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PREFACE

A NATO Advanced Research Workshop on Strongly Coupled Plasma Physics
was held on the Santa Cruz Campus of the University of California, from
August 4 through August 9, 1986. It was attended by 80 participants from

13 countries, 45 of whom were invited speakers. The present volume
contains the texts of the invited talks and many of the contributed
papers. The relative length of each text is roughly proportional to the

length of the workshop presentation.

The aim of the workshop was to bring together leading researchers from
a number of related disciplines in which strong Coulomb interactions play
a dominant role. Compared to the 1977 meeting in Orleans-la-Source,
France and the 1982 meeting in Les-Houches, France, it is apparent that
the field of strongly coupled plasmas has expanded greatly and has become
a very significant field of physics with a wide range of applications.

This workshop had a far greater participation of experimental
researchers than did the previous two, and some confrontations of real
experiments with theoretical calculations occurred. In the two earlier
meetings the theoretical presentations were dominated by numerical
simulations of static and dynamic properties of various strongly coupled
plasmas. The dearth of experiments in the 1970’s is now replaced by some
very good experimental efforts. At the University of California San Diego
a device for magnetically confining electrons cryogenically has made it
possible to produce stable strongly coupled electron plasmas that are
essentially the same as the one component classical plasma (OCP) that has
been so extensively studied with computer simulations. Similarly the
group at the National Bureau of Standards in Boulder, Colorado, have
developed a successful arrangement for cryogenically trapping heavy ions
to a coupling constant as high as I' = 100. They anticipate seeing the
fluid-solid phase transition predicted by simulation studies. These
experiments give the promise in the next few years of observing in a
laboratory strongly coupled Coulombic effects that are normally found in
extremely high density astrophysical objects such as white dwarf stars and
neutron stars.

Other experimental groups from West Germany, Yugoslavia, France, and
the United States reported on recent work on liquid metals in the vicinity
of the critical point, electrical conductivity at intermediate coupling,
light absorption in cesium plasmas, and high compression measurements on
liquid metals. Some of these experimental results could be directly
compared with earlier theoretical calculations, and have already provided
theorists with suggestions for important future work.

The theoretical calculations continue to include computer simulations
of thermodynamic and transport properties from groups in Japan, France,
and the United States. It is important to note that "numerical



experiments" have led to a much better understanding of how to calculate
the fluid state properties of dense plasmas from liquid-state-integral
equations which require only a small fraction of the computer time needed
for numerical simulation. The Japanese and the U.S. groups reported on
successful use of coupled sets of hypernetted chain equations (HNC) that
can largely reproduce most of the known numerical simulation results, and
which have been extended to deal with electron screening and partial
ionization.

The density functional theory has emerged as a powerful theoretical
method for dealing with most strongly coupled plasma problems.
Significant applications were reported for a first principles calculation
of the fluid-solid phase transition, treatment of high Z ions in
laboratory dense plasmas, and to a general treatment of quantum effects.

Just as with the two earlier meetings, strongly coupled plasmas in
astrophysics was an important topic with results reported for white dwarf
star interiors, Jovian planetary interiors, transport properties of dense
stellar interiors, and plasma effects on neutrino emission.

As directors of the workshop, we would 1like to thank the North
Atlantic Treaty Organization for its generous sponsorship of the
workshop. We also wish to thank the National Science Foundation (U.S.A.)
and the Lawrence Livermore National Laboratory (U.S.A.) for their
supplementary sponsorship.

Special thanks are due to many individuals who assisted in various
aspects of the organization of the workshop and the preparation of this
volume:

) to the International Organizing Committee, (J.-P. Hansen,
S. Ichimaru, G. Kalman and H. Van Horn) for suggesting subjects
and speakers;

° to D. B. Boercker, B. G. Wilson and J. K. Nash for help with
local arrangements;

° to H. C. Graboske for making Lawrence Livermore National
Laboratory staff and facilities available;

. to Nancy Willard and Judy Gomez for help with the extensive
correspondence and recordkeeping associated with organizing and
advertizing the workshop and especially for making the workshop
itself function so smoothly; and

. to Donna McWilliams for overseeing and carrying out the difficult
task of typing and retyping many of the manuscripts in this
volume.

F. J. Rogers
H. E. Dewitt
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CHAPTER 1

CLASSICAL STRONG COUPLING



THERMODYNAMIC FUNCTIONS, TRANSPORT COEFFICIENTS

AND DYNAMIC CORRELATIONS IN DENSE PLASMAS

Setsuo Ichimaru, Hiroshi Iyetomi and Shigenori Tanaka

Department of Physics
University of Tokyo
Bunkyo, Tokyo 113, Japan

I. INTRODUCTION

Since one of the present authors wrote a previous review on strongly
coupled plasmas [Ichimaru, 1982], remarkable progress has been achieved in
the field of statistical physics of dense plasmas. It is the purpose of
this article to present a coherent review on the recent progress in our
understanding of the thermodynamic properties, transport coefficients and
dynamic correlations in dense plasmas and related plasmalike materials.
This paper takes a form of an extended abstract on those various topics in
dense plasma physics; a detailed account of the review will be published
elsewhere [Ichimaru, Iyetomi and Tanaka, 1987].

II. PARAMETERS OF DENSE PLASMAS

We begin by introducing several of dimensionless parameters character-
izing the dense plasmas; those will facilitate classifying the physical
problems involved in each case of the plasma under consideration. Let us
for the moment assume a plasma consisting of a species of ions (with the
electric charge Ze, the mass M and the number density nj) and the electrons
(with the electric charge -e, the mass m and the number density neg = Zny),
a system referred to as a two-component plasma (TCP). The one-component
plasma (OCP), on the other hand, consists of a single species of charged
particles embedded in a uniform background of neutralizing charges.

For the ion system, the Wigner-Seitz radius or the ion-sphere radius,
defined as

a = (3/tmny) /3 , (1)
measures the average distance between neighboring ions. A comparison between

the ion-sphere radius and the thermal de Broglie wavelength yields

n,
a = T 2 105 al/2(— i -1/3(_L_,1/2

ﬁ(MkBT)'1 107 cm 106K




o -
~ 12(5%)5/6( - m 3) 1/3
10~ g/cm

T

107K

1/2

( ) (2)

where T is the temperature and k_(= 1.3807 x 10716 erg/deg) denotes the
Boltzmann constant. In Eq. (2) as well as in analogous expressions occurring
later, we use the mass number A and the mass density Pp = Mnj of the ions,
for convenience in application to examples of real plasmas. When a >>
h(MkBT)_1 2, one may ignore the wave nature of the ions and treat them as

a system of particles obeying the classical dynamics and statistics.

The Coulomb coupling constant of such a classical ion system is defined
as [Baus and Hansen, 1980; Ichimaru, 1982]

2 n
(ze)S . . -b 2 i 1/3, T -1
T = 210 z°( ) ( )
akpT 10t o3 10%%
Y
z - -
= 3602 ()™ 32— 3o (3)
10" g/cm 10K

A weakly coupled plasma corresponds to the case with I' << 1, where the
Coulomb interaction can be treated perturbation-theoretically. A strongly
coupled plasma refers to the case with I' > 1, where a perturbation theory
is no longer valid and the system begins to exhibit features qualitatively
different from those in a weakly coupled plasma. The statistical physics
of dense plasmas involves the charged liquid (or solid) problems where the
strong Coulomb-coupling effects play a major part.

A typical dimensionless parameter characterizing the system of electrons
is [ Pines and Noziéres, 1966]

. :(3)1/311_193:( Re =173
s 4mn 52 1.6 x 102" en3

(4)

It is the Wigner-Seitz radius of the electrons in units of the Bohr radius
and depends only on the electron density. The Fermi energy of the electrons
is then given by
4y -2.1/2
r_ "]
s

E =mc2{[1+1.96x10' -1} (5)

F

with inclusion of the relativistic effect. The electrons can be treated
nonrelativistically in the low-density regime such that rg >> 107°.

The degree of the Fermi degeneracy is described by the parameter,

k T r
_ B .. k.2/3 5/3 s
o = —EF‘ = 2(%) VA T . (6)

In the final expression of Eq. (6), rg >> 10_2 has been assumed. When

® << 1, the electrons are in the state of complete Fermi degeneracy; 6 = 1
corresponds to a state of intermediate degeneracy; when 6 >> 1, we may
regard the system of electrons as in the nondegenerate, classical state.

The Coulomb coupling constant of the completely degenerate electrons is given
by ry of Eq. (4), rather than by T of Eq. (3). A remarkable feature in



dense-plasma problems is involvement of the varied degrees of Fermi
degeneracy in the treatment of the electrons.

The condition that the atomic nuclei are all stripped of their orbital
electrons may be derived roughly from the requirement that the Fermi egergy
be greater than the binding energy of an orbital electron, E_ > 13.6 z°[ev],
that is

o, > 0.38 Az? [g/cm3] . (7)

When this condition is not satisfied, the atomic nuclei may retain some of
the orbital electrons.

Although Eq. (7) is known to provide qualitatively a correct criterion
for the pressure ionization, its quantitative accuracy remains to be ascer-
tained. It is in fact related directly to those frontal problems in
condensed-matter physics such as the metal-insulator transition and the
localization of electrons in random fields. Those involve strong interplay
between atomic physics and statistical physics in dense plasmalike materials.

III. DENSE PLASMAS IN NATURE

The neutron star [Shapiro and Teukolsky, 1983], one of the final stages
of the stellar evolution, is a highly condensed material corresponding
approximately to a compression of a solar mass ( = 2 X 103 g) into a radius
of ~10km. According to theoretical model calculations, it has a crust with
a thickness of several hundred meters and a mass density in the range of
104 - 107 g/cm3, consisting mostly of iron. The condition that O, >10
g/cm3 corresponds to Eq. (7), so that we may assuge each iron atom contri-
buting 26 conduction electrons. When T = 107 - 10°K, the ratio (2) takes on
a magnitude greater than 20, so that we may regard the iron nuclei as forming
a classical ion system. The I' value varies in the range of 10 - 103. It
is thus an essential problem to analyze the phase properties of the system,
with inclusion of the possibilities of Wigner crystallization [Slattery,
Doolen and DeWitt, 1980 and 1982 ] and the glass transition [ Ichimaru, Iyetomi,
Mitake and Itoh, 1983; Ichimaru and Tanaka, 1986].

The electron system, with the rg value ranging 1072 - 10'1, satisfies
the condition for the complete Fermi degeneracy. At rg = 10"2, the Fermi
energy Ep = mc? (< 0.5 MeV) is much greater than the typical value mZeeu/
2R? ( 2 9 keV) of the electron-ion interaction energy. Hence, the Coulomb
field associated with the iron nucleus does not significantly disturb the
distribution of the conduction electrons; the polarization (screening) effect
of the electrons can thus be ignored. Consequently, the system of electrons
acts as a uniform background of negative charges neutralizing the average
space charge of the positive ions. It is in this sense that we may treat
the outer crustal matter of a neutron star as an OCP of iron. The state of
matter and the transport properties in the outer crust are considered to
form those physical elements which crucially control the cooling rate of a
neutron star [Gudmundsson, Pethick and Epstein, 1982].

The interior of a white dwarf [ Shapiro and Teukolsky, 1983], another final
stage of stellar evolution, consists of dense material with pj and T compara-
ble to those of the neutron-star crust. In connection with the supernova
explosion, one may extend the range of the parameters and consider the cases
up to pp = 1010 g/cm3. For the progenitor of the type I supernova, one often
assumes a white dwarf with interior consisting of carbon-oxygen mixture, a
kind of the binary-ionic mixture (BIM). Physical problems in BIM include
assessment of the possibilities of phase separation and formation of eutectic
alloys lStevenson, 1980]; those are related to the cooling rate [ Mochkovitch,



1983] and a detailed mechanism of the supernova explosion [Canal, Isern and
Labay, 1982; Isern, Labay and Canal, 1984].

The material inside a Jovian planet offers an important subject of
study in the dense plasma physics [Stevenson, 1982]. Here one considers a
hydrogenic plasma with a few percent admixture of helium at Ppp = 1 - 10 g/cm3
and T = 10” K. It is thus a strongly coupled plasma with mixed ionic
species at I = 20 - 50 and rg = 0.6 - 1. The electron density of Jovian
interior being smaller substantially than that of a white dwarf, new electro-
nic problems emerge in the treatment of dense Jovian matter, such as the
polarization (and screening) effect of the electrons and a possibility of
electrons forming bound states with the helium nuclei. Jupiter, for example,
is known to emit radiation energy in the infrared range, 2 - 3 times as much
as that which it receives from the sun [Hubbard, 1980 ]. To account for the
source of this excess energy as well as the internal structure of a Jovian
planet, thermodynamic and transport properties of dense Jovian matter need
to be clarified.

The interiors of main sequence stars such as the sun are plasmas consti-
tuting mostly of the hydrogen. The central part of the sun has the pressure
of approximately 105 Mbar and the temperature of approximately 107 K. Since
' ©0.05,8 = 4 and rg = 0.4, the plasma may not be said strictly in the
strongly coupled state; the polarization and quantum effects of the electrons
play significant parts in determining the plasma properties, however. The
dense plasma effects are crucial also to the analyses of atomic states for
those "impurities" starting with helium. In the calculation of miscibilities
for high-Z elements such as iron, the strong coupling effects need to be
carefully taken into account [ Alder, Pollock and Hansen, 1980; Iyetomi and
Ichimaru, 1986Db].

The states of those plasmas aimed at in the inertial confinement fusion
(ICF) researches [ Brueckner and Jorna, 1974] are similar to those in the
solar interior mentioned above. The projected temperatures in the ICF
plasmas need to be on the order of 10° K, so that the I' values of the "fuel"
material (isotopes of the hydrogen) may remain smaller than unity. Those
materials which drive implosion of the fuel, however, consist of high-2Z
elements, such as C, Al, Fe, Au, Pb ***, which after ionization form plasmas
with ' > 1. Atomic physics of those high-Z elements is influenced strongly
by the correlated behaviors of charged particles in dense plasmas.

The conduction electrons in metals and in liquid metals form strongly
coupled, quantum plasmas, where the wave nature of the electrons as fermions
plays an essential part. The metallic electrons at room temperatures have
rg = 2 - 6, and may be regarded as in a state of complete Fermi degeneracy
(6 << 1). Owing to the presence of the core electrons, the ion-ion and
electron-ion interactions are described by the pseudopotentials, deviating
away from the pure Coulombic form. The strong coupling effect between the
conduction electrons has a strong influence in the determination of those
pseudopotentials [Singwi and Tosi, 1981 1.

Some of the strongly coupled plasmas in the laboratory setting have
the spatial degrees of freedom in the particle motion less than three. For
example, those electrons (or holes) trapped in the surface states of liquid
helium [Grimes, 1978; Ando, Fowler and Stern, 1982 ] or in the interfaces of
the metal-oxide-semiconductor system [Ando, Fowler and Stern, 1982] form a
pseudo-two-dimensional system. The electrons on the liquid-helium surface
are characterized bv the densities and temperatures in the ranges of 10
-2 x 109 em™2 and 0.1 -1 K; they thus form a classical two-dimensional OCP.
Grimes and Adams [1979] found a crystallization of such a system at
(mn)1/2 e2/kgT = 137,



In addition to those two-dimensional systems mentioned above, there
exists a second class of strongly coupled charged systems in two dimensions,
where the "particles" interact via a logarithmic potential in the x-y plane.
This system corresponds physically to a collection of line charges in the
z direction and has been adopted as an approximate model to those electrons
in strong magnetic field.

Important examples of the three-dimensional strongly coupled plasmas
in the laboratory include those plasmas produced in the shock tubes [Fortov,
1982] and the pure electron [Malmberg and 0'Neil, 1977; Driscoll and Malmberg,
1983] or ion [Bollinger and Wineland, 1984], Penning trapped plasmas at
cryogenic temperatures (1072 - 100 K). The latter plasmas rotate around
the magnetic axis due in part to the space-charge field in the radial direc-
tion. 1In the frame corotating with the bulk of the plasma, such a system
of charged particles may be regarded effectively as an OCP. The pure ion
Penning-trapped plasmas have been stably maintained [Bollinger and Wineland,
1984] for many hours at a I' value on the order of 10.

IV. THERMODYNAMIC AND CORRELATIONAL PROPERTIES OF FINITE-TEMPERATURE
ELECTRON LIQUIDS IN THE SINGWI-TOSI-LAND-SJOLANDER APPROXIMATION

The electron liquid is a strongly coupled OCP of the electrons embedded
in a uniform neutralizing background of positive charges. The static corre-
lations in such electron liquids at finite temperatures were studied in the
dielectric formulation mostly with the random-phase approximation (RPA)

[see e.g., Fetter and Walecka, 1971], where the local-field correction (LFC)
[Ichimaru, 1982] is set equal to zero. The properties of the free-electron

polarizability at finite temperatures have been analyzed extensively [Khanna
and Glyde, 1976; Gouedard and Deutsch, 1978; Arista and Brandt, 1984].

The strong exchange and Coulomb coupling effects beyond the RPA may be
taken into account through the static LFC; the static correlations and the
thermodynamic properties are thereby analyzed. On the basis of the Singwi-
Tosi-Land-Sjolander (STLS) [1968 ] approximation, Tanaka, Mitake and Ichimaru
[1985; see also Tanaka and Ichimaru, 1986a] calculated the static correlation
functions and the interaction energies of the finite-temperature electron
liquids for 70 combinations of the density and temperature parameters in the
range of rq < 73.66 and 6 = 0.1, 1 and 5. Tanaka and Ichimaru [1987a] then
used the computed results to construct an analytic expression for the inter-
action energy in the form:

C1 8t _a) + pe)r? 4 corr )
I NI b a2 + eorr
Here
3,2/3 0.75 + 3 ou363e2 -0 09227093 + 1 703509” 1
a(8) = (52) 2121 3. : : tanh(g) (9)

1+ 8.3105192 + 5.110594

represents the Hartree-Fock contribution derived originally by Perrot and
Dharma-wardana [1984],

0.341308 + 12.0708736° + 1.1488898"
1+ 10.4953468° + 1.3266230"

1/2 tanh( 1

b(6) = 9 ) (10)

e1/2 ,



c(8) = [0.872496 + 0.025248 exp(- %)]ew) , (11)
2 4
ace) 0.614925 + 16.9962;56 + 1.4893?69 61/2tanh( 372) . (12)
1+ 10.1093500° + 1.2218408 )
2 4
e(8) = 0.539409 + 2.5222060 + 0.1782846 etanh(%) (13)

1 + 2.5555016° + 0.1463190

In the classical limit (6 >> 1), the ratio c(6)/e(8) approaches
0.897744, the coefficient a in the liquid internal energy formula of Slattery
et al. [1982 ] derived from their Monte Carlo (MC) simulation data. The
formulas (8) - (13) in fact reproduce the hypernetted chain (HNC) values for
T < 1 with digressions of less than 1% and agree with the liquid internal-
energy formula within 0.5% for 1< r < 200 in the classical limit.

The functions b(6), c(6), d(6) and e(6) vanish at © = 0 in such a way
that Eq. (8) becomes a function of ry. The formulas (8) - (13) are therefore
applicable to the electron liquids in the ground state as well, and the
interaction energy (8) agrees with the results of Green's function Monte
Carlo (GFMC) calculations [ Ceperley and Alder, 1980] for rg < 100 within

0.4%.

It has been well known [e.g., Ichimaru, 1982] that the STLS values of
the internal energy exhibit systematic departures from the exact MC or GFMC
values as the Coulomb coupling constant T or Tg increases in the classical
(6 >> 1) or degenerate (6 -+ 0) limit. In the derivation of Egs. (8) - (13),
this feature has been taken into consideration by anticipating similar devi-
ations in the 70 STLS values computed at 6 = 0.1, 1 and 5: Those formulas
reproduce the 70 STLS values so corrected with digressions of less than 0.6%.

The expression for the excess free energy Fgy is then obtained by per-
forming the T integration [e.g., Ichimaru. 1982] of the interaction energy.
Figure 1 compares the values of fgy = F ,/NkpT on the basis of Eq. (8) with
those in other theoretical schemes at 6 = 1. As one would expect, the RPA
values show a trend of systematic underestimation of fex as compared with
the present evaluation; the deviations between those two values become
remarkable for I' > 1 at 6 = 1.

The formula proposed by Richert and Ebeling [1984] results from a Padé-
approximant fitting by the use of only the information obtained from the
GFMC values at & = 0 and an expansion of Debye- Hickel type with quantum
corrections. It fails to account for the exchange effects appropriately in
the weak coupling regime, and thereby predicts the values of fex even lower
than the RPA values over a significant domain of I', as Fig. 1 illustrates.
Since no reliable information was included at 6 = 1 or for ' > 1 at 6 >> 1,
their formula appears applicable only in the domain 6 >> 1 and T << 1.

Pokrant [1977] evaluated fex by a method in which the quantum pair
potential was obtained with the aid of a finite-temperature variational
principle and the correlation functions were calculated in the HNC appro-
ximation. His results appear to contain slight but systematic overestimation
of fex as Fig. 1 illustrates.

V. HYPERNETTED CHAIN ANALYSES OF DENSE PLASMAS

It has been known empirically that the HNC approximation provides an
accurate description of correlations in the classical plasmas [e.g., Ichimaru,



1982]. The HNC internal energy reproduces the exact MC data [ Slattery,
Doolen and DeWitt, 1980-and 1982] within errors of 1% over the whole fluid
region; the HNC scheme correctly accounts for the qualitative features of
the correlation functions in the OCP. This situation presents a sharp cont-
rast to the cases of a short-ranged hard-core system, for example, where the
Percus-Yevick equation is known to be superior to the HNC equation. A

question then arises as to why the HNC equation works so well for the
Coulombic system.

Fig. 1. Excess free energy foy divided by I' calculated in various schemes
at 6 = 1. "PRESENT" refers to the values based on Eq. (8); RPA,
the RPA calculations; RE, the formula by Richert and Ebeling [1984];
"POKPANT", the calculation by Pokrant [1977]. Two horizontal dashed
lines represent the evaluations based on the Hartree-Fock approxi-
mation (fgy = - 0.174T') and the ion-sphere model (fex = - 0.97).

This question has been answered by Iyetomi [1984] through diagrammatic
analyses of the bridge functions, which are the neglected terms in the HNC
approximation. For the long-ranged Coulombic system, it has been recognized
essential to maintain the sequential relations or the charge neutrality
conditions at each stage of the higher—ordeg}correlation functions. The
charge neutrality conditions then guarantee the short-rangedness of the
bridge functions to all orders, and may thereby be interpreted as conditions
ensuring perfect screening in the Coulombic system. It is shown that the
multiparticle correlation functions constructed in the convolution approxi-
mation exactly satisfy the sequential relations and lead to the HNC equation.

Iyetomi and Ichimaru [1986a] have derived free energy formulas appli-
cable to the electron-screened ion plasmas in the HNC approximation. The
formulas, expressed in terms of the correlation functions, enable one to
avoid the more cumbersome and less accurate calculations involving the
thermodynamic integrations.

As an application of the generalized HNC free-energy formula, Iyetomi
and Ichimaru [1986b] then revisited the miscibility problem of iron atoms
in hydrogen plasmas under the solar interior conditions, with a hope of



shedding light on solution to the solar neutrino problem [Alder and Pollock,
1978]. The temperature and the pressure of the solar plasma were assumed to
be in the vicinity of 1.5 x 107 K and 10° Mbar. The relative concentration
of the irons near the thermonuclear burn region was assumed to take on a
value close to the cosmic abundance (2.5 x 10 2 ionic mole fraction).

The calculation [Iyetomi and Ichimaru, 1986b] have been carried out
with special emphasis on the role of the screening effect arising from
semiclassical electrons in the solar interior; such a semiclassical electron
gas acts to screen the ion-ion interaction quite efficiently, and hence
modifies the thermodynamic properties of the plasma substantially. The
calculations thus improve over those of Alder, Pollock and Hansen [1980] in
two ways: (i) a proper account of the electronic polarization through the
static screening function of the electrons, and (ii) a corresponding account
of the exchange and correlation contributions to the thermodynamic functions
for the electron system. Since the electrons are weakly coupled in the
solar interior, the RPA is applicable for the description of the correla-
tional properties of the electrons. The strong coupling effects between
ions are treated accurately in the HNC scheme, as Alder et at. [1980] have
done.

The Gibbs free energy of mixing is expressed as the sum of the electro-
nic, ideal-gas, and excess contributions. Qualitatively, the electronic and
ideal-gas terms favor phase mixing, whereas the excess term promotes phase
demixing. Phase separation of the plasma mixtures takes place as a consequ-
ence of delicate balance between those physically distinct contributions.

Figure 2 shows the phase diagram for the hydrogen-iron mixture calcu-
lated in the present scheme at P = 0.5 X 102 Mbar. The critical point for
demixing takes place at T, = 5.5 X 106 K and Xg = 2.4 x 102, Comparing the
present results with those of Alder et al, we find an increase of T, by 15%
arising from the electronic screening effect. The increase, however, is
not sufficient so as to resolve the solar neutrino dilemma through the idea
of a limited solubility of the iron atoms in the solar interior plasma.
Figure 2 also exhibits the substantial influence of the adopted electronic
equation of state exerted on the phase diagram calculations.

The calculations presented in the preceding paragraphs have been success-
ful because the plasma density in the solar interior is not so high as to
require an improvement over the HNC approximation. In many other examples
of astrophysical dense plasmas, such as the interiors of Jovian planets and
white dwarfs, the relevant density and temperature parameters are such that
it becomes essential to develop a theoretical scheme which significantly
improves over the HNC approximation.

Numerous schemes have been proposed thus far, aiming at such an improve-
ment over the HNC approximation. Particularly notable among them is the
semi-empirical scheme developed by Rosenfeld and Ashcroft [1979] on the
basis of the universality ansatz for the bridge function; they assumed the
OCP bridge function B(r) as given in effect by that of an equivalent hard-
sphere reference system and modified the HNC scheme by adopting the effective
HNC potential

_— 2 -
veff(r) = (ze)/r kBTB(r). (14)

Iyetomi and Ichimaru [1982 and 1983] proposed a scheme of improvement
over the HNC approximation, on the basis of the density-functional analysis
of the multiparticle correlations. It has been noted that the convolution
approximation on which the HNC scheme is based takes accurate account of
the long-range correlations and that the bridge functions, which are
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neglected in the HNC approximation, represent basically a short-range effect.
An approximate expression for B(r), to be substituted in Eq. (14), is thus
obtained in accord with the ion-sphere model by paying a special attention
to the correlations in the short-range domain. The amproved HNC scheme has
reproduced almost exactly the existing MC data [Slattery, Doolen and DeWitt,
1980 and 1982] of the radial distribution function for T < 160.

