This is itself quite difficult but physically has the
virtue that the direct screened binary interaction appears expli-
citly. Some of the medium terms can be simplified in a manner
appropriate to particular systems. We will examine the doublet
kernel in more detail in the next section.

The only feasible estimates of ﬁzz to date are based on a
dressed particle approximation of a type

~ -1
M22 x —P2 L P3(S + LO) P3 L P2 (4.62)
which involves the product of three one body propagators at the
same time. Again we have to choose Ly and the same type of con-
siderations already discussed are involved. The most tempting
choice is the one body additive extension of

P1 L0 P1 = Pl L P1 + M11 (4.63)
This amounts to adding and subtracting L, in the equations governing
ﬁ22 (or 53 in cumulant language), treating L - Ly as a perturbation
again one obtains very complicated self consistent nonlinear integral
equations for Ly. Thus use of exact one body propagators to estimate
My, does take into account the fact that when the three particles
involved are well separated each one does move in accordance with

the fully damped exact one body propagator.

One virtue of the projection formalism (or of the A, cumulant
approach) is that the vertices of type Py L P3 are exactly known.
Other cumulants contain all the lower cumulants on the right hand
side of the governing equations.

C. Short Time Behavior

If we use the usual sequence 1BA, 2BA, etc., or Py, P,, Py, ...
we have only a few general properties. We use the notation

L =P L P . Then only L s L are different from zero. 1In
m,n m n m,m+l’ m,m
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addition L changes sign under momentum reversal and only contains
first derivatives with respect to coordinates and momenta, so that
the chain rule of differentiation applies. However we will not
make maximal use of these facts.

Let us ask what we need to do in an approximation scheme to
ensure that P; G Py is accurate at short times to a given power th,
We assume that the initial condition is such that only Py G P # 0
i.e. Fy(t = o) belongs to P;. Then one computes, using the basic
chain

3G, .
LA PN 11
9G
11 _ .2
NG =1, + L, Ly (4.64)
t=o

Now consider the chain of equations for cumulants (in the present
projection language).

3 -

3t PIG + L11 P1G = —L12 P2G

3 -

3t P2G + L22 P2G = -L21 PlG - L23 P3G (4.65)

Consider a truncation that neglects P3G. We see that Lpj plays no
role to order t2. Any additional replacement of Loy, say by a free
particle or dressed particle model Liouville operator will do for
the term Lp, P7G. We do have to be exact for the terms on the right
hand side viz Lios L21.

In the next step we have

3
907Gy 3

= -L
ot

3 11 7 L1g Loy Lpo = 2Ly Loy By (4.66)
t=o

Thus we have to use a model operator that gives Ljpo exactly to get

P; G P; to order t3.

We also have

34G11 3 2 2
2e2 = Ly, L3y ¥ Lpp Lpg Lyp + L {207, Loy + 1y, Ly Ly
t=o0 2 2 2 2
+ Ly Lypl + L15 Lyg Loy + L) Loy + 1y Lyy Lyg Ly

(4.67)
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To have t4 accuracy for Py G Py we need to retain the doublet
equation in toto. In the triplet equation
2l
( 5t + L33) P3G = —L32 P2G - L34 P4G (4.68)
we can neglect P4G and do anything we like to L33, provided L3»p
is accurate and is retained in the truncated hierarchy. Of course,
the exact Lpp, Lgy, Ljj must be used in the lower order equations.

From the continuity equation, the time derivative of the
density is proportional to the longitudinal current density which
is one body additive. Thus the t2 requirements on the phase space
correlation function cover the t* requirements for the density
autocorrelation function.

V. KINETIC EQUATIONS

A. Cumulants

We now study some of the detailed equations implied by the
preceding algebraic considerations. The approach is to define
modified cumulants as linear combinations of the usual reduced
distribution functions. 4,(12) is given by

Dz(x1 2)
A,(12) = <6N(12) Fp> 5% {6, 8, (1) + ¢, A, (D)}
- R(X %,%5) &) 0, 8, (3) (5.1)
K(x,%,%,) = Eﬁi—?‘g— - 0y Gy | 186Gk, - %g) - B(x, - %)
- 0, (x,%y) [B(y - %) + B(X3 - X,)] (5.2)

The third cumulant is quite complicated. It may be written
as

£,(123) = <6N(123) F> - A(123]%) A, (%) - AQ123[45) 8,(45)

(5.3)
where

A(123]4) = <6N(123) |6N(5)><5|z  |4>

N(123[45) = <8N(123)|T(67)><67|2, 45> (5.4)
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It involves static correlation functions as high as p5. The only
term which requires discussion is the two body inverse. It is
defined by Eq. (4.19). It has three parts A, B, C. The first
part is

6(3 - 1) 8(4=2) +8(3-2) 8¢4-1) (5.5
4py (X1 %,)) 6,0, .

<12]z,|34>, =

The second part is determined by an integral equation driven by

the quantity
> > >

Pa(x,x,%,)
> > > > - 37717273 1
F(x, - x,llx - x,) = S — (5.6)
1 AR 3 DACENINES x3) Po
The integral equation determines a function D according to
> - 1 > -> > > > > >
DGyl lys) = - 7 FG,llyg - fF(y2||y3> Py (y3) D(4llys) dy,
(5.7)
Then
> > > ->
<1z|z2|34>B = {1+ pa2)}1 + P(34)} D(x, - x2| lxl - x3)
. 6_(1—_& (5.8)
¢ )

Note that the A part is of order po_z, while the B part is of order
po‘l. However for weak coupling with

P, (r)
h(r) = -1
2
o
we have an additional spatial factor viz.
-> > > 1 > >
D(x, - x2| |x; - xy) > - 2—55 h(x,%5) (5.9)
Finally, the C part is purely spatial. It is
<12]z,[34>, = <x x2|U|x (5.10)

where U may be found from the defining relation (or by consulting
Gross [1976]). It is a density dependence poo ~ 1 and in weak
coupling has two spatial factors involving h(r).

B. Singlet Equation

Once one has decided to use the An cumulants one can adopt the
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pedestrian approach of reexpressing the hierarchy as cumulant
equations. This holds for both smooth potentials and for the
pseudo-Liouville hierarchy. Clearly, no approximation is made --
the theory is merely set up so that traditional ideas can be taken
over. It is not advisable to use simpler cumulants at the first
stage since one would lose the formal structure that makes the
algebraic arguments of the preceding section applicable.

A disadvantage of the straightforward method is that a number
of simplifications are possible if one invokes the equilibrium
hierarchy, and these have to be put in by hand. Use of the ortho-
gonal function machinery for smooth potentials gives a singlet
equation

) - — — — _ — — —
5 ML) + <1|r[2><2]z, [3> A3 = -<1|L[23><23]z, [45> A, (45)

(4.11)

The left hand side is simply the modified Vlasov structure. The
right hand side seems quite complicated. But we know what it must
be from the usual hierarchy, because Fy(12) on the right side gives
directly the term in Ay with the straightforward approach. In fact
note that

3
<afLf2> = <t [] B, - |T(23)>
5 Paaq aa- 33
>
E)V(x1 - x4) 3 _
= - 3%, 5 <14|z,|23> (5.12)
1
So we have the identity
— 1 W(x - %)
<1|L[23><23|z,[45> = - 5 |8(1 - 5) =3 7,
BV(;i - 25) ;
+ 8(1 - 4) 3 r (5.13)
1 P1

The singlet equation is therefore

3B(x., - x.) 9¢

3 17 %) %

36 5@ + 5y af A, - 9% 5%, 8, @
BV(x1 - x3) 3

= S A, (13) (5.14)
3§1 3p1 2
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The orthogonal function approach shows that everything can in
principle be expressed in terms of static correlation functions
without the bare potentials appearing. But in contrast to our
initial point of view [Gross, 1972; Bergeron, Gross and Varley,
1974], it is now clear that the expressions are much simpler with
a mixed description.

The neglect of Ay yields the modified Vlasov equation with its
superior short time and short distance properties. If we are

interested in computing phase space correlation functions where the
microscopic initial condition is Fy = T(3), the initial condition is

A, t=0) = <T(1)|T(3)> = P 1 6(1 = 3) +
> > 2
A2(12; t=0)=0 (5.15)
The singlet equation for hard spheres of diameter a takes the form

10) —
) > 9 1 9o >
(ﬂ +r a—i»I) Al(l, t)

> —
Po 57, 3%, Vege(xp = %) 4, (2)

g(a) P JB(l) A1)

= T(12) 4,(12) (5.16)
Here JB(l) is the linearized Boltzmann operator and Veff is
1
Vegs = = 5 (B(X) + g(a) O(a-|r])} (5.17)

When Ag = 0 we have the kinetic equation derived by Lebowitz,
Percus and Sykes [1969] from considerations of short time behavior
based on microscopic initial conditions. The effective potential
is continuous with a vanishing linear term in the density. Since
we have a Vlasov-like medium term, the solution can be given in
terms of the Green's function for the Boltzmann-Enskog equation.
The medium term does not disturb the satisfactory hydrodynamic
behavior, but corrects the short time, small distance behavior of
time correlation functions.

The relation of this equation to other theories has been
analyzed by Sykes [1973]. The standard Enskog equation, (different
from what we have called the Boltzmann-Enskog equation), can be
analyzed in terms of its time reversible and irreversible parts
[Gross and Wisnivesky, 1968]. The main defect is in the short
distance behavior of the reversible part. Sykes shows however that
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the LPS equation agrees with the Enskog equation in the limit of low
densities. We have the remarkable result that the original Enskog
equation in the low density limit gives the correct short time
behavior. Of course, one must use the correct initial condition

in computing time correlation functions. Sykes also shows that an
equation derived by Mazenko is also the Enskog equation at low
densities. None of these equations is reliable at higher densities.
Detailed analysis of the hydrodynamic limit may be found in the
cited papers [This volume; Konijnendjck and van Leeuwen, 1973].

More detailed kinetic modelling of the Enskog equation has
been carried out by Mazenko and collaborators. The passage from
continuous short range potentials to hard spheres has been studied
by Blum and Lebowitz [1969] from the point of view of a binary
collision expansion. Mazenko obtained the equation by neglecting
medium terms and collision duration effects in the doublet equation
and evaluating the Green's function for the doublet cumulant. This
is the same procedure that was used in older derivations of the
Boltzmann equation.

The short time and short distance behaviors are intimately
connected. Theories that are framed to account for short time
behavior, (in a non ad-hoc manner), like the LPS theory, give a
good account of the short distance behavior.

C. Doublet Equation

The new doublet equation is

3 _ — — - — _
= 8,(12) + <12[L|34><34]z,[56> 4,(56) = <2|L|3><3|le4> Ay ()
v L2 w2
V(Xl - X3) 9 V(Xz - X3) 9 —
+ == ss— + - 5= |0, (123)
X1 Py Py )
(5.18)

Again we have taken advantage of the direct approach to write the

A3 contribution in terms of the bare potentials. The singlet
contribution to the right hand side simplifies because the direct
correlation function part of the one body inverse doesn't contribute.
Note that

<T(12) |L]36 (g, - %3)> = 0

o
A1(3)
Po 3

<12|Lf§><§|zl[2> Al(Z) = <12|L|3> (5.19)
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Using the formula for the matrix element of the Liouville
operator, we have

3 _ —
{50+ L@l2) + L2lD} 8,(12) + <12k, [34> 4,(34)

> >
90, (x,%,)
1 2 %1% ) 3
= = b, = - ¢, == ) [A, (1) + A (2)]
epo 3x1 2 3p1 1 sz 1 1
> 3
BV(x1 - x3) 3 _
+ {1 +P@Q2)} 5% 5 A5(123)
1 1
> > > > P —
- ¢1 ¢2 S(x1x2x3) Py 3§g A1(3) (5.20)
_ > > > > > > -> > >
S (x xy%3) = {3 Cyxox,) = g 0, (x %)) H(x, = x5) = py BGxy = x3)}

(5.21)

Here we have anticipated the fact that the doublet interaction
kernel contains a direct part with the medium dependent potential

1 > >
- g o0y (xxy)

; ) drops out for spatially homogeneous

Th involving S(x,%
e term invo Vlng X1X2 3

problems.

Our main task is now the analysis of the kermel K;. The
Liouville matrix element has two parts, a direct and a medium part

<12|L[34>) = [8(3 - 1) (4 - 2) + 8(3 - 2) §(4 - 1)]
.+ <N(34)> L(3|4)
<12|1[34>y = ¢, ¢,[1 + P(12)][1 + P(34)] ¢, §(3 - 1)

oR
d 1 3 0 ] (5.22)

>
[R3 C3%9%) P3 T, * B OX, o,

There are three parts to the two body inverse. The term
<12|L|34>D <34|22|56>A 8, (56)

yields the direct binary interaction that we have already isolated.
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There are five remaining terms that contribute to the kernel K.
These terms can be analyzed in the limit of weak coupling and
yield

- {1+ P2} oy By b, % B(x %) 0,(23) (5.23)
1

which is the sum of one body additive operators.

One can thus show explicitly that in the weak coupling limit,
the theory has two of the desirable features that were present in
the older theories of the BBGKY hierarchy. First the direct inter-
action in the doublet equation is given by the effective potential.
This was a feature that did not appear in the usual cumulant ap-
proximation, but did appear with Kirkwood cumulants. Second the
introduction of the A cumulants leads to medium terms which reduce
in weak coupling to dressed particle (one body) operators. However,
just as in the conventional theories, when one is away from the weak
coupling limit the medium terms depend on the spatial relations of
both members of the pair as well as the relation of each to a
medium particle. These spatial relations are even more pronounced
for the <12|Z|34>C contributions, which we have not discussed.

We now introduce the one body additive operators referred to
in Chapter IV. A one body operator L; is defined by Eq. (4.47).
We have

<12|LO|'3Z><?£|22 |56> AZ(SE) = -{1 + P@2)} <1|r|32> A2(§2)
(5.24)

If one writes L = Lg + L - LO) on the left hand side, the
resulting doublet L equation can be solved exactly. One obvious
choice for Ly is to take a modified Vlasov operator such as the one
in the singlet equation. Using the matrix elements of the exact L

<1|R|3> = <1|L|§5<§12113> (5.25)
and -
L B L5 R 0BGk, - %) | _
<1|R|3> A(3) = {6(3 - 1) Py 55 ~ Pp Py ¢ 5 — (A
3 1
=13. 2 - vl aq) (5.26)
1 3xl

This 'dressed particle' approximation has the same analytic structure
as the Balescu-Lenard equation.

In the dressed particle approximation the doublet equation is
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d > 9 > 9 _
Y + pl ﬁ; - V*(1) + Py ﬁ’; - V*(2) A2(12) = H2(12,t)
(5.27)

The right hand side contains the singlet and triplet terms as well
as the rest of the doublet kernel L - Lo (which might be treated
by iteration). In the dressed particle approximation only the
singlet is retained.

To solve the equation we need the time dependent propagator
for the singlet equation viz.

d d
3+ 31 3%, " vx(1)§ <1|T(t)]3> = 61 - 3) &(¢t)
'it) =0 for t <0 . (5.28)

The solution for the doublet is then (with Az(t = 0) = 0)

t
A,(125 t) = J dt' <1|r(t - t')[3><2|T(t - t')|PH,(34,t")
0 (5.29)

In contrast to the theory of Chapter III there is now no term from
the initial condition because of the definition of A, (with the
usual microscopic preparation). It involves the product of two
propagators at the same time and is to be inserted into the singlet
Eq. (5.14).

As emphasized in the algebraic considerations, the same approxi-
mation could be made in the triplet equation. Then Aj involves the
product of three I''s. However careful analysis is needed to decide
which of the many medium terms can be neglected to find a tractable
approximation for A;. This can be done for low densities and for
weak coupling but it is much harder to justify approximations for
denser systems.

As noted in Chapter IV, other one body propagators, which
themselves contain hydrodynamic damping, are in principle more
satisfactory. One sees concretely in the case of the pseudo-
Liouville hierarchy what is involved. For smooth potentials one
may imagine that the A) equation is solved explicitly keeping only
the direct screened binary interaction. This part of the true 4,
(which is a linear functional of A;) is then taken from the right
hand side of the singlet and moved to the left hand side to define
a new one body operator <1|R|3>. The action in the higher parts
of the phase space is uniquely defined by the single quantity
<1|R|3>, taken from the singlet equation.
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One can envision a scheme which starts at the A level by de-
fining <1|R|3> to be the exact singlet memory operator. A, is then
analyzed in terms of scattering of fully dressed excitations. This
is the standard procedure in quantum field theory and many body
theory. Mazenko's theory is set up to do this in a natural way.

It leads to nonlinear integral equations for the self consistent
determination of <1|Rl3> or <1lF 3>. However, since close collision
effects have been treated crudely, there is no reason to believe
that the solution of the nonlinear equations, even if they could be
found, would be satisfactory.

To simplify the nonlinear equations for I that result when a
'dressed' particle description is used, one can keep for example
only the hydrodynamic parts. This intuitive procedure has been
used in discussing long time effects (cf. H. Gould and G. F.
Mazenko [1975; 1977], and M. Baus [Baus and Wallenborn, 1977;

1975; Baus, 1975; 1977]) in the one component plasma. It is
outside the scope of the present work to try to assess the range

of validity of such procedures. They take their cues from the
analysis of properties of the exact memory function [Forster, 1974;
Pomeau and Resibois, 1975; Resibois, 1972].

D. Summary
Let us now summarize:

In order to maintain historical continuity we have emphasized
the cumulant approach. The A cumulants reduce to ordinary cumulants
at large separations but are more satisfactory for the study of
problems with microscopic initial conditions and for the short
time evolution of the system. There is a surprising bonus in that
short distance difficulties in the conventional cumulant approach
are overcome and that binary interactions are screened. There is
a basic reason that the present theory has these features. It is
that when a preparation is made microscopically by adding a term
to a Hamiltonian, we are certain that the system is 'smart enough'
to arrange itself so that both the short and long range character-
istics of distributions are correctly described. The price that
must be paid is the presence of very high order static correlation
functions.

We stress that it is already at the singlet level that the
superiority to the conventional form is seen. The modified Vlasov
medium term remains meaningful at small distances even for strong
short range forces since the direct correlation function enters.

The t2 behavior of the density autocorrelation is now correct.

The defects of the conventional theory are revealed by the fact that
the Balescu equation doesn't correct the short time, short distance
inadequacies of the Vlasov equation.
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Once one has decided on what to choose for the A,, one could
use the usual hierarchy. The A, are just linear combinations of
the usual distribution functions or cumulants at each time t. The
connection involves space dependent kernels that depend on the
static correlation functions. It is the underlying function space
description that tells us uniquely what combinations to form.
These combinations are far from obvious, particularly in the C
sector. There are two further advantages to the function space
theory approach. First, a systematic continued fraction structure
emerges, i.e. there is some clarity as to what has been neglected,
and there is a definite structure to the medium corrections re-
tained at a given level of approximation. Second, the straight-
forward approach of rearranging the BBGKY in terms of the A, leads
to many terms involving the bare potentials. One can use the
equilibrium hierarchy to simplify the time dependent hierarchy,
and in particular to bring out the effective potential in the two
body direct interaction. This process occurs automatically with
the function space approach for smooth potentials in view of the
Poisson Bracket form for the matrix elements of the Liouville
operator.

VI. IMPURITY PROBLEM

A. 1Initial Conditions

We use the general formalism to study the interaction of an
impurity of mass M with particles of mass unity that constitute a
medium. We treat the case of smooth potentials and cite results
for the hard sphere case. To ensure generality the Hamiltonian is

written as >9
22 N > > P N > >
H=20+ ] v@-3d)+ J —+35 I v@-4) (6D
2M . i o2 2 .-, i 3J
i=1 i=1 i=j
> > > >
with p(t), q, ﬁl’ cees QN as dynamical variables.

The type of microscopic initial condition considered is
[Lebowitz, Percus and Sykes, 1969]

N X X e 7S SN

Frp (e =0) =0 — W(p,q)/¢(p),” W(p,q) dp dg =1 (6.2)
o

Here the medium particles are thermalized relative to the impurity.

The Gibbs ¢ contains a factor ¢(p) which cancels the ¢ in the

denominator. A particular case is

2a 2 +
W(B,d) = 8 - By 5@ - k) = N(0%) 6.3)
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We use stars on the test particle parameters to indicate that N(0%)
differs from

N N N
NO) = ) 8(; - By 8@ - %)
i=1

The initial singlet distribution is

= = W(D*. x%
(t =o0) dT W(pl, xl)

f(1*; t = o) = f N(1%) FN+l

1% = * = *
£(1*%) =1 , feq(l) ¢ (p§) /0 (6.4)
The equilibrium singlet distribution is spread out over all space
with a strength 1/Q. With the sharp initial condition, one is
considering strong deviations from equilibrium, which is, strictly
speaking, never reached.

The reduced distributions implied by the microscopic initial
conditions are

fn+l(l*, 1, ... n; t = 0) = j N(1*) N(1,..., n) FN+l(t = o) dTl
> > >
*
e pn+l(x1xl...xN) ¢l..
= W(P*x*)
171 fo
(->*—> -> ) %

. % 1 - pn+l xlxl...xn ¢l ¢l...¢n ©.5)
ntl,eq > 72 °°° N :

We divide by N, since there is only one test particle and
pz(xlxl) refers to a pair distribution that reduces to the usual
one when the impurity is identical to a medium particle.

The first two equations of the BBGKY hierarchy are
>

D% U (%% x.)
9 + El._ji_ f£(1%) = U(xl ! 9 £, (1*%1)
ot M O%* aszie a"ﬁf 2

p* M (x* - %)
2413 3 8 (2 -2\ sy
ot T M 9% T P1 3% o%% 5% ~ 98, )( 2

1 1 1
> z > >
AU(x* - x.) avV(x, - x,)
= Rt 5 | 5,04
1 P} 1 P

(6.6)
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with the associated equilibrium hierarchy.

B. Construction of the Function Space
We start with
T(1*) = /N N(1*) . (6.7)

Strictly speaking, we would have T(1*) = /N {N(1*) - <N(1%)>} if
T(1*) is to be orthogonal to 1 with weight function ®. But as
remarked earlier
¢ (p%)
<N(1*)> = o) .

and can be neglected. We also note that <N(2)> = pg ¢2,
SN(1) = N(1) - <N(1)>.

The next step is to introduce

T(1*1) = /N N(1*) SN(1) - A(1*12%) T(2%) (6.8)
and to choose T(1*1l) to be orthogonal to T(3*). One finds
o
__]; _ > > _ 2
A(1*12%) = 5 (2% - 1%) {pz(x{xl) po} (6.9)

This generates the first two cumulants

Ay (1%) = <T(1%) Fyer” = A £(1%)
> >
P,y (x7%) }

Po

(6.10)

A2 measures the deviation of f, from instantaneous medium equilibrium.
The first hierarchy equation is

A, (1*1) = <T(1*1) Fipr” = /ﬁ{fz(l*l) - £(1%) ¢

>
> > —
2 +.Ei._§_ AL (1%) = ke Bl U A, (1*1) (6.11)
ot M 3§§ 1 aif 33; 2 .

The simplest truncation Ap(1*1; t) = 0 just gives free streaming
of the impurity, since the assumption implies local equilibrium of
the medium.

For the case where the impurity and medium particles are hard

spheres of diameter a., one has
(6.12)

>
5  PT 3 - T14T T
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The Ay = O approximation now corresponds to a standard Boltzmann
theory of the one body phase space correlation function and thus of
the velocity autocorrelation function.

To go to the next level we need T(1*12). We will not construct
a complete space with T(1l), T(12) involving medium particles alone,
since these cumulants are not connected directly to A(l*). Write

T(1*12) = /N N(1%) SN(12) - A(1*12|2%3) T(2%3)

- A(1%12[2%) T(2%) (6.13)

and chose the A functions to insure orthogonality. We have

A<1%12 [2%><T (2%) T(3%)> = /N <N(1*) ON(12) T(3%*)> (6.14)

The static correlation function

<T(2%) T(3%)> = p, 0§ (3% - 2%) (6.15)
has the inverse
1
<2% [z, |3%> = 55 9% S(3% - 2%) . (6.16)
Hence
05 Gyx %)) = 0,y (1 X,
A(1*12(2%) = (2% - 1%) ¢, 9,

Po
(6.17)

The construction of A(1*12|2*3) is more complicated. We need
the static correlation function
> >
* * = * - 1% - * *
<T(1*2) T(3*4)> = §(3 1%){8(4 - 2) 0% ¢, 0, (x¥x,)

+ 0% 0, 0, RyGRIx,%,)) (6.18)

> > > >
DZ(Xi‘xz) DZ(X{X4)

> > > > > >
* = * -
R3(xlx2x4) p3(x1x2x4) % (6.19)
Then the static inverse is defined by
<T(1*1) [T(2%2)><2%2|2,[3%3> = 6(3% - 1%) §(3 - 1) (6.20)

Writing this as an integral equation one finds that the solution
can be expressed as
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Q=10 8@ -1, 21, 2o
oF 5, 0,0,y * 1l %2l% g

<1*1]2,|2%2> =
(6.21)

Here the purely spatial function Z2 obeys the integral equation
>

<K 2, %>, + 2 <X, |2, 1%,
172172 xi pz(x*e ) 2172 x{

R R
T ?Es(szixixz €M) (6.22)
Py (X7%1) Py (X7X%,

The iteration solution shows that Z, starts as 1/pgp and contains
ter?s Pg> m > 0. The first term in the static inverse starts as
1/0§-

After computing A(1*12|2*3), we have

> > >

P5 (xfx %))
T(1*12) = VN N(1*) N(12) - ———=" ¢_ ¢, T(1*)
po 1 "2
>, > > T(1*1) T(1*%2)
- Py(xFx,x,) |0 Syt s
3vT17172 [ 2 02(§ixl) 1 pz(xlxz)
— > >
- * *
T(1%5) ¢1 ¢2 X(xlxlXZXS) (6.23)
where X is a complicated function
> > > >
Q, (x*x,x,X_.) -> ->
> > > > 4271717278 > > > — —
* = ————————— * < >
X (xfx;%,%5) 0, FE,) +Q, Gedx xpx) <x, |2, [xg>0
> > > -> -> > >
*
MLELS R x1|Zz|x5>x=i + <X2|22|X5>§} (6.24)

> > > > > > > > > > > > 2 > >
* = * - *
Q (xfx Xp%5) = 0, (xfx X,%5) = 0, (xfxg) 0y (x %)) + o (x;%,)

0 (->*—> )
> > > 2 x1x5
- * —_—

93(x1x1x2) % (6.25)
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We examine the Z; inverse and the cumulants Ay, A3 in some limiting
cases.

(a) No interaction between medium particles

>3 ) >
P, (xfx;) 0, (xFx,)

R Reuaing 0 neaing _
3(X1x1X2) , 03(x1xlx2) = po
-> > > > > > 4 > >
= * = - *
<x1 I Z2 |x2>§* o , Q4 (x1x1x2x5) po h(x1x5)

> > > > 4 > > > >
* = - * *
XOepxyxpx5) = =0y hxfxg) /oy (xfxg)

> ) > )
Py (x§%)) 0, (x7%,
2
Po

Ay (1%12) ~> N £4(1%12)

> >

> >
p, (k%) ¢ A, (1%2)

4 — > > > >
Py ¢1 ¢ A, (1%5) h(xfxs)/pz(xfxs)

(6.26)

+

(b) Vanishingly weak interaction between impurity and medium
particles

> > 2 > > > > >

Py (x¥x,) > 0y 03(xfx1x2) > Py Pp(xy%,)
> > > 3 > >
*

Ry(xfx xy) > pg h(xx,)

The integral equation for Z.2 is

- = X, X
> > > > -> -> _ 12
1251397500 + Pg G %) <xg]7 |3y 25 = b
1 1 0
thus N
B(x,X,)
- -> 172
<x1|22|x2>§i > - __Ii;__— (6.27)
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> > > > > > > > >
% -
Q (xfx x,%5) > polog(xyx)xs) = P Py (x1%,)}

(¢) All interactions weak (first order in correlation functions)

2 > >
X > -p, h(xfxs)
A (1% > /N %12 X. X A (1%
3(1%12) > VN £3(1*12) - 0,(x;%,) ¢; ¢, A, (1%)

- P ¢2 Az(l*l) - P ¢1 A2(1*2) (6.28)

This reduces to the conventional cumulants adapted for the impurity
problem.

(d) Superposition approximation

The integral equation for Z2 may be written as

<x IZ |;{>>—> + p h(;;)<§ |Z |;>—>
1'72'72 xi 0 173 3172172 x{

F o h(hz) h(w) < |2, |%,>
0 173 173 3172172 §ie
h(§1§2)

= - —c (6.29)

Po

If we neglect the third term on the left hand side and use the

definition of the 0-Z direct correlation function, we find

>

> > 1 >
<x1|ZZ|x2>§* > - N B(x1 - XZ) , (6.30)
1 0
which is the first term of a series expansion.

C. Kinetic Equations

Let us now take up the problem of constructing the kinetic
equation for AZ' One could use the direct approach of expressing
f3 in terms of Ay, Ay, A3. The truncation A3(1*12); t) = 0 yields

£4(1%125 t) = A(1%12[2%3) 4,(2%3; t)
0 (+*—> >

3151 %

+ —-———po ¢, ¢, £,(1%;5 ©) (6.31)
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We insert this in the second hierarchy equation and obtain an integro-
differential equation for (3/3t) Ap(1*1; t) with f;(1*; t) as an
inhomogeneous term. This is what is done in the hard sphere case.
However the bare potential and the static correlation functions

enter in a complicated way and one has to use the equilibrium
hierarchy to effect simplifications. For smooth potentials one can
use the orthogonal function machinery instead.

We need matrix elements of the Liouville operator taken between
our basis functions. One finds

> >
1 90 (xfx))

<1*1|L|2*><2*|Zl|3*> Al(3*) = ¢1 ¢{ 5 8§§ 83{
Al(l*)
N =—=—— (6.32)
*
Po 1
The exact doublet equation is
3 R _
g B, (1%1) + <1*1|K|3%3> A, (3%3)
> > >
*
S ),
= = - > =308
b, % 6pr T M) "1
U (x* - X)) W(x, - x,)
+ Lot ag* T | a1
X1 1 X1 Py
(6.33)
The doublet kernel is
<1*1|K|3%3> = <1*1]L]§*§><§*§|Z2]3*3> (6.34)

Direct calculation shows that the matrix element of L is the sum of
two parts. The direct part is

<1*1IL|2*2>D = 8(2 - 1) 8§(2% - 1*x){L(2%]2) + L(2]2*)}<N(2*2)>

(6.35)
The medium part is
B 5, 3 fn RyGIEKK,)
<LRL|L]2%2>y = §(2% - 10 F 5 + 5 0%% oB%
2 2 2
> > > >
. * *

R3(x1xlx2) ¢1 ¢1 ¢2 (6.36)

The exact doublet kernel is
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<1*1|K[2%2> 4, (2%2) = {L(1*[1) + L@ [1%)} A, (1%1)
> 9 > > —
+ Py 9 Py (xx)) 5%, <x1|Z2|X2>§f B,(1*2)

> >
*
P xx) o

_ > > > >
% 7% B In[Rg (xfx,%,) /0,y (xfx,) ]
— A, (1%2)
-> -> 2
. <X1| ZZIXZ>S{>f —Eg?t——' (6.37)

This kernel has a direct pair interaction where the effect of the
medium is present in the effective potential

1 -> >
- = *
5 2n pz(xlxl) .
For small impurity medium-impurity separations it becomes the bare
potential U(if - %;), while at larger separations we encounter the

screening effects of the medium.

The behavior of the other terms in the kernel depends on the
approximate form of

EAPAER
1/ %21%27%% -
1
From our earlier discussion a reasonable first approximation is

> - > >
<x1|Zz|x2>§f > -BGxy - x,)/p,

Then the second term in K is N 3
X

N 8B(x1 - 2) _
-P ¢1 Do[l + h(Xfxl)]'————§§————— A2(1*2) (6.38)

1

When §f and 21 are well separated this is a modified Vlasov term,
and is a one body additive operator on the medium particles. At
small separations the one body character is destroyed because of
the spatial correlations introduced by h(xfxl). This is a
characteristic result. Recall that in plasma units both B(r) and
h(r) are of order Y. So the correction is of higher order in Y.
Since yng = 1/47 the leading term is independent of Y. (One must
of course modify the hierarchy to include the compensating background
as in Chapter III.) The collision kernel for the singlet equation
is of order Y and has the modified Balescu form. This supplies an
explicit justification for the dressed particle approximation.
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We now set down the doublet equation for the hard sphere
case. It is

> > >

>
* (x*x.x,)
3 PT 3 > a3 = Py XX %)
= o+ P, e - T(1*1) - ——3
ot M 9 { 1 ail pz(xiil)
AT + TaD} 3, | 4,1
0. Gi¥% %)
— = P3¥E1¥%1%) 5
—_ + P = *
T(12) W (bl Az(l 2) A B H2(1 1)
(6.39)
where 3 53
0, (x*x_x,) P, (x*x,)
R T i G S A R b TP o
A 0, (B, o ¢, T(1%2)4,(1%2)
B = —X(§f§l§2§3)'f(1£5)‘$2 9, B, (1%3) (6.40)

All of the terms except A and B occur when we set up the
kinetic equation for the standard doublet cumulant 52(1*1). They
reduce to the standard terms at low density, except for geometrical
factors involving spatial correlation functions that insure that the
collisions are physically reasonable. The theory thus explicitly
generates independent Boltzmann operators in the doublet cumulant
equation.

The term A is a new medium term. It is proportional to the
density, but at low densities a cumulant expansion of the static
correlation shows that it also has a factor h(§f§l) which is small
over most of space. The final term B is proportional to o7y} and
also has a factor h(§f§3).

The right hand side is found by straightforward calculation
—>*—>
Py (x¥x,)

H,(1%1) =
2 0

T(1*1) ¢ Al(l*)

—>*—>:)
. Ry (xfx; %,

! T(1%2) ¢, A (1%)
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o* oh (x*x. )
-8 ) pg —5m 9, 8,a%)
M 1 0 ax{ 1 1

+ [T(1*2) + T(12)] A3(1*1§) (6.41)

Thus far we have only rearranged the first two equations of
the BBGKY hierarchy. For the hard sphere case, one may not be too
far from a truly microscopic theory. The A, * 0 approximation
already yields a Boltzmann equation. At low densities and for
large separations of 1* and 1 the doublet kernel reduces to the sum
of -pg Jg(1*) Ap(1*1) for the impurity and the L.P.S. operator for
the medium particle. This sum of one body additive operators
yields a natural dressed particle approximation to Az(l*l) which
is a short time modification of the Ernst-Dorfman theory. Of
course, this is not the best choice of the one body additive
operators, since the medium is only described in the L.P.S.
approximation. Improvements have been discussed by Resibois and
Lebowitz.