Fig. 2. Phase diagrams for the Ht - Fe2“+ mixture with the electronic
screening at P = 0.5 x 10° Mbar._ The temperature T in the ordinate
is normalized with Tg = 1.5 x 10' K, the interior temperature of the
sun. The solid and dashed curves are the coexistence and spinodal
curves, interpolated by the spline method with the third order poly-
nomials; the closed circles and triangles represent the calculated
points. The cross refers to the critical point obtained without

the electronic screening by Alder, Pollock, and Hansen [1980].

The chain curve is the coexistence curve calculated by retaining
only the ideal-gas term in the equation of state for the uniform
electron gas.

Solution to the improved HNC scheme has been extended to cover the
supercooled fluid regime up to I' = 1000 [Ichimaru and Tanaka, 1986; Tanaka
and Ichimaru, 1987b]. Figure 3 exhibits the graphs of the radial distri-
bution function calculated in this scheme. We clearly observe splitting of
the second peak and structural developments around the third peak in g(r)
as ' increases to and beyond I' = 500.

Noting that an exact summation of all the bridge diagrams can be carried
out in the density-functional formalism [e.g., Evans, 1979], Iyetomi and
Ichimaru [1987] have derived new formulas for the bridge function with the
aid of a nonlocal density-functional approximation to the direct correlation
function. Consequences of those new formulas in the improvement of the HNC
scheme have thereby been numerically examined.



VI. DYNAMIC THEORY OF THE GLASS TRANSITION IN DENSE CLASSICAL PLASMAS

A new theory of dynamic correlations in a strongly coupled, classical
OCP is developed within the generalized viscoelastic formalism [Ichimaru
and Tanaka, 1986; Tanaka and Ichimaru, 1987b]. Fully convergent kinetic
equations for the strongly coupled OCP are thereby derived with the aid of
a fluctuation-theoretic formulation of the collision integrals [e.g.,
Ichimaru, 1986).

Fig. 3. Radial distribution functions of the supercooled OCP computed in the
improved HNC scheme at various values of T.

The dynamic structure factor S(k,w) and the coefficient n of shear
viscosity are calculated both in the ordinary fluid state and the metastable
supercooled state through a self-consistent solution to the kinetic equation
[Ichimaru and Tanaka, 1986; Tanaka and Ichimaru, 1987b]. The numerical
results for S(k,w) in the ordinary fluid state are shown to agree well with
other theoretical [e.g., Sjodin and Mitra, 1977; Bosse and Kubo, 1978; Cauble
and Duderstadt, 19817 and molecular-dynamics (MD) simulation [Hansen, Pollock
and McDonald, 1974; Hansen, McDonald and Pollock, 1975] results. The
computed values of n in the fluid state also agree with other theoretical
[Wallenborn and Baus, 1978] and MD simulation [Bernu, Vieillefosse and
Hansen, 1977; Bernu and Vieillefosse, 1978] data, as Fig. 4 illustrates.

A possibility of the dynamic glass transition is predicted in the
supercooled OCP at I' = 900 - 1000 through the analyses of the variation in
n (see Fig. 4), the quasielastic peak in S(k,w) and the behavior of the sgelf-
diffusion coefficient. Relevance to a laboratory experiment [Bollinger and
Wineland, 1984] is examined in terms of the metastable-state lifetimes
against homogeneous nucleation of the crystalline state.
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VII. THERMODYNAMIC AND TRANSPORT PROPERTIES OF DENSE, HIGH-TEMPERATURE
HYDROGENIC PLASMAS APPROPRIATE TO THE INERTIAL-CONFINEMENT-FUSION
EXPERIMENTS AND INTERIORS OF THE MAIN-SEQUENCE STARS

In a series of papers we have presented the results of a systematic
study of multiparticle cgrrelatlon effects in those dense (n < 1028 cm 3),
high-temperature (T = - 10 K) hydrogenic plasmas approprlate to the
ICF experiments and the interior of the main-sequence stars. The Coulomb
coupling constant takes on a value I' < 3, while the degree of Fermi degene-
racy 0 varies widely.

Fig. 4. The reduced shear viscosity n* = n/Mny_a° calculated in the generali-
zed viscoelastic theory [Ichimaru and 8anaka, 1986] (solid circles).
The crosses refer to the calculation by Wallenborn and Baus [1978]
the open circles, the MD simulation result [Bernu, Vieillefosse and
Hansen, 1977].

A general density-response formalism has been developed with inclusion
of the varied degrees of the electron degeneracy and the LFC's describing
the strong Coulomb-coupling effects [Ichimaru, Mitake, Tanaka and Yan, 1985].
An explicit theoretical scheme of calculating the static LFC's has been
advanced on the basis of the HNC approximation.

Interparticle correlations in dense plasmas have been investigated
quantitatively and the physical implications are clarified [Tanaka and
Ichimaru, 1984; Mitake, Tanaka, Yan and Ichimaru, 1985].

On the basis of the general formalism and the calculations of the
correlation functions mentioned above, various thermodynamic quantities have
been evaluated explicitly for the dense, high-temperature plasmas [Tanaka,
Mitake, Yan and Ichimaru, 1985]. The numerical data for the interaction and
excess free energies have been parametrized accurately, so that the resulting
analytic formulas exactly satisfy the known boundary conditions at complete
degeneracy as well as in the weak- and strong-coupling regimes [Tanaka and
Ichimaru, 1985].
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The stopping power of a dense TCP has been calculated in the dielectric
formulation, where the static and dynamic LFC's are explicitly taken into
account [Yan, Tanaka, Mitake and Ichimaru, 1985]. The extent to which the
LFC's and the presence of ions act to modify the rate of inelastic scattering
has been clarified.

Ichimafg and Tanaka [1985] calculated the electric and thermal conduc-
tivities, p and k, of the dense, high-temperature hydrogen plasmas over
the domain I' < 2 and 0.1 < 6§ < 10 on the basis of the aforementioned corre-
lation analyses. They used the correlation functions obtained by Mitake,
Tanaka, Yan and Ichimaru [1985] and parametrized the numerical results for
the generalized Coulomb logarithms L and LT’ introduced via

3/2
= u(2—3"-)1/2 %—- Lg s (15)
pe
1 52(611)1/2 2 1,3/2
"L =)k (16)
kT pe
B
2, 1/2
where Wpe = (4mne</m) . Their results are expressed as
LE(F,G) _ a(8)nl + b(H) ; c(0)T ’ (17)
1+ d(e)T
LT(F,e) - p(8)&nl + q(B) ; r(6)T ’ (18)
1+ s8(0)T
where
/2
a(8) = —73 o’ YE ,
20 - 0.579236 + 0.232726 + 1.4853
6%(2an0 - 0.18603) + 1.27040%
b(B) = 3 > , (19)
07 + 1.89930 + 4.32430 + 1
1/2
c(8) = e3/2 0.694626 + 0.24228 ’
6 + 1.7768
1/2 ‘
ae) = e3/2 0.135206 + 0.083521 ’
6" + 0.36797
p(8) = -6/
26372 4+ 0.0292200 - 1.466162 + 2.6858
63(Lene - 0.18603) - 0.98787 & + 0.8742203 2
2
q(B) = 3 3 , (20)
6" + 4.93120° + 6 + 1
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/2

1
r(8) = e3/2 0.626079 + 0.033439 ,
8° - 0.361860 + 1
1/2
s(f) = p3/2 0.0318566 "~ + 0.42460

82 - 0.299338 + 0.5

The analytic forms of those formulas retain the following features:
(1) In the classical (8 >> 1) and weak-coupling (I' << 1) 1limit, both L

E
and Lp approach the same value,

L - %ﬂn; - %(Y + 4n2) + 0(g, z4nzy) , (21)

0

where £ = h2kp2/UmkgT, ky = (4Tne?/kpT)/2 and y = 0.57721 +++ is Euler's
constant.

(ii) In the limit of complete Fermi degeneracy (6 - 0), Ly and Ly behave
proportionally to 6372,

(iii) In the strong-coupling regime (I' >> 1), both Egs. (17) and (18) behave
proportionally to F"z, This is a consequence of the ion-sphere scaling in
the interparticle correlations for a strongly coupled plasma.

In a remarkable experiment, Ivanov, Mintsev, Fortov and Dremin [ 1976]
measured the Coulomb conductivity of non-ideal plasmas which were produced
by a3 dynamic method based on compression and irreversible heating of gases
in the front of high-power ionizing shock waves. Gases used were argon,
xenon, neon and air; those were regarded as forming singly ionized (Z = 1)
plasmas. Each of the experimental values Oexp for the Coulomb conductivity
derives from an average of five to ten independent measurements and is
attached to a 10-50% error bar.

We compare those experimental values with the present theoretical
predictions. Since the classical statistics applies to the electrons for
all the cases of the experiment, we take account of the electron-scattering
factor 1.97 and write the electric conductivity as

. |
o = 197312 —Ee (22)
4nT L

When Lp given by Eq. (17) is substituted in place of L, we denote the result-
ing value of Eq. (22) as Opp. When the first two terms on the right-hand
side of Eq. (21) is used for L in Eq. (22), the resulting value of 0is called
Jo-

In the weak-coupling domain I' < 1, we find that o D is fairly well
represented by 0g. In the four strong-coupling cases ?f > 1) of Xe, however,
00 shows a large departure from Oexp» which increases systematically with
T.

In the comparison between Oex and Ogps» such a systematic discrepancy
is completely erased, and we now find that the values of

§=lc. -0

exp th'/cex (23)

P

are confined within 0.31 for all the 15 cases of the experiment. In view

of the large error bars associated with the experimental data, we find such
an overall agreement to be rather remarkable. We emphasize in this connec-
tion that the generalized Coulomb logarithms are functions of two parameters
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T and 8§, rather than of a single parameter [', even for those plasmas where
the electrons may obey the classical statistics.

The coefficient of the ionic shear viscosity has been calculated through
a solution to the kinetic equation for dense hydrogenic TCP with a fully
convergent collision integral [Tanaka and Ichimaru, 1986b]. An analytic
expression for the generalized Coulomb logarithm of the shear viscosity has
been obtained through parametrization of those numerical results, in a way
analogous to the derivation of Eq. (17) or (18).

VIII. ELECTRICAL AND THERMAL CONDUCTIVITIES OF DENSE MATTER
IN THE LIQUID METAL PHASE, APPROPRIATE TO THE INTERIORS
OF WHITE DWARFS AND THE CRUST OF NEUTRON STARS

Electrical and thermal conductivities have been calculated for the dense
matter (' >> 1 and H << 1) in the liquid metal phase for various elemental
compositions of astrophysical importance [Iton, Mitake, Iyetomi and Ichimaru,
1983]. The calculation based on the Ziman formula takes into account the
dielectric screening due to the relativistic degenerate electrons [Jancovici,
1962] and uses the ionic structure factors obtained in the improved HNC
scheme. The low-temperature quantum corrections to the transport coeffici-
ents arising from the quantum nature of the semiclassical ions have been
evaluated by using the frequency-moment sum rules and the Wigner expansion
in powers of h for the ionic correlation [Mitake, Ichimaru and Itoh, 1984].

IX. SUMMARY

In the main text we have reviewed the present status of the theoretical
understanding, concerning the static and dynamic properties as well as the
transport and elementary processes in dense plasmas and plasmalike materials.
It may fairly be said that we now have reliable theoretical devices, suppor-
ted by the computer-simulation results, by which to analyse the strong
Coulomb-coupling effects in classical and quantum, OCP systems; their static
and dynamic properties have been elucidated.

Good progress has been achieved also in the understanding of the ion-
electron TCP systems, where one takes account of the strong Coulomb-coupling
effects between ions and the varied degrees of Fermi degeneracy in the
electrons. Strong Coulomb-coupling effects between the ions and the elect-
rons, including the possibility of formation of the bound states, have been
investigated to an extent [see e.g., Yan and Ichimaru, 1986a, b}, but it
still appears that much more work remains to be done in this area.

In this connection we remark that the atomic and molecular processes
in dense plasmalike materials, involving electrons in bound or localized
states, offer varieties of outstanding, unsolved problems that deserve
further study in the future. Here it is necessary to solve a self-consistent
problem in which the states of atoms and localized electrons are influenced
in an essential way by the correlations between the atoms and the charged
particles in free states, while the correlated states of the plasma parti-
cles depend strongly on the states that the atoms and the localized electrons
assume.

We have seen some significant progress in the study of the properties
of multi-ionic plasmas including the effects of electronic polarization.
Construction of phase diagrams for realistic plasmas, describing the possi-
bilities of demixing and solidification, requires an extremely accurate
assessment of the relevant thermodynamic functions. We will see further
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progress in these directions in the coming years.
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STATIC AND DYNAMIC PROPERTIES OF STRONGLY-COUPLED
CLASSICAL ONE-COMPONENT PLASMAS: NUMERICAL EXPERIMENTS ON
SUPERCOOLED LIQUID STATE AND SIMULATION OF ION PLASMA IN THE PENNING TRAP

Hiroo Totsuji
Department of Electronics, Okayama University

Tsushimanaka, Okayama 700, Japan

I. INTRODUCTION

Among various strongly coupled Coulombic systems, the classical one-
component plasma (OCP), the classical system of charged particles of one
species in the uniform background of opposite charges, is the simplest one
which nevertheless manifests fundamental characteristics of Coulomb system,
The OCP may also be one of most-thoroughly-investigated classical systems
from statistical mechanical point of view. Since most of its static and
dynamic properties in thermal equilibrium are known accurately (e.g., Baus
and Hansen, 1980; Ichimaru, 1982), it works as a useful reference system for
other more complicated Coulombic systems.

Since OCP is a classical system with unique dimensionless coupling
parameter, its state in thermodynamical equilibrium is either liquid (or
fluid, including gaseous state) or solid. Static and dynamic properties of
OCP in the domain of liquid has been clarified through various theoretical
approaches and extensive numerical experiments and recent investigation is
focused on the domain of liquid with extremely strong coupling near or
beyond the liquid-solid phase transition. Here OCP may possibly become the
metastable supercooled liquid associated with this first order phase transi-
tion or even the amorphous glass as in the case of rapidly quenched metals
or simple liquids. The interparticle potential in OCP, however, is very
soft and has different nature from the short-ranged ones such as the
Lennard-Jones potential. It is therefore of interest to follow the behavior
of rapidly quenched OCP and observe the properties of these states, if they
exist.,

The first part of this paper is concerned with the static and dynamic
properties of these strongly coupled OCP liquids. We analyze the results of
molecular dynamics numerical experiments in comparison with those obtained
earlier for liquids with smaller coupling parameters.

In investigating the properties of OCP, results of numerical experi-
ments of both Monte Carlo and molecular dynamics have been quite useful as a
guide for theoretical approaches giving various thermodynamic quantities and
transport coefficients: Real experiments on OCP in laboratories have been
possible only for the two-dimensional electron system on the surface of
liquid He and other material.
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In these circumstances, recent experiments indicating the possibility
of realizing the strongly coupled OCP of ions in the Penning trap (Bollinger
and Wineland, 1984) are of interest and simulation of this plasma may be
useful for observation of strong coupling effect by laboratory experiments.
In the second part of this paper, we present the results of numerical
simulations of ion plasmas in the Penning trap and show some examples of
strong coupling effects appearing in these experiments.

II. OCP IN SUPERCOOLED LIQUID STATE
A. Method

Our system is composed of charged particles of one species in a uniform
background interacting through the Coulomb interaction. The nondimensional
coupling constant ' characterizing our system is defined by

I = ez/akBT, (1)

where e is the cha{;g of a particle, a the mean distance between charges
given by a=(3/4mn)*/~, n the density, T the temperature, and kg the
Boltzmann constant,

In order to analyze both static and dynamic properties, we apply the
method of microcanonical molecular dynamics to our system (Hansen et al.,
1975; Totsuji et al., 1980). We put N particles in the cubic cell_and
impose periodic boundary conditions. We use N=432=2:6> or 1024=2.8
independent particles and main results presented here are based on experi-
ments with 432 particles. The force acting on each particle is computed by
the Ewald method and the equations of motion are integrated by the fourth
order Runge-Kutta method., The time step is taken to be as large as possible
to minimize the computational time satisfying the condition that the total
energy and total momentum are conserved with sufficient accuracy during the
whole experiment.

The supercooled liquid state is obtained by quenching liquid OCP in
thermodynamic equilibrium into the domain where the coupling parameter is
larger than the critical value of solidification I' =178 (Slattery et al.,
1982). To realize the rapid cooling of the system, we simultaneously scale
the velocity of all particles by a factor between 0,7 and 0.8. By this
scaling, the total kinetic energy is instantaneously reduced in proportion
to the square of the scaling factor. In the course of subsequent micro-
canonical evolution, the kinetic energy partly recovers from this reduction.
This recovery takes place in a relatively short time less than 10w_~*. The
pair correlation function relaxes to a new stationary value much mgre slowly
than energy. The relaxation time for the pair correlation function,
however, is less than 500w ~~. We monitor the behaviors of kinetic and
potential energies and the pair distribution function, and regard the system
to be in a new stationary state when the pair distribution function becomes
stationary. Our Tnalyses of new stationafy states are made for durations of
more than 3000ub' with N=432 and 1500wp' with N=1024,

In contrast to the Monte Carlo (MC) numerical experiments, the value of
the coupling parameter I' cannot be specified in advance but have to be
determined by the average value of the kinetic energy per particle K=<mv2/2>
as

T = e/[a(2/3)X]. (2)

Here we assume that velocities are distributed by the Maxwellian. The
parameters of our liquid states and supercooled liquid states are summarized
in Table 1.
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Table 1. Value of T Estimated by Kinetic Energy and
Thermal Part of Correlation Energy.

| N=432
T 100.240.2 175.040.6 229.241.7 29%.6+1.5
(e0)pn/kpT | 2.074.007 2.39£.014 2.56+.02  2.67+.02
| N=1024
T 202.540.7 313.6+2.1 394.4%2.1
(e)en/kpT | 2.434.01  2.61£.02  2.74+.02

B. Correlation Energy

The correlation energy e (per particle) of OCP in thermal equilibrium
has been known very accurately from the Monte Carlo numerical experiments
and fitting formulae have been given for both the liquid and solid states
(e.g. Slattery et al., 1980 and 1982). When the coupling parameter is
sufficiently large, the correlation energy is dominated by the contribution
of the Madelung-energy-like term proportional to I'. To observe the behavior
of the correlation energy more closely, we define the thermal part of the
correlation energy (e ).y, subtracting the Madelung energy of the bcc lattice
(ec)bcc/kBT=0.895929F as

(ec)en = & - (ec)pec? (3
The bcc lattice has the lowest energy among simple lattices of OCP.

In Fig.l we show the values of the thermal part of the correlation
energy obtained by our numerical experiments in comparison with those for
liquid and solid in thermal equilibrium (Slattery et al., 1982)., We see
that the thermal part of the correlation energy of the supercooled meta-
stable state is clearly larger than that of solid state with the same value
of T,

In the domain of supercooled liquid, there has previously been reported
one result for I'=200 obtained by Monte Carlo method by Slattery et al,
(1982). As is shown in Fig.l, this results is consistent with our results,
We also plot the values given by extrapolating the interpolation formula for
liquid (Slattery et al,, 1982) into the supercooled domain and see that our
experimental results are close to those extrapolation., It should be kept in
mind that this domain is beyond the original applicability of the formula.

C. Pair Distribution Function

The values of the pair distribution function (PDF) for I'=175, 229, and
295 obtained by experiments with 432 particles and those for I'=203 and 314
obtained with 1024 particles are shown in Fig.2, We also plot the pair
distribution function obtained by the Monte Carlo numerical experiments by
Slattery et al. for I'=180 (1980) and 200 (DeWitt, 1982) to show that our
results are consistent with MC experiments.

With the increase of I', the height of the first peak increases. We
note, however, that, in the domain of T of our experiments, there seems to
be no remarkable change in the structure at the second peak of the pair
distribution function such as the splitting which characterizes the so-
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Fig.1.

Fig.2.
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called amorphous state (e.g., Kimura and Yonezawa, 1983; Ichimaru and
Tanaka, 1986).

D. Velocity Autocorrelation Function and its Spectrum

The velocity autocorrelation function (VAF) Z(t) is defined by
Z(t) = vyt + t').V;(t")>/3, (4)

where Vi(t) is the velocity of i-th particle and < > denotes the average
with respect to t' and particles.

The behavior of VAF in the domain of liquid (Hansen et al., 1975) may
be summarized as follows. For sufficiently small values of T, the VAF
decays monotonically as a function of time. When I'~10 the tail begins to
have the component which oscillates with the plasma frequency and the tail
can be regarded as the damped oscillation with the plasma frequency for 100¢
€150,

The values obtained by our experiments are shown in Fig.3. We see that
the values of the first and second peaks and the second dip decrease with
further increase of T and the first peak becomes negative for 300¢T. At the
same time the oscillation with the plasma frequency becomes less signifi-
cant, The velocity autocorrelation function may thus be considered as a
superposition of damped oscillation with the plasma frequency w_, and the
overdamped oscillation which is observed in simple liquids, for  example, of
inert atoms (e.g., Hansen and McDonald, 1976). With the increase of I', the
relative importance of the wp~component first increases for 100<I'<180 and
then decreases for 2004T.

In Fig.4 we show the spectrum of the velocity autocorrelation function
Z(w) defined by

Z(w) = (1/2m) fdt exp(iwt)Z(t). (5)

In Z(w) we observe the above mentioned change of the relative importarce of
two components., For =175, the spectrum is not so different from the one
obtained previously for liquid with I'=152 (Hansen et al., 1975). For I'=229
and 295, the relative importance of the peak corresponding to the plasma
oscillation is decreased. This change is consistent with the behavior of
VAF in time space.

E. Diffusion Constant

The self-diffusion constant D is defined by

D = lim <[A7;(t)]1%>/6t, (6)
oo
where
A () = Ti(t + t') = Fy(t"). (7

We plot the numerator of (6), the mean square displacement (MSD), in Fig.5
as a function of t. For I=175 and 229, the MSD increases almost linearly
with time. For I'=295, however, it first seems to increase rapidly and then
the phase of slow increase appears. The latter behavior of the mean square
displacement has been observed in various rapidly quenched systems (e.g.,
Kimura and Yonezawa, 1983).

The diffusion constant is evaluated by the slope of MSD plotted as a
function of time. The results are shown in Fig.6 where the diffusion
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Fig.3.

Velocity autocorrelation function normalized by Z(t=0).

Fig.4. Spectrum of velocity autocorrelation function Z(w).



Fig.6.

Fig.5. Mean square displacement vs. time.

Self-diffusion coefficient.
Filled circles: N=432,
Open circle and bars (upper and lower bounds):

N=1024.

Double circles and broken line: Hansen et al. (1975).
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constant obtained by experiments with 1024 particles are also shown. We
note that the self diffusion constant D is related to Z(w=0) as

D = mZ(w = 0), (8)

Values of the diffusion constant given by (8) are not exactly the same as
those obtained from MSD but agreement is satisfactory., In Fig.6 we also
show the values for liquid state obtained by Hansen et al. (1975). They
have interpolated their results by the fitting formula

D/a%u, = 2.50r71+34, 9)

We see that the diffusion constant decreases rapidly and becomes much
smaller than the values extrapolated from the values for liquid state (9).
It is, however, difficult to discuss whether the diffusion constant shows
some qualitative change or not in the domain of supercooled liquid.

F. Shear Viscosity

The shear viscosity coefficient n is evaluated from the long-wavelength
limit of the autocorrelation function of the transverse part of the stress

tensor ¢ o as
n = [dt n(t), (10)
where
n(t) = 1lim <o (t)o (0)>, o # B. (11)
0 k,oB k,0B

The values of the transverse stress autocorrelation function are shown in
Fig.7 and resultant values of shear viscosity are plotted in Fig.8. The
correlation function is obtained by dividing the whole stationary state into
several shorter parts and taking the average of the correlation functions
obtained in each division,

The most remarkable change of the stress correlation function is the
increase of the relaxation time with the increase of I'. The estimated \
values of relaxation time (in the unit of w_~") for I'=175, 229, and 295 are
6, 9, and 11, respectively, when simple expgnential decay is assumed for the
first part of the autocorrelation function. For '=229 and 295, however,
there appears the tail which decays much more slowly: The relaxation time
of the tail for I'=295 is about 40, These values are much larger than that
in the domain of liquid obtained by Bernu, Vieillefosse, and Hansen for
=100 (1977, 1978).

The increase of relaxation time naturally leads to the increase of the
shear viscosity as is shown in Fig.8. Combined with earlier results, we see
that the viscosity increases with the increase of I' after attaining its
minimum around ['=10, It seems, however, to be impossible to draw definite
conclusion about the existence of drastic change related to transition to
amorphous state.

G. Spectrum of Density Fluctuation

The density fluctuation spectrum is expressed by the dynamic form
factor defined by

S(k,w) = (1/2m)fdt exp(iwt)<p, (t)p_ (0)>, (12)

where
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Fig.7. Autocorrelation function of transverse part of the stress tensor.

Fig.8. Shear viscosity. Values for I'<100 are due to Bernu et al. (1977,
1978).

P(t) = § exp[-iﬁ~?i(t)]. (13)
The results for S(k,w) are shown in Fig.9.

Compared with the values in the domain of liquids (Hansen et al.,
1975), we observe that the peak structure representing the well-defined
plasma oscillation extends to larger values of the wave number. At the same
time, we observe the concentration of the spectrum at zero frequency with
the increase of T.
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Fig.9. Dynamic form factor (wp/N)S(k,w).

Fig.10. Behavior of plasmon.
Circles: Position of peak.
Bars: Frequencies at half maximum.



The behavior of the plasmon peak is summarized in Fig.10 where the
central frequency and the width at the half maximum are shown. The central
frequencies for I'=229 and 295 are fitted by the dispersion relation as

w, =1 - 0.04(ka)?. (14)

H. Transverse Current Fluctuation Spectrum

The spectrum of current fluctuation is defined by

C(K,w) = (1/2m) fdt exp(int)<g, (t)g_ (0)>, (15)
where
gi(t) = I V;()exp[-ikeT;(0)]. (16)
i

The spectrum is divided into the longitudinal and the transverse parts as
C(k,w) = (kk/k )Cl(k,w) + (I - kk/k“)C_(k,w), (17)

and the former is related to the dynamic form factor by the equation of
continuity. We have confirmed that this relation is satisfied by our
results,

The results for the transverse part are shown in Fig.ll. We observe
that the shear mode extends to smaller wave numbers with the increase of
I'. We also observe the small shoulder which has been observed earlier by
Hansen et al. (1975). Compared with the longitudinal or density fluctuation
spectrum, the increase of I' does not cause significant change in the trans-
verse current fluctuatioms.

Fig.11. Transverse part of_current fluctuation
spectrum Cy (k,w)/a wPN.
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I. Example of Solidification

In order to show the difference in the pair distribution functions in
supercooled liquid and solid states, we present an example which undergoes
the solidification. We have prepared this system by quenching the system at
I'=295 which, after microcanonical evolution of more than 3000w ", can be
regarded as in stationary state from the behaviors of the pair distribution
function and thermodynamic quantities.

After quenched into the supercooled liquid state with I'#380, the system
makes the transition to the solid with dislocations. The orbit of particles
projected onto planes and the change in the pair distribution function in
the course of solidification are shown in Fig.12. We see that the PDF
changes into that of bcc solid., (The analysis of the distribution of
Voronoi polyhedra also confirms that the lattice is bcc.)

Since the latent heat of liquid-solid transition is released, the value
of T estimated by (2) decreases when the system solidifies. The behavior of
estimated value of I' is shown %n Fig.l. The mean square displacement needed
for solidification is about 3a“.

ITI. STRONGLY-COUPLED ION PLASMA IN THE PENNING TRAP
A, Method

The Penning trap is composed of the uniform magnetic field (in the z-
direction) which prevents ions from escaping in the x- or y-direction and
the electric field due to electrode which suppresses the motion of ions
along the z-axis (e.g., Brown et al., 1986).

In these magnetic and electric fields, charged particles rotate as a
whole and, in the rotating coordinate system, ions behave as if they are in
the neutralizing background or OCP (Malmberg and O'Neil, 1977). In the
experiment by Bollinger et al. (1984) the narrow laser beam is used to cool
the ion plasma. In the process of fluorescence scattering, ions lose their
kinetic energy and the total angular momentum.

In order to observe the behavior of strongly coupled ion plasma realized
in these experiments and examine the possibility to observe strong coupling
effects by these experiments, we perform numerical simulation.

We numerically integrate the equations of motion for N ions

Ty

2, -> - > 3 - > >
i =2 e(ry - rj)/lri - rj[ + eE + (e/c)v;xB, (18)
—grad[mwzz(Zz2 - %% - yz)/4e],

oy =Y

= Bz.

>
Here E is the electric field due to electrode and the magnetic field is
uniform and in z-direction.

We take the origin of the coordinates at the center of the plasma and
assume that the laser beam in the positive x-direction is irradiating the
plasma in the domain with y>0. In order to simulate the cooling by laser
beam, we scale the velocity by a ratio o as

vg > avy, when v >0 and v, <0, (19)
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Fig.12,

Solidification of supercooled liquid OCP into bcc lattice. Pair
distribution function and orbits of particles projected onto x-y
and y-z planes. Orbits are followed for 250 ~* after (from top to
bottom) 130, 640, 1140, 1650, and 2160 p— frgm quenching.,
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after each step of integration by the Runge-Kutta method of fourth order.
The scaling ratio o is chosen between 0.995 and 0.9: This cooling is about
7 to 25 times fasteg than the value calculated from the rate of scattering
phenomena (e,g., 10° per second per ion, as in Bollinger et al., 1984).

B. Result

Starting from the random configuration in a sphere of radius RO=10_2cm,
we integrate equations (18). The average angular frequency of rotation is
computed and the temperature is evaluated as the kinetic energy in the frame
of coordinate rotating with average angular frequency. The total energy and
the total angular momentum are monitored to check the accuracy of numerical
integration. Parameters of ion plasma obtained by our simulations are shown
in Table 2. The coupling parameter is estimated by the central density and
the temperature parallel to the magnetic field. We have used larger cooling
rate than experiment in order to save the computational time. Resultant
plasmas, however, seem to be similar to those obtained by real experiments:
For example, ratios of the parallel and perpendicular temperatures are
consistent with extrapolated value from experiments.

Table 2. Parameters of Plasma Composed of 150 9Be Ions in
the Penning Trap with B=0.819T and w,/2r=200kHz.

n(center) a T Ty /Ty T

0-3cm 1.2k 24mK  0.05 35
0-3cm  2.9mK 352K 0.08 25

l -
1. 1 O i
8. (x10™%cm) 1.8 0 1 2 3 a4
Fig.13. Distribution of ions Fig.14. Pair distribution
in the Penning trap function in the
with I'=35 as a central part of ion
function of distance plasma in the Penning
from the center. trap with I'=35.
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The distribution of ions computed assuming the spherical symmetry is
shown in Fig.13. We clearly see that the oscillation of density occurs for
these intermediate values of the coupling parameter.

The oscillation of the density profile has been observed in numerical
experiments where the background charge density is distributed uniformly in
a sphere (Badiali et al., 1983; Levesque and Weis, 1983) or in a slab
(Totsuji, 1986). Fig.13 shows that this oscillation can be observed by real
experiments in the Penning trap.

The pair distribution function is computed for ions in the central
domain where the density is approximately uniform. An example is plotted in
Fig.l4, Our results are similar to the pair distribution function of OCP
with the same value of the coupling parameter.

These results of numerical simulations indicate that ion plasmas in the
Penning trap may be quite useful to observe various strong-coupling effects
in OCP by real experiments in laboratories.

This work has been partially supported by the Grant-in-Aid for
Scientific Researches from the Ministry of Education, Science, and Culture
of Japan and by the Yamada Science Foundation. The author also thanks
Dr. H. E. DeWitt for his kindness in providing unpublished MC data.
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COMPUTER SIMULATION DATA

P. D. Poll and N. W. Ashcroft
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Ithaca, New York  14853-2501

INTRODUCTION

What follows is motivated by the classical inverse problem for
homogeneous highly correlated systems: Given complete structural
information [at the pair level this will be the static structure factor
S(k) for all k], find the effective pair-potential ¢(r) that will
generate that structure. There is a unique functional relationship
Bé(r) = F[S(k)] [with B the inverse temperature 1/(kT)], between
the pair-potential and the static structure factor. However, in practice
this is a very difficult problem to solve, in part, because of the extreme
sensitivity of the resultant B¢(r) to the input functions S(k).

Consider the diagrammatic resummation result for homogeneous classical
fluids within the pair-potential approximation

Bp(r) = -In[g(r)] + g(r) - 1 - c(r) + E(x), 1)

where g(r) is the radial distribution function and c(r) is the Ornstein-
Zernike direct correlation function defined, again for homogeneous
classical fluids by

h(r) = c(r) + pJ.d;’ h(|? - ¥ e(x’). (2)

Here h(r) = g(xr) -1, p is the average one-particle number density, and
E(r) is the bridge function. Now in general, E(r) is also a unique
functional of the total correlation function h(r), as is known from its
expansion in highly connected h-bond diagrams. Thus the classical inverse
problem is solved in principle through complete knowledge of h(r), or of
S(k) [= 1 + ph(k)]. The diagrammatic expansion, however, is slowly
convergent and is not suitable for practical calculations. To perform a
practical inversion of structural data, theories for the bridge function
E(r) are needed. The simplest such theory sets the bridge function to
zero: this is the hypernetted-chain (HNC) approximation. The results of
this approximation in the context of the inverse problem are generally
very poor for highly correlated systems. The appropriate energy scale is
incorrectly determined and spurious structure appears in the resultant
pair-potential. A more refined theory, the modified hypernetted-chain
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approximation,1 replaces the bridge function by its value for some

hard-sphere reference system. Even though this equation yields fluid
structure to within 1% of the best computer simulation results in the
forward direction, where the_pair-potential is known, the work of
Levesque, Weis, and Reatto”’” has shown that the theory is actually
inadequate for a detailed direct inversion of known structural data.

There has been progress in determining even more accurate representa-
tions of the bridge function for an eventual application to the classical
inverse problem. However, it is already clear from (1) that we need a
complete set of functions {B¢(r), g(r), c(r), E(r)} for various reference
systems in order to test any proposed inversion scheme. The purpose of
this article is to provide this reference data. Two sets, one for the
classical Lennard-Jones (LJ) system and one for the classical one-
component plasma (OCP), will be presented. The latter involves a new
extension of finite range computer simulation data.

EXTENSION OF COMPUTER SIMULATION RESULTS
General Remarks

Computer simulation methods, either Monte Carlo or Molecular Dynamics,
normally start with an assumed pair-potential (one body, or three and
higher body, potentials may also, in principle, be considered). The
simulatlgn for three dimensional systems, is performed in a box with
volume L” and with periodic boundary conditions imposed. The result is
generally a radial distribution function for radii up to a certain cutoff
r,, with r, typically less than L/2. Now, to obtain the radial
distribution function for all r we need a procedure for dealing with the
region r>r_. The subsequent evaluation of the radial distribution
function for all r, along with all the other correlation functions, for a
given procedure, is then referred to as an "extension" of computer
simulation data. The key to meaningful extensions is a corresponding
physically meaningful and accurate procedure for the behavior of the
system under consideration in this unsimulated region.

4

In early work, Ceperley and Chester’ assumed that the radial distribu-

tion function takes the form

n exp(-z,r)
g(r) =1+Re[ ¥ A, I 1, r . (3a)
j=1 J r c

The parameters A:; and z. are complex numbers, and are simply chosen to
fit the simulatidon results for r<r,; usually 3 or 4 terms are sufficient
for a reasonable extension. In an alternative approach, Verlet® has
worked instead with the direct correlation function, and has invoked the
Percus-Yevick approximation for the unsimulated region, i.e.,

e(r) = cpy(r) = g(r) (1 - exp[p(r)]), 1, . (3b)

By using the simulation results for g(r) for r less than r,, both g(r)
and c(r) are then obtained via a standard iterative solution In a
variation of this method, Galam and Hanseng have proposed the mean-
spherical approximation, i.e.

c(r) = CMSA(r) = -Bé(x), r>r,. (3c)
This form for c(r) might be expected to yield a more meaningful extension

of the computer simulation data for the OCP, a system that is very poorly
described by the Percus-Yevick approximation.
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The methods just described are not exhaustive, they merely demonstrate
that different approaches exist and a good choice for the extension
procedure is by no means unique. As noted, to test an inversion scheme we
need very accurate determinations of the various correlation functions,
typically better than 0.5%. To this end accurate simulation data as well
as accurate extensions of the simulation data are both essential.

The Lennard-Jones Potential

The (6-12) pair-potential for the classical Lennard-Jones system is
given by

$(xr) = he[( 2 )12 -2 )61, (4)
r r

where ¢ is the well depth and o is the diameter. For this system
Molecu1§r3Dynamics results have been obtained by Levgsque, Weis, and
Reatto.“’” These correspond to a reduced density po” = 0.84 and a

reduced temperature kT/e = 0.747. Some 6800 steps were used with 864
particles, and a cutoff in the pair-potential (4) of 40 was introduced.
Typical fluctuations in the resultant g(r) were at most 0.3% in the region
r~c. This is considered to be a very accurate simulation, and it has, in
fact, been used by the original authors as a test of their own predictor-
corrector approach to the classical inverse problem. We now report our own
extension of this data using the MSA extension method (3c). Since g(r) from
the simulation is given to the limit of the pair-potential cutoff of 4o, we
have chosen a cutoff r, in the data at the last node prior to the pair-
potential cutoff. The extended g(r) shown in Figure la is in units of r/o
(the arrow indicates the position of rc/a), and the corresponding bridge
function E(r), determined by use of the diagrammatic resummation result
together with knowledge of the initial pair-potential, is presented in
Figure 1b, again in units of r/o.

A test of the accuracy of any extension procedure, including those to
be described below, can be obtained by investigating the change in the
extracted pair-potential as r, is increased towards the actual value
used. This can be done by using any of the theories mentioned in the
introduction; most simply the HNC approximation. An accurate extension
requires that the effective pair-potential should stabilize before the
actual data cutoff used is reached. The Molecular Dynamics simulation
data used here passes this test; this success is due to the fact that
simulation data is supplied right up to the pair-potential cutoff of
40 (most earlier work using just 2.50).

Figure la Figure 1b
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The Classical One-Component Plasma

The classical one-component plasma consists of N particles of charge
Q, interacting through a Coulomb pair-potential

2
s(r) =& (5)

r ’

and immersed in a uniform, rigid, compensating background. We now repo17*t8
our analysis of the Montg Carlo results of Slattery, Doolen, and DeWitt’:
at T' = 100, whirg I' = pQ°ryg is the Coulomb coupling parameter and

rys = (4np/3)" /3 is the Wigner-Seitz or ion-sphere radius. This
particular simulation was carried out for 1024 particles, and involved
21.3 million configurations.

The long-range nature of the Coulomb interaction complicates the issue
of the choice of an appropriate extension procedure for the one-component
plasma correlation functions beyond r,. As a first attempt, we may
extend the I' = 100 Monte Carlo data with the MSA extension method of
Galam and Hansen,  again with r, taken at the last node in the supplied
g(r). This procedure leads to a failure of the accuracy criterion discussed
above and to a discontinuity in all of the real space correlatign functions,
the reason for this being well understood. From the work of Ng” we know
that when seeking numerical iterative solutions with Coulomb like pair-
potentials, the pair-potential must usually be formally rewritten as a
long-range piece ¢;.(r), and a short-range piece ¢ (1), with ¢(r) =
Slr(r) + ¢Sr(r). This division then allows the use of Fast Fourier
transform numerical techniques. We then have a short-range Ornstein-Sernike
direct correlation function csr(r) = c(r) + ¢ﬂlr(r), and a new diagram-
matic resummation result with c(r) and B4(r) replaced by their short-range
values. As a consequence the Ornstein-Zernike relation is modified; if this
were not the case, all systems could be trivially transformed into an ideal
gas! Although -B¢(r) gives a very accurate determination of c(r) relative
to -B¢(r) beyond r,, the short-range part -Bég (r) does not give an
accurate determination of csr(r). This discontinuity in csr(r) enters, by
continued iteration of the extension algorithm, into the extended g(r) and
then into the extracted bridge function E(r).

To overcome this difficulty we propose a new procedure which, by
construction, corrects for any discontinuity in cgp(r). It is

Figure 2a Figure 2b
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with A and X now chosen to enforce continuity in cgp(r) and its first
derivative. Equation 6 is physically motivated by the appearance of
Debye-Huckel like functions in a variety of diagrammatic approximations to
the plasma problem. In Figure 2a we summarize the extended g(r) in this
new extension procedure in units of r/ryg. As before, the arrow

indicates the position of r./eys. In Figure 2b we summarize the

extracted bridge function for this extended data, again in units of

r/tyg-
Further Remarks

A comparison of Figures 1b and 2b show that the basic features of the
bridge function are identical. This is in agreemeTt with the short-range
universality hypothesis of Rosenfeld and Ashcroft;* both bridge
functions continue to be well represented at short-range by the bridge
function of an appropriately chosen hard-sphere reference system. But
beyond this universal core behavior the OCP bridge function becomes more
highly "attractive" than its LJ counterpart. In_addition, the OCP bridge
function does not, display the characteristic -Dh“(r) behavior at long-
range; this is a direct consequence of the long-range nature of the
Coulomb pair-potential itself.

We believe that our extended results of the OCP at moderate coupling
represent an accurate extension of the most precise computer simulation
data to date. There remain, however, deficiencies in the extension
procedure. In particular, the isothermal compressibility does not aggee
with the equation of state results of Slattery, Doolen, and Dewitt.’:

The extension estimate for the isothermal compressibility moves toward the
desired value, but subsequently drifts away as the number of iterations
increases. This can, in principle, be corrected by enforcing agreement
with the equation of state result. Work on the consequence of imposing
this additional constraint is progressing.
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SOME PROPERTIES OF A POLARIZED OCP

H. L. Helfer and R. L. McCrory

Laboratory for Laser Energetics
University of Rochester

250 East River Road

Rochester, New York  14623-1299

This paper reports on Monte Carlo calculations of properties of
polarizable one-component plasmas (OCP). The purpose of this research is
to supplement the classical OCP investigations by determining the
thermodynamic properties of dense plasmas that are only partially
degénerate. This work extends similar calculations by DeWitt and Hubbard
(1976) and Totsuji and Takami (1984). An additional purpose is to
determine radial distribution functions for partially degenerate plasmas;
these can be used for testing theoretical methods of calculating plasma
properties (cf. Rogers et. al., 1983).

To evaluate U = -(aan/aﬂ)V, BP = (aan/aV)T, etc., we start with N
pointlike ions and the expression for the partition function:

Z=c¢e — e Tr(e
VN

A “BF; ons . J P et -ﬂ(Ke+Uee+Uie)
Following a procedure discussed by Ashcroft and Stroud (1978), the
trace may be evaluated when the electron gensigy fluctuations are linear
in the electric potential, say, ép(k) = q n(k)e(k) (where the tilde signifies
the Fourier transform). The Helmholtz free energy, F, can be evaluated
for a given Hamiltonian, by the prescription:

0 1 0 0 by 1 H0+AH1

1
H=H, +H »F=F_ + I L <MH,>
The form of the dielectric function used was calculated using the
linear form of a density matrix procedure developed by March and Murray
(1961); this gives:

kl

2niy = —% I“ 2k’
"aBohrk 0 l+exp(B[E(k’ )-p])

k- 2k’

1n | | ax’

Here p is the chemical potential, and k%[e(k)-1] = q?n(k).
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This form is in agreement with the RPA dielectric function used by
Totsuji and Takami. The potential closely approximates exp(-qr)/r, where
q ig the Thomas-Fermi wavenumber. There are additional oscillatory terms,
«r”?, which amount to a few percent at values of r of interest.

These minor Friedel oscillation terms can provide long-term coupling of
the plasma at distances greater than a few ion-sphere radii.

A

One gets Z in a form useful for performing a Monte Carlo calculation:

2 - e-ﬁ[F(ideal ions)+F(free electrons)+Fpol] . I dsNR e-ﬂUeff
N
A

where

1 2 1
BU .. =28 (XY Z.Z (|R-R_|) + } ZT1lim [¢(¢) - 51},
eff 2 Tre] ) I1°J 1 Ig_)o 13

and

~ 4
Fk) = =L —
2 + q% n(k)

For the plasmas being considered, F ol is a small second order term
which can be ignored. The calculations use an Ewald sum technique for
calculating <pU ¢¢> and evaluating the pair distribution function.

In effect, the plasma is represented as a cubic lattice, with N (=128)
ions per cell. (For details, see Helfer et. al., 1984).

In addition to the internal energy and pressure terms one associates
with non-interacting electron and ion gases, one finds excess energy and
pressure terms attributable to the interactions; these are:

AU

excess = _ ﬁUeff

N N
BU pU
excess ~ 1 1 eff 1,2 *
N 3(1 + 2<qr>) < N > + 12 Z2°Tq a

where <ﬂUeff/N> and qr, are quantities resulting from the Monte

Carlo calculation, and gq* is calculated from the limiting value of the
effective two hody potential when r = 0. Here, a is the ion sphere
radius and I'=e“/akT.

Figure 1 shows the excess energy term. It has been divided into two
parts: (1) the energy per ion of a reference rigid BCC lattice; and (2)
the difference in energy per ion between the plasma and the BCC lattice.
At large T' the BCC lattice energy dominates. The BCC excess energy
decreases from the OCP value as the density decreases. This reflects the
binding energy of the electrons as they cluster around individual ions.
For the plasmas studied, the difference in excess energy, plasma -
lattice, also decrefﬁes w%th density, amounting to ~10.5 kT per ion at ion
densities of 2 x 10%” cm ” (for Z=1). The difference in energies is
not a strong function of I' at low densities. The very low density
high-T' models may be quite unphysical because de-ionization is not
taken into account; for these models the plasma excess energy is less than
that of the BCC lattice.
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Fig. 1. Excess energies vs I'/b (=Tkt/p = 0.5rs). The heavy
solid line refers to a reference BCC lattice and the scale on the
right. The other curves, for constant I', use the scale on
the left.

The calculations show the following crude approximations may be used:

PUets
N

< >~ - (0.9 + 0.033rs)FZ 2 where r, = a/a

Bohr ’

and
. .2 *
<qr> ~ min (Eqa,Z) and q ~ q .

For the OCP, the terms involving q and q* are absent in the expression
for the excess pressure. These extra terms can cause the excess pressure
to be more negative by up to ~20% more than in the OCP case.

The pair correlation functions show some unusual features (cf.
Fig. 2). The minor oscillations beyond the first maximum first decrease
in amplitude as one goes to lower densities and then increase in strength
(with a phase shift) as one goes to the lowest densities studied. This
behavior is seen for all the models, down to the lowest value of
T'(>10) for which the oscillations can be studied.
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Fig. 2. Pair correlation functions vs r/a, where a is the ion sphere
radius. The various curves are labeled by a density parameter
(see Fig. 1).
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PERTURBATION THEORY OF THE MISCIBILITY GAP IN METAL SALT SOLUTIONS

G. Chabrier

Dpt. Physique des Materiaux
Universite Claude Bernard Lyon I
69622 Villeurbanne Cedex, France

REFERENCE SYSTEM: IONIC FLUID IN A RIGID NEUTRALIZING BACKGROUND

The metal-salt solutions are regarded as being composed of N
positive ions of charge Zye and N, negative ions of charge Zye in a
volume Q; the corresponding number densities and concentrations are
defined as Po = Na/ﬂ and xa=Na/N (a=1,2), with N=N1+N2. The excess of
positive charge is compensated by the conduction electrons which are
assumed to provide a rigid, uniform background of charge density
ep,, ensuring overall charge neutrality:

P12y * P2yt py = 0 M

This reference system will serve as a starting point for our perturbation
expansion. In that case the ions are assumed to interact via the
following potential:

Z7Z e2

<8
el (1-5aﬂ)vo(r) (2a)

Uaﬂ<r) =
where the short range repulsion, which acts only between oppositely
charged ions, is taken to be of exponential form:

Vo(r) = Alzexp(-alzr) (2b)

The potential (2) is a simplified version of the usual Born-Huggins-Mayer
potential, retaining only its essential features. We have dropped the Van
der Waals dispersion terms, as well as the short range repulsion between
equally charged ions, since the Coulomb repulsion is sufficiently strong
to keep them apart. The limiting situations of the potential (2) are:

i) x=1, i.e. the pure metal, for which we recover the one component plasma

(0.C.P.) model”*™; ii) x=0, i.e. the pure salt, reasonably well described
by a Born-Huggins-Mayer rigid %on potential, provided ion polarizability
effects are not too important.” The pair correlation functions are

calculated through the closed set of equations composed of the Qrnstein-
Zernicke relation and the hypernetted-chain (H.N.C.) equations.® The
y BX p, EX

pkBT

reduced excess (non ideal) internal energy N; T and excess pressure
B
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are calculated in terms of integrals over the static correlation
functions, via the standard energy and virial eg%ations. In the HNC
approximation the excess chemical potentials p,~" of both ionic
species ar% also expressible in terms of the pair correlation
functions.? Hence the excess free enthalpy and free energy per ion

follow directly from:

i » EX, (i i i 3

a=1,2

PERTURBATION EXPANSION: RESPONSIVE BACKGROUND7

The total hamiltonian of the system is written now as the sum of three
terms:

H= H, +H _+V,, | (4)

H;; is the hamiltonian for the ions in a neutralizing background and has
been detailed in the previous section. H,, is the familiar "jellium"
hamiltonian for the electrons in a uniform background which exactly
cancels the previous one. V;  describes the ion-electron interaction
minus the i9t§raction energy of the ions with their associated

background. This term can be split in two terms:
1 ‘o (K *
Vie T a z Z Voa Pu Pu + Uo (3a)
a=1,2 z k°

where U, describes the non-coulombic structure independent term:

4nZ e2 z e2

A 2
L a * Za” o
U = =1lim v_ (k) + p.p. =p ) N j v_(x) + dr
o Q koo oa kBT Ea ﬁo 0,2 a@lg oa r
(5b)

The p3; (i=0,1,2) denote the Fourier components of the microscopic
densities (0 for the electrons) and Voa(k) is the dimensionless
Fourier transform of the ion-electron pseudopotential voa(r). The
hamiltonian specified by Egs. (2), (4), and (5) is in fact quite general
and describes a number of coulombic systems besides metal-salt solutions
LU molten salt (x=0), liquid metals (x=1), binary ionic mixture
(Z1Z,>0) in which case the short range repulsive term may be omitted,
binary metallic alloys which differ from the case of BIM in that the ions
have a finite core radius so that the ion-electron interaction is no
longer purely conlombic but must be described by a psuedopotential. For
the ion electron psuedopotentials occurring in Eqns. (5a) and (5b), we
have chosen the Ashcroft "empty core" form~ for the cation, with a core
diameter r, determined at melting, from compressibility data. Much less

is known about the electron-anion pseudopotentialgwhich wiohave chosen to

be an interpolation between the Ashcroft and Shaw” forms, i.e.:
V ,(r) = - &Z e2/r ; r<r
02 2 c,’ c
2 2
= -2z ez/r' Y (6)
2 ! c

2
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For r, we have chosen the ionic Pauling radius. £ will in fact be the
only aajustable parameter in our perturbation theory. The special case £=0
corresponds to the "empty core" model. To this order the ionic and
electronic components, neutralized by their respective uniform

backgrounds, are assumed to be completely decoupled so that the Helmholtz
free energy is then simply the sum of the two independent contributions:

0 F, +F, 7

F; is given by Eqn. (3) whereas foi F, we have used the equation of
state given by Richert and Ebeling calculated in a wide range of
density, even in the strongly coupled regime (r >>1). Since the two
components are completely decoupled in the reference system,

<p, p >=<p, > <p > = 0 due to translational invariance, it
¥a ko e ko

follows immediately that to first order in pert%rbatlon theory the

ion-electron coupling (5a) contributes the term

(1) 3 2 2 2
F - <vie>o = U° - N 3 lelrc +N222r02 1 -35) Ryd (8)

s

the second order ion-electron contribution to the free energy is
calculated via linear response theory with the result

1
2 . f v, >d = %22 (N Nﬁ)l/2 1

0 ie i a (2")3
N, x 1 2
IVOQ(K)VOB(K)Saﬂ(K) 7 w® -1 K. 9)

For the dielectric function ee(k) we have chosen the zero-temperature

form proposed by Ichimaru and Utsumi, adapated to the highly correlated
regime (r >>1). By truncating the perturbation expansion of the free
energy after second order, we restrict ourselves to linear screening in the
description of ion-electron coupling. This is a priori inapplicable in the
regime of low metallic concentration. However, since the weight of the
electronic contributions to the thermodynamic properties of a metal salt
solution decreases with decreasing metal concentration x, we have used the
results of second order perturbation theory throughout the entire range of
concentration.