It is tempting to use the exact one body propagator for the
medium particles in absence of the impurity. An interesting theory
of this type has been developed for smooth potentials by Sjolander
and Sjogren. Of course, something microscopic or phenomenological
has to be said about the medium propagator. Even then it is not
clear how much effective mass and close collision effects contribute.
The conservative point of view is that one should make the dressed
particle approximation at the level of A3(1*12). One imagines
solving the equations in the 2BA approximation (A3 = 0) to give a
better account of close collisions. One then uses the corrected
Boltzmann propagator to make a dressed particle approximation to
A3(1*12). This is hopeless in practice, unless kinetic models or
variational methods can be used to analyze the 2BA. In any event,
we seem here to be at the limit of controlled approximations for
the high density case, and more intuitive considerations take over.

In the smooth potential case and in particular for the strongly
coupled plasma, we are far from a convincing microscopic theory.
Consider theories that work at the level of the first memory function.
From the continued fraction structure we know that the Laplace trans-
form of the doublet cumulant can be written as

> >
. o s 5 P205%) 4
A, (1%1) = <1*1[u(s) | (2*2)> ¢, -

%
sz po
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to be inserted into

”y 2 )5 e - ) 5 Lo
S +Y8Txf Al(l*) = 3}?{ aﬁf Az(l*l) + Al(l*’ t = 0)

The only rigorous result is the 'vertex' function on which W(S)
operates. ﬁ(s) must incorporate the close collision effect which
are already partly taken into account in the singlet equation for
the low density hard sphere case. In addition it should describe
the coupling to the damped collective modes. As noted many times
the dressed particle 1BA for hard spheres is on the same level as
the dressed particle 2BA for smooth potentials. It is possible to
make intelligent guesses as to the form of W(S), cf. Gould and
Mazenko and Baus. It is also possible to use sum rules and short
time behavior to control parameters in an assumed form. (cf. the
contributions of Singwi, Ichimaru, Totsuji, Golden, Kalman in this
volume). It is, however, our feeling that we are still far from

a microscopic theory of time dependent correlation functions in
strongly coupled plasmas.

One suggestion is that the variational approach (cf. Chapter
II) may help to obtain tractable and accurate theories. Recall
that the microscopic theory is equivalent to the expansion

Fpp (E) = |T(I*)><I*|zl|5*) Al(i*; t)

+ |T(T*T><T*T|lef*§> Az(f*f; £) + ...

The form of the exact equations satisfied by Aj can be used to
suggest trial forms. This amounts to choosing trial forms for the
1BA memory operator. The variational principle can be used to
determine free parameters present in the trial functions.
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PERTURBATIVE AND NON~-PERTURBATIVE METHODS FOR QUANTUM AND

CLASSICAL PLASMAS

A. Sjolander

Institute of Theoretical Physics, Chalmers University
of Technology
Fack, S-402 20 Goteborg, Sweden

I. INTRODUCTION

The present lectures are divided into two different parts.
In the first one we shall briefly outline the conventional pertur-
bation treatment for the dynamics of a quantum mechanical system of
interacting Fermi particles, with particular reference to electrons
in metals. Due to the long range of the Coulomb interaction,
straightforward expansion in powers of the potential has to be
handled with some care. Partial summation of the series becomes
necessary and this introduces a screened Coulomb interaction between
the electrons. At the same time new collective modes appear, the
so-called plasma oscillations. In all these respects everything is
very analogous to what occurs in a classical one-component plasma.
However, due to the existence of a Fermi surface and other quantum
mechanical effects the theoretical treatment is conventionally
developed very differently for the quantum plasma than for the
corresponding classical system. The basic procedure was developed
during the later part of 1950's and the first half of 1960's, and it
goes under the name of Green-function technique. For a more compre-
hensive treatment references are given to some standard textbooks
[Schultz, 1964; Raimes, 1972; Fetter and Walecka, 1971; Doniach and
Sondheimer, 1974]. Here, only the basic ideas will be presented and
a few specific situations considered.

In the second part of the lectures some new results for dense
classical plasmas are presented. The calculations are based on a
theory [Sjogren and Sjolander, in press; Sjogren, preprint], which
was developed for ordinary classical liquids with strong short range
interactions, and it has been modified to apply to a one-component
plasma by Sjodin and Mitra [Sjodin and Mitra, 1977]. The original
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theory was used successfully for studying Argon [Sjogren, in press]
and Rubidium [Sjogren and Sjolander, in press], and with appropriate
modifications it seems to work well also for plasmas.

II. QUANTUM PLASMAS

A. Free Fermions

The characteristic feature of a system of non-interacting
fermions is that at most one particle can occupy a single quantum
state, and at zero temperature (note that the Fermi temperature in
simple metals is 1-10x10%K) all the states inside the Fermi sphere
are occupied and the others are empty. At finite temperatures a
smearing of the occupation number occurs near the Fermi surface. A
particle with the momentum 3 has the energy € = p2/2m, where m is
the particle mass. The amplitude of a particle wave evolves in time
as

ax(t) = ax exp(~ic t/h) exp(-6t/m) , €0 (§ = oty . (.1

The correlation function

o > +
Gpart(p,t) = -1 <o|a;(t) a;(0)|0>

-i <0|a; a§|0> exp(—ispt/ﬁ) exp(-St/R) , (2.2)
t>0

represents the situation where one particle of momentum ;

(p>pF,pF = Fermi momentum) is added above the filled Fermi surface
and it shows how the amplitude of the particle wave evolves in time.
l0> denotes the ground state and an averaging is made over this.
Second quantization is used and a¥ and a> are then creation and
annihilation operators, which addPand sttract, respectively, one
particle. We have

+
< > <
0|a; aglo 0 , p<pPp >

1, p>pp - (2.3)

For p<pp we may take one particle out of the system, creating a
hole inside the Fermi sphere, and the evolution of this hole is
described through

o > . +
G 1e(Pst) = 1 <Olag(0) a;(t)|0> 0.0

i <O|a§ a;|0> exp(-iept/ﬁ) exp(St/H) , t<0 ,
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where we here consider negative times. Defined in this way, we can
combine the two correlation functions to one quantity, the so-called
time-ordered Green-function,

>
Gy (B,t) = ~1 <0az(e) a§(0)10> , 0 ,
=i <O|a§>(0) ax(©)]0> , e<0 (2.5)
where
<0|a} a>|0> = n% ,
P P P
LY o
<0|a> a>|0> =1 - n3 , (2.6)
PP P

n3 being the average number of particles in the quantum state 3. One
has actually to introduce separate notations for particles with spin
up and down, i.e., 3+(3,G§il). The Fourier transform of the Green
function takes the following simple form:

> _ iwt > _ i
Go(p’w) = rdt e GO(P’t) = W - ep F i 6P Iy (207)

-0

with GP = 0+ or O_, depending on whether p>pF or p<pF.

B. Interacting Fermions

We may now ask what happens, when the interaction between the
fermions is turned on. Some of the main changes are summarized
below.

(i) The ground state |0> is now a collection of N interacting
particles, which are correlated and have a pair correlation function
differing from that of a non-interacting system (see Figure 1).

(ii) The occupation number n?> is modified and even at zero tempera-
ture we can find particles wigh momenta above the Fermi surface (see
Figure 2). This is directly reflected in Compton scattering against
conduction electrons in metals. We have still a discontinuity at Pp
and this has far reaching consequences for the system. So for
instance, the specific heat becomes linear in temperature as for
free particles and only the proportionality factor is affected by
the interaction.

(iii) The wave amplitudes of the particles and the holes are modi-
fied and an essential part of it has the form
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Figure 1. Static pair correlation functions for parallel and anti-
parallel spins and for the interacting (left figure) and
the non-interacting (right figure) system, respectively.
(From Lobo, Singwi and Tosi [1969]). The curves are
representative for electrons in Sodium (rg = 4). The
negative values of g4, for small r is a defect of the
theory.

|
p/p, |

Figure 2. Occupation number n,, representative for electrons in
Sodium. The dotted line shows the corresponding curve
for the non-interacting system. (From Lindqvist [1969]).
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a;(t) N a; exp(-iE t/h) exp(-F t/A) , t>0 , (2.8)
where Ep # € represents the energy of the particle wave and F is
the damping. Due to the Pauli principle we have

2
PP vo(p - PF) » T=0 , (2.9

for p¥pp and it implies that a particle state and a hole state near
the Fermi surface has a very long life time. This has important
consequences for the transport properties of metals, for instance.
For long wavelength disturbances the system can be considered as
built up of particles with energies E_ and with a reduced strength
of the interaction. This is precisely the picture, from which
Landau developed his famous Fermi liquid theory, and it was done
before the modern Green function technique was introduced in solid
state physics.

As for free particles, we may through Eq. (2.5) introduce a
single particle propagator G(p,t) and n? means now the occupation
number for the interacting system. G(P,t) still represents for t>0
the situation where an extra particle of momentum P is inserted into
the system and it shows how the wave amplitude evolves in time. For
negative time it describes the situation where a particle is removed
from the system, i.e., a hole is introduced. To begin with, the
bare particle surrounds itself with a cloud of other correlated
particles and this local configuration of particles behaves to some
extent as a unit, a so-called quasi-particle, and it moves with the
energy E_ . The quasi-particle has, however, a certain finite life
time and this enters through ' in Eq. (2.8). All this can be de-
scribed quantitatively, if we are able to calculate G(Pw).

C. Perturbation Expansion

Starting from the Schrodinger equation, one can write down an
equation for G(B,t), which contains the interparticle potential v(r)
explicitly. We may then expand the solution in powers of v(r) and
each term will contain the free particle and hole propagator G @,t)
besides the potential. To make the writing more economic one
introduces a diagrammatic language, where a full line with an arrow
to the right means a free particle propagator Ggart(ﬁ,w) a full line
with an arrow to the left means a free hole propagator Ggole(ﬁ,w),
and a dashed line represents the interaction potential v(r). Precise
rules have been worked out for how to interpret the diagrams in terms
of explicit analytic expressions.

Let us now consider the full propagator G(;,t), for which the
first few terms in the diagram expansion is shown in Figure 3. As
an illustration the diagrams (a) and (b) are also given analytically;
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N =
Gpw)= —>— + + a1l L

@
lSl l; IZ
+ + +---
(b

_> )
Figure 3. Diagram expansion of G(p,w) to second order in v(q).

@ = -en 7 [v-p") 03, @16, Gw 1P,

(b)

e fv6-pt o2, @176, G 1® (2.10)

where v(;) is the Fourier transform of v(;). These are the first

two terms in a geometric series and we can sum up the whole subseries
without any extra effort. Actually, by rearranging the terms we

can make a partial summation of the full G(P,w), yielding

cRw = [w- €, - e (2.11)

The so-called self energy Z(;m) contains only those diagrams which
cannot be split in two disconnected pieces by cutting one particle
or one hole line. So for instance, diagram (b) in Figure 3 can be
cut in this way and is, therefore, not included in Z(Bw). It is
recovered when expanding Eq. (2.11) in powers of Z(Pw). The first
few terms in the self energy is shown in Figure 4. The diagrams,
denoted here by (a), are of purely quantum mechanical origin and
contain exchange effects. Let us consider diagrams (b) in the
figure. They represent a situation where a particle of momentum 3
enters from the left and disturbs the surrounding by lifting one
particle from a state underneath the Fermi surface to a state above,
creating a particle-hole pair. This pair can recombine and create
another pair and so on. The original particle continues to move as
a free particle with changed momentum and it feels its own disturbance
at another time. Z(Ew) can, therefore, be interpreted as an energy
and momentum dependent potential, in which the primary particle
moves. It can also be considered as a refractive index for the par-
ticle wave. Adding diagrams (c), we begin to include self energy
corrections to the free particle line. When this is fully done, Go
in (b) should be replaced by the full G and the corresponding self
energy corrections should consequently be dropped. Again, a partial
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resummation of our original series has been achieved without any
real effort.

If, in diagrams (b) of Figure 3, we sum up all terms containing
repeated particle-hole pairs (see Figure 5) and also include all
kinds of higher order lines inside each bubble, we obtain the full
density-density correlation function for the interacting system. We
denote this in Figure 6a by a wiggly line. There, we present what
we have obtained so far by summing a large number of terms in our
original series. The diagram represents the situation where an in-
coming particle with momentum 3 disturbs its surrounding, continues
to move as a real particle and feels its own disturbance at another
time. The disturbance is described through the density correlation of
the medium. This is actually what we would obtain when calculating
the disturbance from the incoming particle to linear response.

There are still terms in our expansion which have not been taken

care of. These are conventionally included in an effective po-
tential, called vertex corrections by people in the field (see

Figure 6b). The effective potential contains the response from the
primary particle also to nonlinear order. Due to the momentum de-
pendence of the effective potential the response of the surrounding
medium is no longer expressible only through the density correlation.
Current correlations and other correlation functions enter as well.
We have now sorted out various effects in the self energy arising
from the interaction. It is then simply a matter of carrying out

the explicit calculations to desired accuracy. Unfortunately, higher
order diagrams become very difficult to evaluate numerically and one
cannot go very far in this way.

As an illustration, we consider the diagrams in Figure 5, which
give an approximate expression for the density correlation. Summing
up this series in Fourier space we get

a@,e) n(0,00> = a@,0)/[1 - v(@ a@»] (2.12)

where 0(qw) stands for one particle~hole bubble. The latter repre-
sents the density correlation for the non-interacting system, for

it contains no interaction lines. It can easily be evaluated and

Eq. (2.12) yields the Random phase approximation, which is the
quantum mechanical analogue of the Vlasov approximation. The zeros
of the denominator give for Coulomb interaction an approximate value
for the plasma dispersion curve, and give for short range interaction
the dispersion for zero sound.

Another illustration is given in Figure 7. The first term
represents two particles interacting through the potential v(r).
The higher order terms can be summed up and they lead to a screening
of the potential,
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(c)

Figure 4. Diagram expansion of the self energy Z(;,w).

9
R
K

Figure 5. Diagrams contributing to the density-density correlation
functions.

Vsc(q) = v(q)/[1 - v(q) a(q,w)] . (2.13)

The same denominator enters here as in Eq. (2.12) and is the fre-
quency and wavevector dependent dielectric function of the medium.
What we learned from this example is that the bare potential is

always screened and it leads in many cases to a considerable reduction
in the strength of the interaction between the particles.

The above perturbation procedure has been used extensively for
explicit calculations and these have confirmed what was said in
subsection B. For the details we refer to a recent review article
by Hedin and Lundqvist [Hedin and Lundqvist, 1969].
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<NnN>
| 1
B I S a5 1

Figure 6. (a) Diagram for Z(;,w) after partial summation to
include all self energy terms in G and all terms
in the density-density correlation <n n>.

(b) Diagram after including all remaining terms in
the vertex correlation vgff. The wiggly line
contains now more than the density-density cor-
relation function.

> T ]
H + :<:> + Q +
>l | l<>|

Figure 7. Diagrams yielding a screened interaction between two
particles.

D. The Wigner Distribution Function

The quantum mechanical analogue to the classical Klimontovich
function

N
£ ,(pt) = QZI 8{r - T, ()} 8{p - B (O} (2.14)
or rather
> N > > > >
fcl(qpt) = ) exp{iq'rz(t)} §{p - pz(t)} , (2.15

=1
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is

> +
f(qpt) = a;+ B4/2 a;_ HE/Z . (2.16)

> . . . .
Summing over all p-values, we obtain the microscopic density operator

n(q,t) = (2.17)

+
E %o+ nq/2 %- wg/2

If we consider a system of non-interacting particles, the Schrodinger
equation yields

{- in 1} £(qpt) = O (2.18)

]

— 4+ [e> > - &> >
ot [ p+ Hq/2 p- Bq/2
with

e, >, - €>r _> -1 -3 . (2.19)
p+ hiq/2 p- hq/2 m

Written in space and time variables, it leads to
1>
(5¢ta P V) £(rpt) = , (2.20)

which is identical to the classical equation for a system of free
particles. For an interacting system additional terms enter and in
order to apply the conventional Green function technique one con-
sideres the equilibrium phase-space correlation function

F@Ee[pp') = <0laf, > (e) &y o (6) o, o (0)

Ay, ﬁ3/2(0)|o> . (2.21)

Here, we may expand in powers of the interaction potential. The first
few terms in the diagrammatic expansion are shown in Figure 8. By

rearranging the terms one can derive an equation for F(qt|3§') of
the following form:

9 , i >~ slbed > > > > > >
{4+ 3 (-0} F@atlpp") + [dt,[dp; L(q,t-t [pp)) F(qt,[p;p")

=0 , (2.22)

. > |2 . ISP .
where the quantity L(qtlpp') is given as an infinite series. Then
one can derive the Landau transport equation, for instance.
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Fgwipp = ( + exchange)+ (
+ T ] ) +
>l

Figure 8. Diagrgg expansion of the phase-space correlation function
F(qu|pp).

This brief review has hopefully given the flavour of the per-
turbation treatment and indicated its possibilities and also its
limitations. Whenever more complicated diagrams need be evaluated,
one is normally in trouble and should try some other way of pro-
ceeding. One such possibility is described in Professor Singwi's
lectures.

ITI. CLASSICAL PLASMAS

A new approach for treating dynamics of dense classical plasmas
is outlined in this last chapter. The Vlasov equation is known to be
the correct kinetic equation to lowest order in the interaction
potential and in next order we have the Lenard-Balescu-Guernsey
equation [Balescu, 1963; Montgomerey and Tidman, 1964; Ichimaru, 1973]
which contains a collision term with a screened Coulomb interaction
besides the Vlasov mean field term. Here the expansion parameter is
I' = (Ze)2/k,Ta, where Ze is the ionic charge, a is the average
interpartic?e distance, and T is the temperature. This transport
equation is valid for I'<l. However, for many important appli-
cations in astrophysics and also in some fusion problems I' is con-
siderably larger than unity and the ions become strongly correlated,
invalidating the above theories. From computer simulations it is
found that this system undergoes a transition to the crystalline
phase for T' = 150 (more about this is presented by Professor Hansen
in his lectures.

Let me first outline the basic idea of the new approach. We
focus the attention on one particular ion, let us call it the zeroth
particle, angﬁwe describe its self motion through a distribution
function fg(rpt), which should satisfy a generalized Focker—Planck
equation. The surrounding particles are disturbed by the zeroth
particle and we describe their motions through another distribution
fj(rpt), which contains information on how the density is modified
around the zeroth particle and how a backflow current is built up.
We may then calculate various equilibrium correlation functions,
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such as <fg(rpt) £5(0p'0)>, <fq(rpt) £5(0p'0)> etc. Adding fg and
fq, calculating the corresponding full phase-space correlation
function, and then integrating over the momenta and going over to
the Fourier space we obtain the dynamical structure factor S(quw),
which is of particular interest for us.

Referring to the initial values of <fg fg> and <fgq fg>, we
are for t=0 faced with the situation of Raving the zeroth particle
located at the origin with the momentum p' and the surrounding par-
ticles being in equilibrium around this particle; i.e.,

£4(Tp,t=0) = & (p) ng(x) , (3.1)

where ®y(p) is the Maxwellian distribution and g(r) is the static
pair correlation function. For t>0, the zeroth particle has moved
to a d1fferent position with a different momentum -- say ro and

po —— and £ (ro,po,t) gives the probability for this to occur. The
distribution of the surrounding is written as

£4(6Pt) = 0, () ng(r-f ) + T, (Fp) , (3.2)

where the first term represents the situation where the surrounding
is in equilibrium around the zeroth particle and fd(?gt) describes
the deviation from this. We can easily understand that fy should

be small when the zeroth particle is moving slowly and thus gives
time for the other particles to relax essentially to the equilibrium
situation. If we simply ignore the effect of Ta, we can show that

S(qw) = S(q) s%(quw) , (3.3)

where S(q) is the static structure factor and Ss(qw) is the self
part of the density correlation and describes the motion of one
single particle. The above approximation was introduced a long time
ago by Vineyard [Vineyard, 1958], but it is found to be a rather
poor approximation for wavevectors of main interest for us here.

_Starting from the BBGKY-hierarchy, one easily finds an equation
for fd of the following form:

{;1 + = % } f (rpt) + {terms containing higher order

correlations, including zeroth particle}

=-n & (p)[dr dpl g (e-1 R (rlplt) . (3.4)
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The right hand side is the primary source of disturbance from the
zeroth particle and it becomes small if this particle is moving
slowly. Using the Zwanzig-Mori projection operator technique
[Zwanzig, 1961; Mori, 1965], for instance, one can rewrite the
equation as

T
fd(?gt) . -n J e’ Jd? dp' H(zpt|t'p't") @M(K') g(?-?l)
[o]

t') dr dEl ) (3.5)

9 ->
: fs(r 1

>
ot' 1P1
> > > >
H(rpt|r'p't') contains information on how the disturbance at (r'p')
at time t' propagates to (Tp) at time t, and it is affected by the
presence of the zeroth particle. It is evident that this can be
ignored when we consider positions far away from the zeroth par-
ticle. H(...) is then a characteristic propagator for the undisturbed
fluid and it can be expressed in terms of the equilibrium correlation
function <f f>. Assuming this for all positions and times, we
obtain the following simple result for the density response function:

x(qw) = xs(qw)/[l - veff(q) Xg (@)1 (3.6)

where vgre(q) = -kgT c(q), c(q) being the direct correlation
function and Xg(qw) is the corresponding response function for a
single ion. From here we can easily go over to S(qw). The Vlasov
equation yields the same result, but with

Xg (qu) = Xfree (W) 5 Ve = v(@ 3.7

v(q) being the bare Coulomb potential. Modifications, as obtained

in Eq. (3.6), have been suggested before [Kerr, 1968; Singwi, Skold
and Tosi, 1970] and they gave a considerable improvement for ordinary
liquids. One unsatisfactory feature of Eq. (3.6) is that an unknown
quantity Xg(qw) enters. Like any other mean field theory, it lacks
the effect of collisions and is, therefore, missing an essential

part of the dynamics.

In the following we make improvements on two essential points:
(1) we develop a procedure for calculating Xs(qw) as well, and (ii)
we correct for the fact that H(...) is affected by the zeroth par-
ticle. This gives rise to a collision term in the corresponding
kinetic equation, analogous to that in the Lenard-Balescu-Guernsey
equation.

There are no possibilities of going into any derivation in
this single lecture and here I will only discuss the results, re-
referring to Sjogren and Sjolander [in press] and Sjodin and Mitra
[1977] for details. The full phase-space correlation function
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F(??;Eg') <f (¥Pt) f(03'0)> is found to satisfy the equation

_@_ _]_- —>~. > oy >
{Bt +4 P iir} F(rt;pp') - n VPQM(p)

> > L > - > >,
dr1 dpl Vr{—kBT c(r-rl)} F(rlt,plp )

—_—

“ae. [az. @b YL 17.3.t.)
- | 9ty jdry dpy VyoLlrptiTipgty
[e)
l > el _
S B+ kT vpl} F(f,t;59,0") o, (3.8)

where c(r) is the direct correlation function and the tensor L(...)

is a certain memory function, which arises from'fa in Eq. (3.2) and
describes how a backflow is built up around the zeroth particle.

The term containing c(q) is the ordinary mean field term with
(-kgT)c(q) replacing the bare potential. An equation similar to

Eq. (3.8) has been obtained before, starting from a different point
of view [Mazenko, 1974; Gross, 1976; Boley4+1974a, 1974b A
corresponding equation is obtained for Fg(rpt; Op 0)=<f (rpt)f (0p'0)>;
namely

T
9, 1>2 } el T > 3 > > >
{Bt + o P Vr Fs(rt,pp ) J dtljdr1 dp1 Vp Ls(rpt rlpltl)
o
l—) > >, _
{m B+ kT vpl} F_(Ft;3,8") = O (3.9)

with another memory function LS(...) entering. This is a general-
ization of the ordinary Focker-Planck equation for a Brownian
particle. The latter emerges, if we assume

> > > > > > >
Ls(rptlrlpltl) = g8(r-r ) S(p-py) 8(t-t)) . (3.10)

Approximate, but explicit, expressions were given for L and Lg in
Sjogren and Sjolander [in press] and Sjodin and Mitra [1977]. There,
it was assumed that the disturbance of the fluid around the zeroth
particle can be described through the collective variables particle
number density and longitudinal current density. This implies that
we ignore the possibility of having a transverse component in the
blackflow current. With these assumptions, the dynamical structure
factor takes the form

S(q,w) = %-Re F(q,z=1iw) (3.11a)

with
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F_(q,2) - (2/kgTq") L(a,2) [z F_(q,2) - 1]

F(q’z) = S(CI) 2
1+ [n c(q) - (Z/kBTq ) Lq,2)][z F_(q,2) - 1]

(3.11b)

We recover Eq. (3.6) by assuming L(qz)=0. The explicit expression
for L(qt), used by Sjodin and Mitra [Sjodin and Mitra, 1977] in their
numerical calculations, is given below. For a detailed discussion

of the approximation I refer to Sjogren and Sjolander [in press]

and to a forthcoming paper of Sjodin and Mitra.

L=L +L,-L_ , (3.12a)
where
L, (q,8) = -«xj—i¥l¥§ (@3 v@H
(2m)
+ [q-(3-q") ] v(q-a")} F(q',t) F(q-q',t)
X [1-nc@D] c@aq" [(@-q9°q] , (3.12b)
L,(q,t) = n” kT q f 44 G-3) e@H F@',0) FE-T,0)
(2m)
X c(q") c(q-q") (3.12¢)
and
L,(q,t) = -n f 997 (-3 v@" F@',0) F@q'5t)
(2m)
Xe@) @ 9 . (3.12d)

For the self correlation function Fg(qz), being the Laplace trans-
form of Fs(qt), the so-called Gaussian approximation was employed,
i.e.

2 (t
F (q,t) = exp[— -‘13— J de' (t-t') @(t')] , (3.13)
o
where ®(t) = <3(t)'3(0)> is the velocity auto-correlation function.

The latter satisfies the equation

t
Edt' d(t) + f dt' M(t-t') d(t') = 0 (3.14)

[e]
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with
M(t) = Ls(q=0,t) = -L(q=0,t) . (3.15)

Egs. (3.11)-(3.15) form a set of nonlinear equations for F(qz) and
F5(qz), and these were solved through iterations for the plasma
parameters =1 and I'=10. Some comparisons with available computer
results are shown in Figures 9-10. The present theory can be shown
to go over to the Lenard-Balescu-Guernsey equation for I'<l. It
seems to reproduce quite well the main features in S(qw) also for
larger '-values. There are still some interesting discrepancies
between the theory and the molecular dynamics results and an
important point is now to find the physical reason for this. Calcu-
lations for much larger values of I would be desirable, but then a
straightforward iterative procedure of solving the equations is not
practical.

T T T T T T T T T T T

Z(t)

F U S T

10 15
0 5 tﬂup)
Figure 9. The normalized velocity auto-correlation function
Z(t) = <¥(t)-¥(0)>/<v2> for I'=1 and I'=10. Present
theory (full curve) and molecular dynamics results

(crosses) of Hansen, McDonald and Pollock [1975]. Unit
of time is the inverse plasma frequency w;l.
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EQUILIBRIUM STATISTICAL MECHANICS OF STRONGLY COUPLED PLASMAS BY

NUMERICAL SIMULATION

Hugh E. DeWitt
Lawrence Livermore Laboratory

Livermore, CA 94550

I. INTRODUCTION

The intent of these lectures is to give a summary of theoretical
understanding and computer simulation results for the equilibrium
thermodynamic properties of fully ionized light elements at high
density. Matter in this state is a '"dense'" plasma or "strongly
coupled" plasma because of the strength of the Coulomb interaction
among the point nuclei. At the extreme densities found in white
dwarf stars the Coulomb interactions can be so strong that the nuclei
are localized into lattice sites, i.e. a Coulomb solid. Most of
these lectures, however, will deal with lower densities in which the
nuclei form a strongly-correlated fluid. Real matter in this state
may be considered to be a mixture of two fluids: the fluid of point
nuclei governed by pairwise Coulomb interactions with classical
mechanics, and a neutralizing fluid of electrons which is degenerate
due to Fermi statistics. In real physical systems such as stellar
interiors, interiors of large planets (Jupiter), and laser fusion
compression experiments, the two fluids interact with each other
chiefly by means of the electron screening effect due to some in-
crease of electron density in the neighborhood of each nucleus. A
large fraction of the matter in the universe is in the strongly
coupled plasma state, and consequently the physics of this state
of matter is of great importance.

It will be useful at the beginning of these talks to specify the

appropriate form of the Coulomb coupling parameters. In usual
laboratory plasmas at low density or weak coupling the appropriate

83
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parameter is normally taken as the inverse of the number of particles
in the Debye sphere; for ions this is:

e =1 ZZBe2
A

- s - - 21T1/2 z3 e3 n1/2
4WnXD D

(kT)3/2

(1.1)

where Z is the nuclear charge, B = 1/kT, n = N/V, the ion number
density, and Ap is the Debye screening length. Weak coupling means
€ << 1. This usual plasma parameter can be used to characterize
dense plasmas for which 4ﬁnk3 < 1, however the concept of Debye
length is no longer useful or appropriate when € >> 1. It is more
convenient to use the form:

r = 2%8e? (AT /3 - 2%y (1.2)
where
T = %g.)—l/3
is the ion sphere radius. Note the relation:
e =3 l-.3/2
. €2/3
31/3

An ionized gas is strongly coupled when T 2 1. At temperature and
densities for strong coupling the plasma is a fluid with properties
similar to liquids, and consequently the description used here will
use liquid state physics terminology.

The main advances in understanding of the properties of the
strongly coupled Coulomb fluid in the last few years have come from
Monte Carlo simulations, or numerical "experiments" from Professor
Hansen and his co-workers in Paris and from the group at Livermore.
Both groups were inspired by the 1966 pioneering Monte Carlo study
of the Coulomb fluid by Brush, Sahlin, and Teller [1966] at Liver-
more. Typically these Monte Carlo simulations compute the classical
Coulomb interactions between nuclei, and treat the electrons as a
neutralizing background. This procedure is possible because at high
density the small electron mass results in degeneracy since the
Fermi energy is large compared to the temperature, €p >> kT. The
electron pressure is much greater than the ion pressure, but to a
large extent the two fluids are decoupled so that the separate
contributions are additive. To make this point clearer, one
should first consider the real two component system: electrons
and point nuclei. The Hamiltonian for this system is:
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H=K + K, + U + U + U, .
e i ee ei ii
N 2 2
= ze&‘_ 1;31
o=1 2m e i;l M
Ne e2 “ . ze2 N (ze)2
= - - 5 =+ ] == (1.3)

a>B Tap  o=1 Tai i<j Tij

i=1
for nuclei of mass M and charge ze. Neutrality for a single element
requires

N = zN
e
and for a fully ionized mixture of elements with zj and z, the
neutrality condition is:

Ne = lel + ZZNZ = zN
with N = Nj + Njy. Obviously this system is a quantum mechanical
many-body problem which cannot yet be handled by present day compu-
tational methods. However, if the electrons are treated as a fluid
rather than point particles, the energy of the system can be written
as:

E=<H>=<K >+ <K,>+ <U >+ <U,, +U .>
e i ee ii ei
=3 NkT + N (§€ +& +¢ ) + U (1.4)
2 e 5 F ex corr

where the brackets indicate an ensemble average, and U is the in-
ternal energy of the nuclear Coulomb interactions ensemble averaged
in the presence of the electron fluid. The term (3/2)NkT is

obviously the ideal gas kinetic energy of the nuclei. The electron
term includes the average kinetic energy, (3/5) €y, the exchange
energy, and correlation energy, assuming complete electron degeneracy.
A second parameter is needed to describe the electron terms and the
electron screening effect, namely:

r = ?e/ao (1.5)

where ag = hz/mecz, and

n )—1/3 - ‘r-/;l/3

o= (3n
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is the electron ion sphere radius, and ng = Eﬁ. The Coulomb energy

of ions in Eq. (1.4) may be written as a function of the two para-
meters, and rg:

(o]
|

N ( e)Z
) —%———-+ background))

i<y ij

NkT £ (T, rS) (1.6)

Numerical simulation methods, Monte Carlo and molecular dynamics
give U/NKT directly.

Strong coupling usually means densities and temperatures such
that ' > 1. Debye shielding of the ions by electrons does not
apply; to the extent that exponential screening of the nuclei does
occur the Thomas-Fermi screening length applies. A few astronomical
facts are relevant here. Approximately 80% of the hydrogen in
Jupiter is pressure ionized. The Coulomb coupling parameter in the
Jovian interior is of the order of 20, and the electron screening
parameter is r N 1., For the enormously greater densities in white
dwarf stars the two parameters are roughly I' v 100 to 200 and
rg v 0.01. Also is should be noted that hydrogenic plasmas in laser
fusion pellet compression experiments can include the ranges I' v 0.1
to 10 and rg v 0.1 to 1.

In the limit of rg = O the electron density is constant, and
electron screening effects disappear. This important limiting
situation, classical point charges in a uniform background, is
called the one component classical plasma (OCP). Evidently the
OCP does not exist in nature, though white dwarf star interiors
come close to it. As a mathematical model the OCP has the same
importance for real strongly coupled plasmas as the hard sphere
fluid has for the understanding of properties of real liquids
[Alder and Wainwright, 1957; Rushbrooke, 1968]. The OCP has been
the subject of intense research, both theoretical and computational,
in recent years. It should also be noted that the OCP can be thought
of as the extreme limit of the soft sphere fluid in which the par-
ticle interactions are described by inverse power potentials:

U(r) =€ ( % N a.7)

where m = ® is the hard sphere system and m = 1 is the Coulomb
system. Since inverse power fluids have similar behavior [Hoover,
Gray and Johnson, 1971] in strong coupling and go into a lattice
at high enough density, it seems useful to include a discussion of
the inverse power fluids in these lectures.

The modern understanding of the equilibrium properties of
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strongly correlated plasmas, at least the OCP, began with the Monte
Carlo work of Brush, Sahlin and Teller (BST) [1966]. In their
simulation of the canonical ensemble average of the OCP internal
energy they adopted the Metropolis procedure [Metropolis, Rosenbluth,
A., Rosenbluth, M., Teller, A. and Teller, E., 1953] and they

handled the long range of the Coulomb interaction by replicating

the basic three-dimensional cell containing N point charges in all
directions to infinity. The interactions among charges and with
image charges were summed with the Ewald method [Nijboer and DeWette,
1957]. Numerical results were obtained for U/NkT, Cy, and g(r) by
averaging over about 105 configurations of N = 108 charges for

values of T' from 0.1 (weak coupling) up to 125. Because of numerical
inaccuracies for large ' the BST results for the thermal energy,

heat capacity, and location of the bluid-lattice transition are not
too reliable.