THE PHASE DIAGRAM

The total free energy of the system is now taken to be the sum:

1) (2)
F = Fi + Fe + F + F (10)

The volume derivative yields the total pressure P, and the molar Gibbs
free energy G, (T,P,x) follows from G = F  + PQ where F and Q

are the Helmholtz free energy and volume per mole of the solution. The
corresponding excess free energy of mixing is defined in the ususal way
as:

AGm(P,T,x) = Gm(P,T,x)-xGm(P,T,x=l)-(l-x)Gm(P,T,x-O) (11)
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Table 1. Critical Coordinates for K/Kel; . for
several values of §.

& Experiment 0.01 0.05 0.2 0.333
T, (k) 1073 1250 1650 2300 2500
Xq 0.35 0.25 0.25 0.35 0.4

In practice the various contributions to F or G, are calculated as
functions of the variables T, x and 0, and for fixed T and x the
latter is then varied to yield zero total pressure. The corresponding
excess molar volume of mixing:

Aﬂm(P-o,T,x) - Om(P-o,T,x)-xﬂm(P—o,T,x-l)-(l-x)ﬂm(P=0,T,x-o) (12)

is shown to be surprisingly large and negative for all x (see Ref. 7).

To zeroth order, if only the ionic and electrgnic cogtiibutions were
included, AG should be a convex function of x((8 AGm/ a°x%) T<°) so

that the solution would be thermodynamically unstable at all éoncentrations.
This behavior contrasts with the case of BIM or metallic a}%oys where the
ionic contribution always tend to stabilize the mixture.G' But when the
first and second order corrections due to the ion-electron coupling are
added, AG, gradually builds up a convex portion on the salt rich side,
signaling phase separation. The concentrations of the coexisting liquid
phases are determined by the usual double tangent construction. The critical
coordinates T, and x, depend sensitively on { and are compared to the
experimental values in the case of Kcll_x in Table 1, for several

values of §. While the calculated critical temperature can be brought

into agreement by an adequate choice of £, the corresponding critical
concentration x, is too small; this is probably a consequence of the
inadequacy of linear screening theory on the salt rich side of the diagram.
Typical phase diagrams calculated for K Kel;_, and Rb,RbBr,_ . are

shown in Ref. 7.
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CHAPTER 1I

PLASMA EXPERIMENTS



A HIGH-T, STRONGLY-COUPLED, NON-NEUTRAL ION PLASMAT

L.R. Brewer, J.D. Prestage*, J.J. Bollinger,
and D.J. Wineland

Time and Frequency Division
National Bureau of Standards
Boulder, Co. 80303

INTRODUCTION

We have produced a strongly coupled non-neutral 98e* ion plasma with a
coupling parameter of approximately 100 or greater. .The ions were
spatially confined by a Penning trap [Penning 1936, Dehmelt 1967, 1969,
Wineland et al. 1983] and cooled and compressed using laser cooling [Itano
and Wineland 1982]. Measurements were made of the plasma shape, rotation
frequency, density and temperature. In this paper we describe the
experimental confinement geometry, the laser cooling of ions and the
experimental data which are compared with theoretical predictions. Future
experiments to measure the plasma static structure function, measure ion
diffusion, and improve the temperature measurement are discussed.

CONFINEMENT GEOMETRY

The Penning trap, shown in Fig. 1, is composed of two "endcap"
electrodes and a "ring" electrode which are biased with respect to each
other by a d.c. electric potential. The electrode surfaces are approximate
hyperboloids of revolution. The symmetry axis of the trap is parallel with
a static magnetic field. The configuration is similar to that used by the
group at the University of California at San Diego (UCSD) [Malmberg and
deGrassie 1975]. The hyperboloidal shaped electrodes give rise to an
applied trap potential

mmz
z 2

= —=— (22

O iq - rz) , (1)

where m is the ion mass and the axial frequency w, is defined by the
equation

4qV,

“e T RETE D) @

Vo is the electric potential applied between the ring and endcaps and r, and
z, are the characteristic trap dimensions as shown in Fig. 1. There are
three principal motions of a single ion in this trap. The potential o7 is
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quadratic in z, and this gives rise to simple harmonic motion of the ion at
frequency w, along the z axis of the trap. In the radial direction the
ions are confined by a magnetic field, and the ion motion is a
superposition of two circular motions, the cyclotron and magnetron motions.
The cyclotron motion is shifted somewhat in frequency from its value in a
pure magnetic field by the radial electric field [Dehmelt 1967, 1969,
Wineland et al. 1983]. The magnetron or rotation motion is a circular
drift of the guiding center of the cyclotron motion due to the E x B forces
of the trap. These motions are shown in Fig. 2.

For the work discussed in this paper, typical trap parameters are an
electric potential V, of 2 volts, a B field of 1.4 tesla and trap
dimensions of ry = 0.417 cm and z, = 0.254 cm. TFor these parameters the
magnetron frequency for a single 9Bet ion is 15.1 kHz, the cyclotron
frequency is 2.38 MHz and the axial frequency is 267 kHz.

Fig. 1. The Penning trap consists of two endcaps and one ring electrode
which are biased with respect to each other by a potential V,. The
hyperbolic surfaces of the electrodes produce a quadrupole
potential which confines the ions in the z direction. The static B
field confines the ions in the radial direction.

THERMAL EQUILIBRIUM STATE

For a collection of ions in the trap, the resulting single species
plasma is assumed to be in thermal equilibrium because of Coulomb
collisions. If the plasma is in thermal equilibrium there is no shear in
the plasma and the plasma rotates as a rigid body. The density is constant
up to the edge of the plasma where it drops off in a distance that is
characterized by the Debye length [Prasad and 0'Neil 1979].

The single particle distribution function for a magnetically confined
non-neutral ion plasma has been given by Davidson [Davidson 1974] and by
Malmberg and 0'Neil [Malmberg and O'Neil 1977]. For positive ions we have

£(r,2,v) = n(r,z)[n/(21kgT) 13/ 2exp{-(n/2kpT) (v + wrd)2}  (3)

n(r,z) = nyexp{-(1/kgT)[qo(r,z) + (mw/2)(Q - w)r2]}. (4)

Here ¢ is the total electrostatic potential, w can be identified as the

rotation frequency of the plasma, Q = qB,/mc is the cyclotron frequency,
and n, is the density of the ions at the center of the trap.
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In the T = 0 limit, in order that f and n remain finite we find that
qo(r,z) + (mw/2)(Q - w)r? >0 (5)

for r,z inside the plasma. This equation tells us that the electrostatic
potential is independent of z and along with Poisson's equation, tHat the
density must be constant throughout the plasma and equal to n,. From
Poisson's equation and Eq. 5, n, is given by

mw(Q-w)
° "~ T2mq : (6)
The distribution function predicts simple shapes for the plasma in the
limits that T = 0 and the trap dimensions are large compared to the plasma
dimensions. The potential of the plasma is given by the expression

® =01 + o7 + 0in4s )]

where @1 is the Coulomb potential of the ions in the absence of the trap
walls and ¢4 is the potential due to the charges induced on the trap
electrodes. If the electrode spacing is large compared to the dimensions
of the plasma we can neglect ¢;,4 and solve for the ion potential. From
Egs. 1, 5, and 7 we find that

ma, 222

op = —5g (@ - w) - wf/2)e? - T2t (8)
= -2/3 wqny(ar? + Bz2) 9)

where Eq. 9 is used to define o and B. In general Eq. 9 represents the
potential inside a uniformly charged spheroid. For example for a=f=1, ¢r
is the potential inside a uniformly charged sphere.

e

L

Fig. 2. The orbit of a single ion in the x-y plane consists of two circular
motions. r, is the radius of the cyclotron motion and ry is the
radius of the magnetron motion. The figure sketches the ion orbit
for the case r.<r.
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ONE COMPONENT PLASMA

In the frame of reference rotating about the trap axis with frequency
w, the ion plasma behaves like a neutral one component plasma. That is,
the positively charged ions behave as if thay are moving in a uniform nega-
tively charged background. In particular, Malmberg and 0'Neil [Malmberg
and 0'Neil 1977] have shown that the static properties of magnetically con-
fined non-neutral plasma are the same as those for a one component plasma.

A one component plasma [Ichimaru 1982] is composed of a single species
of charge imbedded in a uniform background of neutralizing charge. The one
component plasma is characterized by a coupling constant

T = q%/akgT (10)

which is the ratio of the nearest neighbor Coulomb energy to the thermal
energy of a particle. The Wigner-Seitz radius a is defined by

a3 = 3/(4m) (11)

where n is the particle density. When I' > 1 the plasma is said to be
strongly coupled. When I' > 2 the plasma should exhibit liquid like
behavior and the particles should exhibit short range order. Slatterly,
Doolen,and DeWitt [Slatterly et al. 1980] have predicted that at I' = 178
the plasma undergoes a phase transition to become a crystal like structure.

Because the transition is of the first order, the plasma may remain in
a metastable fluid like state when it is supercooled below the transition
temperature. Ichimaru and Tanaka have investigated the supercooled one
component plasma and presented evidence for a possible dynamic glass
transition at a value of ' = 1,000 [Ichimaru and Tanaka 1986]. (The
correspondence between the magnetically confined non-neutral plasma and the
one component plasma rigorously exists only for static properties. The
possibility of a dynamic glass transition in a one component plasma is
therefore a suggestion of what might happen in the magnetically confined
non-neutral plasma.)

LASER COOLING

The technique of laser cooling utilizes the resonant scattering of
laser light by atomic particles. By directing a laser beam at the plasma
one can decrease the thermal velocity of the particle in a direction
opposite to the laser beam. The laser is tuned in frequency to the red, or
low frequency side of the atomic "cooling transition" (typically an
electric dipole transition). Some of the ions moving toward the laser will
be Doppler shifted into resonance and absorb a photon. Ions moving away
from the laser will be Doppler shifted away from resonance and the
absorption rate will correspondingly decrease. When an ion absorbs a
photon its velocity is decreased by an amount

Av = hk/m (12)

due to momentum conservation. Here Av is the change of the ion's velocity
in the direction of the laser beam, k = 2m/\ where )\ is the wavelength of
the cooling radiation, and m is the mass of the ion. The ion spontaneously
re-emits the photon in a random direction (for low laser intensities where
the stimulated emission rate is small), which when averaged over many
scattering events does not change the momentum of the ion. The net effect
then is that for each photon scattering event the ion's average velocity is
reduced by the amount shown in Eq. 12. To cool an atom from 300 K to mK
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temperatures takes tvpically 104 scattering events. For this experiment
the cooling limit, due to photon recoil effects [Wineland and Itano 1979],
for a given transition is given by a temperature equal to hy/2kp, where Yy
is the radiative linewidth of the atomic transition. For a linewidth y of
271+19.4 MHz, which was the natural linewidth of the cooling transition in
our experiment, the minimum obtainable temperature is 0.5 mK.

It is interesting to see how the laser affects the angular momentum
of the plasma [Wineland et al. 1985]. The z component of the canonical
angular momentum for a single particle is

1, = mvgr + gBrZ/2c (13)

where vg is the ion's azimuthal component of velocity and r is the ion's
radial cylindrical coordinate. The two terms represent the mechanical
angular momentum and the field angular momentum. The total z component of
the angular momentum is

L, = fdzf2nrdr/d3vE(r,2,v)1, (14)
= m(Q/2 - w)N<rZ> . (15)

Eq. 15 tells us that the total angular momentum about the z axis is
proportional to the mean of the square of the radius of the plasma. Here N
is the number of ions and f is the distribution function. For our
experimental conditions Q is usually much larger than w [0'Neil 1980] so
that

L, = m(Q/2)Ne2> 2 0 . (16)

If the cooling laser is directed at the side of the plasma which is
receding from the laser (due to the plasma rotation), angular momentum is
removed from the plasma and the radius of the plasma must decrease. As the
radius decreases, the density of the plasma increases. The limiting
density, known as the Brillouin density [Davidson 1974], occurs when the
rotation frequency w = Q/2. The Brillouin density is given by

2
n="“Q2 ) (17)

8mq

Collisions with background gas particles increase the angular momentum
of the plasma. This is one of the effects that could limit the compression
of the plasma. Axial asymmetry of the trap is also a limiting effect. The
plasma group at UCSD has observed that the axial asymmetry of their
cylindrical traps plays an important role in the electron confinement time
[Driscoll et al. 1986]. It is also expected to be a limiting effect in the
experiments reported here [Wineland et al. 1985].

At a magnetic field of 1.4 T, the Brillouin density for 9Bet is
5.9°108 ions/cm3. This density and the 0.5 mK temperature limit gives a
theoretical limit on the coupling of T' = 4,500. Consequently the
possibility of obtaining couplings large enough to observe a liquid-solid
phase transition looks promising. If the cooling or quench can be done
rapidly enough, it appears possible to investigate the existence of a
dynamic glass transition at I' = 1000. Currently the laser cooling
technique is capable of reducing the temperature of a cloud of ions from
room temperature to less than 10 mK (T = 100) in a few seconds. This
cooling rate, if continued to lower temperatures, compares favorably with
the minimum nucleation times ranging from 80 to 8:10° seconds as estimated
by Ichimaru and Tanaka [Ichimaru and Tanaka 1986] for a 9pet plasma with
the above density.
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PRODUCTION OF HIGH I' NON-NEUTRAL PLASMAS

The experimental configuration reported in this paper was similar to
that reported by Bollinger and Wineland [Bollinger and Wineland 1984] where
plasma coupling parameters as high as 10 were achieved. In their paper
they suggested that by cooling the plasma in directions both perpendicular
and parallel to the trap B field one could achieve lower temperatures and
higher coupling. The results of this experiment are reported below.

Excitation Scheme

The excitation scheme is shown in Fig. 3. The cooling laser drives
9Bet ions between the 25281/2, ms = +1/2 and the 2p2P3/2, m; = +3/2 states.
Ions are optically pumped into tﬂe 25281/2 m: = +1/2 state with 94 %
efficiency [Wineland et al. 1984]. That is,” for laser intensity below
saturation, 94 7 of the ions reside in the 25251/2 my = 1/2 state. The
cooling laser has a wavelength of 313 nm and a power of approximately 50
MW. Resonance fluorescence (i.e. the scattered light) from this transition
is detected in a photomultiplier tube. A second laser drives ion
population from the 25281/2, m; = +1/2 state to the 2p2P3£2, my = -1/2
state where the ions decay witﬂ 2/3 probability to the 2s S1/25 my = -1/2
state causing a decrease in the observed fluorescence from the ions. The
power of this "probe laser" is « 1 uW. Fig. 4 shows the resonance line
shape when the probe laser is scanned through the transition. The probe
laser is used to measure the shape of the plasma, its rotation frequency,
density, number of ions, and temperature as described below.

Experimental Apparatus

The experimental apparatus is shown in Fig. 5. The cooling laser
passes through a 507 beam splitter. Upon exiting the splitter one beam
enters the plasma perpendicular to B and the other beam (diagonal cooling
beam) enters between the ring and one endcap at a angle of 55 degrees with
respect to B. The probe beam passes through a telescope which is used to
precisely translate the beam spatially. Because the diagonal cooling beam
scatters so much light from the steering mirrors it is chopped at 1 kHz and
resonance fluorescence from the perpendicular cooling beam is detected only
when the diagonal beam is off. The B field strength is 1.4 tesla. The
vacuum in the Penning trap is approximately 10 8 Pa (133 Pa = 1 torr)
allowing the ions to be trapped for many hours.

—— 3/2
— 1/2
1/2
3/2

0

o

<~ <
Probe Pump

172

S
2 —1/2

m,
Fig. 3. The excitation scheme for the n=2 level of the IBet ion showing the

laser cooling (pump) and depopulation (probe) transitions.
Hyperfine structure has been neglected.
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Fig. 4. The ion resonance fluorescence as a function of probe laser
frequency. The bottom of the right most feature is the background
signal.

Diagnostics

The depopulation signal is observable only when the probe
beam intersects the plasma. This is used to determine the shape of the
plasma. Spheroidal plasma shapes (with symmetry axis along z (Fig. 1))
with dimensions ranging from 200 um to 500 um were measured. A spheroid is
the volume obtained when an ellipse is rotated about one of its axes.

Fig. 5. The experimental apparatus for probing strongly coupled plasmas.
The plasma is cooled and probed by lasers both perpendicular and at
a 55 degree angle with respect to the B field.

59



The probe depopulation signal shifts in frequency as a function of the
radial distance from the trap axis due to the Doppler shift caused by the
rotation of the plasma. The rotation frequency

w/2n = (av/ay)(A/2w) (18)

is calculated from the frequency shift Av when the probe laser position is
moved by an amount Ay. The density was determined from the zero
temperature formula Eq. 6. The number of ions is given by the volume of
the spheroidal plasma times the density.

The temperature of the plasma can be measured in directions both
perpendicular and parallel to the magnetic field. The temperature in the
perpendicular direction is measured by pointing the probe laser at the
plasma in the direction perpendicular to the B field. This laser is
scanned in frequency and the full width half maximum of the unsaturated
depopulation transition is measured. The lineshape is a Voigt profile
whose width is composed of the natural linewidth, the Doppler width, and a
width due to the convolution of the laser spot size with the plasma
rotation. The Doppler width can be deconvoluted from the Voigt width
giving the temperature of the plasma. The probe laser can also be pointed
at the plasma at an angle of 55 degrees with respect to the B field. The
full width at half maximum of this resonance contains Doppler widths from
temperatures in both perpendicular and parallel directions to the magnetic
field. With the perpendicular temperature from the previous measurement
the parallel temperature can be determined. Table 1 summarizes the
measurements on seven ion clouds.

Table 1. The experimental data. The error convention is as follows -
1.8(10) = 1.8 £+ 1.0. V, is the trap voltage in V, 2Z and 2R are the axial
and radial extent of the plasma in pm, n is the density of the plasma in
units of 107/cm®, w/2w is the plasma rotation in kHz, Ty and Ty are the
parallel and perpendicular temperatures of the plasma in mK, and I' is the
coupling parameter for the plasma based on ql'

Vo 22 2R n #IONS  w/2m Ty T, r
2 130(30) 450(30) 2.4(6) 330(170) 25(6)  2.3(5) 10(5) 80
2 150 450 1.9(5) 300(150) 20(5)  1.8(10) 7.4(70) 100
2 130 . 480 . 2.2(6) 350(170) 23(6)  .9(15) 8.9(60) 90
2 160 . 450 . 2.6(7) 450(230) 27(7)  2.4(10) 6(6) 130
2 160 . 260 . 2.8(7) 150(80) 30(7)  2.7(30) 2.4(60) 340
4 80 . 390 . 3.9(10) 250(120) 40(10)  2.9(20) 20(12) 50
1 190 . 360 . 1.2(3) 150(80) 13(3)  2.9(10) 4.7(60) 130

DISCUSSION OF THE DATA AND CONCLUSIONS

The plasmas are oblate spheroids of revglutlon The Brillouin density
at a field strength of 1.4 tesla is 5.9 x 10 ions/cm3. The measured
densities were typically 2 x 107 ions/cmé. This is a factor of 30 less
than the theoretical limit. The mechanism which limits the density is not
well understood but it may have to do with axial asymmetries in the Penning
trap [O'Neil 1980, Wineland et al. 1985].

The theoretical cooling limit discussed earlier is 0.5 mK. While the

uncertainty in the temperature measurement is large enough to include this
limit in some cases, the temperatures measured were consistently higher by
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about an order of magnitude. The 0.5 mK limit was derived for the case of
a single ion in a trap. Recently it has been shown [Itano 1986] that for a
cloud of ions, the temperature limit depends on the distance the cooling
laser is from the center of the cloud, the rotation frequency, and the
saturation of the cooling transition. These factors could account for the
temperatures we measured. With some small changes in the way the laser
cooling is done we should be able to reach the 0.5 mK limit.

The largest coupling parameter measured was I' * 340. The uncertainty
in this measurement was large due to the uncertainty in the temperature
measurement, which in this case was 2.4(60) mK. This temperature
uncertainty results in a range of values for T of 100 to a maximum of 2,000
due to the theoretical cooling limit. This coupling may be in the range
where we would expect the plasma to be crystalline.

The lowest temperatures were measured on plasmas of several hundred
ions. This can not be truly called a three dimensional plasma.
Since surface effects in the ion clouds may be important in our experiment
the results are probably best compared to a theory which is somewhere
between a plasma theory and a theory for ion clusters.

BRAGG SCATTERING FROM A STRONGLY COUPLED PLASMA

Slatterly, Doolen, and DeWitt [Slatterly et al. 1980] have derived
expressions for the pair distribution function and the static structure
function. The static structure function is the spatial Fourier transform
of the pair distribution function and is what one expects to see in the
diffraction pattern resulting from the scattering of coherent light from
the ions. For low coupling parameter I' the function is fairly flat but for
I' ~ 100 one sees sharp peaks in the amplitude of the structure function
due to short range order. It should be possible to measure S(q) directly
and compare this result to the calculations of Slatterly, Doolen and
DeWitt.

An experimental apparatus to observe Bragg scattering which is
currently under construction is shown in Fig. 6. Light from the cooling
laser is scattered by the plasma and produces an interference pattern.
This pattern is detected by a photon counting imaging tube.

For the densities we have measured the first interference fringe
should occur at an angle of 0.6 degrees. We expect that the total count
rate into the detector should be on the order of 100 counts/s. Therefore
the suppression of background and scattered light into the detector will be
of primary importance.

TAGGED ION DIFFUSION

A measurement of the ion diffusion may tell us whether the plasma is
solid or liquid. Some experiments have observed crystallization in two
dimensional [Grimes and Adams 1979] and solid state systems [Rosenbaum et
al. 1985]. Wuerker et al. [Wuerker et al. 1959] observed crystallization
of aluminum particles in a Paul trap. A possible technique for measuring
ion diffusion in our experiment is as follows. The probe beam will be
tuned on resonance and then pulsed on for a short period of time thereby
"tagging" a group of ions. If the plasma is liquid, the tagged ions will
diffuse between the spatially separated probe and cooling lasers and a
depopulation signal will be observed at some time after the probe laser
pulse. If the plasma is solid no tagged ion diffusion occurs and no signal
will be observed.
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IMPROVED TEMPERATURE MEASUREMENT

One difficulty with the present temperature measurement technique is
that the natural linewidth of the probing transition ultimately limits the
sensitivity of the measurement. Stimulated resonant Raman transitions, as
for example studied by Thomas et al. [Thomas et al. 1982], avoid these
difficulties. The natural linewidth of these nonlinear transitions is
equal to the natural linewidth of the ground states which can be extremely
small. If the angle between the two Raman beams is appropriately chosen
the spectrum contains information about the velocity distribution of the
plasma and is not affected by the upper state linewidth [Wineland 1984].

—Detector

— Glan-Taylor

L—]
I o

Polarizer
U Beam Stop
v
j_,_l I Trap
v—
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Polarizer
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313nm

Fig. 6. The proposed apparatus for detecting the Bragg interference
pattern. The probe beam is collinear with the B field along the
symmetry axis of the trap. The Glan-Taylor polarizers are crossed
to suppress light which does not come from the ions.

CONCLUSION

In this paper we have discussed the measurement of the temperature,
density, rotation frequency, and shape of a 98et ion plasma. Temperatures
as low as 2 mK were measured. This, along with a measured density of
3-107 cm"® corresponds to a coupling parameter of I' = 340. With an
improved, highly axially symmetric trap operating at high magnetic fields
we hope to be able to reach even lower temperatures and higher densities.
This should result in values of the coupling parameter I' that are much
higher than the value predicted to observe crystallization in a one
component plasma.

The technique of Bragg scattering resonant coherent laser light from

the plasma makes possible a measurement of the static structure function.
This measurement can be compared to the theoretically predicted value for a
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one component plasma. A measurement of the ion diffusion in the plasma may
allow us to determine if the plasma is a liquid or a solid. Finally a
measurement of the plasma velocity distribution using a stimulated Raman
transition should improve the temperature measurement.
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LASER SCATTERING MEASUREMENTS OF THERMAL ENTROPY AND ION-ACOUSTIC

FLUCTUATIONS IN COLLISION-DOMINATED PLASMAS

Andrew N. Mostovych
U.S. Naval Research Laboratory

Yi Quang Zhang and Alan W. DeSilva
University of Maryland

Laser scattering is an ideal diagnostic tool for studying the
kinetic properties of plasmas because the power spectrum of scattered
light is directly proportional to the_dynamic spectral density function
S(k,w) of the plasma., Furthermore, S(k,w) is the Fourier transform of
the spatial two-particle correlation function., As a result, scattering
experiments, in addition to measuring the density fluctuation spectrum
of the plasma, also obtain valuable information about pair correlations
in the plasma.

In weakly coupled plasmas (I << 1) laser scattering has been
routinely used to investigate collective plasma modes, to observe
instabilities, and to measure electron temperatures'. While extremely
useful for these purposes in the weakly coupled regime, laser
scattering, also has the potential for producing the most direct
experimental measurement of correlations and coupling properties in
strongly coupled plasmas. In practice, this has been rather difficult
because the strongly coupled plasmas produced, to date, in the
laboratory have been either too optically thick to permit scattering
diagnostics or so cold and dense that absorption of the probing laser
would perturb the plasma.

In this paper we present laser scattering measurements of thermal

ion-acoustic and entropy fluctuations from moderately coupled (r=.05),
highly c?+1i§§onal Argon and Helium plasmas. The plasma conditions

(n =10 'em Te= 2eV) were such that it was possible to circumvent the
opacity problems of a strongly coupled plasma while still sampling a regime
where_the standard weakly coupled plasma approximations (Vlasov theorg;

1/nA3<< 1) are of dubious validity. The efforts by several authors ! to
generalize the kinetic theory for this paramster regime have produced
differing predictions for which the current experimental data °"10are
insufficiently precise to test their validity. 1In this experiment the
measured spectra dgffered substantially from spectra observed in collisionless
plasmas where 1/nAD << 1. Fluctuations at the ion-acoustic frequency were
strongly enhanced and the width of the resonance was significantly narrowed in
comparison to the colisionless case. Also, strong fluctuations around zero
frequency, due to non-propagating entropy fluctuations, became visible for the
first time in a plasma. Finally, the plasmas in this experiment were fully
diagnosed by independent spectroscopic, interferometric, and probe

tThe reader is refered to Refs. 14,15 for more details concerning this work.,
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measurements, This allowed a complete characterization of the plasma
equilibrium, as well as faithful comparison to theoretical predictions without
resorting to parameter fitting schemes.