In 1971 Hubbard and Slattery applied the BST methods to the
calculation of the properties of the dense ionized hydrogen in
Jupiter [Hubbard and Slattery, 1971]. The BST program was extended
to include electron screening effects for non-zero values of rg
by means of linear response theory and the Lindhard dielectric
function for completely degenerate electrons. Their code can also
handle arbitrary mixture of two nuclear components so that they
could compute the thermodynamic properties of mixtures of light
elements, assumed to be fully ionized [Hubbard, 1972]. Their first
published results were of limited accuracy because computer time
limitation required that they use a small number of particles
(N v 40) and average over few configurations (104). Later the
Hubbard Monte Carlo code was brought to the Livermore Laboratory
for use on a larger computer (CDC 7600). At Livermore a large
number of runs were made to map out the thermodynamics of one and
two nuclear component plasmas including electron screening as
functions of I' and rg [DeWitt and Hubbard, 1976].

In France Professor J. P. Hansen and his collaborators developed
a new and very accurate OCP Monte Carlo code. In 1973 they published
results for OCP thermodynamic functions obtained by averaging N = 128
particles over 106 configurations for values of I' from 1 to 160 for
the fluid state [Hansen, 1973] and 150 to 300 for the solid state,
the Coulomb lattice [Pollock and Hansen, 1973]. Their U/NkT results
for the OCP are apparently very accurate and reliable and at the
present time they are the standard results available for testing the
validity of analytical theories and integral equation results. The
Hansen OCP fluid and solid OCP equation of state data can be viewed
in the same way as the Alder-Wainwright molecular dynamics data for
the fluid and solid hard sphere equation of state in the fluid and
solid phases. The numerical experimental data give an accurate
mapping of the thermodynamic properties of systems of particles
governed by inverse power fluids including the limiting cases,
m = 1 for the OCP, and m = © for the hard sphere system. Empirical
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relations have been found from the analysis of this data which
hopefully will suggest theoretical models for strongly coupled
systems.

From the analysis of the data obtained from the Livermore
and Paris Monte Carlo strongly coupled plasma equilibrium results
a number of general results have emerged:

(1) The fluid internal energy is a sum of a static energy re-
sembling the energy of particles in a lattice plus a well-defined
thermal energy:

U= Uo(n) + Uth(n’kT)

C, = dUth/dT .

(2) Certain integral equations give this qualitative feature,
namely the hypernetted chain (HNC) equation and the mean spherical
approximation.

(3) For arbitrary mixtures of different nuclear charges the ion-
sphere charge averaging largely determines the thermodynamic
properties so that a one fluid model can be used with

r 2 5/351/3 ¢
0

- ral/=
PO = Be“/r .

(4) The direct correlation function for distances less than the
nearest neighbor distance (r < 1.7r) has a simple algebraic form
dominated by a linear term:

c(r) = -F(a0 - a_.x) , x =1/t

1

and this form determines the ion fluid structure factor, S(k).

These four general conclusions are of course all related and
are mainly a consequence of the apparent fact that a strongly
coupled plasma may be described as a disorder lattice. The static
energy, Ug(n), represents the average energy of the system with the
strong interparticle correlations keeping the ions in positions that
resemble a lattice structure. Since the system is a fluid, the
average position of the particles changes slowly with correlation.
The magnitude of Uy(n) may be expected to be comparable to the
energies of simple cubic, face centered cubic, or body centered
cubic lattices, but since the strongly coupled fluid is a disordered
array, this static energy is expected to be slightly larger than
the Madelung energy of the lattice that gives the minimum Helmholtz
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free energy for the solid, i.e. the bcc lattice for the Coulomb
potential [Pollock and Hansen, 1973]. In addition to the slow
shifts of the average particle positions there are also much more
rapid short distance movements of the particles around their average
positions. These rapid movements are analogous to the harmonic
vibrations that give the thermal energy of a real lattice, and for
the fluid these movements give rise to the fluid thermal energy,
Uth(n,kT). The essential difference of the fluid state as compared
with the solid state shows up in the form of Ugp. The Monte Carlo
simulations of the strongly coupled plasma fluid state show that

the temperature dependence of the fluid Uy}, per particle is approxi-
mately (kT)3/4 instead of (3/2)kT for a particle vibrating harmoni-
cally around a lattice site [DeWitt, 1976].

II. THE OCP IN WEAK AND STRONG COUPLING

The equilibrium properties of the OCP may be rigorously ob-
tained from the canonical partition function for N point charges
in a volume V at temperature B = 1/kT. The thermodynamic limit is
assumed:

lim-% =n . (2.1)

N->oo
V>

With classical mechanics the kinetic energy portion of the OCP
Hamiltonian is easy to separate from the interaction portion. In-
cluding the neutralizing uniform background the interaction Helmholtz
free energy of the OCP is obtained from:

=2

) i N 2
BF. = fn JJ i=r exp (-B){ ) (ze)
v =

i<j =i T

(2.2)

In principle we would like to evaluate this partition function
analytically for all values of I'. In practice so far the analytical
evaluation has been limited to weak coupling (I' << 1) and inter-
mediate couplin% (0.3 £ T $1). For potentials that fall to zero
faster than 1/r> at large distance a virial expansion in powers of
density is possible. 1In the case of the Coulomb potential the
virial coefficients as usually defined from the Mayer cluster
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expansion all diverge, and a rearrangement of the expansion is
necessary to obtain convergent results. This procedure was worked
out in 1959 by Abe [Abe, 1959] with the result:

Br, =N -2 B 45, + 5,0 + ) (2.3)
The first terms in Eq. (2.3) is the sum of the ring diagram, and
is equivalent to the Debye-Huckel theory. The higher order terms,
Sy, S3, etc. are functions of 'y and not coefficients of powers of
n. These integrals involve interactions among clusters of particles
as in the Mayer expansion, but the Debye screened potential appears:

Be2 -4/XD

Bus(r) =— e (2.4)
instead of the bare Coulomb potential, u(r) and e2/r. The result
for s, is:

n 3 —Bus 2
82 =3 d’r e -1+ Bu_ - —-(Bus)
- _E Y
-1 2 _ ey _1 .8 -v2
7€ J y - dy)e 1+ e 2 ( v e”’) (2.5)
0

and has the form 0(€2 2n €) or 0(1"3 2n T) for I' << 1. Complicated
analytic expansion exist for S; and S3 but they are generally not
very useful. A better use of the Abe expansion is simply to
numerically evaluate the integrals to sufficient accuracy that
numerical derivatives can be taken. The Abe cluster integrals are
all monotonic functions of T and easy to evaluate for the lower
orders [Rogers and DeWitt, 1973]. The internal energy and the
pressure are found by temperature and volume derivatives respective-
ly of the free energy expression, Eq. (2.3). One finds:

1 3/2. 3 . d

BU/N = - 3 3 177% + 5T gr [S,(0) +85(0) + ...1  (2.6)
c/mk =+ (3132 312 a? [S.(T) + S.(T) + ...]1 (2.7)
o/ =g )2 T 2 (8 3 :

The interaction contribution to the pressure, Py = P - Pg with
Pg = NkT, is by the virial theorem:

P - Po)/n = % BU/N (2.8)

when there is no electron screening (rS = 0). One notes that in
weak coupling, I' << 1, that the leading contribution is O(F3/2) or
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0(l'), thus from Eqs. (2.3), (2.6) and (2.7) we have

=_1
BFI/N-—3€ ’
BU/N=——]2'-€ ,
and
=1
CV/Nk—4e

which are the well-known Debye-Huckel results. The addition of

the Abe cluster term in Eqs. (2.3), (2.6) and (2.7) simples reduces
the 0(P3/2) contribution as I' increases. In fact it has been

shown [Brush, DeWitt and Trulio, 1963] that as I =+ © the sum of

the Abe integrals identically cancels the O(P3/2) term leaving O(I')
as the leading term. Lower bounds on the interval energy are useful
and important. The known lower bounds are:

BU/N = - 1 (/3 r3/2y r<<1 (2.9)
9
-3 T y r >> 1 (2.10)

as will be discussed by Professor Choquard. ,The change in character
of the functional dependence on [', i.e. 0(1"3 2) changing to 0(T),
occurs in the region 0.3 ST £ 0.75, and in this intermediate coup-
ling region the Abe expansion is numerically useful for computing
values of the thermodynamic functions. The transition value,

[y = 0.75, is an approximate lower limit of the strong coupling
regime; this is simply value of ' where the static energy of the

OCP fluid, the O(I') term becomes apparent in the Monte Carlo data.

For the present discussion a strongly coupled plasma will be
taken to mean a coupling parameter range, I'y < I' < T¢, for which
there seems to be a well-defined separation of the potential energy
into two parts: U = Uy + Ui,. This region might also be called
the asymptotic Coulomb fluid region since a very simple analytic
expression gives the equation of state and leads to all other thermo-
dynamic functions. The upper limit is clearly the fluid-lattice
transition which is indicated to be from the Pollock and Hansen
Monte Carlo work as I'y = 155. For Iy = 0.75 the potential energy
may be obtained accurately with a few terms of the Abe cluster
expansion [Rogers and DeWitt, 1973].

The most accurate Monte Carlo data on the potential energy
for the strongly coupled Coulomb fluid that is available at the
present time is that of Hansen [1973], and some of this data is
shown in Table I. 1In a separate column the values of the thermal
energy are given for each I' value. A striking feature of the
Coulomb fluid data is that the thermal energy is only a small
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TABLE I

THERMAL EQUATION OF STATE FOR OCP

Monte Carlo Hyper-netted Chain Mean Spherical

Model

'  U/NKT Ugp,/NKT U/NKT Uth/NkT  U/NKT  Ugp/NKT

1 -.580 .315 ~.570 .331 -.607 .294

2 -1.318 471 -1.377 424

3 -2.111 .572 -.2103 .598 -2.180 .522

4 -2.926 .652 -2.999 .579

6 -4.590 .778

10 -7.996 .950 -7.9355 1.070 -8.053 .952
15 -12.313 1.106 -12.343 1.165
20 -16.667 1.225 -16.538 1.472 -16.667 1.343
30 -25.429 1.409 -25.373 1.642
40 -34.232 1.552 -33.999 2.020 -34.125 1.895
60 -51.936 1.741 -51.597 2.431 -51.710 2.320
80 -69.690 1.879 -69.264 2.774 -69.360 2.680
100 -87.480 1.981 -86.973 3.074 -87.053 2.997
120 -105.284 2.069 -104.713 3.343 -104.775 3.285

fraction of the total potential energy for large ; Uth/NkT at

I' = 155, the fluid-lattice transition, is only 2% of the total
energy. The Monte Carlo process necessarily gives U/NKT and not
Ui/NKT so that it is necessary to obtain U/NkT with great accuracy
in order to get dependable results for the thermal energy. Hansen
used N = 128 particles and averaged over 106 configurations to
obtain his results. A statistical analysis of this data indicated
that up to I' of 40 the results are consistent. For ' > 40 the data
indicate a possible small systematic error. Also it was found that
the second moment of g(r) did not satisfy the Stillinger-Lovett
condition [Stillinger and Lovett, 1968]. Consequently, the data
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for ' in the range from 1 to 40 was used to deduce the quantitative
results for the thermal energy. The total energy is written as:

U/NKT

(Uo + Uth)/NkT

-al' + g(I) . (2.11)

For the Coulomb solid the Monte Carlo data indicated the expected
harmonic vibrations with a small anharmonic correction, namely
g(l) = 3/2 + 3500/T'2. The fluid data, however, indicated a very
different form, namely g(I') = bI'S - ¢, where s is a small power
between 0.2 and 0.3. A nonlinear least squares fitting procedure
for both the energy and heat capacity data established the best
value to be s = 0.25. The total energy was found to be [DeWitt,
1976]:

/4

U/WNKT = -0.89461T + 0.81651"l - 0.5012 , 0.75 < T < 40 .

(2.12)

The static energy constant obtained by fitting the fluid data is
about 0.15% higher than the Madelung constant for the bcc lattice,
apece = 0.895929. This formula must obviously fail at small T,

and presumably there must be corrections to this asymptotic formula
that are inverse powers of I'. It has not been possible with the
present data to find a believable correction to the above result.
For the data with I' > 40 in the fluid phase the same kind of fitting
formula applies. However, the values of the three coefficients are
slightly different. Also it was not possible to establish the ex-
ponent in the thermal energy to be precisely s = 1/4 as was the case
for the data in the region 1 < T < 40. The nature of the data
suggested a slight systematic error, although this may be an arti-
fact due to the finite number of particles used in Hansen's simu-
lations, N = 128. Hansen's three values obtained with N = 250
particles for ' = 70, 100 and 140 were all closer to Eq. (2.12)
than his N = 128 data. Also it should be mentioned that Hansen's
data for a very small number of particles, N = 16, showed a van der
Waals loop in the region, 40 < T' < 140. Some evidence of this
apparent van der Waals loop is also evident in his data for N = 54.
It is possible that the accuracy of U/NKkT for large I' will be in-
creased by going to much larger systems.

The F1/4 behavior of the thermal energy appears to be quite
definite. It is possible, of course that Eq. (2.12) is only a
fortunate fitting function. However, the clear appearance of the
exponent s = .25 is suggestive of some underlying mechanism
governing the thermal energy of the Coulomb fluid. It is a very
interesting theoretical challenge to find a theoretical model that
can explain the ri/4, 1c is my opinion that this result for
Ut /NkT is a fundamental result deduced from valid numerical "ex-
perimental" data.
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An independent Monte Carlo calculation of the heat capacity
should in principle give additional information about the functional
form of Uiy. Both BST and Hansen obtained results for Cy using:

CV/Nk = 82(<U2> - <U>2)/N (2.13)

Unfortunately the numerical data for Cy so obtained are less
accurate than the data for U/NkT because the computer must work
with the difference of very large numbers, <U2> and <U>2. This
calculation of Cy is further complicated by the fact that the OCP
fluid static energy Uyp/NKT = -al' is so much larger than U.p/NkT.
From Eqs. (2.11) and (2.12) a simple expression for the heat
capacity is readily found:

2

d
cy/Mk = -T2 L g(ry/T]

A

This result agrees well with Hansen's numerical data for Cy/Nk.

3 yrt/4 _ . (2.14)

An asymptotic form of the interaction Helmholtz free energy
is readily found by integration:

r r_(T,)
_ 1 (U/NKT) 11
FI/NkT = f dar 1 + T
T 1
1
= —al+ 4% cmr+a (2.15)
where the entropy constant is found to be d = -2.809 by comparison

with the Abe cluster expansion evaluated at I' = 1. Since the
potential energy is negative (meaning the Coulomb interaction
energy) the pressure due to the Coulomb interactions is also
negative. For the OCP the interaction pressure is given exactly

by the virial theorem, PV/NkT = (1/3)U/NkT. The negative pressure
of the Coulomb interactions among the ions is, of course, more than
balanced by the large positive pressure of Fermi degenerate electrons
for real systems. Similarly the compressibility from the Coulomb
interactions alone is negative for the OCP. Working from the
Coulombic pressure the compressibility is found to be:

BBP) _ _ 4 13 ..1/4 ¢
(?;; A = 9 al' + 36 bl -3 . (2.16)
This result for the compressibility is of considerable importance
since it appears in the OCP structure factor [Vieillefosse and
Hansen, 1976] as:
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1 ___.
3T 58P , K = kr (2.17)
14+ 25+ =
K2 on

S(k) =

for the small k limit of S(k). Compressibility results have been
obtained from Hansen's values for S(k), and at least for the

I' < 40, the results are in good agreement with the above result
for (9BP/dn).

The various results quoted in this section completely specify
the equilibrium thermodynamic functions for the OCP. The ri form
appearing in Uy /NKT indicates that the thermal energy itself varies
as T in contrast to (3/2)NkT for the thermal energy observed in
the solid phase due to harmonic vibrations around lattice sites.

It is not surprising that the thermal energy of the OCP fluid dif-

fers from the solid thermal energy. An understanding of the under-
lying mechanism to account for the T3/4 behavior in the fluid state
would be most helpful for dense plasma theory.

ITI. STRONG COUPLING RESULTS FOR INVERSE POWER FLUIDS

Fluids governed by repulsive 1/rM potentials (Eq. 1.7) may at
first glance seem remote from plasma physics. This may seem par-
ticularly so for the m = 12 case which describes the repulsive
part of the Lennard Jones 6-12 potential used for describing inter-
action among molecules of ordinary gases and liquids. However, the
Monte Carlo calculation of U/NkT for the cases of m = 4, 6, 9 and
12 indicate a basic similarity to the OCP Monte Carlo results
[Hoover, Gray and Johnson, 1971]. One sees the same kind of change
of functional form in the internal energy from weak to strong
coupling as is seen in the plasma case. In weak coupling, however,
there is a virial expansion in powers of density unlike the weak
coupling plasma case. The strong coupling parameter for the inverse
power potentials can be defined in a manner analogous to Eq. (1.2)
for the 1/r potential. The general inverse power potential can be
written as:

Bu(r) = Be(o/r)™ = Be(o/m)" (x/r)"
= I/x" , x =1/t (3.1)
where
T = Be(o/D)" « %1/_,—3 (3.2)

is the generalization of the OCP strong coupling parameter. The
inverse power potential has a particularly useful scaling property
which is apparent from the virial theorem:
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E = E0 + U
m
PV = PV +3U (3.3)
where
- - Nn 3
U = <;Zj U(rij§> > J d7r u(r) g(r) (3.4)

and Eg = (3/2)NKT for the ideal gas term. The m/3 factor follows
from the virial expression for the pressure:

e - pyv =22 f a3r [—r 9%£§1] g(r) (3.5)
For low densities the pressure and energy have an expansion in
powers of density, the cluster expansion, and the strong coupling
parameter ' is inappropriate. (Recall in the OCP case that weak
coupling expressions behaved linearly with € v r3/2y, 1t is con-
venient to express the density coupled with the appropriate power
of temperature as:

3 3/m
i =2 (5) =<——§——> p3/m (3.6)
V2 4 V2

As with the OCP all thermodynamic quantities are functions of T
(or equivalent of n). The virial expansion in powers of n gives
exact results for weak coupling (low density or high temperature)
and strong coupling results are available from the Monte Carlo
studies of Hoover, et al [1971]. The interaction internal energy
has the form:

_3 _
U/NKT = = (P - P)/nkT
35~ 52 553
- {an + B3n + B4n + ...}
= al + (I'° - ¢) s r, <T <Tg (3.7)

The virial expansion is convergent for the entire fluid phase, but
at present time only a few of the dimensionless virial coefficients
(B3, B3, etc.) have been evaluated; seven are known for the hard
sphere fluid, m = ©» [Ree and Hoover, 1967]. The Monte Carlo strong
coupling data for m = 4, 6, 9 and 12 can all be fitted with the
second form of Eq. (3.7). As described in OCP case the al' term is
the static energy of disordered system, Ug/NkT, and the constant a
is expected to be close to or perhaps identical to the Madelung
constant for the lattice phase. The f.. lattice has the lowest
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energy for m > 3; the bcc lattice is lowest for the OCP. The
remaining piece, bl'S - ¢, is the fluid thermal energy, Uth/NkT.

The actual data for all five available cases, m = 1, 4, 6, 9,
12, is shown in Table II. The number quoted in Table II are for
(Umc - Ug) /NKT with Uyp/NkT taken to be the appropriate lattice
value. Thus in this tabulation the constant, a, in Eq. (3.7), is
taken to be exactly the appropriate Madelung constant for the solid
phase, rather than being treated as a free parameter. This is an
unproved assumption, and one that I regard as questionable. Because
of this assumption, the Uth/NkT data for the OCP as tken from
Hansen's paper differ slightly from the Uth/NkT data for the OCP
in Table I. Recall that Eq. (2.12) for the fit to Hansen's OCP
data for 1 < T < 40 used a as free parameter and it came out
slightly higher than the lattice value. The interesting aspect
of this thermal energy data for the strongly coupled fluids is the
uniformity in behavior and magnitude. Recently Hoover, et al
[1975] developed a generalized van der Waals equation of state for
liquids, and made a simple fit to the thermal energy data with the
assumption in Eq. (4.8) that ¢ = 0 and s = 1/3. A more careful
analysis with c as a free parameter indicates that the exponent is
lower than 1/3, and is probably close to 1/4 as in the OCP case.

For the m = 12 case the virial expansion with four exactly
known coefficients is:

U/NKT = 35 (P - B )/NKT
= 7 {3.638 + 7.585% + 9,943 + 8.455° + ..} (3.8)
and for large ' the result is:
U/NKT = .00493T + (51674 _ 49y |
200 < T < 538 (3.9)
where a = .00493 is the fcc Madelung constant for the 1/r1l2 potential,

I'g = 538 is the value of the coupling parameter when the fluid
freezes. T "V 200 is an estimate of the point at which the asymp-
totic strong coupling form appears. [y for m = 12 is far larger than
in the OCP case (Ft "N .75 for m = 1) because of the far shorter
range of the 1/r12 potential. In general it will be true that

e o T
llm.——Tr———
> f

and for the hard sphere gas there is no static lattice energy and no
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Hansen, 1973
m=1
T Uth/NkT
1 .316
2 .473
3 .577
4 .658
6 .786
10 .971
15 1.126
20 1.252
30 1.450
40 1.606
50 1.703
60 1.821
70 1.909
80 1.986
90 2.066
100 2.116
110 2.195
120 2.230
125 2.262
130 2.292
140 2.34
155 2.43
160 2.46
o = .007

H. E. DeWITT
TABLE II

INVERSE POWER FLUID MONTE CARLO DATA
Hoover, et al, 1971

m= 4 m= 12
T Ugp/NKT r Uypy/NKT
.498 .331 .123 111
1.688 .605 1.97 .270
4.25 .907 9.98 .476
10.72 1.347 31.5 .734
18.40 1.644 77.0 1.034
27.01 1.887 159.6 1.329
36.37 2.055 219.8 1.506
46.38 2.262 295.7 1.661
56.96 2.412 369.3 1.780
68.06 2.583 432.9 1.870
o= .013 504.4 1.956
m=6 o = .007
3.51 .247
2.19 .577
8.77 1.036 Upp/NKT = Aal + bTS - c
35.09 1.739 1) Nonlinear 1. sq. (s, b, c¢)
78.96 2.195 2) Linear 1. sq. s = .20,
.25, .3, .35
m=9
.208 .159 (la, b, c)
3.25 .469
25.98 1.086
207.9 2.199

thermal energy.
data for the five known cases assuming that a =

and

1/4.

s =

Table III gives the strong coupling fits to the
Madelung constant,
For this investigation a nonlinear least squares
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TABLE III

FLUID THERMAL ENERGY FOR INVERSE POWER POTENTIALS

m

u(r) = €(0/r)

Data for m = 4, 6, 9, 12 (Hoover, et al) and m = 1 (Hansen) all
fit the form:

v /mer = or4 _ e where T = (Be) (/D)™
- 1 \Y/3
4T
3 N/V
m U/NKT = (UO + Uth)/NkT
1 -.895929T + .87391"1/4 .5777
4 1.181978T + 1.150r*/% _ 7413
6 .205945T  + .9267TY% _ s4g4
9 .0300478T + .7067TY% _ 4913
12 .0049258T + .5156r™/% _ 4870
The F1/4 power law appears best for the m = 1 and m = 12 cases for
which there are the most points.
Cv/Nk =-% bl"l/4 - c; Hansen's data checks this result very well.

fitting routine was used with a, b, ¢ and s as free parameters. The
value of the exponent as s ~ 1/4 appeared best for m = 1 and m = 12.
There are too few data points for m = 4, 6 and 9 to assert confi-
dently that in all cases s = 1/4. However, the results do strongly
suggest a universal form of the thermal energy, namely ri 4, for

all the inverse power fluids.

IV. INTEGRAL EQUATION RESULTS

Until about 20 years ago most calculations of the equation of
state of dense gases and liquids had to rely on the virial expansion
with the cluster integrals evaluated for assumed intermolecular
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potentials. In the 1960's the density expansions were powerfully
supplemented by integral equations for g(r) which in effect summed
to infinity certain kinds of the integrals in the Mayer irreducible
clusters. The Percus-Yevick equation was found to give an excellent
description of the hard sphere fluid and the PY equation of state
was found to be in near quantitative agreement with the molecular
dynamics hard sphere data [Rushbrooke, 1968]. The hypernetted
chain (HNC) equation did not work so well for the hard sphere
system, but it did appear to be useful for longer range potentials
including the inverse power potentials [Hutchinson and Conkie,
1972].

Monte Carlo simulations give presumably nearly exact "experi-
mental" results for the strongly coupled OCP. It is of considerable
interest to see what extent integral equations of present day
liquid state theory can reproduce the Monte Carlo results. The
Percus-Yevick equation has been investigated for the Coulomb
potential [Springer, Pokrant and Stevens, 1973] and found to be
completely inaccurate for large I'. However, the hypernetted chain
equation (HNC) when solved numerically was found to give results
for the total potential energy, U/NkT, for the OCP that are re-
markably close to the Monte Carlo results [Springer, Pokrant and
Stevens, 1973]. Recently Ng has made an extremely accurate
numerical solution of the HNC equation [Ng, 1974], and obtained
results for U/NkT for the OCP to seven and eight figure accuracy
for values of T from 20 to 7000. Although I' = 7000 is far beyond
any conceivable physical situation, these exact numerical results
for the HNC equation allow one to find the functional form of
U/NKT with respect to I' without the difficulty presented by the
inevitable noise in the Monte Carlo data. To explain simply the
HNC equation one notes that the pair distribution function for the
OCP may be written generally as:

g(r) = h(r) =1 = exp {—-g + S(x) + B(x)} (4.1)

where g(r) is the pair distribution function, h(r) = g(r) - 1 is

the total correlation function, S(x) indicates the sum of all
convolution or series of graphs in the cluster expansion of g(r),
and B(x) is the sum of all bridge graphs. h(r) is related to the
direct correlation function, c(r), by the Ornstein-Zernike equation:

h(r) = c(r) +n J Srt e (Jr - ') . (4.2)

The HNC integral equation is obtained from the above relations by
the approximation of neglecting the bridge graph contributions,
i.e. assuming B(x) = 0. The resulting equation is nonlinear for
h(r) but may be solved with computers to any desired accuracy, and
the OCP internal energy is obtained from the integral:
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2
LT = B 3. Be”
U/NKT = 3 J d’r = [g(r) - 1]
- 22[ f %% dx i h(x) (4.3)
0

Some of Ng's HNC results for U/NKT are given in Table I to show

a comparison with the Monte Carlo results of Hansen for U/RKT.
Since Ng's results are of high accuracy and span an extremely wide
range in ' it was possible to find the functional dependence on TI';
the result is [DeWitt, 1976]:

/2 4 0.0720 %n T + 0.0533

(4.4)

The HNC solution is quite continuous for large I' even up to I' =
7000, and consequently it should be be interpreted as an approxi-
mation for the fluid branch of the OCP equation of state. There
is no indication that any known integral equation can give a
second solution that would correspond to the equation of state for
the solid phase of the OCP. What is remarkable about the above
nearly exact analytic result for the fluid phase potential energy
is that it clearly shows a separation of the internal energy into
a fluid static energy and a thermal energy portion which is domi-
nated by a ri/2 dependence. The HNC fluid static energy comes out
remarkably close to the prediction of the ion sphere model which
for the OCP would be:

(U/NKT) ~0.90047T + 0.26383r"

HNC

2
(3,3 8Ga?
ion-sphere ( 2 5) T 0.9T : (4.5)

(U,/NKT)
The HNC equation evidently goes to the ion—-sphere result in the
limit. The Monte Carlo result for the static energy, namely
UO/NkT = -0.89461I', is very close to the bcc lattice value, which
differs from the ion-sphere model by only 0.45%. Since the thermal
energy portion is only a small fraction of the total potential
energy for large , the close agreement of Uy for HNC and Monte
Carlo insures that the HNC results for U/NkT seem to agree well
with the Monte Carlo results. This agreement is deceptive since
the HNC thermal energy (Nfl/z) is very different from the presumed
exact thermal energy (vr'l/4) obtained from the Monte Carlo simu-
lations. Evidently this difference is entirely due to the basic
HNC approximation of neglecting the bridge graphs. It is an open
question as to whether a more exact integral equation that includes
one or more of the lower order bridge graph terms could account for
the difference in the HNC and the exact thermal energies. It is,
in any case, significant that the simple approximation of the HNC
equation is sufficient to give the basic qualitative feature of the
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fluid phase OCP internal energy, namely a division into a static
portion and a thermal portion.

Another widely used approximation in liquid state theory is
the mean spherical approximation which states that:

c(r)

h(r)

-Bu(r) . r <o

-1 , r<ao (4.6)

where 0 is an equivalent hard sphere radius, and c(r) and h(r) are
connected by the usual Ornstein-Zernike equation. Gillan [1974]

has solved the mean spherical model for the OCP by using a judicious
choice of 0 so that g(r) does not go negative. He obtains g(r) and
computes values of U/NKT some of which are shown in Table I. As is
the case with the HNC numerical results the absolute values of
U/NKT obtained from the mean spherical model are in moderately good
agreement with the Monte Carlo results. The functional form ob-
tained from Gillan's numbers is:

/2 4 0.0007 . 4.7)

(U/NKT) = ~0.9005T + 0.2997r"
As with the HNC results there is a clear separation of the potential
energy into a static portionm, Ug> that is very close to the ion-
sphere result, and a thermal energy that is dominated by I'l/2. 1In
a numerical sence there is little to distinguish the HNC results
from the mean spherical model. It is not even clear whether one
approximation is better than the other. Both give a thermal energy
in clear disagreement with the thermal energy from the Monte Carlo
data. However, the qualitative agreement of the mean spherical
model with the "exact'" OCP results does indicate that the mean
spherical model approximation may well be improved by a better guess
for the form of the direct correlation function, c(r). The actual
form of c(r) is obtainable from the Monte Carlo simulations and
will be discussed later. :

V. DENSE PLASMA MIXTURES IN STRONG COUPLING

We consider now arbitrary mixtures of two nuclear species, and
for the moment rg = 0. This is simply the extension of the OCP to
two components [Salpeter, 1954]. The ion sphere model result, Eq.
(4.5), 1is easily extended to two components. With the total ion
number density as n = n] + ny for charges z; and z5, the background
density of the entralizing electron is:

n, = zn, + zZ,n, = zn
and the radius of a sphere around a charge z; of sufficient size to
neutralize zp is:



EQUILIBRIUM BY NUMERICAL SIMULATION 103

1/3

- (ﬁ) T-2 137 (5.1)

rl z 1 e

From this result the static energy for a two-component mixture
according to the ion-sphere prescription is:

. - _9 5/3 5/3, —1/3 2 ,—
(U/NkT)ion—sphere B 10 (xlzl + %9222 ) 2 Be™/x
- _9 5/3-1/3
10 2 z Ty (5.2)
where
X, = nl X = n2
1 n, + n2 2 n, + n,
and
- Rl /T
FO = Be“/r .

Thus the ion-sphere model gives a characteristic simple charge
averaging prescription for mixtures of ions, namely
z5/3 —z-l/3

that is very different from the z2 charge averaging that appears in
the Debye result for weak coupling. In view of the remarkable
agreement of the OCP ion-sphere result with both the Monte Carlo
and the HNC results for the static energy, it is reasonable to
expect that the ion-sphere result will be equally good for the
static energy for the ion mixtures. Indeed this is the case. The
two nuclear component Monte Carlo data from Livermore [DeWitt and
Hubbard, 1976] agree perfectly with the ion-sphere charge averaging
prescription. More recent (unpublished) and much more extensive
Monte Carlo for a variety of mixtures for zy =1, zp = 2 and

zy =1, z5, = 3 also completely agree with the ion-sphere charge
average prescription. Also Hansen and Vieillefosse have solved the
coupled hypernetted chain equations for two nuclear components
[Hansen and Vieillefosse, 1976], and have found that for the HNC
approximation again the ion-sphere charge averaging is satisfied.
(Hansen and Vieillefosse use the term ''Two-Component Plasma'" or

TCP in their paper, and of course, mean two components of the same
sign; this should not be confused with a two-component plasma in
the sense of fully ionized hydrogen, i.e., charges of opposite sign).
The recent Monte Carlo data on mixtures from Livermore also suggests
that the thermal energy has the same density and temperature de-
pendence as was found for the OCP, namely T 4, Consequently the
internal energy for a two-component mixture can be written as:
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1/4

0 -c
where the function g(zyx;; z,%,) is a charge ave;age for the thermal
energy. Clear} for x; = 1 the value of g is z% 2 and for x1 =0

it would be z3/ 4. It is tempting to assume a one fluid model for
the two-component system and to use the ion-sphere charge average
for g, namely:

— 1/4
(25/3 '21/3)

5/3 =1/3
z

U/NkT = —-az PO + bg(zlxl, ZZXZ) T (5.3)

While this assumption does not give mixture energies that are badly
in error, this one fluid model is definitely not correct. Recent
Monte Carlo results from both Livermore and Paris for two components
indicate that the above assumption for the thermal energy charge
average is definitely outside the noise of the Monte Carlo simu-
lations. The Livermore data shown in Table IV can be fitted
reasonably well with the form:

- ;1/2 (5.4)

g
although it should be noted that this form has no theoretical
justification at the present time. Hansen and Vieillefosse note
that the ion-sphere charge average is strictly additive when the
electron density remains constant. Their solution of the HNC
equations for two components suggests that this additive property
also holds true for the thermal energy. Thus they suggest that the
two—-component energy is:

5/3 1 5/3 .1

U/NKT = xl{U(z1 Fo) + x, U(z2 FO)}/NkT (5.5)

where F% = ;1/3 lg. Very recently they have two-component Monte
Carlo results which indicate the same additivity [Hansen, Torrie
and Vieillefosse, 1976]. The Livermore and Paris Monte Carlo
results for mixtures are so close in numerical agreement and also
close to the noise level, that at the moment it is difficult to
give a final answer for the thermal energy for mixtures. The
precise form will probably not be clear until there is a good
theoretical model for the I'l/4 thermal term.

VI. SCREENING CORRECTIONS

So far in these lectures the electron background has been
treated as a rigid neutralizing background with no properties
other than the constant densities. This is obviously unrealistic
for applications to the interior of Jupiter and stellar interiors.
In order to treat the electrons as a responding background the
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linear response theory has been used to describe the increase in
electron density near each ion. With the ion charge density given
by:
N
p.(r) = ze X S(r - r.) (6.1)
1 — i=1 —_ -1

the induced electron density, i.e. the deviation from uniform
density, can be written as:

pinduced(k) =" [1 E(k)] p. (k) (6.2)

where €(k) is the dielectric function of the electrons. In general
€(k) is a function of the electron temperature, and indeed finite
temperature effects may be considerable in the interiors of laser
fusion pellets. However, at sufficiently high densities the electron
Fermi energy dominates the electron temperature, kT/eF << 1, and the
electrons can be treated as a completely degenerate T=0 fluid. For
rg I 1 the random phase approximation (RPA) is adequate for the
electron dielectric function; at T=0 this is given by the Lindhard
expression:

e(®) = 1+ —L— £y (6.3)

(k App)

where y = k/kF and kg is the Fermi momentum wave number, and

+
f(y)——+—yL2,n \H\ (6.4)
and
1/3
— (122 1/2
t/Ap = (T) s = 4rF (6.5)

defines the Thomas-Fermi screening length. Hubbard and Slattery
[1971] incorporated the electron screening effect into their Monte
Carlo code, and with some minor modifications this code has been
operated extensively at Livermore. The effect of the electron
screening also changes the form of the ion-ion potential. In k
space this is:

47 (ze)?

K2e (k)

u(k) = (6.6)

and in r space:
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t/Arp

(ze)? (ze)? ~
u(r) = —z—i.!— g(r/kTF) "~ —z%— e s <A (6.7)

The r space representation is not readily useful since the screening
function, g(r/App), exhibits Friedel oscillations for large r. The
simple exponential screening is apparent only at short distances.
The k space form, Eq. (6.6), however, can be adapted into the cal-
culation of the Ewald potential needed to describe the image charges
for the plasma Monte Carlo calculation.

The Monte Carlo code gives results for U/NkT and P/nkT as
functions of ' and r_. Note that the simple virial theorem factor
of 1/3 relating the energy and pressure no longer applies since the
ion-ion potential, Eq. (6.7), is no longer pure Coulomb. It is
more general and useful to discuss the results by starting with the
Helmholtz free energy which can be written as:

gr/m = 8F Py + ¥ D (r,r /N (6.8)

with F(O)(F) given by Eq. (2.15) for the OCP. A two-component
version of F(0) can also be easily worked out using the charge
averaging results given in the previous section. The entropy con-
stant for the two-component mixture is given in DeWitt and Hubbard
[1976]. Our interest here is in the screening correction, F(1),
The Monte Carlo results show that for

0<r £0.5
s
F(1) is proportional to rg times a function of T [Hubbard and
Slattery, 1971]. This numerical result has been well-confirmed
by the theoretical analysis of Hansen and Golam [1976] who show
that:

FD /et = %f 4% dq 549 (q) w(@) (6.9)
0
with
w(a) = 32 [ggq) —1] . a=kr

and S(O)(q) is the OCP structure factor. Evaluation of the integral
numerically and fitting to the same form for U/NkT gives:

FD /et = r_ (05797 + o714~ 343 (6.10)

The energy and pressure are obtained from:
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U/NKT = B ais BF/W) = T =% (8F/)

d
BP/n = -V = (BF/N)

1 oaujm - o8 8 cau(1)
S BU/N - = e (BEC (6.11)

The explicit results from the Livermore Monte Carlo data are:

U/NKT = -(.8946 + .0543 rs) T
+ (.8165 - .1853 ) rl/4
- (.5012 - .0659 r) (6.12)

and for the pressure:

1/4 (6.13)

® - 2y /nkr = % @D /mury + 185 £ T
Similar numerical results are available for mixtures of two elements
in Hubbard and Slattery [1971], but will not be quoted here. The
two ionic component results are being done now more accurately, so
that the free energy of a mixture (e.g. fully ionized hydrogen and
helium) can be used for locating the condition for phase separation
[Stevenson, 1975].

The largest numerical effect of electron screening is on the
static portion of the energy, but even this is only a few percent
at rg v .5. The pressure of the plasma is affected rather little
by electron screening. This fact is apparent from the form of F
which is proportional to rgl' = Bezlao, and hence independent of
volume. Consequently the correction due to screening in Eq. (6.11)

comes only from the thermal portion of the free energy.

Where detailed comparisons have been made there is excellent
agreement between the Livermore Monte Carlo screening results and
the calculation based on Eq. (6.9) reported by Galam and Hansen.
For rg > .5 there is an additional O(rs3 2) contribution which also
shows up in the Monte Carlo data.

VII. PAIR CORRELATION AND DIRECT CORRELATIO. FUUCTIONS

The pair correlation function g(r) is obtainable from the
Monte Carlo calculations but only to a distance of approximately
half of the size of all containing the N charges. This distance,

X v N1/3/2, is sufficient to show the major structural features of
g(r). An example is shown in Figure 1 for I' = 40. The g(r)'s for
the OCP resemble the g(r) for the inverse power fluids and even the
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Figure 1. Monte Carlo g(r) for I' = 40 with HNC extension. The
insert shows the linear behavior of the screening function.

hard sphere g(r). This is another indication that the strongly
coupled plasma has properties closely related to more ordinary
liquids. The typical oscillations of g(r) about 1 appear when

I' v 2.5. The exact transition value is of some interest, and will

be discussed in more detail by Dr. Deutsch. Here I will just point
out that the transition value from monotonic to oscillatory

behavior according to the Monte Carlo calculations is definitely

less than I' = 3.08 at which the OCP compressibility becomes negative
(where Eq. (2.16) gives -1). Although short range order is certainly
indicated by the oscillations in g(r), there is no indication of any
kind of phase change at I' v 2.5 or 3.08. The thermodynamic functions
are all quite continuous.

A striking feature of the g(r) data is the linear behavior in
the screening function in the region below the first peak:
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i —§+H(x)
g(x) = e (7.1)

with the screening function as:
H(x) = I‘(a0 - alx) s 4 < x < 1.8 (7.2)

This empirical feature was first observed in 1973 from the BST
data [DeWitt, Graboske and Cooper, 1973] and was very useful in
calculating the screening enhancement rate of thermonuclear
reactions in stellar interiors. Professor Ichimaru will present a
discussion of this linearity in H(X) in relation to the lattice
model of the dense plasma, and the use of this relation in more
recent estimates of thermonuclear reaction rates. The values of
the constants ap and a; are almost independent of I', though a
slight but important dependence has been found. ap and aj have a
geometrical relation to the location and height of the first peak
in g(r). With the empirical form, Eq. (7.2), one has:

1
re(x)  1Cx Tt e a®
e = e

g(x) = (7.3)

The first peak occurs at x; ¥ 1.68, and the height is:

g(xm) R

where A is a small number found empirically from the MC data. A
little algebra with Eq. (7.3) shows that:

a, = = .39 (7.4)

1
1 2
X
m
and

1/2

a, = 2a + A =1.27 + A (7.5)

0 1

For large I the linear behavior in x of H(X) cannot be seen

very far because g(x) is almost zero until x v .8. For small x
a different functional form appears:

HG) = T(a, - o %) x < .4 (7.6)

1
Recently Professor Jancovici has shown that aj should be 1/4 rather
than 1/2 as reported by DeWitt, Graboske and Cooper [1973]. The
constant O (which is crucial for the reaction rate calculation) is
related to the difference of free energies of two charges before and
after reaction (DeWitt, Graboske and Cooper [1973] and also
Jancovici's work reported at this meeting). Using Eq. (2.15) for
the OCP free energy one finds that the theoretical value of ag is:
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5/3
Fao

[2FI(I') - FI(Z I') 1/NkT

/4

1.051T + 2.172T/% _ 501 & T = 2.24 (7.7

and this seems to agree with Monte Carlo results as far as it can
be checked.

In order to find the OCP structure factor S(k) by Fourier
transforming g(r) it is necessary to have an accurate "tail" to
extend the MC numerical data for g(r) from x v 2.5 on to . This
can be done by fitting the solution of the HNC equation on to the
MC data with the help of the Ornstein-Zernicke equation. The pro-
cedure is described in some detail by Galam and Hansen [1976]. The
assumption of importance here is that the bridge graphs are negli-
gible for x 2 2.5 thus ensuring the validity of the HNC equation.
The structure factor is obtained then from:

sin kx

S(k) =1+ ¢ j xzdx
kx

0

h (x) (7.8)

where h(x) = g(x) - 1. A typical result is shown in Figure 2. A
further check on the accuracy of S(k) so obtained is a direct
calculation of the internal energy from

U/NKT = ;1;- J dk S(k) = 325 r xdx h(x) (7.9)

0] 0

For each value of I' the evaluation of the energy from the k inte-
gration and x integration come out slightly different, but they
closely bracket the Monte Carlo results for U/NkT. An additional
check on the accuracy of the S(k) data is the compressibility
relation that appears in S(k), Eq. (2.17). At least up to I' = 40
there is good agreement with Eq. (2.16).

With S(k) known numerically one also has c(k) from:
1
1 + ¢(k)

S(k) = (7.10)

so that c(r) can be obtained with a Fourier transform. For
x 2 1.8 the direct correlation function goes over to the Coulomb
potential:

c(x) = - —E (7.11)

but for x < 1.8 c(x) behaves much like H(x), namely
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Figure 2. OCP structure factor S(k) for I = 40 obtained by
Fourier transform of g(x).
C(X)=-F(a6-ai x) , 4 <x<1.8
= —F(aé - ai xz) , x < .4 (7.12)

where the constants a), aj and a(), 0 are slightly different from

the values for H(x).

This behavior is shown in Figure 3. The

calculation of H(x) and c(x) allows one also to find the bridge
graph function since:

H(x)
where

T (x)

T(x) + B(x) (7.13)

=h -c¢ (7.14)

I d3x'c(x') h(]x - x'l)

Since both H(x) and T(x) are now known numerically reasonable

results can be obtained for the bridge graph function B(x).

This

work is in progress.
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Figure 3. OCP direct correlation function for T = 40.
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COMPUTER SIMULATION OF COLLECTIVE MODES AND TRANSPORT COEFFICIENTS
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Jean-Pierre Hansen
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I. COLLECTIVE MODES AND SINGLE PARTICLE MOTION
IN THE ONE COMPONENT PLASMA (OCP)

A. The Model

Consider a periodic system of N point ions of charge Ze and
mass M in a rigid, neutralizing uniform background. For a given
configuration N = (?1, ?2, ey ?N) of the ions, the total potential
energy of the system is:

2

1 4 (Ze)

Vo= ) 52— (pp o> - N) (1.1)

N4 2 k P-k

where:

N2

op= 1 et (1.2)
i=1

Excess thermodynamic properties, and more generally, all reduced
(dimensionless) equilibrium properties depend on the single
dimensionless variable:

2
_ (Ze)
= akBT (1.3)

119
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where a = (3/4ﬂp)l/3, p = N/V. We shall frequently use reduced
distances x = r/a and wave numbers q = k/a. To describe dynamical
(or time-dependent) properties we introduce an additional time
variable t which we express in a "natural" unit, equal to the
inverse of the plasma frequency:

2
w, = e (1.4)

B. The Physics

The OCP is a model for dense, full ionized matter in which the
uniform background is provided by the degenerate electron gas. The
model is reasonable if three conditions are fulfilled:

(a) T<<T i.e. T << 106/r§

F’
where rg = a/a,, a, is the electron Bohr radius and Ty is the
electron Fermi temperature; this is the degeneracy condition.

s .
(b) App/a = (IEE) r, >> 1, i.e. r, << 1

-

where ATF is the Thomas-Fermi screening length; this condition
ensures that the electron gas is rigid, i.e. not polarizable by
the ionic charge distribution.

(c) AMAla = Vh /(ZHMk T)/a VI m/(2ﬂMr ) <1

where A is the thermal de Broglie wavelength of the ions and
m is the electron mass; this condition ensures that the ions
can be treated classically.

Applications of the OCP model are essentially astrophysical;
Table I lists some orders of magnitude for white dwarf matter and
the interior of Jupiter, which show that the three above-mentioned
conditions are reasonably well fulfilled in the former case, and
are more questionable in the latter. In this latter case, quantum
corrections (in powers of A“) [Hansen and Vieillefosse, 1975], and
the electron screening corrections (essentially proportional to
l/ATF) [Galam and Hansen, 1976] to the thermodynamic properties of
the ions, can be systmatically computed.

The OCP may also be relevant for the determination of the ion
equation of state in laser-compressed plasmas (in the imposion
zone), where T < 1.

Finally the OCP is a valuable tool for theorists, since it is
the simplest conceivable model incorporatiing Coulomb interactions.
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TABLE I

White dwarf Jupiter (interior)
T = 107K 104K
oy = 108 - 108gr/cm3 10 gr/cm3

He or C H (+10% He)
I'' =6 - 200 I' ~ 50
r = 10—2 r = 0.7
s s

AHe/a ~ 0.2 AH/a =~ 0.5
Apla = b Appfa = 1
T/T. = 10 3 T/T. = 1072

F F
w = 5x 1017 sec 1 lOlssec 1

C. The Numerical Method

Two computer simulation schemes have been widely used in
Statistical Mechanics, in particular in Liquid State Theory, over
the last twenty years. The first method, which allows the compu-
tation of static ensemble averages, is the Monte Carlo (MC) method
which has been reviewed by Professor DeWitt in his lectures. The
second method relies on the numerical solution of the cougled
equations of motion, for periodic systems of N = 102 - 10 particles,
over some finite time interval T. Time averages of various dynamical
variables are then taken along the trajectories of the N particles,
over the interval T. The system is assumed to be isolated, so that
its total energy is fixed; hence the time averages are equivalent
to micro-canonical ensemble averages.

The method, called molecular dynamics (MD), was first developed
by Alder and Wainwright [Alder and Wainwright, 1959] for hard sphere
systems (instantaneous collisions). The MD method was extended to
continuous force laws by Rahman [Rahman, 1964] and Verlet [Verlet,
1967]. In this case, the differential equations of motion are re-
placed by finite difference equations, after the introduction of a
finite time increment At. The simplest algorithm to solve the
equations of motion is that of Verlet [Verlet, 1967]:

T (k4 A0) = -F (- £) + 2% (0) + Fi(t)(At)z + oAt (1.5)
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>
where F, (t) is the total force acting at time t on particle i from
all (N—i) other particles.

The MD estimate of the equilibrium average of any dynamical
variable A(x"V, 3N) is then:

T
<A> = 1im-% J Al ey, vN(e)1 ae
T->00
[e)

=

A[?N(n-At), 3N(n°At)]

R

=~

| ~

=0

where N = T/At is the total number of time steps generated in the
MD "experiment'. Similarly the MD estimate of the time correlation
function of two dynamical variables A and B is:

CAB(t) <A(t)B(o)>
N-v

jﬁ%;; L Al(a+v)At] B(nAt) (1.6)
n=o

R

In these lectures we review recent applications of the MD
method to the study of dynamical properties of the OCP [Hansen,
Pollock and McDonald, 1974; Hansen, McDonald and Pollock, 1975].
The systems considered in these computer "experiments'" contained
generally 250 ions with periodic boundary conditions. _The equations
of motion were solved over total time intervals T = 10° - 10% wzl,
for values of the coupling parameter 1 < I' < 155. Account was
taken of the long range of the Coulomb forces by letting each
particle interact not only with the nearest images of the N-1 other
ions, but also with the infinite set of periodic images and the
background. Ewald techniques were used to calculate the corres-
ponding infinite sums [Brush, Sahlin and Teller, 1966].

D. Some Static Properties of the OCP

The thermodynamic properties and static structure of the OCP,
as obtained both from MC [Brush, Sahlin and Teller, 1966; Hansen,
1973] and MD simulations have been extensively reviewed in Professor
DeWitt's lectures. Here we only summarize some salient features
which will be useful in the following.

The MC excess energy values in the range I' > 1 can be very
accurately represented by a simple equation of state, proposed by
DeWitt [DeWitt, 1976] (B = l/kBT):

Bu 14

— = al' + bFl

N c 1.7



COMPUTER SIMULATION OF COLLECTIVE MODES 123

with a = -0.895929, b = 0.8739 and ¢ = -0.5777. Note that in the
strong coupling limit (I' >> 1) the energy (1.7) lies only a few
percent above the exact lower bound, -0.9T [Lieb and Narnhofer,
1975]. From Eq. (1.7) it can be immediately seen that the iso-
thermal compressibility

-1
e % [(%%P)T] RP 1 BU

becomes negative for I' > 3 (note that for the OCP - = 1 +-§-Tr .
Nonetheless the OCP has been shown to be still thermodynamically
stable against density fluctuations, provided the fluctuations of
the local electric field are correctly taken into account
[Vieillefosse and Hansen, 1975]. A straightforward fluctuation cal-
culation also yields the q > o limit of the static structure factor
[Vieillefosse and Hensen, 1975]:
S(q) =%<p—>p—>> =3 _1— (1.8)
q -9 o
ave 3p  Xp
_.._+__
2 X
1 T

where X; = B/p is the ideal gas compressibility.

E. Density Fluctuations, Longitudinal Current Fluctuations
and Plasma Oscillations

In addition to the Fourier components (1.2) of the density, we
introduce the Fourier components of the particle current:

N N > >
R I NS AL (1.9)
i=1

which satisfy the continuity equation:

= op(e) + 1K 3p(e) = o (1.10)

We next define the density-density correlation function:
1
F(k,t) = § <eg(t)p_g(0)> (1.11)

and its spectrum, the dynamical structure factor:

1 ]'+°° iwt
e

er F(k,t) dt (1.12)

S(k,w) =

=00

The linear density response function is:
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X(k,w) = % rei‘*’t <lpp(t), p_glo)}> dt (1.13)

(o]

where { } denote a Poisson bracket; the imaginary part of X is
related to S by the classical limit of the fluctuation-dissipation
theorem:

_ 1
TBPW

Similarly we introduce the longitudinal current autocorrelation
function:

S(k,w) = X" (k,w) (1.14)

1 > > > >
c (k,t) = % <k-32(t) k-3, (0)> (1.15)

whose Fourier transform C, is directly related to S via the continuity

equation (1.10): 1
“ _ 1 iwt _ .2
Cl(k,w) = o f+we Cl(k,t) dt w7 S (k,w) (1.16)
-00

The short-time expansion of F(k,t) leads to the frequency moment
sum rules of S(k,w):
2n
<w?P> = rmwzns(k,w) aw = (-np" ELD .17
dt t=o

=00

Switching to q = ak, we find immediately:

<w®> = s(q) (1.18)
2
<(_u2> = u)z 9_ = wz (1.19)
p 3T o

The 4th and 6th moments are given explicitly in Hansen, Pollock and
McDonald [1974], Hansen, McDonald and Pollock [1975] and Vieillefosse
and Hansen [1975].

In the q7o limit it can be proved rigorously that [Hansen,
Pollock and McDonald, 1974; Hansen, McDonald and Pollock, 1975,
Baus, 1975]:

. S(q,w) _ 1 _
iig s "2 [§(w wp) + S(w + wp)] (1.20

i.e. there is a "plasmon" mode of infinite lifetime (undamped) in
the long-wavelength limit. Density fluctuations and plasma oscil-
lations, at finite wavelength have been studied by MD simulations,
at I' = 1, 10, 110 and 152 [Hansen, Pollock and McDonald, 1974;
Hansen, McDonald and Pollock, 1975] and for several wave-numbers
(0.6 < q < 6); the smallest accessible wave-number is determined by
the periodic boundary conditions: q = (2ma)/L = 0.618 for a cubic
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box of volume L3 containing 250 ions. The results for S(q,w) are
shown in Figures 4, 5, 6 and 7 of Hanzen, Pollock and McDonald [1974]
and Hansen, McDonald and Pollock [1975]. The salient features are:

(a) For the smallest q values, S(q,w), exhibits sharp peaks around
w =+ w , showing the existence of a long-lived plasmon mode
even atprelatively short wavelength.

(b) As T increases, the plasmon peak becomes sharper (marrower)
for a given q. At I' = 10, 110 and 152, S(q,w) practically
reduces to a pair of §-functions at q = 0.618.

(c) For a given I', as q increases, the plasmon peak broadens, as
one would intuitively expect; the peak disappears for q = 3,
which corresponds to a wavelength roughly equal to the mean
inter-ionic spacing. For q > 3, S(q,w) tends rapidly towards
its non-interacting gas limit (a gaussian centered on w = o).

(d) As q increases, the peak position shifts to higher frequencies
at I' = 1, but to lower frequencies at I' = 10, 110 and 152
(negative dispersion).

(e) At the smallest wave numbers, S(q,w) shows no trace of a
central, diffusive (Rayleigh-type) peak at zero frequency.
This finding is in agreement with an exact kinetic theory
result by Baus [Baus, 1975] which shows that the strength of
the thermal diffusion mode is weaker, by a factor q2, than
the "mechanical" plasmon mode.

In view of the predominance of the plasmon mode, its sharpness
at low q, and Eq. (1.20), we can derive a simple phenomenological
dispersion relation from the moment relations (1.18) and (1.19)
and the small q limit (1.8):

2 2
2 w-q
2 L <wt> _ Tp . 2 2 4
w (q) = S 3TS Q) wp[l + 8q°]1 + o(q") (1.21)

<w >

where § = ;%-Xg/XT. This simple relation then clearly links the
observed négative dispersion to the negative compressibility for
r > 3.

A standard calculation, based on the linearized Navier-Stokes
equations of hydrodynamics, suitably modified to account for the
local electric field [Vieillefosse and Hansen, 1975; Balescu, 1975],
yields a dynamical structure factor which incorporates all the
qualitative features of the MD results at small q, and agrees with
the rigorous kinetic theory results of Baus [Baus, 1975; 1977] in
the strong coupling limit, where the plasma frequency w_ becomes
small compared to the collision frequency w.. The hydrodynamic
calculation leads to the following dispersion relation:
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wz(q) = wf, [1+ Y<5q2] + o(q4) (1.22)

where the coefficient of q2 differs by a factor Yy = Cp/Cv from the
result (1.21). In the strong coupling limit (I >> 1), y differs
very little from 1, so that the hydrodynamic result agrees almost
exactly with the phenomenological dispersion relation (1.21).

For shorter wave-lengths, a 'generalized hydrodynamics" calcu-
lation, which assumes a gaussian form for the positive definite
real part of the memory (or "damping") function of X(k,w) [Kadanoff
and Martin, 1963], satisfying a certain number of sum rules, yields
excellent agreement with the MD results [Hansen, Pollock and
McDonald, 1974; Hansen, McDonald and Pollock, 1975].

F. Transverse Current Fluctuations

In a way similar to Eq. (1.15), we define the transverse
current correlation function:

C, (k,t) = o= Tr <[RAT(e) 1[KAT (o) 1> (1.23)
and its spectrum:
C (k,w) = ——-[+mC (k,t) e

Defining frequency moments <w2 >1 and <w2n>t for C and Cy, as we
did for S(q,w) (note that, according to Eq. (1. 16), <w2n>"=
<w2n—2>1), we immediately obtain the following generalization of
the familiar Kohn sum rule for the harmonic Coulomb lattice:

2 2

<w™> + <w™>
1 L —‘-L—] (1.24)
w2 P 3T
(o)

The MD results for C (q,w) at ' = 152 indicate the existence of a
well-defined Erogagatlng shear mode for q > O. 6 (cf. Figure 12 of
Hansen, Pollock and McDonald [1974] and Hansen, McDonald and Pollock
[1975]1). For q > 2, the observed peak splits into two components,
the one at the hlgher frequency being close to w_ (cf. Figure 13 of
Hansen, Pollock and McDonald [1974] and Hansen, ﬁcDonald and Pollock
[1975]1).

G. Single Particle Motion
A more convenient way of studying single-particle (or "self")

motion in a fluid is to compute the normalized velocity auto-
correlation function:
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> -
Z(t) = v(t)-v(0)> (1.25)

<v2>

where z(t) is the velocity, at time t, of any one of the N particles,
and ¥(o) the initial velocity of the same particle. Accurate MD
results are available for I' = 1, 10, 20, 60, 110, 152 (cf. Figure 1
of Hansen, Pollock and McDonald [1974] and Hansen, McDonald and
Pollock [1975]). They show that Z(t) exhibits pronounced oscil-
lations, at roughly the plasma frequency, for I' > 10. In the strong
coupling 1limit (I = 110 and 152), these oscillations are very long-
lived, extending over many plasma periods. The memory function M(t),
defined through the generalized Langevin equation:

t
Z(t) = —J M(s) Z(t-s) ds (1.26)

o
exhibits similar, although more damped oscillations. These have been
interpreted in terms of a strong coupling of the single particle
motion to be collective plasmon mode [Gould and Mazenko, 1977; Gaskell
and Chiakvelu, 1977; Varley, 1977].

ITI. COLLECTIVE MODES IN BINARY IONIC MIXTURES

A. Definitions and General Properties

In this lecture we consider the extension of the results+£$r
the OCP, to binary ionic mixtures, (e.g. ot - He™™ or B - Li )
in a rigid, uniform background. Consider a mixture of N, ions of
charge Z; e and mass M; and Np ions of charge Zy e and mass My
(2122 > 0); the concentrations are Xy = Nl/N and Xy = N2/N

(N = Ny + Nz), the total number density is p = N/V and the charge
density is p' = 21P; + ZpPp = Zp, where Z = x1Z, + X,Z, is the
average charge of the ions. The reduced equilibrium properties

depend now on 2 Barameters, either xp =1~ x% and T = e%/(akgT),
or xy and T'' = /(a' kgT), with a' (e/4ﬂp ) /3(F' —I"Zl/3) The
interaction hamlltonlan reads:
1 z 41Te2 [ _—2.]

AY) = —_— p'—)p' > - NZ (2'1)

N 2V ko k2 k" -k
where

S = 1) (2)
AT AR -2
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Vo oikeT
ey, v=1,2 (2.3)
1

)
o> =
k i

I ~>2

Extensive MC computations of the thermodynamic properties and
static structure of H' - He'" mixtures have been carried out both

at Livermore [DeWitt and Hubbard, 1976] and in Paris [Hansen, Torrie
and Vieillefosse, 1977]. Moreover the coupled HNC integral equations
for the three pair distribution functions, 811> 812 and gy, have
been systematically solved for three concentrations (xl = 0.25, 0.5
and 0.75) and for several values of T' (0.1 < T < 102), both for
22/21 = 2 and 22/21 = 3 mixtures [Hansen and Vieillefosse, 1976].
All the thermodynamic data can be very accurately represented by a
simple linear interpolation at fixed charge density [Hansen and
Vieillefosse, 1976]:

BU BU
— () + xy, —B (T (2.4)

BU ., -
N (Thx) = x 2 N

1 2)

5/3 5/3

where Fl = F'Zl and F2 = F'22 .

This equation of state has been used to establish the phase
diagram of HY - He™™ and HY - Lit** mixtures at various pressures
in the range P > 1Mbar. It is found that at sufficiently high
pressures, the mixtures are stable (miscible) at all concentrations
[Hansen and Vieillefosse, 1976]. Quantum corrections and electron
screening corrections do not modify the calculated phase diagrams
very much [Hansen, Torrie and Vieillefosse, 1977].

B. Mass and Charge Density Fluctuation Spectra

We define the Fourier components of the mass (M) and charge
(Z) densities:

M _ 6D 2)
P = Mg T T Mg
(2.5)
% _ 1) 2)
P = 2Pk T2
Hence we can define three distinct TCF's:
X Y
Foy (6t) = == <oX(£)o), (0)> (2.6)
NXY

where X, Y = M or Z; their spectra will be represented by Syy (k,w).
The frequency moments <w2n>XY of the latter are given by sum rules
analogous to Eq. (1.17). In particular for X = Y = Z (charge
fluctuations) we find (q = ak):
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2
o ~ 9
< > =5 _.(q) = — (2.7)
zz = 2z L
2 2 2
W™, =90 o (2.8)
P 317
where 2 2
2 2 2y )
Qp = 4Tpe X M_]_ + X, —ﬁz— (2.9)

is the concentration average of the plasma frequencies of the two
components. The <w4>z moment [McDonald, Vieillefosse and Hansen,
1977] requires a knowledge of the partial pair distribution
functions of the mixture [Hansen, Torrie and Vieillefosse, 1977].
Characteristic frequencies of long-wavelength longitudinal modes
can be estimated from ratios of these moments. The ratio
2
<w<>

lim —22 - Qz (2.10)

7o W77
is independent of the strength of the coupling and hence yields the
correct characteristic frequency in the weak coupling limit. This
is confirmed by a straightforward solution of the coupled Vlasov
(or mean field) equations for the distribution functions of the two
components, which leads to the simple dispersion relation:

W(q) = Qi + 8, 0% + o™ (2.11)

where:
6k, T w2 wz
§ = B ._1+_2.
\'4 3292 Ml M2
P

and

2 2 .2

w, = 4Tpe zv/Mv

However, contrary to the case of the OCP the ratio
<w4>zz/<w2>zz yields a different characteristic frequency in the
long wavelength limit; we find [McDonald, Vieillefosse and Hansen,
19771:
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2
*1%2%1%2 < 5 )
<w > 3 m m
lim w2 (q) =-——§4§§ - Qi + wz S L 2 (2.12)
avo Wz 21 %2
X m T X
1 2

where z, = Zv/Z, m, = Mv/M and:

=2 2
wZ _ 4mpZe” | Q (2.13)
P % P

Hence wz(o) > Qg g; e.g. for a H+ - He mixture with X = X9 =
1/2, we find

wz(o)/w - 1.075  and Qz/wz -1.05 .

Note that both ratios <w >ZZ/<w >z7 and <w4>zzl<w >77 yield, as a
function of q, a negative dispersion for I' > 1, in qualitative agree-
ment with the OCP.

C. The Strong Coupling Limit

A simple hydrodynamic calculation, along the lines sketched
in Chapter I, Section C for the case of the OCP, can again be ex-
pected to be valid in the limit I >> 1. The results of such a
calculation for the long wavelength clarge and mass density fluc-
tuations are given by McDonald, Vieillefosse and Hansen [McDonald,
Vieillefosse and Hansen, 1977]. Here we only summarize the salient
features of czz(q,m) = Szz(q,w)/szz(q) and Opyy(q,w):

(a) 0y75(q,w) consists of two conjugate plasmon peaks and a central
peak, due to thermal diffusion, and interdiffusion

(b) In the limit q2o, the plasmon peak reduces to
2

2w Wy
o, (o,w) =
zz>" <w2 + w2)2 + wzwz

with wy = 4ﬂe2a, where o is the interdiffusion coefficient.
Thus, in contrast to the case of the OCP, the plasmon mode is
damped, even at infinite wavelength, by interdiffusion of the
two species. Its frequency is wP, rather than Qp.
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(c) The central peak is of intensity qz, as in the case of the OCP.
However, its height is of order q°, comparable to the finite
height of the plasmon peaks; this opens up the possibility of
observing the diffusive contribution to the charge fluctuation
spectrum in a MD computer "experiment".

(d) omM(q,w) consists of a dominant diffusive central peak, of
intensity q©, which reduces to a 6-function in the limit q-o,
and of a pair of plasmon peaks, of intensity q4, which remain
of finite width and are centered on w, in the infinite wavelength
limit. The integrated intensity of tge plasmon peaks is there-
fore negligible compared to that of the central peak, a behavior
which is the exact opposite of that seen in Oyz- There is no
mode corresponding to a propagating sound wave.

D. MD Results

A MD "experiment" has been performed on a mixture of 125 H+
and 125 He'" ions in a rigid, uniform background, at T = 40 [McDonald,
Vieillefosse and Hansen, 1977]. The results for Ozz(q,w) and
omM(q,w) are in qualitative agreement with the predictions of the
hydrodynamic theory at the smallest wave numbers, except that the
extrapolation to q = o of the plasmon peak positions yields an wz(o)
in agreement with Eq. (2.12), rather than w§. The observed dispersion
is negative in agreement with the sum rule argument. As q increases,
the intensity of the central peak increases rapidly relative to that
of the plasmon peaks.

The computed velocity autocorrelation functions ZH(t) and
ZHe(t) exhibit marked oscillations, in qualitative agreement with
the case of the OCP (cf. Chapter I, Section G). The resulting self-
diffusion coefficients are D§+ = DH/wpa2 = 0.0086 and Dy 4+ = 0.0049
respectively.

A similar MD "experiment" at lower coupling (I' = 0.4) is
presently under way.

ITTI. LINEAR TRANSPORT COEFFICIENTS OF THE OCP

A. Ionic and Electronic Transport

We consider dense, fully ionized matter in the temperature
range:

i e
<< <<
Td T TF
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where Té is the degeneracy temperature of the ions, and TS the
Fermi (or degeneracy) temperature of the electrons. In tge high
density limit the ions and electrons are then essentially decoupled
(cf. the discussion in Chapter I, Section B), and it is a reasonable
approximation to compute the transport coefficients of both compo-
nents separately.

Because of the Pauli principle, electron-electron scattering
becomes negligible in the high density limit, and each electron
is individually scattered by the ions. The electronic transport
coefficients can then be calculated in the framework of a Lorentz
model, in the formulation due to Ziman [Ziman, 1961] which requires
simply a knowledge of the ionic static structure factor. A
systematic computation of the electronic transport coefficients
using the ionic structure factors of the OCP model has been per-
formed [Minoo, Deutsch and Hansen, 1976]. An advantage of this
procedure over previous computations using hard sphere structure
factors is the fact that the correct temperature dependence is
automatically contained in the OCP structure factors (through T)
without any adjustable parameter.

The computation of the transport coefficients of the strongly
coupled classical ions is more difficult. Recent results are re-
viewed in this chapter.

B. Ionic Self-Diffusion

For pedagogical reasons we start this chapter with the par-
ticularly simple case of the ionic self-diffusion coefficient D.
Although, strictly speaking, this is not a genuine transport co-
efficient associated with dissipation of energy, it is handled in
much the same way as true transport coefficients in non-equilibrium
Statistical Mechanics.

D is immediately expressible in terms of the velocity auto-
correlation function (1.25), through a straightforward reformulation
of the Einstein relation [e.g. Hansen and McDonald, 1976]

*

p* = —2- =L | z(t) at (3.1)
2 3T

w a

P o
where t is expressed in units of w _1. Z(t) is accurately known

from MD computations (cf. Chapter E, Section G) and the integrations
lead to D* values which are fairly well fitted by the simple formula:

p¥ ~ 3.774/3

(r = 1)
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We now sketch a simple theoretical calculation [Vieillefosse,
1975] based on the generalized Langevin equation (1.26), the
Laplace transform of which reads:

[-iw + M(w)] Z(w) = 1 (3.2)

From Eqs. (3.1) and (3.2) we deduce:

* 1 1

T 3T ;1(0)

The short time expansion of M(t) follows from that of Z(t) [Hansen,
Pollock and McDonald, 1974; Hansen, McDonald and Pollock, 1975] with
the result:

D (3.3)

2
w -w 2
_ 2 2s 1s t~ 4
M(t) = Wy [1 - B Y + 0(t))] (3.4)
w
1s
2
W = 1/3
2 _1
wy, =g [12I_, + 1 + 9K]
® n
In = J x g(x) dx, n < -1
o

fwxn[g(x) - 1] dx, n > -1

[o]

X
o o -1

ax (Caxt [
K = r—ﬁ J ——x.—f d(cosa) P,(cosa) [gq(x,x",a) - g(x)g(x")]

where P, is the Legendre polynomial of order n, and 83 is the triplet
distribution function. Note that the term 9K in w is missing in
papers by Hansen, Pollock and McDonald [Hansen, Pollock and McDonald,
1974; Hansen, McDonald and Pollock, 1975].