Ion-acoustic fluctuations were selected because of their high
sensitivity to the effects of collisions, given their relatively low
frequency. In particular, the degree to which the scattering spectra
can be expected to be altered by the presence of collisions is determined
by the ratio (v,./kC_) of the ion-ion collision frequency to the
ion-acoustic gygquency [where k=Ux/) sin(6/2) is the fluctuation wave number
and C_=(YKT/m is the ion-acoustic velocity, 6 represents the scattering
angle, and m is ion mass]. If, v,./kC_ > 1 collisional effects are important
and for given plasma conditions tﬁéy can be maximized by a choice of small
wave numbers. This is best seen by examining a sample calculation
(Fig. 1) of the ion-acoustic fluctuation spectra due to Debois and Gilinsky
for several values of the normalized collision frequency (v,./kC_) . It is
clear that the collision frequency must be at least severall%imes the ion-
acoustic frequency for a discernible effect. 1In this work collisional effects
were maximized by the use of a long-wavelength (10,6 um ) CO, laser and small
scattering angles (4° - 9°). This choice of scattering parameters was, in
fact, ideally suited to test the validity of the various theories, since in
this parameter regime the predicted ion-acoustic fluctuation spectra vary
substantially from theory to theory, as is demonstrated by the calculations
for an argon plasma in Fig. 2.

The curve due to Salpeter11, the standard Vlasov result, was put in
for comparison. 1In equilibrium where the electron and ion temperatures
are equal it predicts a very broad quasi-resonance due to strong Landau
damping. The theory of Dubois and Gilinsky corresponds to a solution of
the Balescu-Lenard equation in the limit of a collision dominated
plasma. It predicts an enhanced ion peak at the ion-acoustic frequency
and a second peak at zero frequency corresponding to entropy
fluctuations. It is interesting that the intensity, width, and
position of these peaks are very different from the BGK calculations
which also predict the same peaks. If the isothermal approximation is
made in the BGK calculations then the entropy fluctuation peak totally
disappears. Physically, the entropy fluctuations can be understood as
non-propagating density fluctuations which have corresponding
fluctuations in temperature, constrained to keep the pressure constant.

Fig. 1 Shape of the ion-acoustic resonance, as predicted by the Kivelson-
Dubois solution of the Balescu-Lenard equation (Ref. U) for various
collision frequencies. Curves parametrized by vii/kCS .
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Entropy fluctuations become visible in a collisional plasma because the
thermal conductivity, the normal damping mechanism for temperature
fluctuations, becomes relatively weak at high collision frequencies.
Similarly, if the plasma is assumed isothermal then entropy fluctuations
are not allowed because of the implied infinite thermal conductivity.
The enhancement of the ion-acoustic resonance occurs because the
otherwise strongly Landau damped electrostatic restoring force is

Fig. 2 Ion-acoustic spectra for a collisional agron plasma as calculated
from the various collisional theories (Refs. 2-6) and compared to a
collisionless calculation [Salpeter (Ref. 11)].

replaced with a much stronger ion-ion collisional restoring force,

This is exactly the same mechanism as the one which supports

ordinary sound waves in fluid media. Finally, if we look at the
Linnebur-Duderstadt calculations, based on the generalized Langevin
equation, and the Fokker-Planck equation, based on a Brownian collision
term, we find that they predict an almost complete damping of the
ion-acoustic resonance at high collision frequencies,

The testing of the various collisional theories previously
discussed requires the use of a very dense low temperature plasma which
is in thermodynamic equilibrium and for which the plasma density,
temperature, and impurity content are accurately known. These
requirements where satisfieq7by_§he use of a pulsed arc, designed to
produce plasmas with n = 10 ‘cm -, T = 2eV and to last for about 100 usec.
The arc was made capable of high repetition rates (.5 Hz) in order
to allow for integration of the scattering signals cumulatively over
many shots.

The arc consisted of a quartz tube (r=2.3cm, %£=22cm) mounted
between two copper~tungsten alloy electrodes which were fed by 1200 uF
capacitor bank charged to 1-2 kV. To produce a relatively flat current
pulse over the time of the discharge and hence a quiescent plasma, the
capacitor bank used to drive the arc was constructed as a lumped delay
line which has the characteristic of producing square discharge pulses.
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In normal operation, the arc was filled with 1-7 Torr of helium or
argon gas and discharge currents of abo t 10—2; kA roduced plasmas with
densities and temperatures of about 10 - 10 and 2-4 eV, For
scattering measurements, the plasma colllslonallty was maximized by
operating the arc at the highest pressure (3 torr for Ar and 7 torr for
He) and the lowest bank voltage (1500V) consistent with _stable plasma
discharges. This ?roguced plasmas with 1.95 eV and 10 em™ 2 for argon
and 2.3 eV and 10 for helium. The corresponding degree of
ionization was 100% in argon and about 50% in helium.

The electron density and temperature of the arc plasma was
determined from interferometric and spectroscopic measurements
(Fig. 3). From these measurements, the electron density was
found to be a smooth function of time, roughly following the profile of
the current pulse. Similarly, measurements at various radial positions
showed that the plasma density and temperature were relatively flat
across the diameter of the discharge tube, indicating a very uniform arc
discharge.

The stability properties of the plasma where checked by use of high
speed photography, inductive probes, and electric Langmire probes.
Framing camera photographs with exposure times as short as 5 nsec showed
the plasma to be stable, uniform, and reproducible in both helium and
argon discharges in the 1-7 torr and 1-3 torr pressure ranges,
respectively. Magnetic and electric probe measurements showed that the
plasma was very uniform and quiescent showing no signs of large-scale
fluctuations or changes in the equilibrium state for times as long as 50
usec,

Scattering measurements with long-wavelength lasers from dense
low-temperature plasmas are generally very difficult to perform since
whenever the input laser power is sufficiently intense to produce a
discernible scattering signal, it is also sufficiently intense to
perturb the plasma by heating it. In this experiment, the problem of
heating the plasma was overcome by the use of a heterodyne technlque12 13
which is capable of boosting the detected signal many orders of
magnitude; as a result, it permits the use of a relatively low-power
laser (200 W) which does not perturb the plasma.
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Fig. 3 Electron temperature and density of argon and helium plasmas as a
function of fill pressure. Measured by interferometry and the ratio
of spectral line intensities,
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A schematic of the heterodyne scattering configuration is shown in
Fig.4, First,a small fraction of the main laser beam (TEMO s, P = 200 watts,

T = 100psec) is split off to form a local oscillator beam and, subsequently,
the main and local oscillator beams are focused into the plasma with a 10-cm-
focal~length lens. Any light that is scattered out of the main beam and into
the solid angle subtended by the local oscillator beam is imaged onto a
liquid-helium cooled Ge:Cu detector. The non-linear mixing of the scattered
and local oscillator beams produce a detected photocurrent, which contains the
plasma fluctuation spectra. In particular, the photocurrent can be expressed
as:

nge 1/

2
o cos(wt)},

Io(t)= {PS+ Plot 2C[Ps(m)PL0]

where P=c(EE*/8n) is the average power of the individual fields, n and G
are the detector quantum efficiency and gain, w is the fluctuation
frequency and ¢ is the mixing efficiency which measures the extent to
which the two radiation fields are in phase over the surface area of the
detector. The form of this photocurrent shows that mixing the scattered
light with a local oscillator beam produces a signal that is composed of
two distinet components: a slowly varying (Freq. = 1/laser pulse
length) average power envelope that is due to the local oscillator and
scattered light beams (PS + P;g); and a high frequency beat term (i.e.,
heterodyne% which contains the plasma fluctuation spectrum
[(PSPL0)1/ cos (wt)]. The heterodyne term is in the radio frequency range in
this work. Consequently, it is easily differentiated from the low frequency
average power terms and its spectrum is analyzed at high resolution

(Af = 6MH_) by the use of a scannable electronic filter. 1In addition, the
capability to separate the heterodyne term from the very large average power
terms permits scattering measurements in the high stray light environments, as
is the case for small angle scattering. The stray light not being frequency
shifted by the scattering process only contributes to the average power terms
which are easily filtered out.

In practice, the mean-square current analyzed by the data-acquisition
unit is composed of not only the scattering signal, but also of signal
currents from various noise sources in the detection system. As a result,
good signal to noise ratios can only be obtained for long integration times.
For the data presented in this paper, the integration time per shot was set at
40 usec and 50 to 100 shots were averaged for each frequency value.

Fig. 4 Diagram of the optical system and scattering geometry.
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Initial scattering measurements were made in argon plasmas for the
two cases of Kk parallel and perpendicular to the discharge current, The
observed spectra are displayed in Fig. 5 and show substantial peaking
near the ion-acoustic frequency (50 MHz at 2 eV). Each data point
corresponds to a scattering signal averaged over 50 discharges of the
arc and the error bars are derived from the standard deviations of the
mean. Even though the observed enhancement of the ion-acoustic
resonance is interpreted as evidence of collisional plasma behavior, it
is important to rule out the possibility that such enhancement could
also have been produced by collisionless mechanisms. Most importantly,
reduction of Landau damping due to unequal electron and ion temperatures; and
non-thermal excitations due to the discharge current could have both produced
the observed spectra.

Reduction of Landau damping due to unequal electron and ion
temperatures is very unlikely because the collisional equilibration time
between ions and electrons ( 7Onsec) is much shorter than the plasma
lifetime (100 psec). Similarly, the electron temperature would have to
be about eight times that of the ion temperature in order for the
collisionless result to qualitatively reproduce the measured spectra.
Such a large temperature differential is sufficient to substantially
reduce (30%) the ion-acoustic frequency in comparison to its adiabatic
value, Since no such shift was observed, it is safe to assume that the
observed enhancements of the ion-acoustic resonance were not caused by a
reduction in Landau damping due to unequal electron and ion temperatures,

Enhancements of the spectra due to current-driven ion-acoustic waves
were not expected to be very important because the electron drift
velocity due to the current was only 20% of the ion-acoustic velocity.
Nevertheless, measurements with k | J and k | J showed that there was a
30% enhancement of the scattering spectrum parallel to the current.

This relatively small level of enhancement suggested that the
ion-acoustic waves parallel to the current are weakly driven, and are

Fig. 5 Scattered ion-acoustic spectra for the two cases of
k I J and k l J which demonstrate the effect of the discharge
current
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Fig. 6 Scattered light spectra in argon for 4.7° and 8.75° scattering
angles,

thus uncoupled from fluctuations perpendicular to the current. As an
additional test, the K | J scattering spectrum was also measured both
during the discharge, when the current was about 17 kA, and during the
afterglow, when the current had fallen to zero and was incapable of
driving instabilities. Again, this measurement showed that the
enhancement due to the discharge current was about 30%, thereby proving
that the ion-acoustic waves perpendicular to the current were not
coupled to the current, thus only exhibiting thermally excited
fluctuation spectra.

A comparison of the theories displayed in Fig. 2 with the scattering
results required that the data originate from thermal fluctuations.
Final data were, therefore, taken wlth k l J_. Specifically, scatterlng
spectra from both helium (2.3 eV, 1x1017 3) and argon (1. 95 1x1017
em °) plasmas were each measured at scattnrlng angles of 8.75° and 4,7°,
These spectra are shown in Figs. 6 and 7; as expected, they show
substantial enhancement and narrowing, with the peak amplitudes being
about 10 times the gredlcted amplitudes of collisionless theory. For
the spectra at 4.7 ./kKC is about 2 times as large as for the one at
8.7°. This shows up as an Increased narrowing of the ion-acoustic
resonance at the lower ion-acoustic frequency. As before each data
point corresponds to a scattering signal averaged over fifty discharges

of the arc and the error bars are derived from the standard deviation of
the mean.

From all of the theoretical models previously discussed, the BGK
theory proved most successful in reproducing the data. Theoretical
curves due to the BGK theory are presented alongside the argon data in
Fig. 8a. These curves were calculated for the specific plasma
temperatures and densities that were measured by independent
diagnostics. No free parameters were used in the calculations other
than a normalization of the calculated spectra to the peak amplitude of
the data so as to allow for the uncertainty (factor of 2) in the
absolute intensity calibration of the detection system. Even though the
general shape and position of the ion-acoustic resonances is predicted
fairly well, there exists a discrepancy between the measured and
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Fig. 7 Scattered light spectra in Helium for 4,7° and 8.75° scattering
angles.,

predicted widths of the resonances. This difference, except for the H.7°
argon spectrum, cannot be accounted for by the finite resolution of the
experiment ( F=6Mhz, Ak/k = 0.05 ). A calculation where the finite
wavelength and frequency resolution of the experiment are convoluted

into the theory is displayed alongside the data (dashed curves) in Fig.

8a. The basis for this discrepancy probably lies in the fact that
ion-electron collisions have been assumed to be unimportant in the
theoretical formalism., For plasma conditions encountered in this
experiment, however, such an assumption is most 1likely invalid because

the collisional equilibration time between electrons and

ions [v_.(He) = 9nsec, v_.(Ar) = 70 nsec] is comparable to the period of ion-
acoustic oscillations. %he main effect of collisional coupling between
electrons and ions is to increase the effective thermal conductivity of the
ions through contact with the highly conductive electrons. This increases
the damping of ion-acoustic waves, thereby increasing the width of the
observed resonances.

Fluctuation spectra predicted by the Kivelson-DuBois solution of
the Balescu-Lenard equation were also compared to the scattering data
(Fig. 8b). On the high frequency side of the ion-acoustic resonance the
theory produces a very good fit; however, at lower frequencies this
model reproduces the data fairly poorly. It appears that the
approximations employed by Kivelson and Dubois, in solving the
Balescue~Lenard equation, somehow overestimate the width of the entropy
fluctuation contribution to the total spectrum, Finally, it is
important to point out that the Fokker-Plank and Linnebur-Duderstadt
models are in total disagreement with the data since they do not even
predict the existence of an ion-acoustic resonance in highly collisional
plasmas.

An issue still not addressed by this experiment is that of entropy
fluctuations at zero frequency. Both the BGK and Debois-Gilinsky
theories predict the enhancement of entropy fluctuations at zero
frequency. In fact, the presence of these fluctuations is hinted by the
data in Fig. 6. Complete verification of this effect could not be
obtained with the initial experimental configuration because the finite
pulse length of the laser and low frequency variations of the laser

72



absorption in the plasma imposed a lower limit on the detection .
frequency. To overcome this limitation the whole frequency spectrum of

the scattered light was shifted to higher frequencies by a shift of the
laser local oscillator frequency. The shift in the local oscillator was
accomplished by scattering the local oscillator beam from ultrasonic
waves in a germanium crystal (accousto-optic Bragg cell). The frequency
shifted scattered beam was then used as the new local oscillator, With
this modification to the experiment it now became possible to directly
measure the low frequency entropy fluctuation contribution as well as
the ion~acoustic resonance in a single spectrum, Initial measurements
in an argon plasma at 4,7° are shown in Fig. 9. As expected from the
BGK predictions, the entropy peak is strongly peaked and comparable to
the ion~acoustic peak in intensity.

The simultaneous observation of the entropy and ion-acoustic peaks
afforded a unique opportunity to measure some basic thermodynamic
properties of the plasma. This was accomplished by assuming a fluid
description of the plasma and comparing the scattered spectra to the
general predictions of fluid theory. 1In particular, the spectrum of
scattered light from a fluid in thermodynamic equilibrium is given by

P Tk

= +
~ ¥ ~
p(@)p (R)> c (k¥ p co)Pr® O (1k®)% (e gh)?
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where Co is the sound speed, CP and C, are the specific heats
at constant pressure and volume, x is the thermal
conductivity, and I' is the damping coefficient for sound

waves:
n + 1N
r=?§[£ _.s;n___tz+£.(51.-c_1_)]
3 pO pO v P

and n_,and n, are respectively the shear and bulk coefficients
of viscosity.

An examination of this equation reveals that the fluctuation

spectrum of a fluid plasma is composed of two distinet components: one

at zero frequency due to entropy fluctuations and one at the

ion~acoustic frequency. The width of the two resonances is determined,
respectively, by the thermal conductivity and the ion-acoustic damping
coefficient. Furthermore, the ratio of the peak intensities is related

to the ratio of heat capacities Y = C /CV by 5(0)/I(kc ) = 2(y=1) and the
width of the entropy peak is given bypAm = kk /p C_ . "The curve plotted
alongside the data in Fig. 9 is a least squares ?ig to the fluid model. From
the fit we figd that v = 2.24 and that the thermal conductivity is

k = 3.84x10 “ergs/deg-cm~sec . In comparison we find fhat a calculation of
the Braginskii thermal conguctivity gives ¥ = 2.33 x 10”ergs/deg-cm-sec for
the ions and « = 3.75 x 107ergs/deg-cm-sec for the electrons, The fact that
the experimental value of the conductivity is about 60% higher than calculated
ion conductivity but about 2 orders of magnitude lower than the calculated
electron conductivity suggests that there is a relative small amount of
coupling between the ions and electrons. Nevertheless, the width of the
resonances is increased by this interaction between the electrons and ions.

tThe instrument width of this data has been reduced to 2MHZ
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Fig. 8 a) Scattered ligh spectra in argon for 4,7° and 8.75° scattering
angles. Calculated curves are due to the BGK theory (Refs. 2,6
and 15). The dashed curves are due to the BGK theory convoluted
with the finite resolution of the experiment. b) Curve due to
theoretical predictions from the solution of te Balescu-Lenard
equation (Refs. U, and 15).

Fig. 9 Complete entropy and ion-acoustic spectrum is obtained with
frequency-shifted local~oscillator beam. Curve due to least squares
fit to fluid theory.
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In conclusion, small-angle scattering measurements of thermal
ion-acoustic fluctuations from highly collisional (v,./kC_= 5-13) argon
and helium plasmas have been obtained. These measurament8 show
substantial enhancements of the ion~acoustic and entropy fluctuation
resonances due to collisional effects. A comparison to theoretical
predictions calculated from independent measurements of temperature and
density shows that the BGK theory is the most accurate in reproducing
the data. It i3 demonstrated that fluid theory combined with laser
scattering experiments can be used to measure plasma transport
properties.

In addition to being very collisional, the plasma usgd in this
experiment was characterized by a fairly large (g = 1/mAD=.3) plasma
parameter,

Thus, there was a good possibility that, in exception to the
Linnebur-Duderstadt model, the theoretical models examined in this work
were inapplicable, due to their formal dependence on g being small.
Nevertheless, even with g=.3 the BGK and Balescu-Lenard models seem to
be qualitatively correct.
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PRODUCT1ON AND DIAGNOSIS OF DENSE COOL ALKALI PLASMAS

0. L. Landen and R. J. Winfield

Lawrence Livermore National Laboratory, USA
Imperial College, Blackett Laboratory, London, UK

INTRODUCTION

In strongly-coupled plasmas, the electrostatic energy becomes comparable
to, or larger than, the thermal energy, i.e.:

1/3

2 hﬂNe
( ) > kTe

e
AvE 3
o

In addition, the parameter number of electrons/Debye sphere, Np = 1.7 x

109 Te3ﬂ9Ne 2 pecomes less than 1 and hence the term non-Debye plasma.
Under these conditions, deviations in electron and ion structure factors
from the well-known weakly coupled limits(1) are expected. These devi-
ations in plasma behavior should be observable spectroscopically from line-
shape studies and Thomson scattering.

Non-Debye plasmas amenable to such diagnostics have been produced here by
resonant and multiphoton excitation of sodium and cesium vapors.(z's)
Detailed time-resolved emission spectroscopy and Thomson scattering from
the ensuing long-lived (> 100 ns) and optically thin plasmas was performed
and compared with theory.

EXPERIMENTAL DETAILS

The experimental set-up consisted of a tunable dye laser pumped by a
frequency-doubled Nd: glass laser, sodium and cesium ovens and a spectro-
meter/photomultiplier system for spatial, temporal and partial spatial
resolution of plasma fluorescence and scattered laser light. The typical
laser output was 25 mJ in 25 ns focussed to a few mm? in the oven and
tunable between 5800 and 6900 A by using a variety of laser dyes. Oven
vapor densities were monitored by using saturated vapor pressure tables(6)
and measured oven temperatures, and by curves of growth on sodium and
cesium resonance lines. The plasma and laser light emitted at 90° to the
laser beam within the ovens was focussed onto 50 to 100 ym wide horizontal
slits of an f/4.2 30 cm grating spectrometer. Lineshapes were recorded on
a shot-to-shot basis with 15 ns, 1.8-2.3 R resolution for the 0.5 cm by
100 ym plasma area viewed. Detector sensitivities and spectral calibrations
were performed using tungsten ribbon lamps and low pressure discharge lamps.
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ION1ZATION SCHEMES

Sodium plasmas were produced by saturating the resonance transition
3s53p at A = 5896 R or by two-photon resonant (3s23d) three-photon ioniza-
tion at \ = 6854 A. The ionization mechanism in the former case was
believed to be associative ionization between two sodium atoms excited to
the 3p state. Cesium plasmas were induced by two-photon ionization at
A = 5266 R and A = 6354 R.

EMISSION SPECTROSCOPY: SODIUM

The column of laser excited sodium vapor emitted a white glow in which
the following atomic doublet transitions were identified: 3p-ns for n=5-9,
3p-nd for n=3-10, 3p-nf (dipole forbidden) for n=4-6 and the D lines 3s-3p.
Lineshapes were recorded for various times between 30 and 400 ns after the
end of the laser pulse for the transitions 3p-3d4, 3p-4d, 3p-5d, 3p-6d,
3p-5s, 3p-6s at various initial sodium densities, Ny,, between 2x 1016
and 4 x 1017 em3. A selection of doublet lineshapes with theoretical
fits are shown in Figs. 1-3. The 3p-3d transition is optically thick,
whereas the 3p-4d transition is optically thin but broadened and shifted by
the ion microfield and electron collisions. The forbidden components 3p-4f
(Fig. 3) appear on the blue wing of 3p-4d due to mixing of eigenstates by
the ion microfield. The theoretical fits which include the instrument
function, resonance broadening,(7) radiation transport and plasma-induced
broadening(s) are good.

Fig. 1. 3p-3d emission line shape for Ny = 1017 cm‘3, t = 100 ns.
Solid line is continuum level and solid curve is theoretical
fit (Ref. 8) including radiation transport.
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Fig. 2. 3p-6s emission line shape for Nya = 8 x 1016 em=3, t = 50 ns.
Solid line is continuum level and solid curve is theoretical
fit (Ref. 8).

Fig. 3. Temgoral history of 3p-4d emission line shape for Nyg = 4 x
1017 em3. solid curves are theoretical fits (Ref. 8)
excluding forbidden components and including radiation
transport. Line shapes are displaced vertically for ease of
viewing. Vertical solid line is unperturbed 3p3/2-4ds5/5 line
center.
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For isolated lines, plasma-induced line shifts are predominantly due to
the ion quadratic Stark effect and weak, distant elastic electron collisions.
Since the shift depends on distant collisions, there is a greater discrepancy
than for linewidths between theories including and ignoring Debye screening
of collisions. Hence the ratio of shift-to-width can be used as a measure
of the applicability of Debye shielding for dense cool plasmas. This ratio
is plotted for various electron densities determined from the plasma-induced
linewidths in Fig. 4, showing better agreement with. theory including Debye
screening.

Fig. 4. 3p-4d shift-to-width ratio vs Ny measured from 3p-4d
widths. Dashed line represents theory without shielding and
solid line includes Debye shielding.

The spectrally integrated ratio of 3p-4f forbidden component intensity
to 3p-4d allowed transition intensity is also an electron density diag-
nostic.(8) The ratio of electron densities determined by such forbidden
component intensities and by the 3p-4d width is shown in Fig. 5 versus
electron density determined from the 3p-4d width. Agreement is good at low
densities (Ng < 1.5 x 1016 cm3). The discrepancy at higher densities
is attributed to the breakdown of the perturbation theory used since the
intensity ratio has reached 20% at Ng = 1.5 x 1016 cm-3,

The electron temperature was measured from relative line intensities of
high-1lying transitions which are collisionally coupled to free electrons at
the present densities. For both ionization schemes, T varied between
0.19 and 0.28 eV during the first 400 ns of the plasma recombination phase.
Hence a minimum of 1 electron/Debye sphere was attained, limited by three-
body recombination which acts to reduce the electron density and raise the
electron temperature.
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Fig. 5 Ratio of N, measured by intensity of 3p-4f forbidden component
and by 3p-4d width vs Ng measured from 3p-4d width. Solid line
represents same N measured by both diagnostics.

EMISS1ON SPECTROSCOPY: CES1UM

A bluish-white column was formed for all Cs densities above 1016 em-3
for both laser wavelengths used, A = 5266 R and A = 6354 RA. Emission
lineshapes from the 6p-6d, 6p-7d, 6s-7p, 6p-8d, 6p-9d, 6p-8s and 5d-5{
transitions were recorded from the recombining plasmas for various times
between 50 and 400 ns after the start of the plasma. Electron densities
pelow 1017 e¢m~3 were inferred from the plasma- induced broadening of the
6p--7d, 6p-8d and 5d-5f transitions. Densities above 1017 em3 were
deduced from the plasma- induced shift of the 6s-7p line.(8:9) Tine
resolved electron temperatures were deduced from relative line intensities
of 6p-8d, 6p-7d, 6p-8s and 6p-6d, assuming partial LTE for all states
above 5d. The results for various initial Cs densities, 50 - 100 ns into
the plasma phase, are shown in Table 1 for X = 6354 R, The plasmas
produced for A = 5266 R yielded electron densities between 1016 ang
1017 e¢m 3 and hotter temperatures, 0.25 - 1 eV.

Table I. Results of emission spectroscopy on cesium plasmas produced by a dye laser at A = 6354 A,

50-100 nsec into the afterglow.
Value of NCs' Ne' Te, Ionization, Np
em™3 em™3 eV g
1.5 x 1016 3.0 81 x10"%  0.18 £ .02 20% 1.7 - 3.4
4.2 x 10'6 1.5+ .3x10® 0.3 1.05 33% 1.6 - 3.2
107 3.0+ .5x10® 0.2 & .05 304 0.5 - 1.3
3 x 107 1.0+ .3x10'7  0.25 ¢ .05 33% 0.4 - 1
5 x 10'7 5,01 %107 08 t. 60% 0.8 - 2
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The Cs 1 5d-5f lineshape was then recorded in detail at nearly constant
density but varying temperature and hence varying degree of plasma nonideal-
ity. A typical optically thin allowed 5d5,9-5f7, line and its associated
forbidden component 5ds,3-587/2,9/2 arising from the plasma microfield is
shown in Fig. 6 for Tg = 0.5 eV. The electron density, Ng = 1.1 x 1016 cm‘3,
determined from the linewidth and shift agree within experimental error
(AN, = % 1015 em3) and the lineshape fit is good. Figure 7 shows the
same transition at a lower temperature (T = 0.2 eV). The experimental
lineshape exhibits more asymmetry than predicted by theory. Moreover, the
measured shift-to-width ratio, 0.13 + .03, is smaller than the theoretical
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Fig. 6. Emission lineshape of the Cs I 5dg,5-5f7, allowed transition

and 5ds5/7-587/2,9/2 forbidden component at To=0.5 eV. The solid
curve is a theoretical fit (Ref. 8) yielding Ng=1.1 t 0.2 x 1016

em~3. The solid lines represent the unperturbed line centers.
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Fig.7 Emission lineshape of the Cs I 5d5,3-5f7,5 allowed transition at

Te = 0.2 eV. The solid curve is a theoretical fit (Ref. 8)

yielding Ny = 2.1 x 1016 c¢m-3. The solid line represents the
unperturbed line center.
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values including Debye screening (0.18) and excluding screening (0.35).(8)
Contributions to the lineshape from ion-quadrupole, Van der Waals and
dipole-dipole interactions are calculated to be negligible. However, more
exact potentials would be needed to evaluate the effects of close neutral-
neutral collisions on the shape of the 5d-5f line wing.