We next assume M(t) to be a gaussian satisfying Eq. (3.4):

_1 B} 3¢ 2}
M(t) = 1 exp { 21, +32 1) ¢ (3.6)
This hypothesis is certainly an oversimplification since we pointed
out in Chapter I, Section G that M(t) exhibits oscillations in the
strong coupling limit. Combining Eqs. (3.3) and (3.6) we now
easily obtain:
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* _1,/8 3K
D VT 1_4+ n 3.7)

I_4 can be computed with the MC or MD pair distribution functions;
to compute K one has to make the standard superposition approxi-
mation (SA) on g3; D* is not too sensitive to the SA, since I_y
turns out to be the dominant term. The results are compared to
the "exact" MD data in Table II. The agreement is seen to be good
only for very large T

TABLE II
* *

r Dtheory DMD
0.993 3.5 2.01
9.7 0.078 0.130

19.7 0.031 0.0603
59.1 0.0087 0.0151
110.4 0.0045 0.00511
152.4 0.0033 0.00318

As an illustration, under white dwarf conditions (p, = 106gr/cm3,
T = 107K, He composition - I' = 5.6), we find:

D=2 x 10-3 cm2 sec_1

The previous simple calculation has been improved by S. Sjodin and
S. K. Mitra [Sjodin and Mitra, 1977] who take into account the
coupling of the self motion to the collective plasmon mode.

C. Ionic Shear Viscosity

A simple hydrodynamic calculation, similar to that sketched in
Chapter I, Section E, yields the following expression for the Laplace
transform of the transverse current correlation function (1.23),
valid in the long wavelength, low frequency region:

- w
C. (k,w) = ————9—-—2—- (3.8)
-iw + nk“/Mp
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From this we obtain the standard expression for the shear viscosity
[Kadanoff and Martin, 1963]:

2
w
= Lim lim 2 li0 + —2— (3.9
wro k*o k Ct(k,w)

which can be recast into a Green-Kubo formula:

n= J n(t) dt
o

where

M2

VkpT <AaB(t) Aa6(0)>, a# B =x,y,2 (3.10)

n() =

and AOLB is an off-diagonal component of the microscopic stress
tensor; for the OCP:

> > OlB
AOLB=FVOLVB_'_ZZIZelerMT(Z;) [Z(SOLB lzc]
o4 i#j k#o Mk k
(3.11)

There exist by now three independent calculations of n for the
strongly coupled OCP. The first [Vieillefcsse and Hansen, 1975]

is based on the known frequency moment of @t(k,w) and is closely
related to the calculation of D sketched in Chapter III, Section

B. It assumes a gaussian real part of the Laplace transform of the
memory function; note that this hypothesis is reasonable, since it
is compatible with known exact properties of these functions
[Kadanoff and Martin, 1963] which must be positive, even in w, and
decreasing exponentially at high frequency. The final expression
for the reduced kinematic shear viscosity n n/(MpwPa ) is given
by Eq. (50) of Vieillefosse and Hansen [Vielllefosse and Hansen,
1975]. It involves integrals over the pair and triplet distribution
functions, the latter being approximated by the SA; this introduces
an uncertainty in the computed values of n” (given in Table III)
which is largest at high I'. The results clearly indicate that n
exhibits a minimum as a function of I' (i.e. of temperature at
constant density) around I' ® 20. An alternative kinetic calculation
by Wallenborn and Baus [Wallenborn and Baus, 1977], which requires
only a knowledge of the static structure factor, yields results in
semi-quantitative agreement with the prev1ous computation (cf.

Table III). It also leads to a minimum in n* , around n° = 10 and
it has the advantage of yielding reliable results also in the weak
coupling (' < 1) 1limit.
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TABLE IIT
1_‘ * % *
"M yu n

1. 1.04 0.35 1.01

10.4 1.085 0.083 0.078

110.4 0.18 0.1340.05 0.218

Recently the autocorrelation function n(t) has been calculated by
MD simulations at I' = 1, 10 and 100 [Bernu, Vieillefosse and Hansen,
1977]. n(t) turns out to be a relatively slowly, monotonically
decreasing function of time for I' = 1 and 100, while for T = 10,
the decay time is much shorter. This behavior is certainly related
to the minimum in n* around that value of T.

The results of both theoretical calculations and the MD compu-
tations are summarized in Table III.

D. Ionic Bulk Viscosity

The bulk viscosity C can also be computed along the lines
sketched in the previous section. The longitudinal viscosity
b = C + 4n/3 can be related to the long-wavelength, zero frequency
limit of the real part of the Laplace transformed memory function
of the longitudinal current correlation function (1.15) [Kadanoff
and Martin, 1963]:

% M'
b* = —P = 1im 1im i(—kzﬁ’z)— (3.12)
Mpwpa w*o ko wpa k

using again a gaussian form for the memory function, b* can be
expressed in terms of integrals over the pair and triplet distri- *
bution functions [Vieillefosse and Hansen, 1975]. The resulting b
turns out to be very close to n*, so that the bulk viscosity must
be smaller than the shear viscosity (c*s 0.02 n®).

Equation (3.12) can again be reexpressed in the form of a
Green—-Kubo relation:

c = J z(t) dt (3.13)
o

where C(t) is now equal to the autocorrelation function of the
diagonal components of the microscopic stress tensor. In the case
of the OCP, Z(t) can be further simplified to the expression (valid
in the microcanonical ensemble):
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20 = g Ty(®) V@) - T (3.14)

i.e. Z(t) is simply the autocorrelation function of the total po-
tential energy of the system.

z(t) has been computed by MD simulations at I' = 1, 10 and 100.
It is found to be a rapidly oscillating function of time, of fre-
quency ~ 2w_, at all three values of I'. The values of £*(o) and of
the resulting reduced bulk viscosities £* are summarized in Table IV
together with the corresponding data for the shear viscosity and the
thermal conductivity. The MD results confirm the theoretical pre-
diction that " is 2-3 orders of magnitude smaller than n*,
depending on T.

TABLE IV

o n*e | n" ¥ (o) * K*(0) | k"
1. 0.3 |1.046 |4.3 103 |2.6 103 |0.873 | 2.9
10.4 | 0.068 | 0.085 | 1.5 107> | 1.8 1073 |0.354 | 0.66
100.4 | 0.041 | 0.18 |0.27 107> |o0.21 1073 |0.338 | o0.88

E. TIonic Thermal Conductivity

The Green-Kubo formula for the thermal conductivity K is
[e.g. Hansen and McDonald, 1976]:

K = J°°K(t) dt (3.15)
[e)
o3 *
K(t) = TN <jls(k=0’t) jms(k=o,t=o)> (3.16)
B

where jog is the longitudinal entropy (s) current. In applying

Eq. (3.16) to the OCP case, some care must be taken in defining

the microscopic entropy current in order to avoid divergences due
to the long range of the Coulomb interactions [Bernu, Vieillefosse
and Hansen, 1977]. The kth Fourier component of the local internal
energy is:

e(k) = 2 giker L yE,-E (3.17)

1
2 MVi e i+ BV

I ~a2

i=1
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where Ek is a Fourier component of the local electric field which
is related to the charge density by Poisson's equatiog.. From the
energy conservation equation we then deduce the k»o limit of the
longitudinal energy current:

> 1 2
g (ko) = g (ﬁ'vi) 7 Mv
e )
*1 Z% ] ooeTteryy 31 o« [k-(k-k"k"] é&;_L
i#j ~ k'#o .
(3.18)
where & = K/[E]. 4 standard thermodynamic relation then links the

energy current to the entropy current occuring in Eq. (3.16).

K(t) has also been computed by MD "experiments" at ' = 1, 10
and 100; it is an oscillatory function of time, of frequency =w_,
at the stronger couplings, while it decays essentially monotonically
at I' = 1 [Bernu, Vieillefosse and Hansen, 1977]. The resulting
values for K*(o) and K* are summarized in Table IV: K* is seen to
be smallest at ' = 10, which indicates that the thermal conductivity
exhibits a minimum as a function of T just as the shear viscosity.

As an illustration of the orders of ma§nitude, consider a
hydrogen plasma at T = 107K and p=5x 102 ions/cm3; for this

state I' = 1, and from K* = 2.9, we find an ionic thermal conductivity
Aj = 2,106 w p~1 g-1, The Lorentz-Ziman calculation mentioned in
Chapter III, Section A yields for the electronic conductivity

Ae ¥ 2 x 1010 wonlgl [Minoo, Deutsch and Hansen, 1976], which is,
as expected, considerably larger than the ionic conductivity.
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METHODS AND APPROXIMATIONS FOR STRONGLY COUPLED PLASMAS

G. Kalman

Department of Physics
Boston College
Chestnut Hill, MA 02167

I. INTRODUCTION

Strongly coupled plasmas are certainly not unique amongst
physical systems in the sense of being characterized by a sub-
stantial or even overwhelming portion of their energy residing in
the form of potential energy. Even if solids are excluded, there
are many dense gases and liquids for which such a condition pre-
vails. However, there exist certain features, which do set the
strongly coupled plasma problem apart from the rest of the field of
dense liquids and other strongly coupled many body systems. First
is the long-range character of the coulomb interaction. This
feature has been the focal point of attention since the early
days that mark the beginning of the investigation of coulomb systems,
and plasmas. It is known to be responsible for many unique patterns,
both of the physical behavior of such systems, and of the mathemati-
cal problems that arise in their treatments (Dr. Baus' lectures
[Baus, this Volume] discuss some of these features.) Second, the
coulomb potential - in contrast to most of the potentials governing
the interaction of neutral fluids - has a simple and well-defined
analytic structure. It is probably this, more than any other,
feature that motivates the difference in methodology in attacking
the problems of plasmas and neutral gases and liquids. For the
latter the lack of a simple analytic form or even of precise
knowledge of the interaction potential places a premium on approaches
that attempt to express relationships between directly measurable
quantities and avoid the use of the potential (''fully renormalized
kinetic theory", etc.). In the case of plasmas, however, there is
an incentive to exploit the simplicity of the coulomb potential and
to derive results from first principles. In particular, there is
an emphasis on using the powerful formalism of fluctuation-dissipation
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theorems. Finally, the plasma parameters Yy = K3/(4ﬂn) k2 =
4me2Bnz2, n = density, B = inverse temperature) or I = Be2z2/4

= [(4ﬂ/3)n]'1/3 = ion sphere radius) characterizing the strength
of the coupling can vary, for physical systems, over an enormous
range of values within which the fundamental physical characteristics
of the system remain unchanged. While very little is known, at the
present time, about the domain of strong coupling, a great deal of
information has accumulated on the properties of weakly coupled
plasmas: these results can serve as guidelines, or at least as
standards of comparison, for the treatment of strongly coupled plasma
systems.

Thus, while many powerful and ingenious methods developed for
neutral systems are available and adaptable to plasmas (consult the
lectures of Professors Gross, DeWitt and Sjolander [Gross, this
Volume; DeWitt, this Volume; Sjolander, this Volume]), some others
have been developed with primarily coulomb systems in mind. A
review of a group of these which, somewhat arbitrarily, we have
selected and grouped as the STLS, TI and GKS methods (see Chapter
VII for the references) is the subject of the present lectures.

(A quite recent approach, which is not included in the present
review, is exposed in Professor Ichimaru's lectures [Ichimaru, this
Volume]). Chapter VII deals with the principal ideas and approxi-
mations they are based on, with an emphasis of pointing out the
common features that unite and the differences that set them apart.

Each approximation relies heavily on the formalism of response
functions and fluctuation-dissipation theorems. Some of the
features of plasma response functions playing a significant role in
this present context, are discussed in Chapter II. Important sum
rules are reviewed in Chapter IV. Different kinds of fluctuation-
dissipation theorems are derived and exposed in Chapters V and VI.

Although some of the topics on linear response functions and
fluctuation-dissipation theorems are fairly standard, what elevates
our discussion beyond this level is the equal emphasis we put on
linear and nonlinear response functions and fluctuation-dissipation
theorems. The reason for this is the central role played by these
nonlinear objects in the GKS theory. In particular, the nonlinear
fluctuation-dissipation theorem described in Chapter VI is of
fairly recent origin.

Most of our discussions and the full discussion of the approxi-
mation schemes will be confined to one-component plasmas (ocp) only,
primarily for the sake of simplicity and clarity. However, whenever
the generalizations of one-component response functions and related
objects to multicomponent systems are non-trivial and available,
they will be displayed. Chapter II, in particular, is devoted to
setting up this generalization. For the ocp, the case of dynamical
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electrons in an inert background is the more conventional problem,
while the opposite case of dynamical ions immersed in a smeared out
electron gas, the "inverted plasma" has gained more recent attention
and is probably the most significant physical realization of clas-
sical strongly coupled plasma systems. Nevertheless, for concrete-
ness, whenever dealing with one-component systems, it will be
understood that it is an electron liquid which is under study,

with electronic charge -e = - |e]|.

It will be assumed that the reader is familiar with the
elementary properties of response functions. Good reviews on the
subject are available [Martin, 1968; Golden and Kalman, 1969;
Kalman, 1975].

ITI. RESPONSE FUNCTIONS

Response functions characterize the behavior of the system
under the influence of external perturbations, like electric
fields or potentials. (We are concerned with electrostatic coulomb
(logitudinal) fields only. Thus the concepts of potential and
electric field can be used interchangeably.) However, once an ex-
ternal field, i.e., field generated by external sources, is set up,
the response of the system generates additional fields (''polariza-
tion" fields), which add to external field. As a result, the par-
ticles respond to the total field, and physical response functions
relate to the latter. At the same time, it is also extremely useful
to retain the somewhat artificial concept of external field and to
relate another family of response functions to it.

We will use the notation ﬁ,ﬁ for the external field and
potential (energy), E,V for the total field, etc., and E,V for the
plasma field (polarization field), etc. Evidently

E=E+E (2.1)
Consider the particle density n, the (longitudinal) electric current

density J and the polarization potential itself as responding
quantities. Then in a rather symbolic notation

n=XV+ xVW + ..
1 2
J = OE + OEE + ...

1 2
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V=-aV - aVWV - ... (2.2)
1 2
or
n=xV+ X0+ ... (2.3)
1 2
etc.

The notation can be made more explicit by using Fourier repre-
sentation. E.g.,

n(kw) = x(kw) v(Ew) + N X@U,av) VW V@) + ... (2.4)
>
1 Pa 2
uv
P+a=k
L+ V=uw
\5k - J dw ) (V= volume)
2V
> >
kw k

X, O, O and their external counterparts Q, 8, 0 are linear response
1 1 1 1 1 1
functions, while X, etc. are quadratic ones. Obviously, the ex-

2
pansion could be continued to higher orders, but in these lectures
we will be mostly content to consider linear and quadratic response
functions.

The three response functions (X, the density response function,
O, the conductivity and o, the polarizability) are obviously not
independent of each other. Introducing the Fourier transform of
the Coulomb potential

4 e2

b = (2.5)
k 12
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and its quadratic counterpart

. 3
_4m i e
¢33 kpq

the interrelations can be expressed as follows:

4Ti

o = o=_¢—)~X
1 Y1 k3
a=—4—;50=—¢—>—>x (2.6)
2 2 Pd 5

Moreover, the connections between the "external' and total response
functions follow in virtue of the relation

B (fw) = 200 (2.7)
€ (kw)
e(kw) = 1 + a(kw)

{1 - QT

~ ~

As illustrations, we consider X, X, X

¥ (k) 1 2 3
X0 = oy (2.8a)
1

é(pq)
XD = Gy et €@ k=pta (2.80)
~ _ 1
X(29®) = TGy (@ e et (X
) g(p, q + s) é(qs)
+ 3 ld)g-'_—sy g(q T S) (2.8C)
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x(q, s + p) Xx(sp)

2 2
+ c(s ¥ p)
X(s, p + q) X(pq)
+ o> 2 2
ptq e(p + @

k=p+q+s

>
k = k,w , etc.

ITI. MULTICOMPONENT SYSTEMS

Real plasmas contain, of course, at least two components.
Binary ionic mixtures consist of two ion species in a neutralizing
background. Electron-hole liquids can be composed of several
species. Thus the generalization of the concepts of the foregoing
Chapter to multicomponent situations is of great interest. The
different species have densities n, ng and each of them gives rise
to its own polarization field ﬁA, Eg, ... . Then the corresponding
species response functions can be defined by

By = Xa Vo + Xa VAVp
1 2
E. = -0, E - 0, EE
AT oA
o, = -¢, X etc. (3.1)
A A Xa

Note that the perturbing V) depends on the species it is acting on
and thus carries the species index, while E is evidently independent
of the species. One can also define a full polarizability, re-
lating to the full polarization field IEp

o =20
1 a1t
a=2Ia (3.2)
2 A2t
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A similar "full X" would, however, be void of any physical signifi-
cance.

The connection between the external species polarizabilities
and the full species polarizabilities is now somewhat more involved

than before:

A ?A(k)
0LA(k) e(k)

~ _ 1

(3.3)

-a, (&) )} a,(pq)
147 adp 2B

The relation analogous to Eq. (3.2), however, is still valid:

a=14
1 a1t
a =1z N (3.4)
2 A2

A different extension of the notion of the response function
is arrived at by contemplating perturbing fields and potentials
which act on one species only. Although such fields are not
realizable in normal charged particle systems, they are physically
perfectly reasonable. What this kind of perturbation requires is
that each species, in addition to its electric charge, be endowed
with an extra "species charge" (numerically equal to its electric
charge) which can interact with its corresponding field; the latter
leaves at the same time, the other species charges unaffected. We
will refer to this type of perturbing field by a superscript. Then
one has

n, = ZQE P+ oz xﬁc v ¢ 4+ ... (3.5)

A g1 BC 2
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Although it would be possible to fully develop the concept of the
fictitious species field by allowing for the generation of cor-
responding internal polarization fields, such a full generalization
doesn't seem to be particularly useful. Instead, we label polariz-
ation fields, as previously, by the species they originate from.
Thus the relation

v ~ /\B

E, = -a, E (3.6)

describes the internal polarization field due to species A as a
result of the perturbation by the fictitious external field acting
on species B.

With the introduction of the interspecies potential ¢i and

2
B _ 4T e
Wk= %% 2 (3.7
k
and
. 2
BC 4 i e
> = —_—
Apq - ‘A% % kpq (3.8)
where Z,e, Zpe, etc. are the ionic charges (Zelectron = -1),
~B,.y _ B 2B
?A(k) = =07 Xa(K)
~BC BC ~BC
(;A (Pa) = =0, 33 X, (PD (3.9)

Since the full physical perturbation acts on all species, the
following simple relations exist between the full physical species
polarizabilities and the partial polarizabilities:
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4 =3 ad
14 p1f
a, = I &ic (3.10)
2 BC 2

Finally we note that in the domain of partial response functions
(as long as no partial internal fields are introduced), only the
external response functions are useful.

Our generalization to multicomponent systems mostly followed
the formalisms of Vashishta, Bhattacharyya and Singwi [1974a,b],
Tosi, Parinello and March [1974] and Golden and Kalman [1976].

IV. SUM RULES

Response functions obey various constraints which follow from
conservation laws and other physical requirements. These con-—
straints are traditionally referred to as '"sum rules" although
some of them are nothing more but conditions on limiting behaviors
with respect to w or k. We will discuss some of the sum rules
which are of interest here.

A. Compressibility Sum Rules, w = o

Compressibility sum rules result from the hydrodynamic behavior
of the system in the limit w = o, k > o. Under such conditions the
equation of state jointly with the Euler equation is sufficient to
determine the limiting behavior of response functions.

Consider now the perturbation of an ocp by a small external
electric field under isothermal conditions. Then the equation of
state P = P(n) (P = pressure, n = density) can be expanded as
[Golden, Kalman and Datta, 1975]

2
P = 2(a(®) + L@ L LB W2 32,

2 n
n on” |n
o o
= P(no) + mc2 {n(l) + n(z)} +-% n(l)2 + ... (4.1)
Here n(o) = ng is the unperturbed density, n(l) and n(z) are the

first- and second-order density perturbations,
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oP

P = (4.2)

1
c ==
m

is the isothermal sound velocity and K the compressibility;
furthermore

2
a =3P (4.3)
2
on
n
(o]

To be sure, the equation of state could depend, in addition ton
itself, on its derivatives, in the form P[n, (Vn)z, v2 n, ...]. It
can be shown [Golden, Kalman and Datta, 1975], however, that the
inclusion of these terms doesn't affect the leading term in the

k > o limit.

The equilibrium of the system under the effect of a perturbing
field is maintained by a pressure gradient, i.e.,

p=-2% (4.4)

where E evidently includes the polarization field. Fourier-
analyzing the perturbation, one can identify the first- and second-
order terms in E as

a1 B
B ==
€ (ko)
a(pos 90)
B =- ] B3 B (4.5)
NN 4 €(ko) e(po) €(qo)
p=k-q

Similarly, the first-order and second-order Fourier-components of
n can be constructed as

-ik ¢K (1) = —a(Eo) Eél)
~ik ¢ nT(g) - EI(€2) (4.6)

Thus, combining Egqs. (4.1), (4.5) and (4. 6) we obtain the linear
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relation

o (ko) = o (o) = Ki ao(Ko) (4.7)

Bmc o
and the additional quadratic relation

n a
a(o; po) = —5— (1 - =5 o (@03 o) (4.8)
2 (Bmc”™) mc 2

ao and o are the Vlasov (or RPA) polarizabilities,

2
(ko) = n_ 803 =
% ) = %o ¢k B k2
5> 1 2m i e3 o 82
a,(po, qo) = 2 0, B ¢;€ = kap (4.9)

In the weak coupling limit the expansion of the equation of
state to order Y2 2n Y

I | 1,12
P=n_8 {1 ~1v-%+v" y} (4.10)
C=0.5772 ... (Euler constant)
yields the following expressions for a and a:
2
> o 1 1.2 } >
a(ko) = {1 + 7 Y + 6 2n Y ao(ko)
> 2 > ->
a(po; qo) = {l +%Y +%Y n Y} ao(po; qo) (4.11)
2

The linear compressibility sum rule has been known for a long
time. (See, e.g., Pines and Nozieres [1966]; Kalman [1975].) The
quadratic one was derived recently [Golden, Kalman and Datta, 1975].

B. High Frequency Sum Rules

The high frequency sum rules provide the coefficients of the
inverse powers of w in the high frequency asymptotic expansion of
a'(Kw). They follow from the equations of motion (i.e., conserva-
tion laws), via the fluctuation-dissipation theorem and the Kramers-—
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Kronig relations for the response functions. A quantity of central
importance is the dynamical structure factor S(Ew), the Fourier
transform of the two-point density correlation function (N is the
number of particles in the system):

.

1WT

s (kw) = 71% J dt e <o (t) n_y(0)> (4.12)
Equally important is the static structure factor Sﬁ:
S>> = —:-L— <n—>(o) n >(o0)>
k N 'k -k
= j dw S (kw)
> > >
-ik- (x;-%.)
1 i 7] 2
=5 .Z. <e > - N° &
1]
o ~1k- (x;-%,)
=51V ) <e >+N<1>—N<Si<>
i#3
> 1 ik-r
=Nfdr7[l+g(r)] e T+ 1 - N 6>
k
=1+n 8 (4.13)

Here g(r) is the usual pair correlation function and gﬁ its Fourier

transform, and nj is the Fourier component-of the microscopic fluc-
tuating density,

> >
N —-ik-x,
ng = e o & (4.14)
i

The average is taken over the equilibrium ensemble. For the time
being we are again restricting ourselves to the ocp situation.

Fluctuation-dissipation theorems (FDT's) will be discussed in
greater detail in the next Chapter. The linear FDT relates the
linear response functions (say, the polarizability) to the dynamical
structure factor:

S(Kw) = Wi(m &"(Ew) (4.15)

Now consider the frequency-moments of &"(ﬁm), Ql(i), defined as
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> l__ L Ny
Qg+1(k) = f dw 0w a" (kw) (4.16)

The FDT and the w-integral allows one to relate the moment to
equal-time correlations:

2,0 = ¢ 8 n f dw o7 s (Ew)

¢ Bn
k . d (+1
= m (i E’F ) <nK(T) H_K(O)> e (4.17)

with the remarkable consequence that these quantities can now be
calculated exactly via the equation of motion.

. The even moments evidently vanish in virtue of the odd parity
of a'"(w). The first moment

fy = T (377 <oz(0) n_g(o)>
T=0
ko, .
= <ni<>(o) n_-lz(o)> (4.18)
can be calculated as follows:
R 51 35 9
n> = —1i z<(k - v,) e > (4.19)
k i i
and > > >
. . > > > - —ik‘(xl-x,)
<ap(o) m_g(o)> = J <(k - vk v) e I
- . 1 ]
1,7
= z <(i{> . ;;1)2>
2
k
= Bm N (4.20)

The second step follows since different particle velocities are
uncorrelated. Thus
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Q -4rme n_ 2 (4.21)

The third moment can be worked out along the same lines:

oy 8
2,0 = %= @ £ pm ng@>|
T=0
e
= v <ni(>(o) n_iz(o)> (4.22)

The derivatives become

22 2.z
. -1k*x, —1K*X
fr = -7 (k- vl e V%3, e i
k y i " i
i i
. 1 9
VT T o > H(x,p) (4.23)
Bxi

where H is the Hamiltonian of the system. Equations (4.21) and
(4.22) can be combined into
> > >
o> B . . —ike(x,-x.)
a - E2 y @ g s
i,

ik (x;mx,)
—1K* (X,.™X
& -vo?e 1737

ike (x,-x%,)  +ik-(%,-x,)

. -ik* (x,-x. < (%,-X,

2 > (e Xl 37 _ e i3 )>}
J

(4.24)

The first term can be calculated by ekploiting the character of the
canonical distribution function:

ik (x,-x,)
3 kY —1K* (X.—X,
z Xk - vy k - Vj e o

i,3
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-ik* (%,-X,)
=—12-ZIdxdpe_BH(x’p)e iJE._._EE'IK.——%}.{
m ij 3xi 8xj
2
= —]‘2 I dx dp e—BH(x,p) k - __+3 H+ -k - ik2 E . —L_P
Bm~ ij 3xi E)xj ij
—1k'(; -x )
e 1 j
k- (x,x,)
—1K* (X.—X.
- T < DG - x) e SR
Bm” [ i J
> 2 > >
- ) <x-V) Vix; - x)>
1#3 J
b —ik- (x,-x.)
B m~ ij
n L . )
= —= k * > {(S> > + N6> >) - (S> + NS>
o2 LoGer p)T op j(sp s+ N6y ) - (S5 + NG
P
_N 4
+—5—5 k' sp (4.25)
B m
The second term yields
ii: (-> > )
- CAX,.—X,
[ <@ - vo2@-v)2e 1730
i i j
1,]
ik- (x,-%,)
=1K* (X,—X,
) <(k - zi)2><(i€ . 3j)2><e RN
i#j
+ 7 <k - v
i 1
- N by g N4 (4.26)

822 K 82,2
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Finally, the third term becomes

> > >
—ik°(xi—xj)

, .
IR R A R
i,j
=-4 Z [ dx dp e—BH(x,p) (K . ;.)2
m . 1
i,j
ik (%
“ike(xmx) 0
e k==
BXj
ik (%%, )
—1K* (X.—X
Bm . i
1,]
2 k- (x )
-1k*(xX,—X
=-§E 7 <(k - v.,)%><e NN
i,j
_ N 4
=53 k Si (4.27)
B m

Combining Eqs. (4.25), (4.26) and (4.27) according to Eq. (4.24),
one finds

> 4 K 1. (& -2
- K 1y (k-p)” _
Q,(k) = w’ {1+ 3 2+N§ ) (SI;-E Si;)
k™p
P
k2 =s4melng (4.28)

The §)¢ moment can also be calculated [Forster, Martin and Yip,
1968; Ichimaru and Tange, 1970; Ichimaru, Totsuji, Tange and Pines,
1975] but will not be discussed here in detail.

As a result of their causal behavior, the response functions
obey Kramers-Kronig relations (see, e.g., Martin [1968], Kalman
[1975]). This fact allows one to convert the result into a high
frequency expansion for the real part of a(Km),
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N \J A
OL'(KU)) - %I'_ J 'uT'(i_w_w, OL"(K(U')
2
. 1 w' W ~o
= - f dw' <1 + 7;—+——??—+ ..) a(kw')
w
>
. Zorq (B
~ z T (4.29)
2=1 w

A
with only the even 2+1 powers contributing. The expansion of o
can also be converted into an expansion of a. Since o = a/(1 - a),
one has, to lowest order,

9] 2 9]

G (Rw) = -1-2 4+ 4,6

a' (kw) = 5 + A + 3
w w w

. R, 8,-9 9 -29,0 +09)

oa'(kw) = -{ —= + + (4.30)
2 4 6
w w w

Assume that we have a small expansion parameter —-- it could

be Yy, or k2, or both. Then it is useful to write the moments as

2
Q2“000
Q, =@+ 1)
4 o 4
Q =@+ ) (4.31)
6 o 6 :

and the substitution of this form into the second line of Eq.
(4.29) yields

2 4 6
w w w

a' (kw) —iz’ + 4, —Z + (8 - 2D,) —‘63 (4.31a)
w w w

Finally, we quote the values of A4 and Ag to order k2 and Y:

> > 2

1 (k - p) k2
A, = {3+ — (g—» > - g—)) —_
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_ 1oy k- [k -3p? k- p? K2
= {3+ ) ) e & ("2
% ; k“(k - p) k“p K
- s K2 ok
={3 + 15 R EC ) + 0(K4) (4.32)
where
2

_ 1 > 4T e

Ec =3 f dr — g(xr) (4.33)

is the correlation energy per particle. At the same time [Forster,
Martin and Yip, 1968; Ichimaru and Tange, 1974]

Be = O(K4,y2) (4.34)
For small Y one has

A, = 0(Y) + 3:—§= 3 - &N l:—zz— (4.35)
and

B = o(yz) + 151:—:: + 6:-; (4.36)

The results for {};, moment for arbitrary interaction were
first derived by Placzek [1952] and then rederived by deGennes
[1959]; for coulomb interaction the corresponding formula has been
given by Pathak and Vashishta [1973]; a full presentation both of
the Q4 and of the (g moments for arbitrary interaction is due to
Forster, Martin and Yip [1968]; the application to coulomb systems
has been given by Ichimaru and Tange [1974] and Ichimaru, Totsuji,
Tange and Pines [1975]. (See also Ichimaru [this Volume]l.)

V. FLUCTUATION-DISSIPATION THEOREMS

Fluctuation-dissipation theorems connect averages of cor-
relations between different space - time points, on the one hand,
and response functions, on the other hand. Traditionally, the
response functions are linear ones and the averages refer to the
equilibrium ensemble. However, a much more general approach is
possible and will be followed here. It also turns out to be ex—
tremely useful.

The principal idea behind the fluctuation-dissipation theorem
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is that if the system is subject to a small perturbation, its
response to the perturbation can be used to infer correlations
that existed in the system before the perturbation was applied.
The mathematical formulation of this statement is made possible by
connecting the time evolution of the phase space distribution
function Q(x,p; t) with the evolution of dynamical variables
through the time evolution operator formalism.

In the following we consider, most of the time, an ocp. The
equilibrium system is described by the Hamiltonian
2
22—1 3 I ovdE - %) (5.1)
1 i#]

while perturbation adds to it a term depending on the perturbing
potential VE(t):

R ik-x
N DR OR
Izl
1 A
=7 L V) np (5.2)
K
g=ul® 4@

The Hamiltonian generates the Liouville-operators

L(o) = -i [H(O) eed]

AR L S

L= 1€ 4 D (5.3)

and the time evolution operator pertaining to the equilibrium
system
-il (t-t")
Utt, ') = e ° = Ut - t") (5.4)

The state of the system is characterized by the phase space distri-
bution function in the 6N-dimensional phase space. In equilibrium

(o)
Q@) _ ;71 -BH (5.5)
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while its evolution under the influence of the perturbation is
governed by the Liouville equation,

%% = -1 LQ (5.6)

Now the formal solution of the Liouville equation can be written
down immediately by using the perturbation expansion

o) = ¥ 2™ (o) (5.7)

n=o

in the perturbing potential €+:

4
t
o ey = -1 f ae, UCe, t)) L(l)(tl) (@) (5.8)
t tl
Q(Z)(t) = (-i)2 f dt:1 J dt2 uce, tl) L(l)(tl) U(tl, tz)
LD e,y o (5.9)

First we concentrate on Q(l). The closed expression for Q(l) can

be worked out in a series of simple steps:

t
o ¢y = -i[ at' Uce, £y LD ery @@

-Q0

— J at Uee) LD - ) 0@

JdT ﬁ- E_k(t - T) Gﬁ(t - 1) (5.10)
o
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We have used the property of the time evolution operator U(t) that
it shifts the time argument of the dynamical variables by -T rather

than T. 32 is the particle current

k > >
N N —ik~xi
ip = E v, e (5.11)

We now can use Eq. (5.10) to evaluate averages of dynamical

quantities in the perturbed system. Consider the average of the

longitudinal particle current j3. Because of spatial uniformity,
> > . . .

only k, -k combinations contribute.

<jK>(l)(t) = f dp dx Q(l)(t) ji

- Bk f dt <jp(1) j_gp(t - t)>(°) Gk(T -t) (5.12)

(o]

We shift to Fourier transform language and trade jﬁ(w) for nﬁ(w).
Then

+o0 +oo ,
<n§(w)>(l) = -i %‘B J dw' J dt 1w T<ni(>(’r) n_§(0)>(°)

8, (w - w" flﬁ(w) (5.13)

Taking now the real part of Eq. (5.13), and using the definitions
of Eq. (4.12) and (2.2) we find

X" (kw) (5.14)

This is the dynamical linear fluctuation-dissipation theorem. The
static FDT is obtained by integrating over w. Recalling Eq. (4.13)
we obtain one of the equivalent forms,

L (ko) = -BnSy = -Bn {1 + ng}} (5.15)
A > >
sp = (ko) afko) 1 (5.16)
ao(k) ao(k) € (ko)
> S_>
a(Ro) = ———zk——— (5.17)
(k/K) - s>

k
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The above relations should be understood with the k # o qualifi-
cation;

N

o (k) =

kax

is the Vlasov (RPA) static polarizability.

Equation (5.17) in conjunction with the sum rule (4.7) can be
used to infer the k > o behavior of the pair correlation function

&>
2 _ K 4 6
ngy = -1+ (/)7 - 2 (/K7 +0 (k) (5.18)

Note that for the above expression to be correct to order k4, one
does not need the (unknown) coefficient of the k© term in a (ko).
Equation (5.18) can also be converted into moment conditions in
configuration space:

n f d; g(r) = -1
n J dr 2 g(r) = -6/k2 (5.19)

etc.

The second relation is the fairly well known Stillinger-Lovett
condition (Stillinger and Lovett [1968]; DeWitt [1978]).

The linear FDT has been derived and rederived innumerable
times. The original formulation is due to Kubo [1957]; some more
modern discussions in a language more akin to the above presentation
are given by Martin [1968], Golden and Kalman [1969] and Kalman
[1975].

The generalization of the ocp result to multicomponent systems
can proceed in two different ways. First, we can calculate the
response of a given species to the physical perturbation. Then
Eq. (5.16), for example, becomes

Z
A > _ > B
aA(kO) = OLoA(k) 1+ Z 7 nB gAB
B A
K2
> _ A 2 2,2
aoA(k) = Ky = 4T e ZA n, B (5.20)

k
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This is of limited usefulness, since it connects one response
function with several correlation functions.

A more useful generalization is arrived at by using the concept
of partial response functions, introduced (with this purpose in
mind) in Chapter II. We also introduce now the partial dynamical
and static structure functions [March and Tosi, 1976] Spg (cf. Egs.
(4.12) and (4.13) ):

> 1 iwT (o)
S, . (kw) = ———— f dte <n, >(T) n >(0)> (5.21)
A am AN Ak Bk
A'B
1 ;-
SaB,E " NN, Spap + /npnp 8ap 7 (5.22)

gaR 1s the pair correlation function between members of species A
and B. Now Egqs. (5.14) and (5.15) are replaced by

X" (kw) = -7 B Vo,ng o S, (kw) (5.23)
AB - -
XA(ko) - B vyn SAB k
= —BVnAnB {6 + Vn,ng gAB k (5.24)
Similarly, Eq. (5.16) becomes [Golden and Kalman, 1976]
B, > _ B N
aA(ko) = ¢A,§ vn,ng {GAB + /nAnB gAB,k}
> B
= %oa (8,5 + z, "B gap, 1)
¢B > =2 Z_ ¢ (5.25)
A,k A “B "k )

H]

Summing over B, and taking into account Eq. (5.20), one verifies
Eq. (2.18).

In a two-component plasma (not binary ion mixture) one can
exploit the charge neutrality condition IZAI A IZBInB. Then Eq.



166 G. KALMAN

(5.25) can be rewritten as [Golden and Kalman, 1976]

B %oy = ols  + “a ’8 > (5.26)
a, (ko) = a, (k)05 Zy Zg] RINR-IN: .
and
> >
o, (ko) = OLAo(k){l + nA(gAA,E - gAB,g)}
A#B (5.27)

VI. NONLINEAR FLUCTUATION-DISSIPATION THEOREM

The generalization of the concepts introduced in the previous
Chapter can proceed in two directions. One is to relate nonlinear
response functions to higher-order correlations. Only the next
step beyond the linear stage is available [Golden, Kalman and
Silevitch, 1972; Kalman, 1975]; it consists of relating quadratic
response functions to three-point functions. The algebra involved
on these manipulations is substantially more complicated than that
of the corresponding linear case. In the following the outlines
of the derivation will ge given, while the second way of nonlinear
generalization will be discussed later.

The formal expression for 9(2)(t), the second-order perturbed
phase space distribution function, has been given in Eq. (5.9). It

evolves around the expression

uce, £)) L(l)(tl) UCey, t)) L(l)(tz) Q(©)

__ 1 T ooU(e - tl)[n-izl’ U(tl - t,) [n_izz, Q(O)]]

2
Ve > -
kl,k2
. Vk (tl) Vk (t2) (6.1)
1 2
Using the identity
[X,YZ] = Y[X,Z] + Z[X,Y] (6.2)

and shifting the time variables of nﬁ ’ nE from the arbitrary
1 2

reference time t to t1 and t2, the above expression becomes
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) BQ(O)[n_El(tl), [n_§2<tz>, 1]

+

20(0) ©) ©7( G
Q > (t,), H > (t.), H V> (t V>
[n_kz( 2 ][n_kl( s 1] g (e g (e

v2

1Bk [ﬁ > (), § > (t )]
2 -k 1 -k 2
K 1 2

= L z
12

8%k Kk, g ) S (e T () T () (6.3)

@ ().

Now we evaluate <J+>

<ji(>>(2)(t) = j dx dp 9(2) (t) iz

t t
- _ 1 1 . . >
-4 1 [“ae, [ ae, fus, <Jg(t)[§_§l(tl>,3_§2<t2i]
k
1’72

- 8Kk, <ip(e) ERCUEE RO R O ACY

(6.4)

We observe that spatial homogeneity imposes the conservation law
k= kl + k2 This will be understood in the sequel.

Equation (6.4) can be brought into a more appealing form by a
number of simple cosmetical operations. First, the asymmetry in
the time variables t; and ty can be eliminated by inverting the
order of integration and then symmetrizing the resulting expression.
Next, the time variables of the phase-averaged products can be
shifted as long as time differences are preserved. Finally, we
introduce the abbreviations

Q(120) = <j_§l(-rl) j-iz('Tz) jg(o)>
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2(120) = - & <[og 1D, 3 ], 70> (6.5)
1 1 2

Now Eq. (6.4) can be written as

Sk .15 Kyt = - B0 (1D O (1

. {BQ(lZO)-+() (T2 - Tl) Z(120) +© (Tl - 12) Z(210)}
(6.6)

O above is the quadratic, longitudinal, external conductivity in
the time representation, i.e.

7P = ap @

I
<|m
Yy o~

d at. o(k s ko,T.)
Ty | 4Ty 0CkysTy5 k), Ty
1

. Eizl(t - Tl) Eﬁz(t - Tz); 6.7)

® (T1) is the step-function.

The problem with Eq. (6.6) lies in the presence of the unwieldy
Poisson-bracket terms. Further progress can be made only after
their elimination. This can be accomplished through the following
steps. First, observe that Z and Q are related to each other by

z(120) + z(102) = -BQ(120)
z(210) + z(201) = -BQ(210)
= -BQ(120) (6.8)

Substituting Eq. (6.8) into Eq. (6.6), one finds
A > > _ _@_
O(kl’Tl’ k‘z’Tz) = = 2 @(Tl) @ (Tz)

. { O(t, -~ 1) 210D +© (1] - 1)) z(201)} (6.9)
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Re-labelling the argument of G in Eq. (6.9) in two different ways
and exploiting the time translation invariance property of Z, one
can construct

—ﬁ, T2) + 8(-;, T, K T, — T.,)

o(k
O(ky, Ty = T 19 50 T T T

2 1

= —% © (1)) © (1) O (1, - T;) Z(120)

+© (1, - 1,) 2(210)

+0O (-1 O (1)) © (1, - 1)) 2(021)

+0O (1)) O (-1y) © (1, - 7,) 2(012) (6.10)

which when combined with Eq. (6.6) cancels all the Z-terms except
the ones multiplied by © (-77) and © (-T3), respectively. These
latter can, however, be eliminated by projecting out the T7; > O,
To > 0 causal part of the combined response functions. This leads
to the desired result, which can conveniently be formulated in
Fourier transform language. The central object is the causal
symmetrized combination of quadratic response functions,

Kuw; k
(kywy5 kyw,)

[1)

A -> >
- w f du 8, (wl - W x(—kl - W kw, + W)

N> ->
w, j du 6+ (w2 - ) x(k wy + U —k2 - W
(6.11)

which is related to the quadratic dynamical structure function,
defined by

1T11057T,)

N N i(w, T,4+w
S(klwl; kzwz) = 5 f <nz(o) n_i (—Tl) n_ﬁ (—T2)>
4TTN 1 2

. dT1 dT2 (6.12)

The result of the above manipulations is
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>

=1 : k = ._BE. 1) S
Z(k,w 2w2) =-3 du dw + (wl - + (w2 - V)
> >
u\)ws(klu; kz\)) (6.13)

To obtain an explicit relation for S, one can first take the real
part of Eq. (6.13) which leads to an expression in terms of repeated
Hilbert transforms,

Hlwe] Fu) =+ p j TR FM)
82
E'(wl,wz) = -3 {1 - H[wlu] H[wz\)]} HVWS (UV) (6.14)

In order to invert this relation, we exploit the property of the
Hilbert transform operator that its eigenvalue is -i (+i) associated
with a plus-function (minus-function) eigenfunction:

HED = —4F"
HF = +iF
HHF ™ = 7~ (6.15)

Thus the inversion of Eq. (6.14) can be cast in the form

2

- —88— W) Wy S(wl,wz) = Re[E(wl,w2)+Zai Xi(wl,wz)]} (6.16)

where X is an arbitrary plus-minus function of its two arguments.
However, prescribing that S satisfy the triangle symmetry require-
ments which obviously follow from Eq. (6.12),

> > > > > >
S(klwl, kzwz) = S(kzwz; -k-w) = S(-k-w; klwl)

is sufficient to eliminate the ambiguity [Golden, Kalman, Silevitch,
1972] with the final result



METHODS AND APPROXIMATIONS 171

A'(ﬁ w, 3 4
S(K w3 Kow ) = - 2 o b Sl
171 272 B2 w1w2

2)

~ > >
X' (kw; —kl—wl)

WaHW

2

AL > >
X' (kw; -k,-w,)
- 2 2 (6.17)

wlw

Equation (6.17) is the quadratic analogue of the linear (5.14).

An alternative way of writing Eq. (6.17) is

> > 1 1
S(k,w,; k,w,) = Im
171 22 > > > > * >
ao(klkz) e(klwl) e(kzwz)e (kw)
> >
. [a(klwl, kzwz)
s )
a(—ﬁ-w; ﬁ w,) a(K W, 3 —ﬁ—w)
11 272
- o - R ] (6.18)
1 2

ao(SZ) is the absolute value of Vlasov static quadratic polariza-
bility

3 2

33y = 2T e n B
a (pa) = kap (6.19)
One can proceed now to evaluate the static limit of Eq. (6.18) by
integrating over wj and W,. The apparent singularities at w; = o,
Wwg = 0 and W] = -Wyp are spurious and the integral can be shown to
behave regularly. We also recall that S§ = 1 + ngy. The analogous
quadratic relation is

2
S =1 + + + + n° h>> 6.20
pq Ep T MEg T B TR Mg (6.20)

We now can assemble the quadratic equivalents of the linear (5.15)
and (5.16):
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A~ > -> 2
H = S>>
X(po; qo) = B'n >
2
= 1+ + ng> + ng> + nh> 6.21a
B°n ( ng; gq gy +n pq) ( )
A > -> -> >
gos = 2(po; go) _ a(po; go) 1 (6.21b)
Pq > > -> -> > °
ao(pq) ao(pq) e(po) €(qo) €(ko)

Note that S22 is completely symmetric in its three basic wave
vector arguments p, q, -k so is h+*, therefore, it follows that
a(po, qo) apart from the obvious p++§ symmetry possesses also the
higher triangle symmetry p<«>d<«>-K.

We see that while the static linear FDT allows one to determine
the pair correlation function from the knowledge of the response
function, the static quadratic FDT provides information on the
triplet correlation function (which is not an easily calculable
object otherwise). One might easily convince oneself that this
escalation of correlations is a general feature of the chain of
nonlinear FDT-s. For example, the static cubic FDT should be ex-
pressible in terms of the cubic structure function S22 © which
is related to the Fourier transforms of the correlation functions
g(12), h(123), i(1234) by

S;;; 1+ n(g; + gg +tegr t g;+a + gg+z

+ g%+3 + g;+a+z) +n (h+3 + ha+

+h+—»+h—>—»—»+h—»—»->+h->—)—»
tp pP,qtt q, t+p p+q)

+ o3 i (6.22)

A further structural feature of the chain of nonlinear FDT-s seems
to be that to lowest order in the coupling they are of the form

Si: = ao(irt)
~ -> >
S>> = g s
oo o (P>d)
§¥> = a (p,q,t) 6.2
pqt = aO P>4q, t (6.23)

with



METHODS AND APPROXIMATIONS 173

a0 = ao/ao = XO/XO

for a response function of any rank. Equation (6.23) together
with Eq. (6.22) allows one to determine the lowest order triplet
quadruplet, etc. correlation functions (which are of order Y+, Yé,
etc.) virtually by inspection. Invoking Eq. (2.8b) one finds the
well-known O'Neil-Rostoker expansion for the triplet correlation
function [0'Neil and Rostoker, 1965], while making use of Eq.
(2.8c) leads to a cluster expansion for the quadruplet correlation
function [Yatom, 1977; Shima, Yatom, Golden and Kalman, to be pub-
lished].

For multicomponent systems the generalization of the static
quadratic FDT is fairly straightforward. First we define the
partial static structure function

1
1
(NA Ng NC)

73 <n, > n_B > E> (6.24)

S > = n
ABC,PCI A,P B,q C,_

in terms of which the multispecies equivalent of Eq. (6.2la) reads

[Golden and Kalman, 197617,
1/3

2 2
AB L _ a2 1/3 nA nB
Xg (P03 qo) = 8% (n, ny n.) NS 6BC-+< o 85,3 85c
n2 n2 1/3 n2 n2 1/3
(2B c e >o. +[oca e =0
n BC,q CA n CA,k "AB
A B
+ (@, n, 0)3n,, = (6.25)
A'B C CAB,pq

The second generalization of the conventional linear FDT
concerns itself with averages of two-point functions over the
perturbed rather than over the equilibrium ensemble. We can consider
for example the equal-time non-equilibrium two-point function

<n§_3 na>(1)(t). In analogy with the relation

<> D ) = Rw) V) (6.26)
which defines X, we may introduce the response function, say, of
"second kind" K(§ , Kw) by

<y 3 n;>(l) () = R(p,kw) ¥ (kw) (6.27)
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Using Eq. (5.10), and manipulations similar to what led to Eq.
(5.13), to evaluate the left-hand-side, we find (for details see
Appendix A of Professor Golden's lectures [Golden, this Volume])

R(p; w) =-Bn{2‘n iwjdu J av 6, (w - = V)

—> > >
- S(pu; k-pv) + S> > > 6.28)
(B3 Kpv) + §3 o > (

The quadratic FDT (6.17) now allows one to express S in terms of
quadratic response functions and thus to relate the non-equilibrium
flucuation spectrum to the relatively easily obtainable conventional
response functions [Golden and Kalman, to be published]. In par-
ticular, in the static situation

K(p,k) = > > 6.29
K(P’k) = "Bn Sp,k—p ( . )

which, via Eqs. (6.20) and (6.27), yields an expression for the
perturbed two-point function in terms of equilibrium three-point
function,

 _ _

<ni<>_-l; n; n_—1:> (0) \Alic> (6.30)

<
ni(’_;

<|wm

s n;>
The significance of these relationships (Eqs. (6.27) through (6.30))
in building up a self-consistent approximation scheme will be dis-

cussed in the next Chapter and in Professor Golden's lectures
[Golden, this Volume].

VII. APPROXIMATION SCHEMES

In this Chapter we compare, from the formal point of view,
three leading approximation schemes for strongly coupled plasmas.
All of them share the philosophy that they rely on the FDT-s and
on the concept of response function to generate self-consistent
approximations. Two of the schemes, the one due to Singwi, Tosi,
Land and Sjolander [1968] [see also Singwi, Sjolander, Tosi and
Land, 1969, 1970] and the one originated by the present author and
Golden and Silevitch [Golden, Kalman and Silevitch, 1974; Kalman,
Datta and Golden, 1975; Golden and Kalman, 1976] attempt to calcu-
late the dielectric response function in terms of correlation
functions and then employ FDT-s to render the relations self-
consistent. The way the dielectric response function is expressed
depends on the approximation used and this is the point where the
STLS and GKS schemes deviate from each other: the former radically
truncates the two-particle correlation function while the latter
relegates the truncation to higher correlations. The difference
manifests itself also in the order of the FDT that one has to evoke.
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The STLS scheme relies on the linear FDT solely, while the GKS
scheme evokes also the quadratic FDT. The third approximation
scheme due to Totsuji and Ichimaru [1973, 1974] (see also Professor
Ichimaru's lectures [Ichimaru, this Volume]) although departs

from seemingly very different grounds will be shown to amount to an
approximation very similar to that of STLS. We will consider only
the ocp versions of all the theories, although extension of each

of them to two-component systems is possible [Golden and Kalman,
1976].

First we introduce the concept of effective static potential

WQ and the static screening function uﬁ

Up o= (14w oy ‘ (7.1)

and assume that the effect of correlations can be accounted for by
using this - so far unknown - effective potential to describe the
interaction between the particles. Next, using this assumption, we
calculate the dielectric function of the system. Since all the
correlational effects are assumed to be included in wﬁ, the use of
the modified linearized Vlasov equation

-> > > 1 (0) -> >
- e D) PO oy 9y - 2 i o

~ (o)
+ £ E(kw) - OF ") _ g
m >
ov
n D Gy = J & D Go; 9 (7.2)

is appropriate. From the above expression the polarizability can
be calculated in the standard way, with the result

R o (kw)
a(kw) = — ~ (7.3)
1+ u—iz Oto(kw)

where uo(iw) is the dynamical Vlasov polarizability. It is conven-
ient to rewrite Eq. (7.3) as

a(kw) = ao(ﬁw) {1 + v (kw)} (7.4)
N uy o (ﬁw)
v(Ew) = - —EO© (7.5)

1+ uﬁ ao(ﬁm)
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or
a(kw) = ao(IZw) {1 + V(kw)} (7.6)
(1 + u) a (kw)
SCw) = k™ o (7.7)

1+ (1+w) ao(i&u)

which define V(EO) and G(im), the coupling factors. In the static
limit one can employ the linear FDT to Eq. (7.2) in order to express
ug or ¢§ in terms of the pair correlation function. One finds

e

¢K - -3 (7.8)
s

e = _]'—Tﬁg—_f( (7.9)

Inspecting Eq. (7.9) we recognize that c3 is the Ornstein-Zernike
direct correlation function. The fact that -n/B times the direct
correlation function can serve as an effective interaction has been
recognized, through different arguments, by many people [Nelkin and
Ranagathan, 1967; Lebowitz, Percus and Sykes, 1969].

Now we can argue that if we have an independent method for the
determination of Yp as a functional of the correlations, Eq. (7.8)
will serve as a self-consisting criterion.

A. STLS Scheme

We turn now to the STLS method. In order to assess wﬁ, we
write down the full first BBGKY equation in the presence of an
external perturbation

] > 9 e 2 ) _1 o9 .
e + vy -5 F(1) - = EQ) - - F(l) = P sz K(12) G(12)
8x1 Bvl Bvl
(7.10)
where
K(12) = -1 L kb + Y e (7.11)
-+

k

and G(12) is the usual two-particle distribution function. Linear-
ization leads to the following decomposition:
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F(1) = F(o)(vl) + F(l)(l), etc. (7.12)
6{® 12) - F(°)(v1) F(°)(v2) {1+ g@12)} (7.13)
¢ (12) - {F(°)(v1) FD oy + F(°>(v2) rF D 2y}

. ¢D)
{1 +ga2)} + Girr(12) (7.14)

Gg_;), the irreducible part of the perturbed correlations, is not an
easily accessible quantity. The STLS approximation consists of
entirely ignoring this term. Thus with

(1) -
Gy (12) =0 (7.15)

one can rewrite Eq. (7.10) as

>

N . 5p(0)
-k FD G vy - -;-?—F——(ﬁ
ov

q
~ > (o)
- 2 By E 8_,(") =0 (7.16)
v

Comparison with Eq. (7.2) yields

K -

2 e (7.17)
q2 k-q

which jointly with Eq. (7.9) provide an integral equation for the
unknown gi(*:

nci(* = - = (1 + u>) (7.18)
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or

L+ w
ngy = - (7.19)

1+ ui + kz/k.2

The combined Eqs. (7.17)-(7.19) can, in principle, be solved by
numerical iteration. Then uy can be determined, and substitution

into Eq. (7.3) yields a(ﬁw).

The STLS method was historically the first to introduce the
ingenious idea of generating a self-consistent scheme by linking
e(kw) to gﬁ both by a kinetic equation and by the FDT. However, it
has also been recognized that it has some serious problems. First,
it violates both the static compressibility sum rule and the high
frequency 1/w4 sum rule. This is easy to see by expanding Eq.
(7.17) for k » o which yields

k2
w = - 7 = (7.20)
where Z is determined by the integral
K2 *
Z=-—7 J dq g> (7.21)
6m q

(o}

Then one finds from Eq. (7.3) in the w = o and w > © limits

a(io) = 1 EE
1-2 k2
N up o
a(kw>®) =~ - — t 2 (3 -2) k (7.22)
w w

These two relations are unable to simultaneously satisfy the sum
rules (4.7) and (4.32). 1In particular, for Yy << 1, Eq. (4.7) would
require Z = (1/4)Y, while Eq. (4.32) Z = (2/15)Y; actually it turns
out to be (1/3)Y. The incorrect W = o behavior can be remedied by
an ad hoc modification of the theory, proposed by Vashishta and
Singwi [1972]. However, the wrong high-frequency behavior indicates
a more serious problem: the theory implies that dynamical proper-
ties can be extrapolated from the static behavior; as it is obvious
from Eq. (7.3), the only genuine dynamical contribution comes from
Og (kw) which contains no long time correlational or collisional
contribution The origin of this defect must be sought in the
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neglect of dynamical correlations contained in Girr'
A further problem arises in connection with the basic integral

equation (7.17)-(7.19) and its possible solution. It is found

[Bakshi, this Volume; Bakshi, Kalman and Silevitch, to be published]

that the solution g(r) for small r has a pathological behavior.

This fact has some further consequences from the point of view of

of the mathematical structure and mathematical consistency of the

equation. These points are further discussed in Professor Bakshi's

seminar [Bakshi, this Volume].

B. TI Scheme

Now we turn to the second approach, that of Totsuji and
Ichimaru [1973, 1974], [Ichimaru, 1970]. As we have stated, the point
of departure is rather different. We consider the second BBGKY equa-
tion for the equilibrium system. It can be cast in the form

nge T T v 2

2 > -> -> ->
< _lh4+lyk-g.,,,1 y k- qpu, 55
K" + k2 v

L
q q
(7.23)

Following the time honored notions of kinetic theory, one adopts

a decomposition approximation in terms of pair distribution functions
to h. (In a way similar to the old Kirkwood superposition approxi-
mation). The paradigm, however, is chosen to conform to the long-
range character of the coulomb forces, which would suggest that good
agreement for small k (and not for small r) is essential. The

chosen structure is the O0'Neil-Rostoker solution [0'Neil and
Rostoker, 1965; Lie and Ichikawa, 1966] which is exact for small

Y and small k:

> = o> + o> + o> + ne> g> o>
pq ~ Sp Bq T Bq Bk T Bk Bp T Ep Bg B¢
K=p+4q (7.24)

In configuration space this corresponds to the cluster decomposition

h(123) = g(12) g(23) + g(23) g(31) + g(31) g(12)

+ f d4 g(14) g(24) g(34) (7.25)

Substituting Eq. (7.24) into Eq. (7.23), one immediately finds the
solution in a form identical to Eq. (7.18)
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ncE = —-i; a+ uﬁ) (7.26a)
but with uﬁ being given by

I _lpkd g aqsngy (7.26b)

Y TV : £k k

We see that this is quite similar to the STLS model, except for the
appearance of the additional screening factor 1 + ngg (~ l/e(ko))
This raises the question whether the STLS result couldn't be derived
in a similar fashion, from the equilibrium BBGKY. This is indeed

possible, as noted by Yatom and Shima [1978]. If instead of Eq.
(7.24) one chooses

h>— = > + > + g> 7.27
pq _ Bp Bq T Bg B T B¢ &) (7.27)

STLS
one recovers .

Evidently, since the TI scheme is built on static, equilibrium
concepts, it doesn't lend itself directly to the construction of
dynamical response functions. However, one can adopt the philosophy
that once cg is determined, -ncﬁ/B can be used as the effective
potential, as before, with a result formally identical to Eq. (7.3),

N a_(kw)
a(kw) = ——— (7.28)

For static properties, the TI scheme is expected to be superior to
the STLS scheme, and indeed it is. It exactly satisfies the com-
pressibility sum rule for y << 1. For higher y-s it also seems to
give a good agreement between the compressibility calculated from
the sum rule and directly from the equation of state. For the
description of the dynamical properties of the system the TI model
would be plagued with the same problems as the STLS one, since it
is void of any genuine dynamical correlations as well. As to the
mathematical structure of the integral equation (7.26), the problems
found previously probably also prevail here [Bakshi, this Volume;
Bakshi, Kalman and Silevitch, to be published].

C. GKS Scheme

The GKS scheme was originated in order to improve the dynamical
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results of the previous schemes by incorporating the genuine dynami-
cal correlations, while preserving the powerful idea of the FDT
generated self-consistency [Kalman, 1975; Golden, Kalman and
Silevitch, 1974]. 1In order to do this the so far ignored Girr has
to be salvaged. This can be accomplished by building the theory

on the quadratic, rather than the linear FDT. We give here only a
brief sketch of the principal structure of the scheme, since its
details are given in Professor Golden's lectures [Golden, this

Volume].

In order to convert Girr into a tractable object, the velocity
average approximation (VAA) is introduced, which transforms the
nonequilibrium two-particle distribution function G(12) as follows:

> >
F(x,,v,)
e T . o 1 1°71 > > > >
G(xl,vl, xz,vz) - 3 {————————-J dvl G(xl,v1 3 xz,vz)

n(;l)

X,V
2272 >, S e
+— J dv2 G(xl,vl, Xy5V, )
n(xz)
(7.29)

The above expression substituted in the linearized perturbed first
BBGKY equation results in

> N . an(0)
-i(w - K . V) F(l) (Kw; v) - i'aF—_,(v)‘
ov
ly 5 s (D)
N L9V gy @
q
N (o)
- £ Bw) - éF-a:(l)_ 0 (7.30)
v

This equation should be compared with Eq. (7.16) in order to
appreciate the difference in the screening structure.

Using Eq. (6.27), the expression for the polarizability can
be written down as

a(kw) = ao(IZw) {1 + v(&w)}
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> >
k-py

> R(p; kw) (7.31)

G(im) = -

Z|=

>
LT %
p

where ﬁ, the "response function of the second kind" is defined by
Eq. (6.27) and given by Eq. (6.28); Eq. (7.31) should be compared
with Eq. (7.7).

Further progress can be made by using the quadratic FDT (6.17)
to relate K to the quadratic response functions. Rather lengthy
algebra leads to the result [Golden, this Volume; Golden and Kalman,

to be published]
2 k- p
A D> .
vikew) = 2= ¢ ) 5 | du S_(w
BN "k 2 -
P
~ - - A~ > > >
C XU K- p, w = W)+ X(w - 13 K - ] (7.32)
In the static limit the above expression becomes

> > > ->

- p _x(po; k - po)
> > -

pz e(po) e€(k - po)

>

-2 k

Ve = B q>i> Z (7.33)
P

Equation (7.33) is equivalent to the exact second BBGKY equation
(7.23) [Kalman, Datta and Golden, 1975]. Thus on the static
level the VAA is exact.

The scheme as it stands, is not self-consistent; a further
approximation is called for in order to express the quadratic
response functions in terms of linear response functions. This
can be done a number of different ways. For example, the static
TI approximation is recovered if

X(FO; 30) v x(30) x(Eo) x (ko) (7.34)

is set. The STLS approximation doesn't have a unique equivalent:
if the quadratic response function is calculated, following the
philosophy stipulated for the linear one, namely by ignoring the
irreducible part of G(Z), one obtains a decomposition similar to
Eq. (7.34); this, however, is not compatible with Eq. (7.27).

Even a rather crude decomposition of the dynamical expression
(7.32) reproduces most of the long-time collisional and correla-
tional dynamical effects in a plasma [Golden and Kalman, to be pub-
lished]. Thus there is no doubt that as a dynamical theory, the
GKS scheme is much superior to its predecessors.
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As to testing the model through sum rules, one finds that

all the known relevant sum rules, the linear and quadratic com-

pressibility sum rules (4.7) and (4.8), and the 1/w* sum rule

(4.28) are satisfied; in the small Y limit the correct numerical

coefficients, i.e., (1/4)y, (5/8)Y and (2/15)Y emerge, respectively
[Golden and Kalman, to be published; Golden, this Volume].
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THEORETICAL APPROACHES TO STRONGLY COUPLED PLASMAS

Setsuo Ichimaru

Department of Physics
University of Tokyo
Bunkyo-ku, Tokyo 113, Japan

I. INTRODUCTION

In this series of lectures, I should like to review some of
the theoretical contributions made by our research groups at the
University of Tokyo and at the University of Illinois during the
past several years, toward understanding of the static and dynamic
properties of various versions of the strongly coupled plasmas.
The work which I shall describe consists of the results of col-
laboration with my colleagues: N. Itoh, T. Nakano, D. Pines,

T. Tange and H. Totsuji.

Let us begin with a definition of the strongly coupled plasmas.
We consider a one-component plasma (OCP) with a uniform neutralizing
background, obeying classical statistics; it may be characterized
by electric charge e and mass m of a particle, number density n, and
temperature T (in energy units). The dimensionless plasma parameter
describing discreteness of the system [Rostoker and Rosenbluth,
1960; Ichimaru, 1973] is

()2 37r73/2 (1.1)

2)1/2

= (4ﬂnAD3)

where Ap = (T/4Tne is the Debye length.

The correlation energy density E., defined as the statistical
average of the interaction Hamlltonlan per unit volume, may be cal-
culated in terms of the static form factor S(K) or the pair corre-
lation function g(r) as [e.g., Ichimaru, 1973]

189
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2
ne
2T

.

L s -11 = f Zle@m . @
k k

The static form factor is related to the spectral function of the
density fluctuations in the wave-vector space. For a relatively
dilute plasma in thermodynamic equilibrium such that € < 1, it is
known that Eq. (1.2) takes on a value of the order of the plasma
parameter €, i.e.,

E|
nT

~ g (in thermodynamic equilibrium) . (1.3)

For n = 10]‘3cm_3 and T = 106K, one finds € ~ 8 x 10~/ so that the
ratio (1.3) takes on an extremely small number for an ordinary
gaseous plasma.

We define a strongly coupled plasma as that which satisfies

5|
T = 1 . (1.4)

For a plasma in thermodynamic equilibrium, the condition (1.4) can

be satisfied only when the density is increased to an extent such

that € = 1; such a system may be regarded as a high-density clas-
sical plasma or an electron liquid. For a dilute plasma with

€ << 1, the condition (1.4) can still be satisfied in a nonequilibrium
state when strong plasma turbulence is excited through onset of
plasma-wave instabilities; in this case the denominator in Eq. (1.4)
is to be replaced by an average density of the kinetic energy.

We thus take the point of view that the problems involved in
the theory of plasma turbulence are quite analogous to those in the
theory of electron liquids; both systems are characterized by the
condition (1.4). 1In a strongly turbulent plasma the pair correlation
function and higher-order correlation functions take on magnitudes
of the zeroth order in the discreteness parameters such as €; those
remain finite even in the fluid limit, € > 0 [Rostoker and Rosenbluth,
1960], so that strong correlations persist with macroscopic in-
tensities [Ichimaru, 1970a]. In an electron liquid, the pair
correlation function, the triple correlation and so on scale as €,
€2 and so on at typical interparticle distances of the order of the
Debye length; since € = 1, all of those correlation functions again
play important parts in the description of system properties. In
either of those cases we are faced with a strong-coupling problem
in that we cannot regard fluctuations or correlations as meaningful
expansion parameters. Such absence of a systematic expansion scheme
may be an essential feature in any theory of strongly coupled plasmas.
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II. STATIC PROPERTIES OF ELECTRON LIQUIDS

An important theoretical method for the analysis of the strongly
coupled plasmas has been provided by a self-consistent approach.
It has been applied to turbulent plasmas [Ichimaru and Nakano,
1967, 1968; Ichimaru, 1969] and to degenerate electron liquids at
metallic densities [Hubbard, 1967; Singwi, Tosi, Land and Sjolander,
1968; Singwi, Sjolander, Tosi and Land, 1969; Vashishta and Singwi,
1972]. 1In this approach, one first calculates a linear response
function (e.g., the dielectric response function) as a functional,
not only of the single-particle distribution function, but also of
the pair correlation function or the static and dynamic form
factors; the latter quantities are unknown at this stage and to be
determined later in a self-consistent way. One then establishes a
relation between the response function and the pair correlation
function via, e.g., the fluctuation-dissipation theorem; this
equation is to be solved for the pair correlation function.
Naturally, various approximations are involved in the calculation
of the response function for a strongly coupled plasma.

Ichimaru [1970b] then noted that the second BBGKY equation
[e.g., Bogoliubov, 1962; Rostoker and Rosenbluth, 1960; Ichimaru,
1973] should be equivalent in physical content to the self-consistent
equation mentioned above, in the sense that both are equations to
determine the pair-correlation function. Triple correlation
functions are involved in the second BBGKY equation; a proper
treatment of the triple correlation functions would enable one to
truncate the BBGKY hierarchy at this stage.

An ansatz for the triple correlation function proposed by
Ichimaru [1970b] is

where
> >
7, - 7 .

r,.
1]

O'Neil and Rostoker [1965] have in fact shown that for a dilute
plasma (€ << 1), the BBGKY long-range solution of the triple
correlation function is expressed in the form (2.1) where the pair
correlation function takes on the Debye-Huckel values,

2
g(r) = --%; exp (} j?—) . (2.2)
D
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By adopting the ansatz (2.1) in the second BBGKY solution, one
thus automatically guarantees accuracy of the resulting long-
range solution of the pair correlation function to the first two
terms in the € expansion.

Substitution of Eq. (2.1) in the second BBGKY equation then
yields an integral equation for the static form factor,

k2
S(k) = —; 5 s (2.3)
k™ + kD[l + w(k)]
> ->
wi) =2 L K8 sk -qh - 11, (2.4)
q 49

where kp = I/XD. Connection between the integral equation (2.3)
and the foregoing self-consistent approach may be established by
setting the (longitudinal) dielectric response function as

Xo (k)
e(k,w) =1+ T F v Xo(k:w) , (2.5)
where
2 >
X (k,w) = “ren f v —i— % . AW (2.6)
mk w-k*v ov

->
is the free electron polarizability, and f(v) is the velocity
distribution function normalized to unity.

Totsuji and Ichimaru [1973, 1974] subsequently examined the
accuracy and validity of this theory in the light of the following
criteria:

(1) The theory should reproduce the correct analytic ex-
pressions of the € expansion for the thermodynamic
quantities (e.g., the correlation energy).

(2) It should satisfy the compressibility sum rule [e.g.,
Pines and Nozieres, 1966].