LASER SCATTERING: CESTIUM

A 0.1-1 MW, 30 ns laser beam at A = 5266 R was used to both ionize and
scatter from the resultant Cs plasma. The results for the high frequency
"electron feature” for an initial Cs density of 3.5 % 0.5 x 1016 cm~3 at
three progressively decreasing laser fluxes are shown in Fig. 8. The
plasma parameters deduced are tabulated in Table I1. The theoretical fits
shown by the dashed lines which include the instrument function (FWHM =
2.5 R) and laser bandwidth (FWHM = 2.5 R) are derived from the usual
collisionless theory.(lo) For the nearly. fully ionized plasmas of Table 11
laser flux inhomogeneities will create temperature rather than density
variations, The wings of the spectra at large detunings (>20 R) shown in
Fig. 8 which deviate from the theoretical curves could then be explained by

Figure 8a. (See page 84 for legend).

Figure 8b. (See page 84 for legend).
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Fig. 8. (a) Electron feature of scattered spectrum fitted by « = 1.55 *
0.05 of collisionless theory (Ref. 10), dashed line, and
= 1.55, cg = 0.1 of collisional theory (Ref. 13), solid line.
(b) Electron feature of scattered spectrum fitted by ¢ = 1.7
1+ 0.05 of collisionless theory (Ref. 10). (c) Electron
feature of scattered spectrum fitted by « = 2.2 £ 0.1 of
collisionless theory (Ref. 10).

lower o scattering from higher temperature fully ionized regions, but only

if these exceeded 2 eV. It is unlikely, however, that this explanation can
account for all three wings of Fig. 8 since the laser flux was decreased by
a factor of 7.5 between Figs. 8a and 8c.

TABLE Il Results of laser scatiering shown 1n Figs. 8(a)-8(c).

a ] (GW cm™?) N, (cm~3) T. (eV) Np
1.55 £0.05 1.5 3.5 +£0.2x10' 0.9 +0.05 7.8+£0.09
1.70 £0.05 0.7 3.5 +0.2x10' 0.78 £0.04 6.3 £0.06
22 +0.1 0.3 3.15+0.3x10' 0.42 £0.04 2.6 £0.05

Moreover, collisions alter the scattered spectra as either the non-Debye
limit is approached(11) or as « becomes large.(12) For 1< a < 3,
Lorentzian wings due to collisional damping become observable on the
electron feature for cg = vea/w, > 0.05, where co represents a ratio of
collision frequency v to electron plasma frequency (13,14) The solid
curve in Fig. 8a represents a better theoretical fltwgy including electron-
ion collisions(13) for « = 1.55 and ¢y = 0.1. As expected theoreti-
cally,(ll) it seems clear that the classical theory(lo) does not breakdown
substantially at the electron feature for Np as low as 2.6 at o« = 1-3.
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SUMMARY

Long-lived (> 100 ns) alkali plasmas with < 1 electron/Debye sphere
were produced by 1 MW, 25 ns laser beams focused to 107 - 109 W em2 in
dense vapors. Good fits to emission spectra and scattered spectra were
obtained after including the effects of electron-ion collisions and Debye
shielding in all cases but the Cs I 5d-5f transition. Since the degree of
nonideality achieved appeared to be limited by recombination and diffusion
rates, experiments using shorter pulse lasers and faster diagnostics should
be used to probe more non-Debye systems. Specifically, a 1 mJ, 1 ps dye
laser at A = 6150 R focused to 1011 - 1012 W em2 in moderately dense
(NC§ = 1016 em3) cesium vapor should produce a fully ionized (Ng = 1016
cm™) lower temperature (Tg = 0.1 eV) plasma amenable to pico-second
Thomson scattering (a = 2-3) with 0.5 electron/Debye sphere.
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SHOCK WAVES AND THERMODYNAMICS OF STRONGLY COMPRESSED PLASMAS

V. E. Fortov and V. K. Gryaznov

Institute of High Temperatures
USSR Academy of Sciences
Moscow

INTRODUCTION

Nonideal plasmas, the most widely spread state of matter occurring in
nature, have always attracted the attention of physicists due to a great
variety of physical propertiesl“3 and practical applications in some
modern high energy installations and astrophysical projects.4’5 The
physical properties of plasmas are greatly simplified at extremely high
pressures and temperatures, when the kinetic energy of particles consider-
ably exceeds that of interparticle interaction, such that models of ideal
homogeneous degenerate (or Boltzmann) plasmas can be applied with assurance.
A weak interparticle interaction can then be taken into account with the
perturbation theory methods in the framework of classical® (Debye-Hiickel)
or quasiclassical7 (Thomas- Fermi) self-consistent field methods. 1In
strongly compressed plasmas the interaction energy is comparable to or
exceeds the kinetic energy of particle motion, which hinders the application
of perturbation theory to such systems. Parameterless numerical simulation
methods (Monte-Carlo, molecular dynamics)8'1° provides comprehensive
information about the simplest models beyond the framework of the pertur-
bation theory, e.g., the one- component pla\smals'g and the pseudopotential
model of multicomponent plasma.1 However, for the second model great
difficulties arise when one tries to choose a qualitatively correct electron-
ion pseudopotential, while it is difficult to apply the one- component plasma
results to real plasmas. Therefore, for a qualitative analysis of the
thermodynamical properties of strongly compressed plasmas there are
heuristic models in use now, based on extrapolations of general ideas
concerning the role of collective and quantum effects by the Coulomb
interaction. These models predict physical effects that are new in
principle, e.g., metalization and clusterization of plasma as well as the
formation of yet unknown exotic plasma phases.z'lo’12 Naturally, all
these theoretical predictions need verification in experiments with real
plasmas at high pressure.

In spite of the fact that the major part of matter in the Universe is
in the state of a strongly compressed plasma, our experimental knowledge
about such plasma has been quite limited until now because of great
difficulties in generation and diagnostics of the high pressure plasma under
laboratory conditions.2,12-14
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The main difficulties in the production of a nonideal plasma are to make
considerable local energy concentrations, which produce high pressures and
temperatures above the thermostrength limits of the devices structural
materials. Consequently, it is necessary to carry out experiments in a
forced pulsing regime at high power levels. 1In this case a serious problem
is the diagnostics of a strongly compressed plasma which is opaque to the
light.

In the experimental physics of strongly compressed plasmas the most
widely used are dynamical methods13,15 which employ intense shock wave
techniques for the compression and irreversible heating of matter due to the
viscous dissipation of energy in the shock front. 1In this way physical
measurements have been carried out over a wide range unaccessible to
traditional plasma experimental methods; in particular aluminum superdense
plasma of extremely hi%h energy concentration ~ 0.7 GJ/cc and pressure ~ 4
Gbar has been created, 16

In this review we discuss experiments on the thermodynamics of nonideal
plasmas and theoretical models for their interpretation. Data on radiative,
electrophysical and gas-dynamic properties have been given.1“4

SHOCK WAVE COMPRESSION OF NONIDEAL PLASMAS

In Fig. 1 the possibilities of the dynamical methods are schematically

Fig. 1. Regions of nonideal plasma existence. The pointers show the
directions of interaction reduction and simplification of the
plasma physical properties description. Experiment: Hy,

Hy -cesium vapor compression by the incident and reflected
shock waves, Sj-isentropic compression of cesium, Hy, Hy

- noble gases compression by the incident and reflected shock
waves; shock compression of solid Hy and porous Hy, metals,
S9, S3-isentropic expansion of shock compressed metals.
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outlined. 1In addition, the boundary of strong nonideality for classical
(A3 << 1, T = (e2/kp1)3/2 (8 « 1e)1/2 = 1) and degenerate

(ep = 3 7 “e)2/3/(2me) ~ ezné/3) plasmas is shown. Use of various energy
sources, vis. compressed“'l8 and electrically heatedl9 gas, chemical21-23
and nuclear24,26 explosives, powerful laser?3 and electron2’ beans,
pneumatic?8 and electrodynamic29 guns has made it possible to create
strongly compressed plasmas of different elements over a wide region in the
phase diagram.

The Boltzmann nonideal gas-like plasma was obtained by the dynamic
compression of high-pressure gases, the initial states of which were in the
neighborhood of the saturation curve (cesium,17:18 pobile gases20-22,30)
or even under supercritical conditions.31-33 yhile registering the states
of single (H) and double (H') compressions, one manages to obtain plasmas
with supercritical parameters at pressures up to 170 kbar, temperatures up
to 105 K and electron densities up to 1022 cm~3 and to gain access from the
side of the "gas" phase to the region of a condensed state. In the case of
xenon plasmas32,33 a maximum density of 4.5 g/cc has been obtained which
is 1.5 times larger than the xenon crystallographic density and near to the
solid aluminum density. Adiabatic compression of saturated vapors of cesium
and potassium34,35 (adiabat 83 in Fig. 1) leads to less intensive heating
of plasmas when charge-neutral interaction prevails. It is essential that
the shock-wave and the adiabatic compression product not only a nondegenerate
plasma with extremely high energy concentrations over a wide range of the
phase diagram, but also under these conditions to perform detailed thermo-
dynamicall3,14,17-23 electrophysicall2,31,32 54 optical30 measurements
as well as those of the laser beam reflection.33

The compression of metals by intense shock waves enables one to create
strongly compressed plasmas with the electron's component either degenerate
or partially degenerate (states Hj on Fig. 1). For this purpose explosion
and cumulationl-,36-38 methods, light-gas gun,28 laser?® and electron?’
beams, powerful underground explosions adre applied successfully. Of special
interest for plasma physics are experimentsl6,43,44 ip which, by using
porous samples and ultraintense shock waves, the plasma states at record
high temperatures and concentrations of heat energy with nondegenerate
electron component at densities ng ~ 1023 cm=3 have been obtained. These
experiments make it possible to investigate the thermodynamics of metal
plasmas over the entire range of condensed state and to penetrate into the
region of quantumstatistical description7 up to exotic conditions, where
the pressure and the energy of the equilibrium radiation become important.

The method of adiabatic expansion (curves Sy) of metals, compressed
and heated by powerful shock fronts (H3), is quite effective for the
generation of plasmas with densities below those of the normal solid. This
technique makes it possible to explore a wide region of the phase diagram
from the strongly compressed metallic liquid to the ideal gas, including the
nonideal degenerate, Boltzmann plasma region, and the critical point
region.2:13,14 Tpese results serve as a base for wide-ranged semiempirical
equations of state, 14,23 and, in combination with the data from static46
and elec‘r.mexplos'1ve"6 experiments, enable one to draw more definite
conclusions as to the form of the phase diagram of metals-which may be
distorted by plasma phase transitions.l-3,11,14

THERMODYNAMIC MODELS OF STRONGLY COMPRESSED PLASMAS

Analysis of existing experimental thermodynamic information on high
density plasmas show the absence of any noticeable anomalies,2'12’47 that
might be interpreted as phase transitions. The phase diagram of metals
turns out to have a single high-temperature boiling curve and a single
critical point. We point out also the strange anomaly in the shock
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compressibility of ion crystals in the liquid phase at I' ~ 1.48  Their
discussion,4’ and erroneous works49 on Wigner electronic crystals in
detonation waves corrected in Ref. 50.

For the interpretation of the thermodynamic experiments the chemical
picture,1“4 based on the explicit separation of free and bound states, is
used

3
£3/202) W

n
c‘)}+2Nl<BT(!Ln -1)

F({N },v,T) =N &B’r{u
£1/20% J

(1)
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Here n;=N:/V the densities of the corresponding species, Qj—partition
functions of the species j, ug = aoKgT -the electron chemical potential,
that satisfies the condition f1/3(a@e) = ngh3/2, AF- configurational terms.
At sufficiently low plasma densities, when naBg << 1 (By~a,-atomic

radius, ny -density of atoms) the interatomic interaction can be

neglected. 1In addition, far from the saturation curve, where

E = (ng/KgT) J ¢(r)dr<<l (¢(r) -charge-neutral interaction potential), the
charge-neutral interaction is also negligible and the main configurational
effect is connected with the Goulomb interaction. The usual approaches
based on the perturbation theory6'51'52 are developed for determining the
equation of state of reacting Coulomb gases well fitted for the weak
nonideality limit I'<<1l. Nevertheless some of these approaches are
satisfactorily extrapolated to the strongly nonideal region, where [~1.

One of these approaches is the ring Debye-Hiickel approximation in the Grand
caggnical ensemble for which configurational term can be expressed according
to

2 2
AF 3 Z.e'k 2 1/2
coul Vk TN, tn (1 + 2v7e

i oy i §
KT =~ Sam 2 i ZKBT ); k = vi;ﬁ?(z Z, exp[KBT]) (2)

and the partition function is given by

Qj = I 8 [exp(-BEp)-1 + BEq] 5 B = (kgT)~1

The comparison of the P-V-T and P-V-E data obtained in the framework of this
model with experimentsls' —4< reveals good agreement within 20%.4 Wever-
theless the difference between the experiment and the theory exceeds the
experimental errorl8:20-22 poth for this approximation and for the other
usual plasma models with different nonideality corrections (including
diagrammatic terms of the higher order than ring ones) and various partition
function cutoff procedures.“ At the same time the ideal plasma model with
the weight of the ground state as the atomic partition function gives the
equation of state quite close to the experimental one.18 This fact has

made it necessary to assumel’ the existence of an additional repulsion in
the strongly compressed plasma and (or) a deformation of bound state-
effects, which are not taken into account in usual plasma models.

In fact under high pressures and temperatures a lot of atoms are
excited. Their sizes can considerably exceed the size B, of atoms in the
ground state and are comparable with the average interparticle distances.
In this case the restriction of the volume available for the realization
of excited bound states leads to the strong perturbation of the energy
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spectrum. To account for this effect in the current work the confined atom
model (CA) is used, which has been recently developeds4 for determining
the equation of state of dense matter.

The CA model requires each atom to be placed in a spherical cell with
hard walls, hence the effective interaction energy of atpmic nucleus with
electrons is given by

—Ze2/r o<r<r
{ c
© r<r
s

U(r) = (3)

The calculations of energg levels for the ground and the excited states
of the confined hydrogen atom 4 have shown the dependence of the excited
state energies on r, increasing sharply with the principal quantum number.

To calculate the energy spectra of the confined multielectron atoms the self-
consistent Hartree-Fock method (restricted variant)32:56 is used in this
work. The system of integrodifferential equations is solved for all
electronic terms appearing in the framework of LS-coupling.

r

2
+ an(r) - en,'] fnﬁ(r) = Z an(r,r')fm(r')dr'

a

dr2

(4)

* n#E' nt,n'e fn'l(r)

for the radial parts fpg(r) of the one-electron atomic wave functions.

Here Vpg(r) is the self-consistent potential involving interaction of
electrons with the nucleus and with each other. The integral in the right-
hand part of (4) is the non- local part of the potential or the exchange
term. eng,n't and e;9 are nondiagonal factors and eigen values determined
from the conditions

£70(0)=0; fLe(r.)=0

/}ng(r)fn.g(r)dr = Spn’

The system (4) is numerically solved for various values of ej g and defines
a discrete spectrum of atoms in the plasma (Fig. 2). The equilibrium value
of the parameter r. is obtained from the condition of the free energy (1)
minimum

(5)

9F _
ar 0

The free energy depends on r, through both the partition function

Qa = Qa(re) and the configurational term AF,,, which has the form>’

corresponding to the interaction of hard spheres

4-3y 4 3 Na
AFaa = AEHS =N KBT 2 y;y=5r V~ (6)

approximating the results of numerical calculations by the molecular
dynamics method .38
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This thermodynamically enclosed model is in fact the synthesis of purely
plasma ideas on ionization equilibrium and a model of hard spheres taken
from the theory of simple fluids. 1In contrast to cell models of solids>9,60
the above approximation is made in the framework of a description taking
explicit account of translational degrees of freedom of separate particles
and which distinguishes between free and bound electrons. The comparison of
this model with experiments (Figs. 3, 4) shows, that the CA model* correctly
reflects the experimentally obeserved tendency towards the decrease of
plasma compressibility, overestimating, in some way, the repulsion effects

Fig. 2 Quantum- mechanical calculation of the energy spectrum of
compressed argon in the framework of the confined atom model.

at high compressions. To improve the CA model both the boundary conditions
for wave functions (5) and the interatomic repulsion model (6) should be
replaced by more adequate ones.

One of the main problems of the quasichemical model of the strongly
coupled plasma is the dividing of charges into free and bound. Separation
of bound states demands the modification of the interaction between free
electrons and ions at short distances. This effect in plasmas is taken into
account by the introduction of the pair electron-ion pseudopotential.6l
Calculation of its parameters is very complicated problem, but in the
strongly compressed plasma it can be solved semiempirically.62 In this
case the pseudopotential is given by62

* 2 2

_ e L S T -
bgy = ¢ [1-exp t- o Hs b ¥ T 1

Parameters of the pair correlation function
Ft(r) =1tc exp (- vr) [-sfff@‘i]

Yo, v, W are determined from the screening conditions

n /[F (r) - F ()] dv = 1
e + - )
ne/ [¥,(r) - F_()] (c/r )" av = 3
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Fig. 3.

Equation of state for Cesium Plasma at V=200 cc/g (a) and V=1000
ce/g (b): l-Experimental data;18 2-Debye-Huckel approximation

in the Grand canonical ensemble to AFcog§353 atoms-ideal sub-
system; 3-CA model; AF.q,q corresponds;>? 4-approximation®? for
AF.oug; atoms-noninteracting particles; 5-CA model with®2 the
Coulomb interaction term; 6-ideal plasma model; the partition
function Qu=g, -the weight of the ground state.
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and approximate relation between the amplitude of a screening cloud
and the depth of the pseudopotential

Yo = InFu= - B [$ei(0) ~ ue—ujl
Corrections to the ideal-gas thermodynamic function are given by
n-= Vne‘/ (e?/r) [Fy - F_1 dr
AE = Vng /.[F+¢ei" F_¢3;] dr
APV=1/3(2AE-H)
Aug=Aug=(2Ng) " 1AE

Where 11 is the potential energy. To choose the main parameter of the
model, the depth of the pseudopotential ¢1(0), use is made of the
experimental data on shock-wave compression of cesium pla\sma,uf18 which
shows that the best description of this experiment can be obtained on
putting ¢g;(0) equal to the value of energy which divides particles into
free and bound -KgT. This model works properly at considerable degrees of
jonization, and in combination with the CA model (4-6) shows the satis-
factory description of the experiment18 over all the experimental region
(Fig. 3).

Fig. 4. Thermal Equation of State for Argon Plasma: l-Experimental
data;20 2—approximation53 for charged subsystem; 3-pseudo-
potential model®l with the second virial coefficient6® for
atomic interaction; 4-CA model with approximation53 for
charged subsystem.

An extremely interesting region for applying the chemical model of the
plasma is the multi-megabar pressure range, realized by compression of
solids by shock waves of extreme intensities. One of the examples of
chemical model applications is the interpretation of the experiments on the
shock compression of porous copper samples by superintensive shocks,43'44
which make it possible to obtain extremely high concentrations of thermal
energy (~ 0.75 MJ/cc) of a superdense (ng ~ 2 1023 cm-3) plasma
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of high (P up to 20 Mbar) pressure. At the maximum temperatures attained,
T~3-5010° K, degeneration of electron is removed, nekg ~ 0.7, the
ionization degree of such plasma reaches five, while short-range and Coulomb
interactions (I' ~ 2) are strong. It should be noted that the Thomas-Fermi
model with quantum and exchange corrections®3 gives values of density
20-30% exceeding the experiment43:44 and distinction in pressure reaches

up to several times. The chemical model of plasmas? makes it possible to
analyze qualitatively some effects of the equation of state including the
so-called electron-shell structure effects. 1In the equation of state of
copper the Coulomb corrections (2), electron degeneration according to (1),
and the short-range repulsion (6) of ions are taken into account. The
parameter r. of the short-range repulsion is evaluated from the Hartree-
Fock calculations under boundary conditions (5) and is chosen to be 1.75 a,.
Partition functions of atoms and ions are calculated using energy levels63
and ionization energies from.64 Degrees of ionization up to tenth are
taken into consideration.

The Hugoniots calculated by the plasma chemical model are represented in
Fig. 5, for initial porousities of sample M=pyoe/po=3(a) and 4(b). One can
see the satisfactory agreement with the experiment in opposite to the Thomas-
Fermi®3 model. From the chemical model effects under consideration the most
essential is the short-range repulsion, the absence of which leads calculated
plasma densities to be 1.5 times more than measured. The results of calcula-
tion are less depended upon the Coulomb correction and excited states,
inclusion of both leads to an increase of calculated density. The least
significant is the degeneration of electrons according to (1).

Fig. 5. Compression of Porous Copper with m=3(a) and 4(b) by Intense
Shock Waves: 1~Experiment,43 Z—experimen\:;44 3-the Thomas-
Fermi model;63 4-current work.
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INTRODUCTION

In the last few years a remarkable effort was made to collect and
analyze the observed behavior of plasmas with 0.1 < T < 10 Eroduc%d
under conditions of high densities of charged particles (10 " em™3 or
more) and temperatures around 107-10" K. Dense plasmas with lower
values of coupling factor are produced by stationary or pulsed electrical
and optical discharges. Higher values of T can be obtained in shock-
wave generated plasmas and there is an overlapping region where both
experiments in discharges and shock tubes can be performed. This is an
important fact for the reason that the results obtained by diagnostics of
shock-wave produced plasmas can be compared and checked by more
sophisticated methods of arc physics. This paper will try to point out
some of the problems the diagnostics of dense plasmas are faced with, to
show how arc physics is solving them, and to propose some experiments to
be done in order to establish more reliable diagnostic methods for plasmas
with higher values of T.

A comprehensive study of weakly nonideal plasmas from the point of
view of arc physics was given by K. Gunther and R. Radtke (1). This book
explained the physical background of the observed efforts and the
experimental techniques used in electric arc plasma diagnostics and
determination of transport properties. Although quantitative
understanding of phenomena in arcs is quite satisfactory, very low T
values do not offer many possibilities for universal conclusions.

Mgthods of generation of nonideal plasmas are discussed in detail by
Kulik®., A wide variety of devices, from electric furnaces with steady
or pulsed heating, electric arcs including free-burning, wall-stablized,
stationary, as well as pulsed discharges were described. Dynamic
compression and expansion methods are also given, but more details could
be found elsewhere”. Plasma diagnostics could be in a sense facilitated
if one of the thermodynamic properties would be kept constant during
observation time. Some of the experiments do offer such possibilities and
so there are isochor%c gas heating in an electric discharge™, isobaric
capillary discharge,” isobaric expansion of an exploding wire~, and
adiabatic compression.
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Results of dynamic experiments that have had remarkable progress in
the last decade are also reviewed in Ref. 3 and Ref. 6.

The present status of knowledge on physical phenomena in non-ideal
plasmas are synthesized in the monograph by V. E. Fortov and I. T.
Iakubov.’ This systematic description and analysis of phenomena in
dense plasmas revealed a lot of open questions, most of them connected
with the influence of elementary processes to the macroscopic properties
that are usually derived from measurements. In that sense, static
electrical conductivity being the most illustrative and easiest to
observe, can be used for demonstrating solutions to more general problems,
provided that adequate diagnostic methods were used.

Presently there are many types of plasma devices that could under
certain conditions give reliable information of plasma state and other
parameters necessary to localize the measured DC electrical conductivity.

Among those that are mostly used one could point to plasma arcs (T < 0.3},
shock-compression devices (T < 10), ballistic compressors (I' < 1) and
isobaric expansion devices (I' £ 2). At certain well- controlled conditions
these devices could give local values of parameters with satisfying
reproducibility.

Plasma parameters and macroscopic properties are evaluated from basic
diagnostic data such as intensity of radiation, interferometric pattern,
shock-wave velocities, electric potential, etc.

Pressure and mass density are the only parameters that are relatively
free from traps consisting of certain model assumptions that are not
satisfactory describing the complete plasma dynamics. Temperature
particle number densities, electrical conductivity absorption coefficient
and other parameters should be measured and evaluated with much more care
due to their relations to the basic diagnostic data. Quantitative
description of these relations is presently very doubtful in the case of
plasmas with higher coupling parameter T.

Additional experimental difficulties arise from the fact that high
particle density regions make difficult the penetration of a diagnostic
tool into the plasma core. Therefore, for every particular case it is
necessary to find a new way to avoid strong absorption on boundary layers
and high gradients of plasma parameters along the observation path.

Insufficient knowledge of elementary processes and underdeveloped
diagnostic devices complete the list of technical problems that are to be
considered in order to make a properly designed experiment in this field.

TEMPERATURE MEASUREMENTS

There are two principal ways to derive temperature from basic
diagnostic data in dense plasmas:

1. Quantitative spectroscopy based on elementary processes that may occur
in dense plasmas. Spectra of optical radiation offer a variety of
effects that could in principle be used for temperature diagnostics.
Temperature-dependence of spectral line broadening and shift, spectral
line intensity, relative line-to-continuum intensity and relative
continuum intensity are among them. However, traditional approaches
to the plasma optical properties based on impact or quasistatic
microfield approximations, are no longer applicable. There are
significant deviations from simple analytical expressions for density
and temperature dependence of spectral line widths which make the
diagnostics based on line spectrum rather doubtful.
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2. Absolute measurement of radiation intensity in spectral regions where
it is completely independent of atomic properties. Considering the
problems concerned with the quantitative knowledge of elementary
processes we would prefer using thermodynamic properties of the
radiation in nonideal plasma. This method is very convenient for
spatially extended plasma arrangements of constant temperature with
comparatively high absorption.

At least two measurements of radiation intensity are necessary. One of
these measurements should be absolute.

We will illustrate briefly the method on a few examples.
Pulsed Arc

A typical pulsed arc device is described in detail in Ref. 1. For the
purpose of temperature diagnostics plasma is observed end-on through a
quartz window and the observation path is following a layer of constant
temperature except for the boundary region near the window. An auxiliary
movable electrode is providing the possibility of two intensity
measurements at two different observation lengths without disturbing
isochoric nature of the discharge.