(3) It should describe correct behavior in the short-range
parts of the correlation functions, where strong corre-
lations are involved even in a low-density system with
small €,
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(4) The theoretical results should agree with the results
of Monte Carlo experiments on electron liquids [Brush,
Sahlin and Teller, 1966; Hansen, 1973; Pollock and Hansen,
1973].

The correlation energy E. or the pressure P of a dilute plasma
has been calculated by many investigators [e.g., Abe, 1959; Bowers
and Salpeter, 1960; O'Neil and Rostoker, 1965]. Its first few terms
in the € expansion have been exactly determined:

E

C_ 42 _ - _ £ _ .21 y_1
T = S(nT 1) = 2 € [4 2n3e + 2 3] . (2.7)
where Yy = 0.57721... is Euler's constant. It is then possible to

show [Totsuji and Ichimaru, 1973] that the pair correlation function
calculated from the solution of Eq. (2.3) has the correct long-range
and short-range behaviors so that the resulting correlation energy
reproduces Eq. (2.7) exactly. When € = 1, Eq. (2.3) may be solved
numerically [Totsuji and Ichimaru, 1974]; the theoretical results
exhibit excellent agreement with the Monte Carlo results as Figure 1

illustrates. Consequently, Eq. (2.4) satisfies the criteria (1)
and (4) for the correlation energy.

The isothermal sound velocity c of the electron liquid may be
calculated in two different ways: one based on the thermodynamic
relation,

2
c _ 1 /oP
T/m T ‘on T > (2.8)

and the other involving the long-wavelength behavior of the density-
density correlation function [e.g., Pines and Nozieres, 1966],

2 k. \ 4 2

c D k
—— = 1lim <—> (—) - S(k)} . (2.9)
T/m >0 k { kD

The compressibility sum rule requires that Egqs. (2.8) and (2.9)
should agree on the correct value.

Equation (2.3) has been examined in terms of this compressi-
bility sum rule. 1In the € expansion, the isothermal sound velocity
calculated according to Eq. (2.8) is

2

e l-ge-fEme+i- (2.10)
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Figure 1. The correlation energy vs. the plasma parameter. The
solid line represents the result obtained from the
solution of Eq. (2.3); the dotted line, Eq. (2.7). The
closed circles denote experimental values due to Brush,
Sahlin and Teller [1966]; the crosses, theoretical ones
due to Berggren [1970] based on the scheme of Singwi,
Tosi, Land and Sjolander [1968].

while Eq. (2.9) gives

02 1

e _,_1._ .21 y _ 11
/m = 4 € € (6 2n3e + (2.11)

37 54 :

Since Eq. (2.7) is the correct expression for the pressure, Eq.
(2.10) represents the correct evaluation of the sound velocity.
Equation (2.11) then shows a slight discrepancy from Eq. (2.10),
starting with a term on the order of €. A similar tendency has
been noted in the numerical solutions of Eq. (2.3), as Figure 2
illustrates; the numerical solution for the sound velocity obtained
from Eq. (2.8) (the solid line in Figure 2) agrees almost completely
with that obtained from Eq. (2.9) (the dashed line) for € < 1, but

a notable discrepancy begins to appear for € > 1. Room for improve-
ment on the theory is thus indicated.

The pair correlation function calculated from numerical solution
of Eq. (2.3) is shown in Figure 3. In the vicinity of r = 0, the
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Figure 2. The isothermal sound velocity vs. the plasma parameter.
The solid and dashed lines represent the results in the
scheme (2.3), evaluated in accord with Egs. (2.8) and
(2.9), respectively. The dotted line describes the
result, Eq. (2.10), of the plasma-parameter expansion
analysis. The closed circles denote experimental values
[Brush, Sahlin and Teller, 1966]. The crosses and open
circles denote the theoretical values of Berggren [1970],
obtained from Eqs. (2.8) and (2.9), respectively.

0.0
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—0.5

! | 1 | I | Il | 1 | L I
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k »T

Figure 3. The radial correlation function vs. kpr. The dotted line
shows a theoretical result of Berggren [1970] for & = /3.
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correlation function takes the form,
g(r) = -1 + exp (—e2/Tr) , (2.12)

and generally g(r) > -1 must be satisfied. For € > 5, the latter
condition is slightly violated, another indication of the possibility
of theoretical improvement.

As we observe in Figure 2, the isothermal compressibility
diverges at € = 10; a possibility of an onset of a thermodynamic
instability is indicated. When the charge density of the neutral-
izing background is kept uniform, however, the space-charge effect
acts to prevent the onset of such an instability. If, on the other
hand, the background adjusts itself in such a way as to cancel the
space-charge field produced by a fluctuation, the instability may
take place [Totsuji and Ichimaru, 1974]. The possibility of this
instability thus depends on the nature of the background.

ITI. SUM-RULE ANALYSIS OF THE LONG-WAVELENGTH EXCITATIONS

Let us now consider the dynamic properties of the electron
liquid. In the limit of long wavelengths the plasma consists
essentially of sets of elementary excitations, weakly interacting
with each other. The properties of those elementary excitations
can then be analyzed in terms of the moment sum rules in the frequency
domain of the dynamic form factor, or equivalently of the dielectric
response function, to various orders of approximations. The sum
rules are evaluated exactly with the knowledge of the static corre-
lation functions of the system [e.g., deGennes, 1959; Puff, 1965;
Forster, Martin and Yip, 1968]. We thus employ the results of the
investigation described in the previous section, for the examination
of the elementary excitations in the long-wavelength limit.

To investigate the properties of the long-wavelength excitations
in the electron liquids, we express the dynamic form factor in that
domain as a superposition of the contributions from the plasma oscil-
lations, the single-particle excitations and the collisional ex-
citations [Ichimaru, Totsuji, Tange and Pines, 1975]:

S(k,w) = % X [8(w = w )+ 8w + w)]

1/2 —
) y[w/k(T/IB2 1, Z(k) Z(i»_/w) ) (3.1

k(T/m) w

+ Y(k

Here, Wy, k(T/m)l/2 and w are the characteristic frequencies of the
plasma oscillations, the single-particle excitations and the
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collisional excitations. The collisional excitations are the
classical counterpart to the multipair excitations in the de-
generate plasma [Pines and Noziéres, 1966]; it is important to
recognize that W remains finite in the long-wavelength limit k - O.
Equation (3.1) does not take into account the collisional broadening
of the spectral function for the plasma waves; this neglect is
justified in the long-wavelength domain with which the present sum-
rule analysis is concerned. The spectral functions, y[w/k(T/m)l 23
and z(w/w), are normalized so that

J dx y(x) =1 and f dx z(x) =1 (3.2)

-00 [ee]

The functions, X(k), Y(k) and Z(k), thus represent the strengths of
the respective excitations; these are even functions with respect
to k.

The frequency moments of the dynamic form factor are defined
and calculated according to

<w2> = I dw wm S(k,w) . (3.3)

-—00

The moment at £ = 0 is proportional to S(k); the £ = 2 term yields
the f-sum rule; the evaluation of the £ = 4 moment involves the
pair correlation function; the 2 = 6 moment involves the triple
correlation function.

Various functions in Eq. (3.1) are expanded in the long-
wavelength domain as

X(K) = X (e/kp)? + X /)t + L
V() = Yo (k/kp)? + ¥ (/) + L
z(k) = Zo(k/kD)2 + zl(k/kD)4 + ...
we = w1+ 8(k/ky)] + ... (3.4)
where w, = (4me?/m)™/2. Comparing the terms proportional to (k/kp)?

in the sum rules, we find
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X. =1, Y. =2 =0 . (3.5)

The contributions of the plasma oscillations exhaust the entire
strength of the dynamic form factor in the long-wavelength limit.

The dispersion § in the plasma-wave frequency may be analyzed
directly from a sum-rule analysis of the dielectric response function.
If the existence of the collisional excitations is totally neglected,
one can complete the sum-rule analysis up to the 2 = 4 term in Eq.
(3.3) [Ichimaru and Tange, 1974]; the result is

2 F

15 @ . (3.6)

=34
6'2

Blo

The presence of collisional excitations becomes significant as we
proceed to take into account the next £ = 6 term as well in Eq.
(3.3); we then obtain

E
=3_1 _2 ¢
§ = >~ 5 T(E) 15 ot . 3.7)
where
2 > —>' 3 - . -,
t(e) = - 3 | g7 [ gPmE, i )~ _r-r (3.8)
10mT 5 13
(r r") (r r'")

and h(r r ') is the triple correlation functlon expressed as a
function of relative coordinates, r = rl - r3 and T' = r2 - r3

Numerical values of § - (3/2) computed from Eqs. (3.7) and
(3.8) are plotted in Figure 4 as functions of €. A remarkable
difference exists between these two sets of results: The values
of § - (3/2) based on Eq. (3.7) always remain negative. According
to Eq. (3.8), however, § - (3/2) starts to take on positive values
when € is small; this quantity changes its sign around € = 1 and
then goes over to negative values with increasing magnitude as €
increases.

In the limit of € -+ 0, the Vlasov description applies [e.g.,
Ichimaru, 1973], and one finds § = 3/2. As € increases, the
collisional effects in the plasma act to modify the dielectric
response function and thereby produce deviation of § from the Vlasov
value. When € << 1, one can analytically calculate the collisional
contribution to the imaginary part of the dielectric function
[DuBois, Gilinsky and Kivelson, 1962; Totsuji, unpublished],
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5'6 r L L T

I0F

Figure 4. The parameter § for the plasma-wave dispersion vs. the
plasma parameter. The values 64 are computed according
to Eq. (3.6); 66, Eq. (3.7).

In e(k,w) = -(8/15m7%) (wp/w)s(k/kD)z € fne | (3.9)

for w larger than both ew, and k(T/m)l/z. The real part may then
be assessed with the aid of the Kramers-Kronig relations. The
result of such an investigation shows that 6 - (3/2) > 0 for

€ << 1, in agreement with the prediction of Eq. (3.7).

In the domain of finite €, the theoretical results may also
be compared with those obtained from the molecular dynamics
computations [Hansen, Pollock and McDonald, 1974; Hansen, McDonald
and Pollock, 1975]. The molecular dynamics results in fact indicate
that § - (3/2) > 0 for € < gy and § - (3/2) < 0 for € > gy, where
g€g falls somewhere between 1 and 10. 1In addition, it has been
pointed out that § would vanish at € = 52. These indications are
again in agreement with the results of Eq. (3.7). We thus find that
inclusion of the collisional excitations in the long-wavelength
domain plays a vital part in satisfying the moment sum rules and
in securing agreement with those known boundary conditions.

Finally, to determine the parameters X;, Yy and Zj, we compare
the terms proportional to (k/kD)4 in the moment sum rules (3.3)
up to £ = 6; the spectral function z(x) is assumed to be a Gaussian.
The numerical results of the solution are shown in Figure 5. With
increase of €, the collisional excitations increase, while the col-
lective and single-particle excitations decrease. The strength of
the collisional excitations becomes comparable to that of the single-
particle excitations when € 2 1.
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-[Xl+ 3]

X+3

Figure 5. The parameters, Xj, Yy and Z,, describing the strengths
of the long-wavelength excitations vs. the plasma
parameter.

IV. STRONGLY COUPLED PLASMAS IN A
NONEQUILIBRIUM STATIONARY STATE

Thus far we have been concerned with the properties of the
electron liquids in thermodynamic equilibrium. Let us now extend
the scope and develop a dynamic theory of a strongly coupled plasma
in a nonequilibrium state [Ichimaru, 1977]. The theory should thus
be relevant directly to description of plasmas in a strongly tur-—
bulent state as well. We begin with elucidation of the criteria
and requirements for such a theory.

The system under consideration is assumed to be in a non-
equilibrium stationary state. An external source of free energy
is provided so that it feeds energy through excitation of turbulence
in the system; the same amount of energy is removed from the system
through dissipative behavior. A stationary flow of energy is thereby
established in the system. In such a situation we expect in general
that strong correlations or fluctuations co—exist with a single-
particle distribution of the particles. A first requirement for the
theory is that (a) it provide a formalism in which those quantities
may be determined in a nonequilibrium state.

An important physical effect in a turbulent plasma is a
statistical modification of single-particle orbits by fluctuating
fields. The idea is basically due to Dupree [1966, 1967, 1968], who
argued that the dominant nonlinear effect of low-frequency insta-
bilities is an incoherent scattering of particle orbits by waves,
which causes particle diffusion and appears in the theory as an
enhanced viscosity. We thus require that (b) the theory correctly
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incorporate such an effect of orbit modifications.

Another aspect of strong-correlation effect in a plasma is
modification of effective interactions between particles [Ichimaru,
1970al. In fact, this has been the major effect taken into account
in the theories of electron liquids [Hubbard, 1967; Singwi, Tosi,
Land and Sjolander, 1968; Ichimaru, 1970b]. In those theories,
however, static approximations are basically involved in describing
the modification of effective interactions. Here we adopt a
requirement that (c) both static and dynamic aspects in the modifi-
cation of effective interactions be properly taken into account.
The dynamic aspects should physically correspond to creation and
destruction of clumps [Dupree, 1970, 1972; Kadomtsev and Pogutse,
1970], bunched particles, and coherent waves.

A fourth requirement is related to the high-frequency response
of the system. Generally, for a reflectionally symmetric system,
the high-frequency asymptotic expansion of the frequency and wave-
vector dependent, longitudinal dielectric response function S(K,w)
takes the form [Ichimaru and Tange, 1974],

e(k,w) =1 - 2~ A3 4 " (4.1)
w w
3<(E +2> 1 (E +)2 > > C>
=3k - v)™> .
Ay = V)22 ] X2 sk - - s@1 . (4.2)
3 2 n 5722
p q 4
In the long-wavelength limit, Eq. (4.2) reduces to

K2 1 2, 4

A3+E 3+ﬁ§(1"5“ +4u)€a . (4.3)
q

Here, &» is Ehe energy density contained in the fiuctuagions with
wave vector q; U is the direction cosine between k and q. For a
turbulent plasma, T is to be replaced by an appropriate average of
kinetic energy per particle. For an isotropic system such as an
electron liquid in thermodynamic equilibrium, the last term in the
curved brackets of Eq. (4.3) reduces to (4/15) E./nT, where

Ec=§£_) .
5 g

We thus require that (d) the theory be consistent with Eqs. (4.1)
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*
and (4.2).

Finally we require that (e) when the theory is applied to a
particular case of a system in thermodynamic equilibrium, it must
reproduce correct calculations of thermodynamic properties of the
electron liquid, as outlined in Section II.

Kono and Ichikawa [1973] have shown that the criterion (b) is
satisfied if one sums the most secular terms in each order of per-
turbation-theoretical expansion with respect to fluctuations.
Criterion (d) implies that the theory is basically correct in
describing the short-time behavior of the system. Criterion (e),
on the other hand, is concerned with long-time, hydrodynamic behavior
of the system, such as sound propagation, through correct evaluation
of compressibilities. By securing these two criteria rigorously
applicable in both ends of the frequency domain, we may be reasonab.y
confident about accuracy of the theory in describing the system
properties in the intermediate frequency domain as interpolation
of those two limiting behaviors.

To obtain a formalism which satisfies these criteria, we must
sum not only the most secular terms but also the next most secular
terms with inclusion of vertex renormalization [Ichimaru, 1977].
We thus calculate the dielectric response function according to
renormalization scheme as described in Figure 6**. Here a thin
straight line corresponds to the free-particle propagator,

Gykws V) = i/ -k - ) (4.4)

e

a thick straight line, the renormalized propagator of G(K,w; 3);

and a shaded double line, the screened propagator G(K,w; /e E,w).
A wavy line with both ends terminated by vertices represents the
contribution of the potential fluctuations <|¢2|(ﬁ,w)>; an open
wavy line describes the potential field ¢ (K,w) stemming from summed
contribution of the external and induced potentials. When a wavy
line with wave vector E is terminated at a filled-circle vertex, the
vertex gives rise to a differential operator,

*

Golden, Kalman and Silevitch [1974] calculated the dielectric
response function for an electron liquid in thermodynamic equili-
librium. A calculational error was involved in their assessment

of Eq. (4.3), so that it appeared that their result did not satisfy
the requirement (d). When this error is corrected, however, one
finds that their dielectric response function satisfies this

requirement for a system in thermodynamic equilibrium.
*%

Figure 1 in Ichimaru [1977] contained certain overcounting of dia-
grams; this overcounting has been corrected here.



THEORETICAL APPROACHES 203
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v jo— \"2
q
k
_F. \
k-qg
k-q k

Figure 6. Diagrammatic representation of the renormalized dielectric

propagator.
. l
ﬁ iq - = . (4.5)
ov

>
When a wavy line with wave vector q and a straight line with wave
vector kK — d merge at an open-circle vertex, it produces an
. . > .
operator of (4.5) in which q is replaced by

- 2 > ->
55q+ﬁ(k—q) . (4.6)
- q

Involvement of the open-circle vertex is related to conservation of
the total momentum in a single—gomponent plasma; 3 defined in Eq.
(4.6) vanishes in the limit of k - O.

The necessity of screening only the intermediate propagators
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with wave vector E - E in Figure 6 is clear: An outgoing propagator
arising from coupling between a potential fluctuation and a particle
with velocity v in the single-particle distribution f(V) need not be
screened because the potential fluctuation has already been screened.
A propagator produced by coupling between a potential fluctuation
and a density fluctuation, however, is characterized by a wave
vector and a frequency different from those of the parent fluctu-
ations; one must thus take account of polarization processes

induced by this new propagator, which results in its screening.
Finally the outgoing propagators at the left ends must be left
unscreened in order to avoid overcounting of the screening processes.

Clearly the first two terms on the right-hand-side of Figure 6
contain all the summation processes described in Kono and Ichikawa
[1973]; in addition, those include screening of the intermediate
propagators and enable us to sum the next most secular terms
without vertex corrections. The last term of Figure 6 takes account
of partial effects of vertex corrections. All of those modifications
are necessary to ensure the criteria set forth earlier in this
section.

The dielectric response function is calculated from the re-
normalization scheme of Figure 6 as

e(E,w)

1+ x, (k,0)

3F (V)
>

2
w
=1 - —% J de(ﬁ,w; 3) ik -
k ov
w2

-1--% J dve, (k05 v) 1k - 3EW)
k 8v
2
w e -> 2> > > > 3
-1 I, | d&x dv<|¢”|(q,x)> Gy (kw3 V) Q © —
k™ m q e
+
G(k : q’w "0 G 2o, v k- ED
€(k - q,w - x) v 3v
2 2
- 7 s J J av<|o%| (d,%)> G(k,w; v) Q .=
k mod ov
G(k - q,Ww - x; ) 3 SEC
. q, X V k + — G(- q,-x' V) q . _(>V) ,
€(k - q,w - x) Bv v

(4.7)
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where <|¢2|(K,w)> represents the spectral function of potential
fluctuations [e.g., Ichimaru, 1973].

Let us examine the dielectric function in the light of the
criterion (c) concernlng modification of the effective interactions.
The propagator G(E ws v) consists of summation of an infinite number
of diagrams constructed out of particle lines, field lines, and
vertices. It is important to note that each one of such diagrams
ends with a line representlng Go(k w; V). For an arbitrary inte-
grable function F(v) of velocity vanishing at infinity, we have an
identity

> > > > 8F(+) 3 E > > > > 3F(+)
avG, (k,w; v) p - v) - dvG, (k,w; v) k - o)
0 > 2 0 >
v k ov
(4.8)
We can thus rewrite Eq. (4.7) exactly in the form,
> ‘*’2 of (R w3 V)
e(k,w) = 1 - —& J dvG, (kw3 V) ik - Rl (4.9)
k ov
We now define a function t(K,w) via
t(k,w) = f av £Rk,w; v) -1 . (4.10)

We then introduce a velocity average approximation in the sense
that

fFR,0; v) = [1 + t(k,w)] £@) . (4.11)

The equality of Eq. (4.11) becomes exact by virtue of Eq. (4.10)
only after the velocity integration is carried out; as a function
of velocity, Eq. (4.11) is an approximation. Adopting this ap-
proximation, we may further rewrite Eq. (4.9) as

2 >
W21+ t(®,w] >
e(®,w) = e f ave, (s v) ik - L0
k ov
(4.12)

It is in this form that we identify the effects of modification
of particle interactions brought about by the presence of strong
correlations in a plasma. When t(k w) = 0, Eq. (4.12) reduces to
the linear dielectric function of an uncorrelated charged-particle
system, or the Vlasov dielectric function. For the renormalized
dielectric function Eq. (4.7) of the strongly correlated plasma,
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t(i,w) # 0; the factor k2 in the Vlasov dielectric function
arising from the bare Coulomb potential between two point particles
is now effectively modified by a wave-vector and frequency dependent
factor and replaced by [1 + t(k,w)1/k*. The resulting expression
may then be interpreted as representing Coulomb interaction between
particles which have both spatial and temporal structures. These
aspects may presumably be related to those physical ideas on
creation and destruction of clumps, bunching of particles, and co-
herent waves, set forth as theoretical models of strong plasma
turbulence.

Applying the velocity average approximation successively to
the terms in Eq. (4.7) and with the aid of Eq. (4.8), we obtain

ek,w) =1 L re— (4.13)
1+ Yv(k,w)
where
2 21 > > >

IP(K,(L)) = z J dx q <|¢ |((213X)> )L(E - %w - X) i() . a(iz - E)

E (4mne) ek - q,w ~ x)
: [—% Xo @0 - =5 x(—i—x)] : (4.14)

q k

Comparison between Eqs. (4.12) and (4.13) yields

e®,w) = - W) : (4.15)
1+ v,

In connection with the criterion (d), we examine the high-
frequency asymptotic expansion of the response functions for a
system with reflectional symmetry. We first note that XO(K,w) for
such a system has an expansion,

wz 2 w4
Xo(sw) = - 2 -3 <k—2)—§ - ... ) (4.16)
w kD w
Let us then write
X X
Y&, 0) = -—%-—f;- ) (4.17)
W w

Substituting Eqs. (4.16) and (4.17) in (4.13) and (4.14), we find
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_ 2
Xy = 9 (4.18)
2 > > >
S by [ g BAED K ?<]0?] (@00 x(-d,0)
X w 3 dx
2 P kZ 5 k4 4mnT
D q (4.19)

Equation (4.18) indicates that the renormalized dielectric function
correctly satisfies the f-sum rule.

The last term of Eq. (4.19) stems from the contribution of the
last term in Eq. (4.14) or the last diagram in Figure 6; contri-
butions of diagrams like the second one on the right-hand-side of
Figure 6 do not influence the high-frequency asymptotic behavior of
the response function to the order of w™™. To establish a connection
between Eq. (4.2) and Eq. (4.19), we note that the Fourier components
of the induced charge-density fluctuations in the presence of the
potential field are given by

en(®,w) = —x(K,w) (k2/4m) ¢ (K,w) . (4.20)
Then, since

> k4 2 > ->
Sk) -1 =-—— f dw <|o%] (k,w)> X (-k,-w) R (4.21)

(4me)"n

we see that Eq. (4.13) exactly satisfies the asymptotic requirement
(4.1) to the order of w4,

Let us finally examine the thermodynamic properties of the
electron liquids predicted in the framework of the present theory.
The static form factor, which plays a central part in determining
those properties, may be calculated from Eq. (4.13) with the aid of
the fluctuation-dissipation theorem and the Kramers-Kronig relations.
One thus funds

N

S(k) = - k—[ L 1] - — K’ . (4.22)

2 Le(k,0) ~ 2
k) o+ KL+ ¥(k,0)]

With the aid of Eq. (4.21) and the known property S(k) = 1 at large
wave numbers, it is possible to prove that

V(0 = G/ W) (4.23)

to a good degree of accuracy [Ichimaru, 1977]. Hence, the static
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theory of the electron liquid described in Section II is contained
in the dielectric response function (4.13). Incidentally, if the
screening of the intermediate propagator is not taken into account,
one would obtain

2

> >
Y(k,0) = %(%) P E5Ssdk-db -1, (4.24)
g 49

which is the earliest version of the theories proposed by Singwi
et al.

We have thus shown the dielectric response function (4.13)
satisfies all the criteria set forth earlier. A self-consistent
equation for determination of the turbulence spectrum may then be
established from such a formalism [Ichimaru, 1977].

V. POLARIZATION POTENTIAL MODEL

The polarization potential model of condensed matter, proposed
originally by Pines [1966], has recently been applied successfully
to the description of elementary excitations in He II and in liquid
helium-3 [Aldrich, Pethick and Pines, 1976]. The model is related
closely to the phenomenological approach in the Landau Fermi-liquid
theory [e.g., Legget, 1965]. In this section we consider the
connection between the results, Eqs. (4.13) and (4.14), and the
polarization potential model.

In this model, the restoring forces responsible for the
collisionless part of the excitation spectrum are described by two
kinds of self-consistent fields: a scalar polarization potential,

@pol(k,w) = £5(k) <n(k,w)> R (5.1)

which couples directly to the density fluctuations in the system;
and a vector polarization potential,

Rk,w) = £9(k) <J(k,w)> , (5.2)

which couples to the particle current density. Here <n(k,w)> and
<J(k,w)> are the particle and current density fluctuations induced
by an external scalar probe. The density-density response function
takes the form

X (k,w)
X(k,w) = ¢

1 - (£200 + @) £ 0105 4me?) x_ (k,0)
(5.3
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where Xsc(k,w) is the response of the density fluctuations to the
external field plus the induced polarization potentials, Eqs. (5.1)
and (5.2).

We first note that comparison between Eq. (5.1) and Eq. (4.13)
yields

Xo(k,w)

Koo (s0) =
s 1+ 90,0 + [£500 + /D) £700 105 4me?)x, (e,0)

(5.4)

We then determine fS(k) and fY(k) in such a way that they absorb
the first two terms of Y(k,w) expanded in power series of wz; we
thus find with the aid of Eqs. (2.4), (4.14), (4.21) and (4.23)

£5(k) = - 4“92‘Q(k,0) - _ 4me? ) k - (i - Z)
k2 Xo(k,o) nk2 g II(* _ EIZ
s(Jk - 4])[8(q) - 1] , (5.5)

Vs o a2 8 [k,
00 = —ame iig w2 [Xo(k’w)]

2 2 > >
= -lim 32 y 4 <|97[()> x(k - q,w) 3@ -

w0 Jdw- q 4ﬂn2 e(K - E,w)
> > ->
. [41._ J&.xi:ﬂlgl] . (5.6)
2 2
q k™ X (k,w)

The response function obtained from substitution of (5.4) Vv (5.6)
into (5.3) satisfies all the criteria and sum rules discussed
earlier.

As we did in Section III, it is meaningful physically to con-
sider the screened density-density response function (5.4) as a
summation of contributions from two kinds of particle-like exci-
tations: single-particle excitations and collisional excitations:

Xe G = X 0y + x D (5.7)

.
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The single-particle contribution X(S)(k,w) may be taken to be the
free-particle polarizability (2.6) in which the particle mass is
replaced by a wave-number dependent effective mass,

m (k) = m + nf¥ (k) , (5.8)

another manifestation of the strong-correlation effects. The ex-
plicit expression for the collisional contribution X(C)(k,w) may
then be obtained from the difference between Xg.(k,w) and

x(8) (k,w).

VI. LATTICE MODEL FOR A STRONGLY COUPLED ONE-COMPONENT PLASMA

When € > 1, the dimensionless parameter,

I = e2/aT , (6.1)

more appropriately describes the system properties than € itself,
where

a = [(4/3)mn] /3

(6.2)
represents the radius of the spherical volume occupied on average
by a particle; this sometimes is referred to as the ion sphere
radius. 1In this domain, the Debye length loses its meaning as a
screening radius; the ratio (1.3) now scales as [DeWitt, 1976]

|Ec|/nT = T , (6.3)
which basically represents the contribution of the Madelung energy.

Properties of the plasma in such a high-density domain have
been investigated by the Monte Carlo method [Brush, Sahlin and
Teller, 1966; Hansen, 1973]. One of the most remarkable features
that those Monte Carlo investigations have revealed is an accurate
linearity of the screening potential in the liquid phase over wide
ranges of the distance and the plasma parameter ['. The screening
potential is defined by the relationship,

1 e2
g(r) = exp Tl - Vs(r) -1 s (6.4)

Analyzing the result of Brush, Sahlin and Teller [1966],
DeWitt, Graboske and Cooper [1973] found that apart from the vicinity
of r = 0 the screening potential Vg (r) in the liquid phase has a
linear form,
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2
Vo (r) =S [ey = e (2] : (6.5)

and that the coefficients c and cj satisfy the relationship,
¢, = (c./2)? (6.6)
1 0 ‘

In the vicinity of r = 0, the screening potential is expanded as
ag - azrz + ... [Widom, 1963]. On applying Hansen's result [1973],
Itoh, Totsuji and Ichimaru [1977] found the values,

cy = 1.25 s ¢, = 0.39 s (6.7)

which satisfy the relationship (6.6). The linear screening potential
(6.5) with the coefficients (6.7) fits Hansen's result for

4 < T <160 with errors less than four percent; the linearity is
observed for 0.40 < r/a < 2.0 in the case of ' = 4, and for

1.3 <r/a £ 1.8 in the case of I' = 160. The precise values of the
screening potential at short distances are very difficult to deduce
from the computed values of the radial correlation function;

g(r) + 1 takes on extremely small values at short distances because
of the Coulomb interaction term e</r.

Salient features of the screening potential which the Monte
Carlo computations have revealed may thus be summarized in the fol-
lowing three aspects: its apparent linearity (6.5) over wide
ranges of parameters, the relationship (6.6) and the absolute
magnitude of cg or cy. It has been pointed out by Itoh and Ichimaru
[1977] that those empirical features are in fact intimately related
to the physical notion that the short-range order in the classical
one-component plasma in its liquid phase is already very much like
that in its lattice phase. A lattice model for a classical charged
liquid is thereby proposed which provides an explicit expression
for the short-range correlation function.

To elucidate the content and relevance of the lattice model,
let us recall the model calculations of the screening potential in
the charged liquid based on an orderly lattice configuration of the
bce type, carried out originally by Salpeter and Van Horn [1969].
They proposed two methods of calculating such a screening potential:
a rigid lattice model and a relaxed lattice model. 1In the rigid
lattice model, they consider a situation in which a pair of nearest-
neighbor ions approach each other with their center of mass and
other surrounding ions fixed rigidly at their equilibrium positions.
Along the line passing through the nearest-neighbor lattice points,
they carry out the lattice sum numerically, and thereby obtain a
result for the screening potential. In the relaxed lattice model,
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they impose the condition that the screening potential tends to
that of the harmonic lattice near the lattice points and to one
obtained from the ion-sphere model near the zero separation. The
result is

2

- e _ _ N2
Vo1 (M = = [1.1547 + 1.1602(1 - n) - 1.0394(1 - n)

+2.5690(1 - m)3 - 1.6971(1 - Mm%, (6.8)

where b is the lattice constant, and n is the separation between
the two ions measured in units of the nearest-neighbor distance d;
for the bcc lattice, d = 0.8660b = 1.7589a. 1In these units the
empirical screening potential, (6.5) and (6.7), for the charged
liquid reads

2

m) =-%; [1.14 + 1.40(1 - )] . 6.9)

Viiquid

A close examination shows that the relaxed lattice model gives
a screening potential which is reasonably close to that for the
charged liquid; the discrepancy is less than 10 percent for all n
between 0.2 and 1.0. The screening potential for the charged
liquid almost coincides with the prediction of the bcc lattice
models, 1.1547 = 2/V/3 = b/d, at n = 1.0, the nearest-neighbor
distance. Furthermore, we note that the screening potential in the
relaxed lattice model is almost linear for 0.1 < n < 1.0.

We have thus seen that the relaxed lattice model well accounts
for linearity and the value at the nearest-neighbor distance of the
screening potential in the charged liquid, two of the three empirical
features earmarked earlier. To obtain an additional account of the
remaining point (6.6), we further investigate the harmonic-
oscillator potential model in the vicinity of the nearest-neighbor
distance.

In the harmonic-oscillator potential model, the effective
potential between two particles, Vggse(r) = (e /) - Vg(r), satisfies
the conditions,

veff(d) =0 , [dVeff(r)/dr]r=d =0 s (6.10)

at the equilibrium position, r = d. The former condition arises
from the assumption of the perfect screening at the nearest-neighbor
distance; the latter implies that the potential takes on an extremum
(minimum) value there. Assuming linearity (6.5) for the screening
potential, which has been substantiated in the relaxed lattice model,



THEORETICAL APPROACHES 213

we obtain from Eq. (6.10)

¢, = (co/2)2 , co = 2ald ) (6.11)

The former is identical to Eq. (6.6); the latter gives cy = 1.137
for a becc lattice and cg = 1.241 for a simple cubic lattice. Those
values are again reasonably close to Eq. (6.7).

We have thus seen that the short-range order observed in the
classical charged liquid is already very close to that predicted
in a harmonic-lattice model for I as low as 4, as manifested by
the similarity between the screening potential in the charged
liquid and that in the lattice model.

VII. ENHANCEMENT OF THERMONUCLEAR REACTION RATE
DUE TO STRONG SCREENING

Enhancement of thermonuclear reaction rate arising from
Coulomb correlations in strongly coupled plasmas has important
consequences in various aspects of stellar evolution such as carbon
ignition in degenerate cores. In his pioneering work, Salpeter
[1954] presented an analytic treatment of such an effect in a low-
density, high-temperature plasma such that ' < 1, and introduced
the ion-sphere model to describe the effects of interparticle
correlations in the strongly coupled regime, I' > 1. Later, Salpeter
and Van Horn [1969] carried out detailed calculations based on the
ion-sphere model.

As we noted in the previous section, the Monte Carlo method
has been a powerful tool in the study of Coulomb correlations in
strongly coupled plasmas. DeWitt, Graboske and Cooper [1973]
developed a generalized statistical-mechanical theory to describe
the effects of plasma screening on nuclear reactions; they thereby
investigated the effects of strong screening with the aid of the
numerical result obtained by Brush, Sahlin and Teller [1966].

Both sets of calculations of the enhancement factor mentioned
above are based on evaluation of the screening function at zero
separation. For justification of this procedure, it may be argued
that the classical turning radii for those particles with relative
velocities in the vicinity of the Gamow peak are much smaller than
the mean ionic distance; hence, the screening potential may be
replaced effectively by its value at zero separation.

Basically, however, the nuclear reaction rate depends on the
probability of particles tunneling through the repulsive Coulomb
barrier; to evaluate the latter probability one must carry out a
relevant WKB integration inside the turning radius. It is therefore



214 S. ICHIMARU

expected that the spatial dependence of the screening function will
play a crucial part in such an integration.