Temperature distribution along observation path is given in Fig. 1 and
its typical time dependence in Fig. 2.

Intensity I (X,x) emitted along the observation path is given by
radiation transfer equation

g‘%‘ia*g) =KB (T -1 (4% »
where
- he
K = KOL,T)(L - e T

B(X,T) - blackbody intensity at the temperature T.

Measured values of radiation intensity at particular distance £ is
introduced by boundary condition

I =1, (2)

—»0bs

X\

Fig. 1 Fig., 2
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By combining measured intensities with inherent boundary condition
I(x,0) = B(),T) (3)

one can develop a procedure for evaluation of unknown values B(A,T),
K(A,T) and finally temperature T.

In certain cases absorbance in boundary inhomogeneous layer can be
neglected and (1) can be reduced to

I(A,T) = |1 - exp(-K(A,T) x| B(A,T) )

with unknown values K(A,T), B(X,T) and T and measured values
Il(A,T) at observation length 21 as an absolute intensity, and

Il(A,T) 1 - exp(-Kkl)
= (5)
IZ(A,T) 1 - exp(-KZz)

Then T is obtained from blackbody function

L, (AT
B(A,T) = r_—;}m (6)

Shock-Compression Tubes

There are many different constructions of explosive shock-compression
devices which are reviewed in Ref. 3 and Ref. 6.

Temperature profile along the observation path is similar to the case
of pulsed arc, except for the fact that both the front and rear edge of
the plasma are moving during measurements with shock-wave velocity D, and
free surface velocity U. Temperature profile and time dependence are
given in Figs. 3 and 4.

When absorbance along shock front can be neglected, intensity of
radiation emitted from a homogeneous layer along the observation path is
given by

I(T,A,t) = B(X,T) (l-exp -|K (D-U)|t) (7

with K* being absorption coefficient corrected for stimulated
emission, D shock-wave velocity, U free surface velocity.

t=(D-U)t d
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Saturated values of radiation intensity in Fig. 4 I (X,T) is
then interpreted as blackbody function B (A,T). The second measured
value is the ratio of radiation intensity I(A,T,t) to saturated
intensity IS(A,T).

However, the assumption of negligible absorbance along shock-wave
front should be checked carefully for every particular experimentgl
condition. If this assumption is violated, then radiation transfer
differential equation similar to (1) - (3) should be used.

Optical Discharges

Optical discharges created in the focus of laser radiation require an
inversion procedure for exact profile T(x) measurement. The full
procedure is rather complicated ang it has been performed until now only
in a stationary optical discharge.

In performing absolute measurements of radiation intensity one has to
take care of some conditions that are to be fulfilled if simple relations
as (4) or (7) are used.

First, absorbance at boundary layers should be small for the
particular wavelength of observation

x+d
A= I R(T(x)) d x <1 (8)
X

Although the thickness of the boundary layer is of the order of one tenth
of a millimeter in cases of higher density this layer is able to reabsorb
the emitted radiation. If this happens, brightness temperature that can
be obtained by comparing plasma radiation to standard brightness source is
different than the actual thermodynamic temperature.

Second, relative error in temperature measurement is connected to the
radiation intensity by the following relation

Cc
4ar _ AT 2 dal
T T o, |1 - exp - 3701 T

(9)

where c, is the constant from Planck’s blackbody radiation law. This
relation suggests the choice of small products of wavelength X and

plasma temperature. For a given plasma temperature observation wavelength
should be as small as possible.

Also, the temperature determination method suggested here can be
applied if the optical thickness of the boundary layer is negligible and
the product AT so small as to diminish the experimental error.

Both conditions can be fulfilled if the observation wavelength is as
short as possible.

Transverse gradient of temperature, particle number density and
consequently refractive index along the observation path could cause a
substantial deviation of the observation beam in the direction of
increasing rsfraction. This deviation in radiation direction can be
expressed by”:
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where £ is the plasma length, n reflective index and T(r) radial
temperature profile. This deviation can produce serious distortions in
the measured temperature profiles.

Finally, the comparison of radiation intensity from plasma and
standard radiation sources has its own rules. The ideal situation that
both plasma and standard radiation source have the same temperature and
directly comparable radiation intensities is never fulfilled. The problem
then is consisted in the large attenuation necessary to compare the plasma
intensity with a radiation standard. One or more reflections of the
observation beam at a pure glass surface can yield attenuation by
incidence sufficient enough for comparison of the two radiation
intensities. According to Fresnel's law for one reflection one gets

2
n-1 )2 o« (1+ n_ -1 .

2 - a2 n

(11

IQ
NN
N

where n is the refractive index of the glass and a is the angle of
incidence. In this case a well calibrated glass reflector with accurately
determined refractive index is necessary.

Different timing of gated detectors gives another possibility for a
controlled reduction of plasma radiation intensity.

These problems connected with absolute intensity measurement should
not be neglected in the design of experiments in dense plasmas. There are
two main principles:

1. Absorption coefficient at the observation wavelength K(A,T),
plasma length and the thickness of boundary layer d have to be chosen
so that

'l <« koa,T) << a’l . (12)

If it is not possible, a new procedure for temperature determination
should be developed, based on more treatment of radiation transfer.

However, by choosing observation wavelength in ultraviolet region one
can avoid these problems with interpretation of basic diagnostic
data. For instance, for a sggck-cgmpressed argon with typical values
of plasma parameters n, = 10“” cm™ >, T = 20000 K, D = 7 km/s,
£=10mm, d =0.3 mm, I = 1.9, the absorption coefficient in

the ultraviolet region is low enough so that condition (12) can be
fulfilled at I' < 270 mm. For higher observation wavelength a
differential equation of radiative transfer has to be used.

2. The temperature of standard radiation source should be as high as
possible, with the necessary precision in radiation intensity.
Unfortunately, standard radiation sources with precision within 1% in
intensity, tungsten ribbon lamps and carbon arcs, have much too low a
temperature. Therefore, new standard sources are to be developed. A
possible candidate for pulsed arc experiments could be a pulsed arc in
xengn which already can reach a precision ?{ order of 5% at 12000
K. Detonation wave in some gas mixtures = or shock-compressed

xenon could be possible secondary standards for shock tube experiments

in the future.
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For the reason of strong absorption in boundary layers standard
brightness sources could give doubtful information on temperature in
plasma core.

PRESSURE MEASUREMENT

Usual detectors for transient pressure measurements in pulsed arcs are
piezoresistive or piezocapacitive probes. They have a linear response
from DC to several hundred kHz, and can be calibrated in stationary regime
and used for measurements with pulses longer than 10 ps. A protection
against thermal stress should be provided.

In shock-compression experiments, pressure is evaluated from shock and
particle velocities and mass density measurements. This procedure is very
well established due to extended EOS measurements, so that pressure is not
considered as a parameter which could cause any problem in dense plasma
diagnostics.

MEASUREMENTS OF PARTICLE NUMBER DENSITIES

Diagnostic methods based on elementary processes inside the plasma are
not to be considered as independent diagnostic tools for determination of
particle number densities in high pressure plasmas

All methods that produced more or less reliable results were based on
the analysis of the interaction of external radiation with the plasma.
Among them, measurements of refractive index are mostly used.

In the case of large gradients over the whole observation path, as in
cascade arcs, capillary discharges, and optical %%scharges, the Schlieren
technique has a certain diagnostical capability. This method is based
on recording the deflection of a light beam travelling through a plasma
density gradient.

The laser interferometry method is usually based on recording the
temporal change of refraction index, corresponding to a simultaneous
change of plasma parameters, It is still considered as a suitable method
for pulsed arc diagnostics.1

Methods based_on direct measurements of plasma frequency are suggested
in literature’®: 13 but these ideas need further development.

Particle number densities are often evaluated from relations
describing equilibrium plasma composition and direct measurements of
pressure and temperature only. These results can be treated only as a
rough estimation since the equilibrium plasma composition is itself a
subject of investigation.

DETERMINATION OF ELECTRICAL CONDUCTIVITY

Local values of electrical conductivity in a plasma are usually
derived from Ohm’'s law

% = J o(x,y) d s (13)
S
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where I is the electric current, E is the electric field and o(x,y)
local value of electrical conductivity.

In cylindrical symmetry (13) takes the form

R
I=2xnE J o(r) rdr (14)
0

where R is the plasma radius.

In pulsed arcs two probes for electrical measurements are enough. In
shock-compression experiments two probes for current test and two
potential probes are necessary.

The unknown quantity in (13) is the electrical conductivity o
which is basically a function of temperature. It can be transformed to a
stanfard form of an inhomogeneous Volterra integral equation of the second
kind™:

T
ax

a(Tax) + I K (T,Tax) o (T) dT=1f (Tax) (15)

To

where t,x is the plasma axis temperature, Ty wall temperature and we
identify as the imhomogeneous part

1 d
£T,) = — () (16)
m R™ g (Tax,TaX) d Tax
and as the kernel
g (T, T )
1 ax
R(T,T =
( ax) g (Tax’ Tax) | Tax a7
e 2
where g(T,TaX) = - 5% ;o x = (/R)".
Now o(T) is an unknown function.
Equation (15) has a convergent numerical solution in the form:
o) = Lo (T) (18a)
n
po(T) = £(T) (18b)
T
P (D) = J K (T',T) P,(T") dT’ (18¢)
To
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Measured values in this procedure are axis temperature T,
corresponding voltampere characteristics I/E = F(T,,) and observation
layer radius r.

This is a consequent procedure with well defined and controlled
numerical accuracy but with high demands in accuracy of basic experimental
information, such as voltampere characteristics, axis temperature and
radial temperature profiles. If this cannot be fulfilled methods based on
a priori assumptions on the temperature dependence of the electrical
conductivity can be developed Some arbitrary constants should then be
optimized so that (13) is satisfied.

In some recent papersl6'18 trial function o(T) was constructed
in the same way as calculated o(T) for ideal plasmas with interaction
of electrons with neutral included. A free parameter is introduced in the
Coulomb logarithm through effective screening radius rg = xD, where D is
Debye length and x is to be changed in an iterative procedure until the
relation (13) with experimental values for electric current and field
strength is satisfied.

Finally, the evaluat%on of electrical conductivity can be trivial by
applying simply o = I/7R“E is one assures homogeneous plasma in
his experiment. It should be noted, however, that even in radiation
dominated plasmas where the radiation transfer is cooling the inner parts
of plasma and flatten temperature profiles, the results obtained by this
simple formula proved to be incorrect.

It is the fact that experiment results for static electrical
conductivity differ in plasmas with 0.1 < T < 10 sometimes by a factor
of 2 or more while authors claim accuracy in measurements within 10 to 40
percent. In that sense o(T,P) and K(A,T,P) are still not
perfectly established (see Fig. 12, 14 and 15 in Ref. 6 and Fig. 8 in Ref.
5. Although pressure diagnostics has a satisfying precision, temperature
diagnostics suffer from the lack of reliable absolute radiation intensity
measurements and the influence of elementary processes which is still not
clearly observed. Besides, unprecise radiation standards at elevated
temperatures are the limiting factor for optical radiation measurements.
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I - INTRODUCTTON

The two-component plasma (TCP) is a model system made up of N,
positive charges q, and N, negative charges q, in a d-dimensional volume
Q. The corresponding number densities n_ = N /2 satisfy the charge
neutrality requirement

n,q, 4n,q,=20 (1.1)

We shall be mostly concerned with point charges, and more specifically
with fully stripped ions (q, = + ze) and electrons (q, = - e, where e is
the elementary charge) ; the interaction is then purely Coulombic and the
total Hamiltonian of the system can he cast in the form :

H=H ,6 . Hy, +V,, (1.2a)
where
Na
p’ > -
By = S —— + 3 3Sv r. - r.
4§21 2m, i %gYea T gl
(1.2b)
N‘l N2
- < > >
Y = 2 o v (le; - r.|) (1.2¢)
12 i21 j=l 12 i J
VaplT) = aq ag 2(r) (1.2d)

and ®{r) is the solution of the d-dimensional Poisson equation, i.e.
®ir) = 1/r in 3d and ®(r) = -1n(r/L) (with L an arbitrary scaling length)
in 2d. Partially stripped ions (of well-defined valence Z) have a finite
ore, so that the ion-ion potential v ,(r) must then include a
hort-range Born-Mayer repulsion, while the ion-electron interaction can

n 0

o
<
I
I

»
T
sne



be described by a pseudo-potential for distances shorter than the core
radius. However, except at very high temperatures, the Coulomb repulsion
between ions is sufficiently strong to prevent the cores (of diameter o
say) to come into contact (i.e. 22e2/6>>kBT in 3d) so that a point ion
description is generally adequate.

Now it is convenient to add opposite uniform backgrounds (of charge
density pq = * n,0, = & n,q,} to the ion electron system ; the
corresponding ion-background, electron-background and background-back-
ground Coulomb interactions are divided among H,,, H,, and V,, in such a
way that each term has now separately a well-defined meaning in the
thermodynamic limit. The total hamiltonian takes then the form*

H=H, 4 Hyp + V,, (1.3)

where H,, is the familiar "one component plasma" (OCP) hamiltonian of the
ions, H,, is a similar OCP (or "jellium") hamiltonian for the electrons,
and V,, is the sum of V,, and of the background-background potential
energy.

Dimensionality has a strong influence on the behaviour of a
two-component Coulomb gas. In 1d, the Coulomb gas is a dielectric at all
temperatures : oppposite charges are alwavs bound in pairs®. In 3d the
Coulomb gas 1is believed to be a conductor (or plasma) as long as it
remains in a disordered (fluid phase), but Quantum Mechanics is essential
to prevent collapse of opposite point charges due to the attractive r~*
singularity of the Coulomb potential. The 2d case is the most
interesting, since the corresponding Coulomb gas is a dielectric below
some density-dependent critical temperature, while it is a plasma above
that temperature. This dielectric-plasma transition is the prototype of a
Kosterlitz-Thouless (KT) transition in 2d systems, which is always
characterized by a divergent response {susceptibility) to an external
field® 415,

In the next two sections, we first consider the two-component plasma
(or Coulomb gas) in 3d, while the 2d Coulomb gas will be subject of the
last sections.

2 - DIFFERENT REGIMES IN THREE DIMENSIONS

Two complementary approaches have been used to describe ion-electron
plasmas in 3d ; they apply to different degeneracy regimes of the
electronic component.

For strongly or partially degenerate electrons (i.e. for
temperatures T £ Ty, the Fermi temperature), a two-fluid description, not
unlike that of liquid metals®’ appears to be the most natural. According
to (1.3), the ion-electron system appears as the superposition of two
independent OCP’'s which are coupled by V,,. The properties of the
classical ionic OCP” and of the fully or partially degenerate electron
"jellium"®’® are reasonably well known, so that it appears natural to
treat the ion-electron coupling V,, by perturbation theory. To zeroth
order in V,,, the plasma properties are just the sums of their ionic and
electronic OCP counterparts. The first order term vanishes, due to
spatial homogeneity and charge neutrality. To second order, ion-electron
coupling 1is described by linear response theory. Such a program was
carried through for the thermodynamic properties of very denses plasmas
with fully degenerate (possibly relativistic) electrons®®. The procedure
has been considerably developed and improved by Ichimaru and coworkers®?,
who studied static and dynamic (transport, collective modes) properties

112



of ion-electron plasmas over an extensive range of electron degeneracy,

including static local field corrections. Similar ideas have been applied
to the two-temperature ion-electron plasma'Z,

To go beyond the linear screening approximation in the treatment of
the ion-electron coupling, one can resort to the familiar
Kohn-Sham-Mermin density functional formalism, as illustrated by the work
of Chihara'® and Perrot and Dharma-Wardana'®#, described elsewhere in the
present procedings,

In the opposite regime of weak degeneracy (T © TF), an alternative
description of ion-electron plasmas is based on the use of effective
poteatials to model quantum effects at short distances, in conjunction
with classical Statistical Mechanics. This approach is presented in the
next section in the case of a hydrogen {electron-proton) plasma.

3 - THE SEMT-CLASSTCAL HYDROGEN PLASMA

To evaluate the importance of quantum effects for electrons, we must
compare the following three fundamental lengths :

e
1l = (Landau length) (3.1a)
kT
a = (3/4m )73 (electron sphere radius) (3.1b)
A
A, = B — (thermal de Broglie length) (3.1c)
anmszT

The ratioc of the first two lengths defines the dimensicnless Coulomb
coupling parameter :

ez

['=_g-_=——-——— (3.2)
a akBT

In the absence of interactions (e - 0), only a and A, are relevant length
scales. The corresponding ideal Fermi gas is non-degenerate, provided 2,
<CaforT?> TF), which implies the following condition :

a

(3.3)
8Bohr

In the presence of interactions, close electron-electron collisions can
be treated classically, provided A, < 1, which yields the condition

1
FY e (3.4)
I‘S

Hence a semi-classical description of the plasma may be expected to be
reasonable as long as :
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A
-3

— T <rg (3.5)

which requires, in particular, that r_ > 1. Notice that, for any fixed
density, quantum effects eventually ?ake over at sufficiently high
temperatures, i.e. in the weak coupling limit.

Since the classical partition function for an electron-proton plasma
does not exist at any temperature, due to the Coulomb collapse of
oppositely charged particles, the use of an effective ion-electron
potential, accounting for the "smearing" of the electron charge over a
sphere of radius ~ 2, (Heisenberg uncertainty principle) was suggested a
long time ago by Morita'®, A very simple form for the effective
potentials, valid for sufficiently low densities, was suggested by
Deutsch and collaborators'®, namely :

q.a
Vap(r) = == (1 - exp { - r/a,5)] (3.6)
r
where :
/Kz
P T RPN — (3.7)
aB « B anaﬁkBT

and u, is the reduced mass for an a-p pair. This "primitive model”of a
hydrogen plasma accounts for quantum diffraction, but not for electron
symmetry (Pauli principle) effects, and is expected to be physically
relevant in the thermodynamic range (3.5). Electron symmetry effects may
be approximately accounted for, by adding a "Pauli repulsion" term to
Vog(r)*® ; an even finer semi-classical description distinguishes between
efectron pairs with parallel and antiparallel spins, with a . Pauli
repulsion acting only between the former'”. This procedure may be
adequate for the description of static structure, but is dubious when
applied to dynamical properties (like electron transport), as shown by
the recent kinetic theoretical investigation of Wallenborn et al.
reported in the present procedings.

The "primitive model"” (3.6) of a hydrogen plasma has been
extensively studied in the strong coupling regime (F~1) compatible with
the restrictions (3.5) by Molecular Dynamics (MD) computer simulations
and by Kinetic Theory. One of the main difficulties in the simulations
is  that two very different time scales are involved, since the ratio of
the electronic and ionic plasma frequencies o_,/w scales as
(m,/my)*7% ~ 43. The M.D. time step must be adapted to the faster elec-
tronic motions'®., This means that 1little or no information is gained
concerning the much slower ionic motions and the dynamical properties
associated with them, 1like the shear viscosity of the plasma. This is
illustrated in Fig. 1, taken from the thesis of B. Bernu, which shows the
decay of the normalized autocorrelation function (ACF) m(t) of an
off-diagonal element of the stress tensor.

The initial, rapid decay may be associated with the fast electronic
motion, wile the subsequent slow decay is intimately related to the ionic
degrees of freedom ; this slow decay precludes any reasonable estimate of
the shear viscosity n(t).
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Fortunately

the
thermal

fast electronic motions dominate electrical and
conduction and the wavenumber

and frequency-dependent charge
fluctuation spectrum SZ (kyw), which determines the dispersion and
damping of the plasmon mode. The spectrum is defined by :

+ o

1 .
S (k,u) = — ] dtet®t oo (t)p 1(0)) (3.8
zz'koe) = — s PRzl t)e g )

-®
R
5
4;0 39 120 £

Fig.1 : Normalized ACF m{t) versus reduced time t*
semiclassical hydrogen plasma with I' = 0.5

©p2 t for the
rg = 1

.
’

where
time t ¢

P7(t) is a Fourier component of the microscopic charge density at

pkz(t) = jzlqj exp {-ik.rj(t)}

(3.9)
An elementary application of Ohm’s law, Poisson’s equation and charge
conservation (continuity equation) leads to the
expression of the long wavelength limit of the spectrum'® :

following exact



Szz(k w) ~ _i_ 1

s{w) = lim = R —
k=0 Szz(k) T -iw + 4no(w) (3.10)
1 inc? (w)
T n [e-dne" (0)]2 + [4no’ (0)]2
where olw) = ¢'{w) + ic"{(w) 1is the complex a.c. conductivity which is

related to the normalized electric current ACF J(t) by the standard
Green-Kubo relation ;

w © .
olo) = =2 [ g(t)el®t at (3.11)
4w + 0
It is clear from {3.10} that the imaginary part ¢"{w) determines the
position of the plasmon resonance, while the real part ¢’{o) determines
the (collisional) damping of the mode in the long wavelength limit.

The electric current ACF J(t), as well as the electron velocity ACF
Z,{t} have been calculated for several states of the hydrogen plasma
around f~1, r_~1 by MD simulations®®'3°. The ACF J(t) turns out to decay
considerably more slowly than Z,(t), so that a Nernst-Einstein-like
relation between the d.c. conductivity ¢ and the electron self-diffusion
constant D, which follows if all cross-correlations between velocities
of dlfferent "electrons are neglected, namely :

o~ w? D (3.12)

underestimates o by a factor of 2-3., This can be qualitatively
understood, since electron-electron collisions conserve the electric
current, but not individual electron velocities. For similar reasons it
is found that the Kubo current associated with thermal conduction decays
on roughly the same time scale as individual electron velocities, i.e.
again much faster than the electric current 2%,

According to (3.10) and (3.11}, J(t) also determines the frequency
and damping of the plasmon mode at k = 0. The most important finding is a
significant shift above the plasma frequency, i.e.

lin o(k) = o_,[1+a] 3.13
ks @) = op2 (3.13)

where 4 is typically of the order of + 0.02 for Ixl, rg ~1%°, This
collisional effect persists to finite wave numbers, where the plasmon
resonance in S Z(k w)} is considerably shifted and broadened relative to
the collisionless mean-field (Vlasov) result'®. The collisional damping
is reasonably well described by a memory function analysis'® or by
generalized Fokker-Planck-like equations®?

Kinetic theory has also been applied to the calculation of the
electron collision frequency and of the transport coefficients (D,, o, K)
of the hydrogen plasma in the framework of the "primitive model™ (3. 6)23’
and its extensions which include a Pauli repulsion between
electrons®9124:25, 1t should be stressed once more that such calculations
apply only if the conditions (3.5) are satisfied. The link between the
non-degenerate and degenerate regimes has been investigated by Boercker
et al.®%' while Wallenborn and his collaborators report their results on

116



the weak coupling limit in the present proceedings.

Finally, the thermal relaxation of a two-temperature plasma (where
T, = T, has been the object of extensive M.D. simulations®’ which are in
good agreement with the predictions of the standard Landau-Spitzer result
for the thermal relaxation rate, provided an adequate definition of the
Coulomb logarithm is used.

4 - THE TWO-DIMENSIONAL COULOMB GAS

Due to the (weakly) binding nature of the logarithmic attraction
between opposite charges, the proporties of the two-dimensional Coulomb
gas (or two-component plasma) differ profoundly from those of its
three-dimensional counterpart, particularly at low temperatures, as
already mentionned in the introduction. The symmetric Coulomb gas is made
up of oppositely charged hard disks of diameter o ; the corresponding
pair potentials are :

) y r <o

Vap') (4.1)

-qgag In(r/L) ;> o

where q, = =z ¢ (1 € a < 2),

First consider the case of point charges (o =0) ; this plasma is
thermodynamically stable as long as the Coulomb coupling
1

q2
N = —— "
kBT' T

< 2

since the Boltzmann factor for a pair of opposite charges :

2

exp { - )t (4.2)

In (r/L)} = (

I

kBT
is clearly integrable for I' < 2. A simple scaling argument leads to the

exact equation of state®® :

pPS r
2N 4

it
—
'

(4.3)

where S is the area containing N charges of each species. The partition
function and its temperature derivatives diverge as I' > 27 due to the
collapse of pairs of opposite charges. In particular the internal energy
U and the specific heat at constant area, cg, diverge ag2®12% .

U

lim  — A~ (2 -T)70 (4.4a)
r-2-  2NkpT

CS
lim v (2 -T)7% (4.4b)

The collapse of the 2d TCP in the limit I' - 27 is intimately related to
counter-ion condensation in polyelectrolytes®®. This "recombination" of
pairs of opposite charges has profound effects on the pair correlations
between charges of the same sign®'. According to Widom’s conjecture®?,
one would expect the pair distribution functions to have the following
behaviour at short distances :
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%_i,% 2ap(r) ~exp { - v g(r)/kyT}

(4.5)
NEEYISEUIT I A S

This behaviour appears to be obeved by g,_(r}, but the formation of tight
+ - pairs changes the behaviour of g,..(r), =¢g__(r) relative to the
prediction (4.5) for ' > 1. In fact it is expected that™' :

go.(r) ~ T 0 <¢Cr <l
t (4.8)

~, rz—r M 1([’(2

Thus 1like-particle correlations are weakened for T > 1 due to
progressive recombination of ovoposite charges. One of the unexpected
consequences of (4.6) is that the familiar HNC equation, which is
Eenerilly quite accurate for Coulombic systems, admits no solution for
ro 13,

The Coulomb gas of finite size charges (o = 0) leads to much richer
phyvsics. The system is now thermodynamically stable and all its
properties depend on two variables, which may be chosen to be T and the
ratio o/a = 2n'“* where a = {mn)"'’? (n=n, n,) is the ion-disk
radius, and m is the vpacking fraction. This Coulomb gas is known to
undergo a dielectric-plasma transition at some densitv-dependent critical
coupling. The dielectric-plasma transition is the prototype of
Kosterlitz-Thouless (KT) transitions®?*'®* in 2d svstems, which are
characterized by a divergent response (susceptibility) to an external
field : simultaneocusly the decay of spatial correlation changes from
exponential (screenin '} in the high temperature phase to a power law
below the critical temperatureS,

In the Coulomb gas the relevant static response function is
obviously the dielectric function e(k) which diverges as k =0 in the
plasma (conducting) ' phase, while it is finite in the dielectric
(insulator} vphase. e(k 3 0) is related to the fluctuations of the total
dipole moment = % a3 ¥y of the sample, which have been calculated in
recent Monte Carlo simultations to locate the KT transition for several
densities®®. The critical Coulomb coupling is found to be I' = 4 in the
low density (m = 0) limit, in agreement with the prediction of a simple
mean-field calculation®?,

5 - A FIXED ION MODEL

The most natural dvnamical characterization of the dielectric-plasma
trangition is provided by the d.c. conductivity which is non-zero only in
the vplasma phase. However this collective property cannot be computed
with a high degree of accuracy in a M.D. simulation. By fixing the
charges of one species {the positive ions) on the sites of a hexagonal
lattice, while the particles of the opposite species (the negative
electrons) move in the periodic field due to the former, the TCP becomes
equivalent to an inhomogeneous OCP in a periodic (rather than uniform)
background, and the dielectric-plasma transition is mapped onto a
"delocalisation" transition™ : at low temperatures electrons are
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localized, because they are individually paired with one of the fixed
ions, while above the transition, the ion-electron pairs are broken, i.e.
electrons become delocalized. The advantage of this transformation of the
original TCP model is the emergence of a second "diagnostic" for the
transition, which is more useful in practical M.D. computations, namely
the electron self-diffusion coefficient D,. If r;(t) denotes the position
of the i th electron at time t, the Einstein relation reads :

lim < [F5(t) - T4(0)|% > = & + bt (5.1)
tow

with
a=2<C|aT|2Y ; b=0 ; TKT, (5.2a)
b=14D, ; T T, (5.2b)

where <|A?|2> denotes the mean square displacement of an electron around
its host ion in the dielectric phase and T, is the threshold temperature
for self diffusion, which we tentatively identify with the
dielectric-plasma transition temperature.