Itoh, Totsuji and Ichimaru [1977] thus calculated the enhance-
ment factor for the nuclear reaction rate, by taking explicit
account of the spatial dependence of the correlation function as
obtained by Hansen [1973]. Two alternative methods were proposed:
One follows a conventional approach in which only the pair cor-
relations are taken into consideration. The effective interaction
between two particles is taken to be

2
Veff(r) = iZ%l_ B Vs(r) > (7.1)

where Vg (r) is the screening potential given by Eqs. (6.5) and (6.7).
[In this section we explicitly write the charge number Z of an ion,
so that the dimensionless parameter [ = (Ze)z/aT.]

Substituting Eq. (7.1) in place of the bare Coulomb interaction
(Ze)z/r in a standard calculation of the nuclear reaction rate, we
find that the enhancement factor due to strong screening is given
by exp [T - Q(pg)], where

a(p) =—§—[%+ 20t/2 -3 e+ (L2 e -1 (32 c1p5/2] ,
1/3 (7.2)
2 4
T - [( 22? ) M(Zg) ] , (7.3)
Th

M is the mass of an ion, and Py is the value of p at which Q(p) is
minimized; a (3T/7T) Pg represents the classical turning radius at
the Gamow peak.

The other method of calculation adopted by Itoh, Totsuji and
Ichimaru [1977] takes account of the possibility that the triple
correlation function may play a significant part in describing the
effects of screening inside the turning radius. Involvement of
triple correlation is expected from the consideration that when two
reacting particles are separated at a given distance the effective
potential between them is determined by the statistical distribution
of all the other "field" particles, which may be regarded as "third"
particles. It should be remarked that the calculation leading to
Eq. (7.2) has implicitly assumed that the statistical distribution
of the field particles would adjust "adiabatically" as the reacting
particles penetrate through the potential barriers.
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The position that we may now adopt is to assume that a wave
packet incident onto a potential barrier would tunnel instantan-
taneously and thus the field particles do not change their relative
configuration in the process of tunneling; the field particles are
regarded as frozen at their distribution determined when the col-
liding pair is separated at the distance of the classical turning
radius. The expression for the effective potential in the classical-
ly forbidden region involves the triple correlation function in this
scheme.

At the moment, explicit information on the triple correlation
function in the strongly coupled regime is not available from the
results of the Monte Carlo investigations. Instead, we note the
relationship between the pair and triple correlation functions
provided by the Yvon-Born-Green equations [e.g., Rice and Gray,
1965] and certain symmetry properties. We thus seek to find the
simplest expression for the triple correlation function that satis-
fies those requirements and is consistent with the information
contained in Eq. (6.5); the effective potential in the classically
forbidden region is thereby determined.

The result of such a calculation yields

~ Tl 1/2 _ 3T 3r 2 _3 32 5/2
Q(p) = 3 [p + 2p - T %7 ( T ) ¢ = 7% p ) c, P ]

(7.4)

in place of Eq. (7.2). The computed values of T - Q(pg) at the
Gamow peak P from Eq. (7.4) can be reproduced by the following
formula within errors less than one percent:

T - Qo) = 1.25T - 0.10T(3T/1)2 ) (7.5)

We note that the difference between Eq. (7.2) and Eq. (7.4) is
not substantial. The true values of the enhancement factor should
lie somewhere between those two estimations. For a carbon plasma
(z = 12) at T = 108K with mass density 109§/cm3, the enhancement
factor computed from Eq. (7.2) is "5 x 10l ; that computed from Eq.

(7.4) is 4 x 1016,

VITII. ELECTRON LIQUID IN A TWO-DIMENSIONAL LAYER

The two-dimensional layer of electrons trapped on the surface
of liquid helium [Cole and Cohen, 1969; Cole 1974] offers the
cleanest example of strongly coupled classical plasmas hitherto
realized in the laboratory. Recently, Zipfel, Brown and Grimes
[1976] measured the velocity autocorrelation time T. of an electron
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in such electron liquids with I' ranging from 9 to 36. In the
two-dimensional system, I' is defined by Eq. (6.1) with

a= (m) /2 (8.1)

representing the radius of the characteristic disk area occupied
on average by an electron; n is the areal number density of elec-
trons. The measurements have revealed a strikingly close corres-
pondence between TZI and

1/2 n3/4

w. = 2.1(e2/m) , (8.2)

0

the harmonic-oscillator frequency for the electrons forming a
triangular lattice. This observation, providing important clues
about the motion of electrons in a liquid state, has given a great
impact on the theoretical study of such a two-dimensional one-
component plasma.

The static properties of such a system have been investigated
by Hockney and Brown [1975] with the aid of molecular dynamics
computations, and by Totsuji [1978] through the Monte Carlo method.
The detailed features of the radial correlation function clarified
in these experiments are found to be closely related again to the
physical notion that the short-range order in the two-dimensional
classical plasma in its liquid phase is already very much like that
in its lattice phase [Itoh, Ichimaru and Nagano, 1978], as we
demonstrated in Section VI for a three~-dimensional situation.

On analyzing the raw data of g(r) obtained by Hockney and
Brown [1975], Itoh, Ichimaru and Nagano [1978] find that except in
the vicinity of r = 0, the screening potential Vg (r) defined by
Eq. (6.4) is conspicuously expressed in the linear form (6.5) with
the coefficients satisfying Eq. (6.6). The values,

¢y = 1.13 s ¢, =0.32 s (8.3)
fit Hockney and Brown's data for 33.1 < T < 1875.8 within errors
less than five percent. Totsuji [1978] finds

c, =1.18 , c, = 0.33 (8.4)

0 1

for 5 < T < 50. These empirical findings can be correlated with

a lattice model as we described in Section VI. As we show in the
following, the observed features of the velocity autocorrelation

time can also be accounted for in terms of such a lattice model.

The velocity autocorrelation time may be calculated from a

>
sum~rule analysis of the dynamic structure factor Sinc(k,m)
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associated with the self-motion of a "tagged" electron,

sinc(i{,w) = 2—1ﬂj dt <exp{-ik - ["r*l(t) - ?1(0)]}> exp(iwt)

—» (8.5)

where ?1(t) is the position of the electrons; < > denotes a R
statistical average. Defining the frequency moments of S;,.(k,w)

by

00
L - 2 >
w, _J dw w Sinc(k,w) , (8.6)
——00
one calculates with the aid of the rigorous equation of motion in

the many-particle system [deGennes, 1959; Ichimaru, Totsuji, Tange
and Pines, 1975]

. 2 4
<v. > w. 2
QZ - 1; _ inc _ 3w? - _ he J dr (.gl.l ) [gl g(rﬂ .
<. 2> 5 inc m Xr x
1x winc (8.7)

here the x-axis is chosen in the direction of K; v1x and le are

the velocity and the acceleration of the tagged electron in the
x-direction. It is clear from the definition of Eq. (8.7) that

ol corresponds to the velocity autocorrelation time of an electron.

To examine the validity of the use of Eq. (8.7) for comparison
with the experimental values [Zipfel, Brown and Grimes, 1976], we
carry out numerical integration of Eq. (8.7) by substituting the
exact molecular-dynamics and Monte-Carlo values of g(r). The result
is shown in Table I. The measured values (TC) of the velocity
autocorrelation time have been interpolated or slightly extrapolated
to make a comparison at the same values of ' where the molecular-
dynamics or Monte-Carlo data exist. The agreement is within the
experimental error (+10%). Hence this comparison provides an
additional confirmation that the T _ of Zipfel, Brown and Grimes
[1976] corresponds to o1 gefined gy Eq. (8.7).

To obtain an analytical expression of Eq. (8.7) for a two-—
dimensional electron liquid in the harmonic-lattice model, we use
the radial correlation function (6.4) as given by Egs. (6.5) and
(6.11) for the short-range domain, r < d = 1.9046a. For r > d, the
radial correlation function generally exhibits a damped-oscillatory
behavior around zero. Contributions from the peaks and troughs of
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TABLE I

Comparison between the interpolated or extrapolated experimental
values (TC) of the velocity autocorrelation time and the molecular-
dynamics and Monte-Carlo values based on the fundamental relation-
ship (8.7). Temperature is fixed at 1.2K.

r T gl
(10—ll s) (10_11 s)

7.1 16.0 17.5

15.8 5.1 5.5

22.4 3.2 3.3

33.1 1.9 1.9
46.8 1.00 1.08
50.0 0.95 1.01

g(r) tend to cancel each other in the integration of Eq. (8.7).
We may thus take

e2 d
dxp[—ﬁ(?—2+ )]-l s (rf_d)

AR

g(r) =
0 . (r > d) (8.8)

as an approximate expression, to be substituted in Eq. (8.7); the
result for T >> 1 is

2 ﬁe2n3/2 O"1/2,”3/4
== Yt 172
2T

1/2

0.66 wé(l + 1.223071/2y , (8.9)

where o 1.0746.

The theoretical values Q0”1 of the velocity autocorrelation
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TABLE II
Comparison between the measured values of (T ) of the velocity

autocorrelation time and the theoretical values - l) based on a
harmonic-lattice model (8.9).

n T Tc Q_l
108ca™?) 107 ) ot )
0.15 9 9.9 13.1
0.20 11 7.2 10.6
0.51 17 4.8 5.4
1.4 29 2.1 2.7
2.2 36 1.4 1.9

time are computed from Eq. (8.9) for the values of the electron
density studied by Zipfel, Brown and Grimes [1976]; the results

are listed in Table II together with the measured values of Te

We here observe a good correspondence between the two sets of
values. It is also proved that the velocity autocorrelation time

in an electron liquid is in fact intimately related to the harmonic-
oscillator frequency wg.
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GENERALIZED RESPONSE FUNCTION APPROACH TO STRONGLY COUPLED PLASMAS

Kenneth I. Golden

Department of Electrical Engineering, Northeastern
University, Boston, Massachusetts 02115, U.S.A.

I. INTRODUCTION

For nearly a decade, theorists in the area of strongly coupled
plasmas have been in search of approximation schemes for deter-
mining the physical characteristics of the system without recourse
to the_usual perturbation expansion in the plasma parameter Y
(y = k3/4ﬂn, kﬁl is the Debye length) when Y is not small. The
more successful schemes which have emerged from this search can be
classified according to whether they are based on the first
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) kinetic equation or on
the second BBGKY static equation. The former approach, basically a
dynamical one, contemplates the introduction of a weak electric
field perturbation into the equilibrium system. In this approach,
the wave vector- and frequency-dependent dielectric response function
can be considered to be the central object and one arrives at an
expression for it by combining the first BBGKY kinetic equation with
one or more fluctuation-dissipation theorems (FDTs). This method
has been pursued in different ways by Singwi et al (STLS) [Singwi
Tosi, Land and Sjolander, 1968; Singwi, Sjolander, Tosi and Land,
1969, 1970; Vashishta and Singwi, 1973] and by Golden, Kalman and
Silevitch (GKS) [1974]. The latter approach, basically a static
one, does not contemplate the introduction of a weak field pertur-
bation into the plasma. Here the system is always in a state of
equilibrium and the central object is the equilibrium pair corre-
lation function. In this method, one starts from the second BBGKY
static equation relating the pair and triplet correlation functions.
Self consistency is then guaranteed by assuming that the triplet
correlation can be decomposed into clusters of the pair correlation
functions. This is the method pursued by Totsuji and Ichimaru (TI)
[1973, 1974].

225
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While the relative merits and defects of all the above listed
approaches have already been discussed in Gabor Kalman's lectures,
it should nevertheless be stated that these approximation schemes
have achieved important results: The equilibrium pair correlation
function has been calculated by numerically solving integral equa-
tions which result from the theory; equations of state have been
computed; conditions for phase transition have been cited; and the
theories have been refined to the point that original inconsistencies
concerning the satisfaction of sum-rule requirements can be reduced
or removed.

In our approach to the problem of the strongly coupled one-
component plasma (ocp), we follow a philosophy similar to that of
Singwi and his colleagues. The main feature of the STLS method is
that the linear dielectric function is calculated by combining the
first BBGKY kinetic equation with the linear FDT relating the static
polarizability and equilibrium pair correlation function. Self
consistency is then guaranteed by supposing that the correlational
part of the two-particle distribution function, G(12), involves only
the equilibrium pair correlation function. This is the essence of
the STLS approximation; their scheme ignores the equally important
proper nonequilibrium part of G(12). Unlike Singwi et al, we do
take account of the proper nonequilibrium part of G(12) and we do
it in a way which avoids the use of the unwieldly second BBGKY
kinetic equation. This approach is made possible by introducing
into the approximation scheme a relatively new element, the dynamical
quadratic FDT derived earlier by us [Golden, Kalman and Silevitch,
1972]. The essence of this nonlinear FDT is that it connects
quadratic polarizability response functions to a single equilibrium
three-point correlation. By further relating the equilibrium
three-point function to G(12), one can formulate the problem in
terms of a self-consistent calculation for the combined set of linear
and quadratic response functions. We shall see (in Chapter 3) that
by invoking the so-called velocity-average-approximation (VAA)
[Golden, Kalman and Silevitch, 1974], i.e., replacement of G(12) by
its velocity average, it is possible to effect the transition from
G(12) language ultimately to equilibrium three-, four-, ... point
correlation function language. The VAA is the main assumption of
the GKS scheme.

The ingredients of the GKS scheme are then the following:
(i) wuse of the VAA to convert G(12) on the right-hand-side
of the first BBGKY kinetic equation into a nonequilibrium
two-point (density-density) correlation function;
(ii) development of first and second order perturbation
expansions (in the perturbing external field E) of the
VAA kinetic equation;
(iii) establishment of the relationships between the non-
equilibrium two-point functions and equilibrium three-
and four-point functions by use of statistical mechanical
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perturbation theory;

(iv) 1linking the three- and four-point functions through
equilibrium nonlinear FDTs with the quadratic and cubic
polarizabilities; and

(v) @guaranteeing self-consistency by an appropriate de-
composition of the cubic polarizability in terms
of the linear and quadratic polarizabilities. The choice
of the cubic response function should be made in such a
way that the linear and quadratic functions satisfy
known long and short wavelength requirements.

In these lectures, both the static (w=0: Chapters II-VII) and
dynamical (w#0: Chapters IX, X) GKS theories are presented. The
plan of these lectures can now be sketched as follows: 1In Chapter
II, the relevant polarizability response functions are defined and
relations between the external (responding to an external field)
and internal (responding to a total field) polarizabilities are
derived. 1In Chapter III, we introduce the velocity-average—-approxi-
mation and formulate the VAA kinetic equation. In Chapters IV and
V, we calculate the average density response and derive the first
two equations in the static GKS hierarchy of coupled polarizability
equations. These polarizability equations are then analyzed in
the long wavelength limit in Chapter VI. 1In Chapter VII, we cite
short wavelength requirements and in VIII, the GKS pair correlation
function is examined in the weak coupling limit. In Chapter IX, we
derive an expression for the GKS wave vector- and frequency-dependent
dielectric response function and analyze its high frequency behavior
in Chapter X. Summary and conclusions are in Chapter XI.

ITI. ELECTRODYNAMIC RESPONSE FUNCTIONS

External and internal polarizabilities are the principal
response functions for the GKS description of the strongly coupled
classical ocp. In the sequel, only the longitudinal projections of
their tensors will be of interest since we contemplate driving the
system (of volume V) only with the weak external longitudinal
electric field E(r t) = —(1/V)Zﬁk¢(k t)exp(lk r), magnetic fields
are considered to be entirely absent.

The induced electric field response E of the plasma particles
to £ is described by the so-called external polarizabilities defined
through the following relations:

D @&, w)

—a(k,w) E(k,w) , (2.1)
1

7 ,w)

l A A A
-~ 5o Z+jmdu a@,u; k-q,u-w) E@,m E&-q,u-w)
o 2 (2.2)
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foo) (oo}
1 > > > >
P @) = - —— M;f duf dv 6(d,u; p,V; K-q-p, W-H-V)
(2mv) o Lo 3
A A A > >
x £(q,) E@,v) E(k-q-p, w-p-v) , (2.3)

where, in an obvious notation, the (n) superscript refers to an nth

order response to the perturbation of strength ED,

The internal polarizabilities, on the other hand, connect E to
the total field E = E + E. They are defined through the following
relations:

—a@®,w) EV @& wy (2.4)
1

D &, w)

> > >
w a(q,u; k-q, w-u)

L 2 D @, D @F,0-m

(2) 7 _
E (k,w) = - VI ZE du (%, 0)
- (2.5)
- a(&),u; 3,\); E’-E—S, W=-u=-v)
3) ¢ __ 1
E (k,w) = 2 Z»Z;deuf dv (&, 0)
(2mv) T Lo
20(q,1; K-q, w-1) a(p,V; K-g-p, W-H-V)
2 2
€(sz) 8(2_33 w-U)

rEP G w eV @y ED @-3-3, v-u-v)”, (2.6

where €(B,0) = 1 + %(K,w) is the wave vector- and frequency-dependent
dielectric response function. Noting from (2.4) that

D @0y = E@0)/e®w) 2.7

one can readily derive from Egs. (2.1) to (2.6) the following useful
relations between the external and internal polarizabilities:

a(k,w)
1

A

(2.8)

= Q>

> > >
a(q,u; k-q, w-u)

A > > > _ 2
Oz‘(q’“‘ k=d, W) = Ty e (@4, o) e®w) (2.9)
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~ > -> > > >
a(q,H; p,V; k-q-p, W-p-v)
3

_ 1
T e®,w) €@, £@B,V) e(®-q-B, w-u-v)

-> > > >
a(q,u; p,V; k-q-p, w-p-v)
3

-> > > -> > > >
2a(q,u; k-q, w-p) a(p,v; k-q-p, w-u-v)
2

P

2
3e (E-EL (L)-U)

> > > -> > > >
20.(p,V; k-p, w-v) o(q,u; k-q-p, w-u-Vv)

-2 2
3e(k-p, w-V)
-> > > > > > >
2a(q,4; p,V) a(q+p, W+v; k-q-p, w-H-V)
2 2

3e(q+p, HHV) (2.10)

It is clear that g, g, g, % must remain invariant under interchange

of any two of their wave vector-frequency arguments; this is
certainly borne out by Eqs. (2.9) and (2.10).

Finally, from Poisson's equation connecting the average density
response n to E,

ik
4Te

(valid to all orders in £), one obtains from (2.1) and (2.2) the
relations

a(K,w) = - E(k,w) (2.11)

P @w =2 a@w B@w (2.12)
1
2) > ik 1 m A > > > A > A >
n( )(k,w) = %me 2V Z;J du o(q,d; k-q, w-p) E(q,u) E(k-q, w-y),
2

- (2.13)
which will be useful later on. In writing Eq. (2.11), we have adopted
the electron liquid (ni et Z;=0) as our ocp model for these lec-
tures. It is, of course, understood that the GKS theory will equally
well describe the behavior of the polarizability response functions
for the inverted plasma ocp model.

ITI. VELOCITY AVERAGED KINETIC EQUATION

Following the procedure outlined in the Introduction, one can
calculate the linear dielectric response function and higher order
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polarizabilities from successive perturbation expansions (in E) of
the first BBGKY kinetic equation. This equation must, however, be
suitably prepared for such an undertaking first by converting it
into its velocity averaged form. This we do in the present Chapter.

We begin by writing the general first BBGKY equation

3 , > 3  e=x>> ) -
[a—t + v - T S E(x,t) - W] F(x,v; t)

-1 jd-”f &2 jd3 DR(% - 2D GG 2 9

for the classigal electron liquid in the presence of the weak per-
turbing field E and with magnetic fields assumed to be entirely
absent; F and G are one- and two-particle distribution functions
(normalized to N and N(N-1), N being the total number of electrons)
and K(|§;§'|)=(3/3§)(e2/|§L§1|) is the interaction force between the
field particle (at x) and a typical source particle (at X').

In order to be able to express the right-hand-side of (3.1) in
terms of nonequilibrium two-point functions (binary correlations of
microscopic charge densities), we assume that G is equal to its
velocity average, i.e.,

> > > >
G(x,v; x',v'; t)

WDIEGT: t) [d%vc;(;,sn; T 0

+EGE,Y; t)Jd3x7"c;(§,3; L9 01, (3.2)

where f(§.3} t) = F(;;gé t)/n(X,t), fd33.f(§;3} t) = 1. This is

the so-called VAA and is the main assumption of the GKS scheme. The
resulting double velocity space integral term f32;3§ t) [a3¥ fa3e"

X G(X,V'; X',V"; t) which replaces fd33"G(§;3} x',v'; t) in (3.1)
can then, in turn, be expressed in terms of the nonequilibrium
density-density correlation function, <n(x)n(x')>(t), in virtue of
the relation

3> 3> > > > > > > > > >
Jd de v'G(x,v; x',v'; t) = <n(x)n(x")>(t) - §(x - x")n(x,t) ,
N (3.3)
nx = ) 8(x-x,)
i=1 +

This follows from the definitions of G and <nn>, i.e.,
N
G, V.5 %93 t) =N - 1) 1 (a2 Sac,y
1’71 2272 i=3 i i
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N
<aa@nx")>(t) = T Jd3x Jd v,ar, nG)n(x')
i=1

where Q(I',t) is the nonequilibrium Liouville distribution function
(normalized to unity) at time t and at the phase point I defined to
be the extremity of a position vector in the phase space spanned by
the 6N position and velocity coordinates of the electrons. Then
upon combining Eqs. (3.1) to (3.3) and taking the Fourier transform
of the result, one obtains

R 3 > > >
i(w-k-v) F(k,v 5o an B rleodvs e
-imkev) Flvs 0) - g Io) du B 57
—00
% 9E(p,V; V)
= Z*Q¢(q) . Z*] dv <np > on >(W-V) ——=——
21v%m P_w p-q 4 3
(3.4)
N Rading 2 2
where nx = ] exp(-iq-x), ¢(q) = 4me”/q”.
i=1

The VAA kinetic equation (3.4) is valid to all orders in E In the
sequel, we shall suppose that the classical electron liquid is
initially in a state of equ111br1um characterized by the Maxwelllan
distribution F°(v) = n(mB/2m) 3/2 exp (- Bmv2/2), where n = N/V and B~1

is the temperature in energy units. The introduction of the external
perturbation E will then perturb F°(v) by amount F, i.e.

F(K,v; W) 21V628 () F° (v) + TR,V W), (3.5a)

£(k,v; w)

I

21V828 (w) (1/n) F(v) + E(kK,vs @) . (3.5b)
Finally, if one contemplates only static driving fields, i.e.,
N >

E(@,w) = 2m8() E@ (3.6)

where E{q) = E(E;t=0), Eq. (3.4) becomes (in view of (3.5a,b)

iR - TF@E,Y £=0) - (e/m) B - 9fa—§’l
5, OF(k-q,v; t=0)
- (e/mv) Zc‘l’E(q) T

= (4 T . 9F° () > > =

= (/W) 2g9()q * g <ng gng” (£70) (3.7)
2 N of (B,V; t=0)

+ (i/mv°%) Za¢(q)q . Z;-—————Ear———— <nﬁlg;;n3>(t=o)
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again valid to all orders in E.

IV. STATIC DENSITY RESPONSE

We turn now to the calculation of the first and second order
average density responses to the static perturbation (3.6). From
Eq. (3.7), N N

o
=) ;7 = A—>k°aF(V)/3V
F (k,v) = -(ie/mk) E(k) T 7

oF° v
+ (1/Nm) e . I> §(q) <> -’n-*>(l)( =0 4.1
TR v e Y@ gng> (=0 (4D

=) > > . > D @, /00
F'*/ (k,v) = -(ie/mV) Z;E(k-q) T - v

o7 (@, /o7
+ (1/mNV) z&» T

. D > > ->(1) =
2P0 (p)<mp = on> (£=0)

L AF°(v)/3v
- (1/m%) Z&m(l)(q) —

. > > 1) =
pr¢(p)<n§_q_Pnp> (t=0)
AF° (v) /3% . @
+ U/oN) — Z‘&Q¢(Q)<n‘i_qnq> (t=0) , (4.2)

— — >
where F(k,v; t=0) = zs>lF(S)(E,v) ,

n(k,t=0) = ZS>1D(S) (_12) ’

with O(ﬁs) smallness implied by the (s) superscript. Similarly, the
<...>(8) brackets denote averaging with respect to the sth order
perturbed ensemble.

Now, the nonequilibrium two-point functions are linked to
equilibrium three- and four-point functions: from statistical
mechanical perturbation theoretic calculations (Appendix A), we
obtain

iBe
Vk

ﬁ(k)<ni_anan_—>> GO (4.3)

<"i§-3n3>(1) (£=0) = K
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Bze2 5> 1 _)
oy2 P PIK - B

2)
<n> -“n>> t=0) = -
A (t=0)

(0)
- 8 E(k-p)<n -n> »n> -n>> (4.4)
) E(k-p) PR -iR-gmg 8
where the <.. >(0) brackets denote averaging with respect to the
unperturbed ensemble.

Upon combining Eqs. (4.1) and (4.3) on the one hand, and Egs.
(4.1) to (4.4) on the other, and integrating the results over velo-
city space, one ultimately obtains the density responses

& B-q
e - E - OLO > = 5> (0)
) = e %) B [1 2 2q 2 npomen_ > ] ,
(4.5)
" do - %% 2P @ 2P de-w)
org (k) > > > oA A >
+ 411Tke '_‘—02 % %5(q,k-q) E(q) E(k-q)
N 2
&(q) .32
- p
X > > > > (0)
ag (@) Z o2 “Pk-q-p"p a-k
. C;(k—q) ; kK-p e o (©)
A% UR=dl) ¥ 2 Tapp-q
B3 o
- - <n_ana>_ —)nk- —)n—)> , (4 . 6)

2 3 > >
where 0 (k) = 4TBne? /k and o(q,k—q) 2miB"ne” /kq|k-q| are the
static linear and quadratic Vlasov polarizabilities.
V. POLARIZABILITY RESPONSE FUNCTIONS

The static versions of Eqs. (2.12) and (2.13) are, in virtue
of (3.6),

2Py - E 50 Ba (5.1)
4re 4

n D) - LT AEED @ BaD (5.2)
Te q#z
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where we have adopted the more compact notation

11l

A - A A > > >
ak) = 4k,w=10) , a(qd,k-q)
1

> > >
a(q,u = 0; k-q,w-p = 0)
1

2 2

Then from Eqs. (4.5), (4.6), (5.1) and (5.2), one readily obtains
the polarizability relations

0, K- 3 ©)
a(k) = 1 - 7 5 <n§;+n9n_?> . (5.3)
1 N B p PPk
a"(q,k-q) =a(@ ak-q)
2 1 1
(k) k-p
o P
+ =2 a@ <n> > omon> >0
e p2 k-q-p p q-k
> -
k -p
+ a(k—a) z 3 <n>_-non_>> (0)
1 i o q-P P -9
> >
- y k_.__r_). <n -n—> -> —>n—>>(0) (5 4)
g PZ ~q"q-K"k-p"'p ’ )

where A(K) = d(k)/o, k), a(d,k-q) =1d(q,k-9) /o, (q,k-q), a"=1Im a.
1 1 2 2 2 2 2
Anticipating the use of fluctuation-dissipation theorems (FDTs) to

replace the right-hand-side equilibrium three- and four-point

functions in (5.3) and (5.4) by polarizabilities, we next expand
these correlation functions as follows:

For Eq. (5.3) with k # 0,

0) .
k-ppl-k K +oSng ool ;
> > >
Psk-P#O

(5.5)

<z mom >0 - N> + 52 <nom (0
P - P k-p” "k -

> > > >
for Eq. (30) with q,k-q,k#0,

0) (0)
<n> > “pon> > = N(§> + 6> = »)<n> “n> >
"k-q-p"'p q-k ¢ k-q-p) Tk-a"q-k

+ <n> > “n“n> ">(0)
k—q—ppq—k_)++_> ’

p,k-q-p#0 (5.6)
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<n~> -n-n ->>(0) = N((S'* + &> *)<n-m —>>(0) + <n™> "n"n —>>(0)

q-P P —9q P q-p q -q q9=P P -9 , |
P»q-p#0
(5.7)
(0) 0)
<n_om> on> on>> "’ = N(62 + 8 *)<n_-m> “n>>
"-q"q-K"k-p'p (O * k) PPk
0) 0)
+ (8> > > 4+ §> »<n ->n+>( <n~ “n> »
¢ k-q-p q- p) -9 q q-k k-q
+ <n_-n> -n> o> (O
-q q_k k_p E) > >
P#O,E),q,ﬁ“q (5-8)
Note that in (5.8), we have assumed the decomposition
<n —->n—>n-> n-> ->>(0) = <n -)n—>>(0)<n—> -n-> —>>(0) (5.9)

-q q q-k k-q -qq g-k k-q

The replacement of the two-, three-, and four-point equal-time
correlations in (5.5) to (5.8) by external polarizability functions
is then effected by use of the classical static FDT relations
[Golden, Kalman and Silevitch, 1972]

<ni:n_->>(o)’ - N® (5.10)
%40 1
( ) _ /\" -> -)_—)
<n> -»>n->n ->> = Na"(q,k-q) , (5.11)
k-q q k 2
4, k-q,k#0
(4} )| Ny D> > > >
<n >N~ >n> >N>> = N -k,k-q, ’ 5.12
n_q P e g(P q,9) ( )
Q9k-q#0
p*o _).93 R)-a
where
a(3-k,k-3,9) = a(3-k,k-4,d) /0, (3-K,k-4,9)
3 3 3
and > > > > > > (5.13)

2o, (k-p,p) o,(k-q,q)
> o > 21T83ne4 _ 20 20

go(p—k,k—q,q) = T 3ap[p-R[|%-q] 3, (K)

is the Vlasov value of the static cubic polarizability.

Finally, one makes the transition from external to internal
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polarizability response functions by means of the static relations
(cf. Egqs. (2.8) to (2.10)):

a(k)
2 =1
i(k) = E(k) ’ (5'14)
a(q,k-q)
S T 2
;(q,k'Q) = €(q) E(lK—_&I) €(k) ) (5.15)
aGRELD - ; 2 G-&, k-4,
3 e(T&-3D) e(J&-gD) e(®) €@ |5+
0 (k) > > > > >
- a@5.9) a4,
0"O(II_z-;I-f;l) (l—z > > —>) (l-z > > —>)
- a(k-p—-q,q) a(k-q-p,p
e(I&-4-3D) , 2
0LO(IEI-;I) (—> =3 —>) (—> > +)] (5.16)
- a(q-p,k—-q) a(q-p,p s .
(138D , 2
where  a(k) = a(K,w=0)/ao(k) ,
1 1

a (E; ﬁ_g) =io (E: 0; ﬁ-a, 0) /ao (3, ]_z"—q*) >
2 2 2

a (B-K, K‘E: a) = a (;"E9 0: g"_{, 0 H 3’ 0) /ao (;—Ky E—E, EI) >
3 3 3

and e(k) = e®,w=0) = 1 + a(k,0)
1

From Eqs. (5.3) to (5.16), one then obtains the coupled internal
polarizability equations

a(k) =1 + v(k) (5.17)
1
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AL > > > k - a K ° (_12‘_'5)
a"(q,k-q) = a(li—ql) S — a(q)
2 k k 1
- 2(&-4,9) - 2(q,k-9) + w(k-q,q) (5.18)
where . .
a. (k) k*p N
v(k) = - ON I a"(®,k-p) (5.19)
p#0,% pZe(p) e(|k-p]) 2
TS o, (k) K-p o, (Ik-a-8 )
z2lk=4q,4q) = = > > > —d-D
N 340,%,3,8-9 pPe(p) e(|¥-p]) e(Ik-4-p1)
X a"(k-p-4,q) a"(k-a-p,p)  » (5.20)
2 2
> > > OLO(k) l_z : 1_;
w(k-q,q) = - N . 3

3#0,K,q,k-q pe(p) e(|k-p|)

X a(p-kK,k-q,q) . (5.21)

Egs. (5.17) and (5.18) are the principal equations in a hierarchy of
static internal polarizability equations. We remind the reader that
this hlerarchy is generated from successive perturbation expansions
(in static E) of the parent VAA first BBGKY kinetic equation coupled
with the hierarchy of static FDTs. In particular, Eq. (5.17) is
identical to the second BBGKY static equation

8 L
ng(k) = - 52— {1+ 3] —— [g(|E-p]) + nh(p,E-P 1} ,
k™ + P P
kn (5.22)
kg = 41T6ne2 ,

relating the pair and triplet correlation functions g and h. To see
this, one need only apply to (5.17) the linear and quadratic FDTs

S(k) = 1 + ng(k) = a(k) , (5.23)
1 (5.24)
S(p,k-p) = 1 + ng(k) + ng(p) + ng(|k-p|) + nzh(3,2-3)==;"(3,ﬁ-3),
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> > >
(written also in terms of the structure factors S(k) and S(p,k-p)
and) readily derived from (5.10) and (5.11). Evidently, the VAA
is exact at the level of the first GKS static polarizability
equation (5.17) [Kalman, Datta and Golden, 1975].

While Eq. (5.18) manifestly satisfies the a¥+§;a interchange
symmetry requirement, it nevertheless fails to satisfy the triangle
symmetry requirement (cf. Eq. (5.11))

- > > > > >
a(_q),ﬁ-q) = a(-k,k-q) = a(q,-k) . (5.25)
2 2 2

This defect is apparently due to the VAA and is rectified simply by
replacing (5.18) by its symmetrized version

"—)',K_-):]_ ﬁ. q > >
a'"(q q) =(1/3) Q(lz 12> a(lk_ql)

__._+__.
2 1

> >

- z2(k-4,q) - z(q,k-q) - z(-k,q) - z(q,~k)

> > > > >
k-

- z(k-q,-k) - z(-k,k-q) + w(k-4,q) + w(-Kk,q)

+ w(k-q,-K) ) (5.26)

The question then arises: If upon applying to (5.26) the FDT
relations (5.23), (5.24) and (cf. Eq. (5.12)),

> > > > > > > > > > >
S(q-k,k-p,p) = 1 + n[g(|k-q|) + g(|k-p|) + g(p) + g(|p-q])
2
+ g(|k-9-p|) + g(q) + g(k)1 + n“[h(q-Kk,Kk-p)
+ h(3-k,p) + h(k-p,p) + h(q-K,¥)
> > > > o>
+ h(k-p,p+a-k) + h(p,q-p)]
> > >

3. > > AN > > > > >
+n 1(q-'k,k"P,P) = a(q-k,k'P,P) > (5.27)
3
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will the resulting equation be identical to the third BBGKY static
equation involving the quartic correlation function i? This question,
as yet unanswered, amounts to asking if the VAA is still exact at the
level of the second GKS static polarizability equation (5.26).

Egs. (5.17) and (5.26) are a pair of coupled nonlinear sum-
mational equations featuring ?, 3, and € as unknowns. Self-consis-
tency is guaranteed by an appropriate décomposition of a entirely
in terms of 2 and 2. Thus there remains the problem of3choo