Some of the salient results of recent M.D. simulation®?!3® of the
fixed ion model, for o/a = 0.1 and 0.02, and for various couplings I', are
the following.

a) Typical electron trajectories at a temperature slightly above T,
are shown in Fig.2. Localized and mobile electrons are seen to coexist
over time spans of several hundred plasma periods .

Fig.2 ! Trajectories of 108 eletrons in the periodic field of as many

fixed ions, at ¢/a = 0.1 , [ = 4,2 ; exposure time is 250 @52



b) The velocity ACF Z(t) and current ACF J(t) are shown in Fig.3 together
with de power spectrum Z(w) for two states, one in the dielectric phase,
and one in the plasma phase. In the former phase, Z(t) and J{t) are very
similar and exhibit oscillations which originate in the rotational and
vibrational motions of the electrons which are individually bound to
ions. The two components are clearly resolved in the power spectrum Z(w),
where the low frequency peak can be associated with the rotations while
the broad feature at higher frequencies is the vibrational band ; note
that D, ~ Z(w = ¢} 1is strictly zero (insulator phase). In the plasma
phase, on the other hand, Z(t) and J(t) are monotonous functions of time,
with J(t) decaying considerably more slowly than Z(t), as already noticed
for the 3d hydrogen plasma in section 3.

reduced time (wp)

[ T - T T T

-

1% A A

8 Z(w) Z(w)

]

o r=18 =571

©

N

T |

£\ I

c L 1 N -
5 10 5 10 15

frequency (uw/uw,) b

Fig.3 : a) Normalized velocity and current ACF Z(t) (full curves) and
J(t) (dotted curves) versus reduced time for o/a = 0.1, I' = 5.7
and 1.8, .
b) Normalized spectra Z(w) versus reduced frequency.

. b3 .
c) The coupling ', = 1/T, at which D, drops to zero depends on density.
For o/a=0.1 (i.e. m=0.01) T, ~5.5, while for o/a = 0.02
{n = 0.0004) T ~ 2.8, It 1is conjectured that lim I', =2, while the
0
corresponding limit for the symmetric case, where ions are mobile, is
believed to be [, = 43313,

d) Ion-Electron recombination lead to a pronounced maximum in the specific
heat c; at a temperature T, > T,.
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e) J{t) can be used to calculate the a.c. conductivity o(w) according to

eqn.(3.11) (with 4= replaced by 2= in 2d), and hence the long wavelength
limit of the charge fluctuation spectrum according to eqn.(3.10). Some
representative results are shown in Fig.4. The plasmon resonance is found
to be quite sharp at high temperatures, but with increasing coupling,
plasma oscillations are increasingly damped due to electron localization.
The mode is overdamped long before the transition temperature is reached.
The plasmon frequency at k = 0 drops with temperature, in qualitative
agreement with the predictions of the collisionless Vlasov equation for
the inhomogeneous electron gas in the periodic field of the ions>®. Note
however that this mean field kinetic equation does not lead to a KT
transition, but predicts the 2d Coulomb gas to be a conductor at all
temperatures.

f) M.D. computations of § {k,») at non-zero wavenumbers in the

plasma phase show that the plasmon dispersion relation w(k) is not
monotonous, but has an unusual oscillatory behaviour®® which may be due
to a coupling between the individual motion of each electron in the field
of the nearest ion and the collective charge oscillation mode.

6 - CONCLUSION

Molecular Dynamics simulations have been instrumental in our present
understanding of single-particle and collective dynamics in strongly
coupled two-component plasmas. In 3d the usefulness of the method is
however limited to the range (3.5) in the density-temperature plane,
where a semi-classical modelization based on the effective potentials
(3.6) may be expected to be reasonable. The 2d Coulomb gas model allows
simulation of the influence of an "ionization" equilibrium on the
dynamics of a two-component plasma in purely classical terms. The most
striking result is the unexpectedly large importance of "recombinational"
damping of plasma oscillations. More work in that direction is in
progress.

Fig.4 : s(w) versus reduced frequency for ¢o/a = 0.1 and four couplings
in the plasma phase.
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KINETIC THEORY OF THE INTERDIFFUSION COEFFICIENT IN DENSE PLASMAS

David B. Boercker

Lawrence Livermore National Laboratory
University of California

P. 0. Box 808

Livermore, California 94550

INTRODUCTION

Ionic diffusion in dense plasma mixtures has been of interest recently
for a number of reasons. In astrophysics, diffusion plays a central role
in understanding the distribution of heavy elements in the atmospheres of
White Dwarf stars.” The performance of multi-layer x-ray mirrors should
be affected by diffusion, and the evaporation rate of metal "chunks"
injected into the fuel of an ICF capsule by hydrodynamic instabilities is
controlled by the diffusion coefficient.

In all of these applications, the pl%smas can be very dense and
estimates based upon the Spitzer formula“ are often inadequate. In
fact, naive applications of Spitzer's theory can lead to negative
diffusion coefficients. Simple modifjcations, such as placing a "floor"
on the value of the Coulomb logarithm” can eliminate such unphysical
results, but they are untested under these conditions.

The interdiffusion coefficients in Binary Ionic Mixtures (two species
of point ions in a uniform neutralizing background) have been calculated
recently using molecular dynamics techniques by Hansen et al.” and by
Pollock. These calculations can provide useful benchmarks for
theoretical evaluations of the diffusion coefficient in dense plasma
mixtures. This paper gives a brief description of a kinetic theoretic
approximation to the diffusion coefficient which generalizes Spitzer to
high density and is in excellent agreement with the computer simulations.

DIFFUSION IN A BIM

As mentioned above, a Binary Ionic Mixture is a model of a plasma
mixture with two species of classical point ions immersed in a uniform
neutralizing background. The charge and mass of ion species "g" are
indicated by Z e and m,, respectively. Similarly, the number and mass
densities are n, and Py = M N, The corresponding total densities are
n=n; +n and p = p1 + py.

123



The strength of the Coulomb coupling among the ions is measured by the
parameter,

rokBT

where T is the temperature and r; is the ion sphere radius

4ﬂrg =1/n

3

There are two characteristic plasma frequencies in a BIM. One is the
Vlasov plasma frequency defined by

22 22
2 2 9 4wn121e 4ﬂn222e )
w =w t e, = + = 4mne” Z"/m . (D
P 1 2 m, m,

The other is the so-called "hydrodynamic" plasma frequency defined by

2 72 — 2
Q = 4mne” Z"/m < . 2
b T / @y (2

In the above, barred quantities are number weighted averages,

A = ciA + chA, (3

where c, = n,/n is the number concentration. The corresponding mass

concentration is X = pa/p.

The rate at which concentration fluctuations dissipate in a mixture is
governed by the interdiffusion coefficient, D, which linearly relates mass
fluxes to gradients in the mass_concentration. Specifically, if the
center-of-mass velocity field, u, is defined by

2
ur,e) = L X (0 u(F,0) (4
o=1

-
where u_ is the velocity field of species "o", then the mass
flux of "o" is

2> _ - c - = c - = ‘ 5

Ja(r:t) = Pa(r: )(ua(r: ) - u(r1 )) ( )
and the interdiffusion coefficient is defined by the relationship,6

I E = -pE0D VX E ) ( 6)

As is the case with many other transport coefficients, D can be
related to an equilibrium time correlation function. In particular, it
can be shown that
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D = o e |dt V (t) 7
5..(=0) J5¢ D
where
V. (t) = L 3 6y « 300>
p(t) = MNeje, D vp(0)> (¢ 8)

is the autocorrelation function for the (microscopic) diffusion velocity
- -+ -
vy (t) = cz.z v, (€) - cl‘z vi(e) . (9
iel ie2

The concentration structure factor, Scc(k), is defined in terms of
the partial structure factors, Sar(k)’ as

5., (k) = cieyle,8, (k) + ¢S, (k) - 2jc1c2 51,(0)] (10)

In the low-k limit, S, . is related to the Gibbs free energy through

32G

Scc(k=0) = NkBT / 2 . (11)

3c1

The appearance of the factor cjcy/S..(k=0) in the expression for D,
therefore, accounts for the fact that diffusion is really driven by
gradients of the chemical potential, not density. For neutral gases, this
factor reduces to unity for all concentrations in the low density limit.
For charged particles, however, cyc /S remains concentration

dependent even in the weak-coupling limit. This may be seen by using the
Debye-Huckel estimates of the partial structure factors to obtain

cyey/S, (k=0) = 22 ) 72 (12)

which is greater than unity whenever cjcy » 0.

THE ENHANCEMENT FACTOR AND THE AMBIPOLAR FIELD

As seen in the previous section, the long-range nature of the Coulomb
potential leads to an enhancement of ion diffusion in a binary mixture,
even in the low-density limit. 1In this section it will be shown that an
identical result follows from the usual Boltzmann theory of diffusion,
provided the ambipolar field of the electron background is taken into
account.

If temperature gradients are neglected, the standard Boltzmann
approach gives

= -—=— 701 (13)
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where Dy is the Spitzer estimate of the diffusion coefficient and 31
is

3 L. A%, 1 % Z n eB-¥ (14)
1 = n Y Tgr BTy AR

The ambipolar field is E and the pressure is given by p = nkgT. By
assuming the system is mechanically stable,

Vp - (zpn; + Zyny)ek 5 (15)

and that it is charge-neutral over hydrodynamic scale-lengths,

=3 =
Z,Vn; = - Z,Vn, » (16)
it is straight-forward to find
2
? Z
31 =) Do$x1 ) (17)
Z

Comparison with (12) shows that, at least in the low-density limit, the
thermodynamic factor, cjcy/S..(k=0), may be thought of as an enhancement
of the ion diffusion due to the ambipolar electric field of the electrons.

KINETIC THEORY FOR THE TIME-CORRELATION FUNCTION

Any time correlation function may be expressed in terms of the
correlations of the phase space densities

£ (FB,0) - i§aa<? S FO)86 - B(e) (18)

If §f, represents the deviation of £, from its equilibrium average value,
then the phase-space correlation functions are

> - - - > =
¢, (z-r',t|pp’) = <6 (rp,t) §£ (r'p'0)>) . (19)

It is usually more convenient to deal with the transformed functions

00 . >
3 (kzipp’) = Idteth strc @ elppye ke (5 (20)
oT 0 aT .

The diffusion coefficient may be written in terms of these latter
functions as

c.,C
D = Sl 2 Re (0 + in) (20™) (21)
ccC
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= izt
VD(z) - J: dte VD(t)

-+

1 3 3 ,% L\,
SEDRRA LIS CRTgTE: (22)

c c
. 1 2 -1 1
with o= ;-Jn:and Ty = ;“\/:_' .
1 1 2 2

The transformed 8hase-space correlation functions obey a kinetic
equation of the form

(z-5P) §_(kzipp) - 3 f 3 ¢ Gy ) §, (kzip 3
[4 o’ oo’
= in_ ¢,(p) [§, 6(-p) +n_ ¢ (p) B (0] (23)

where ¢a(p) is the normalized Maxwell-Boltzmann distribution for
species "o" and h (k) is related to the radial distribution
function through Fourier transformation

h_ (k)

aT

[ e, 000, (26)

The operator ¢ar is written as

%mﬁ>=%%%m%®mwww (25)

which is the sum of a mean-field term involving the direct correlation
functions

Sor (9 = B (0 - 15, @) By, @ (26)

and the "memory" function, ﬁar’ which contains the effects of
collisions.

The standard procedure for solving (23) is to expand the momentum
dependence of the S, 's in terms of Hermite polynomials, which are a
complete set of orthogonal polynomials with Maxwell-Boltzmann weight
functions. The Hilbert space defined by these functions is then divided
into two subspaces: the "hydrodynamic subspace" spanned by the ten (five
for each species) functions corresponding to the hydrodynamically
conservig quantities, number, three components of momentum and (kinetic)
energy, and its complement, the "non-hydrodynamic" subspace.
Projecting the kinetic equation onto the "hydrodynamic" subspace then
yields a closed set of equations for the hydrodynamic matrix elements of
the §af's. T?% details of this procedure are well described in the
paper by Baus and will not be given here.
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Applying Baus’ method to the problem at hand ultimately yields

T = 37, () + 357, (27)
where
2 2
~ PkBT iz(z -QP) (28)
T o(z) =
£ pm, m, zz(zz-wi) + izu(z)(zz-ﬂi)

is the correlation function for the longitudinal component of the
diffusion velocity and

pk_ T .

~ B 1z

v, (z2) = (29)
nmm, 22 + izv(z)

is the correlation function for the transverse components. If the
coupling to the non-hydrodynamic subspace is completely ignored, the
collision frequency is

11 22

v(z) = 1@ +Q77) (309
where
1 3.3 ~ .
0 - J @pdp py M (k=0.z[pp’) 4,(") Py - (31)
pakBT

In terms of v(z) we find

¢y pkBT
b =73 am m.v(0) : (32)
cc 12

Hence, to proceed we need an expression for the memory function.

THE DISCONNECTED APPROXIMATION

The memory function may be expressed in "time space" in the form9

=+ -+ =
Mo(12;t) = -ﬂg j d1’ d2 Vlva#(rl-rl)

il ’ . ’ 9 > _-'/ o il -1
* o5, Softhi 2 le)V,v_ (2,-15) 53, 4 ) G

where the four-point function, G,., ., represents the propagation

of pairs of particles between intéractions. If this function is simply
factored into a product representing the propagation of single particles
through the plasma, then in the lon§ time limit M reduces to the usual
Lenard-Balescu collision operator.1 In the Disconnected Approximation
the four-point function is factorized in such a way as to preserve its
exact initial value. The principal effect of this modified factorization
is to renormalize one of the potentials and replace it with a direct
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correlation function. An alternative form of this approximationl5
renormalizes both potentials. This has the advantage of giving a positive
definite "cross-section", but destroys the short-time behavior of the
memory operator. In this paper, the first form of the Disconnected
Approximation will be adopted, but some comparisons with the second form
will be made.

Using this approximation the collision frequency reduces to

3 dw
ip d’k 2~ ~ J 1
v(z) = - kv, ,(k)c, (k)
3m1m2 (2w)3 12 12 2n
Qg 819 (kKs0)8y,(k,0)) - SlZ(k’wl)SZI(k’wZ)(34)
2n zZ - w -,
which for low frequencies becomes
Z.Z e2p 0
172 2~ dw 2
v() = - Ey—— J dk k ch(k) J om [Sll(k,w)S22(k,w) - Sl2(k,w)].
172 Y0 (35)

To complete the calculation estimates of the dynamic structure factors are
needed. These are obtained by substituting static structure factors
obtained from the HNC equation into (23) with M,, =0.

COMPARISON WITH MOLECULAR DYNAMICS

Calculations of the interdiffusion coefficient have bsen made using
(35) in (32). The results for a 50% mixture of H' and He?% at various
I' values are shown in Table I. The reduced diffusion coefficient, D¥,
is given by

[s
*o_ e D/rg o . (36)

L%

D

Table I. Comparison of theoretica% and numerical
simulation results for D' in 50% H'-HeZt

mixtures.

* * *
r D mp D' D"y
0.42 3.00 3.18 5.25
1.0P .915 .792 1.44
4.08 142 .154 .265
40.2 .0109 - ' .0165

8From Ref. 4

From Ref. 5
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+14_g 436

Table II. D*'s for Si mixtures.
. * *

851 D yp Dy

25 .552 477

50 .605 .508

75 .628 .545

The subscript MD indicates the results from the Molecular Dynamics studies
of Hansen et al.” for I'* 1 and Pollock® for T' = 1. D T
is calculated using the theory described here and p* oM 1s cglculated
from the symmetric form of the Disconnected Approximation. As can be
seen from the table, the agreement between D" and D'y is quite
good for the lower three I' values. At*F = 40, the oscillations in
19(k) lead to a negative result for D'q. The symmetric theory does
not run into this difficulty, but it gives results for all T values
which are 50% too high.

Table II compares the resul%s from the asymmetrlc theory to computer
simulations for mixtures of Sit'* and srt3 at various concentrations,
but all at T = .005. Once again the agreement is in the 10-20% range.

TIME CORRELATION FUNGCTIONS

In order to study the behavior of the time-correlation function,
VD(t), the high-frequency behavior of v(z) is observed to be

4leZZe2p
v(zow) » = T (37
z 3m1 9
Using this result in (28) and (29) yields
B pkBT i 1 2 2 9 4#2122e2p
T,(2) —5— 2 [1+(—) ol ool —E—) o+ @8
1™ P P 1™
and
pk T 2 4nZ.Z e2
nm,m, z z 3m1m2
Hence, one notes that
4nZ.Z.e"p
= _ _ _ . 2 2 1%2°
Vl (t—O)/VJZ (t=0) (wp ﬂp + 3m1m2 ) (40)
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. 4%2122e2p
Vi (t=0)/V | (t=0) = - "W (41)
1

Since w2 > 02 , the correlations of the longitudinal component of
the diffusion Velocity have a more rapid initial decay than the tzans-
verse components. Combining (40) and (41) gives the known result

2 2 2
Q c.mZ, + ¢, m,Z
. PO S i o Bl X
{0V (=0 = - T T 7w ey, (42)

The more rapid initial decay of V,(t) illustrated by the "dashed"
and "dash-dot" curves in Figure 1. The solid curve and the dots compare
the theoretical estimate 3f VD(t)/VD(t-O) to the corresponding simulation
results for the 50% H'-He’! mixture at I'=1. The comparison is
reasonable out to about six inverse plasma ffequencies, but the theoretical
curve seems to miss the "shoulder" at 12 w_~ This may be due to
V, oscillating too rapidly in this region.

DISCUSSION

The results presented here in?icate that the Wallenborn and Baus form
of the Disconnected Approximation™ agrees to about 10-20%, with
numerical simulation values for the interdiffusion coefficient. Such
agreement is quite good, especizl%y in view of the 10% uncertainties in
the molecular dynamics results.”’~ The only problem arises at very
strong coupling where the theory apparently breaks down and gives a
negative result. This is not a serious limitation, however, since most
plasmas of practical interest are in the weak to moderate coupling
regime. In general this calculation is another indication of the success
of the Disconnected Approximation.

Fig. 1 Normalized velocity autocorrelation functions for
50% H'-He*" mixture with ' = 1.
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TRANSPORT PROPERTIES OF A FULLY IONIZED PLASMA: SEMI-CLASSICAL

OR QUANTUM MECHANICAL APPROACH

J. Wallenborn,l B. Bernu? and V. Zehnlél

lchimie-Physique II, C.P. 231

Université Libre de Bruxelles

B-1050 Brussels, Belgium

Laboratoire de Physique Théorique des Liquides
Université Pierre et Marie Curie

F-75230 Paris Cedex 05, France

Purely classical statistical mechanics cannot describe the thermo-
dynamics of a dense multicomponent plasma. It is necessary to take into
account the quantum diffraction which avoids the collapse of electrons
with ions. When computing the equilibrium properties, the quantum effects
can be included in the classical partition function with the help of a
temperature-dependent effective interaction potential (see e.g. Pokrant
and Broyles, 1974, and references therein).

Minoo et al. (1981) have proposed an analytical expression for this
effective interaction potential V., between two particles of species a
and b respectively (a and b stand for e or i, electrons or ions):

vab(r) = v:b(r) + vzb(r) @D)
where
q_9q -r/Xx
Vi = 2Pa.e 2)

accounts for the quantum diffraction effects as well as for the bare
Coulomb interaction and where

2, .2
-x’/mx_, 1n2)

s
Vab(r) = aaeSbekBT (In 2) e (3)

accounts for the quantum symmetry or correlation effect. 1In Eqs. (2) and
(3), q, and q;, are the charge of the particles of species a and b ’
respectively and A = #(2mp  kpT) is the thermal de Broglie wavelength
of the pair (a,b).
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Let us point out that v, is a purely two-particle density-dependent
interaction potential which does not include any collective effect. In
addition, the expressions (2) and (3) are valid only under the following
assumptions: s-scattering states alone are considered, there are no bound
states, and the electrons are weakly degenerate. These {agt two
assumptions imply kpT > 1 Ry and A, < a where a=(3/4rh) /
is the ion-sphere sphere radius, or equivalently

Trg < 2 T/ry <« (4)

where I' and r, are the usual dimensionless parameters which define
the thermodynamical state of the system:

I = q/(gla) 1, = a/a (5)

with a5 = hz/que. the Bohr radius.

During the last few years, the effective potential v, (or vd
alone) has been used to study, in the parameters domain defined by (4),
the non-equilibrium properties of a two-component plasma (Baus et al.,
1981; Hansen and McDonald, 1981; Sjogren et al., 1981; Bernu, 1983; and
Zehnle et al., 1986). However it is questionable that such a potential,
which is constructed to evaluate static properties, will be adequate for
the calculation of dynamical properties. In a recent paper (Zehnle et
al., 1986), we indeed found some unexpected results. We studied the
thermal conductivity of a fully ionized hydrogen plasma in the framework
of the classical kinetic theory developed for strongly coupled plasmas
(see e.g. Wallenborn, 1985, and references therein) using the effective
potential Vb of Minoo et al., [Eq. (1)]. One of our results was that
the electronic part of the thermal conductivity, which classically
dominates, can become of the same order of maénitude as the ionic part due
to the quantum symmetry effects included in v®_ [Eq. (3)]. This
quantum reduction of the thermal conductivity is important when the
product T x rg is small, i.e. in the same domain of parameters where
the quantum effects are important for equilibrium properties. However,
though the thermodynamics tends to that of a perfect Fermi gas as T
decreases, the thermal conductivity does not.

In order to test the physical validity of these surprising results, we
have computed the thermal conductivity of a weakly-coupled electron one-
component plasma (OCP) in two ways (Wallenborn et al., 1986): i) by a
semi-classical kinetic theory, a calculation which is just the
one-component analog of our previous two-component one (Zehnle et al.,
1986), and ii) by a purely quantum kinetic theory starting from first
principles.

In the semi-classical approach, we considered two models for the
interaction potential between electrons: (cf. Egs. (1) and (2)):

d

vl(r) = Veo

(r) and vz(r) = vee(r) (6)

One may easily compute analytically the semi-classical thermal conductivity
K of the OCP in the first Sonine polynomial approximation by standard
methods (see e.g. Balescu, 1975). The result can be written in the
following form for both model potentials vi(r) (i=1,2):

K.
K5 oo —L— 2 32 3 49y (7)
i k 2 24 i

Bna (A)P
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where w_ = (Aﬂezn m)]'/2 is the plasma frequency and where

A; is tge so-called "Coulomb logarithm". To avoid the remaining

divergence at large distance, the integrals were truncated at £, which

is the Thomas-Fermi length if the system is degenerate and the Debye length

if not. One then has:

>
[}

1 2 .z —1
-lne + 9 [In (™ + 9 ) - 2 (8)

(In 2)
Frs

n
272 (n 2)52 e41n 2

+
4 (Frs)1/2

El(f 1n 2) (9)

where € (,B/2m)1/2h/}2c and where E; is the exponential integral.

The purely quantum calculation of the thermal conductivity of the OCP
was made in the Wigner function formalism. The quantum Landau kinetic
equation, which is based on the Coulomb potential, can be found in the
literature (see e.g. diffraction, exchange and symmetry. This last effect
is included in the quantum distribution function. In this formalism, the
thermal conductivity Kq (in the first Sonine polynomial approximation) is
written:

K

* - -
K - —— - RER 3/2 p71 (10)
q k. na“w 9
B p
Aq = C[-Alne+B] (11)

where ¢ is the same truncation parameter as in the semi-classical case,

C is a combination of Fermi integrals, A and B are, respectively, a four-
and a five-dimensional integral which are evaluated numerically. The
important point is that A, B and C depend only on p/kpT or, equivalently,
on the ratio I‘/rS (g is the chemical potential). Moreover, in the

limit of no degeneracy (T/r <<1l) they can be calculated analytically.

As an example of our results we show in Fig. 1 the comparison between
the quantum and semi-classical evaluations of the thermal conductivity as a
function of the degeneracy parameter u/kpT at fixed temperature. It
is seen that K, never agrees with K . In particular, K, is two orders
of magnitude larger than K, when the electrons are degenerate (p/kgT
> 3). This means that the reduction with T'r._of the electronic
thermal conductivity of the hydrogen plasma is a spurious effect of the
symmetry potential vsee [Eq. (3)]. On the other hand, K; and K, are
in agreement as far as the system is not degenerate (p/kgT < -1? or
T/rg < 0.25) i.e. as far as the quantum symmetry doesn’t enter into
play.

These results illustrate the difficulty in including non-dynamical
effects, such as the quantum correlations, in an effective potential which
is used to generate the dynamics. One could be tempted to use the
potential v, to describe equilibrium properties and the potential vy,
to describe the transport properties. This, however, implies a local
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Fig. 1 Reduced thermal conductivity K*=K/(ana2w ) of an
electron gas as a function of the degeneracy parameter p/kpT
for a temperature of 1360 eV; A Kq, Eq. (10); m Kl’ Eq.
(7); * Ky, Eq. (7).

source term in the energy balance which certainly is not desirable. Most
likely one has to choose between a good description of the statics or of the
dynamics.

So far our conclusions are strictly valid only for weakly coupled
plasmas. Yet, they rest on the value of the degeneracy parameter T/rg
and not on I' alone. It would be very surprising if they were not
correct in the case of strongly coupled plasmas.

In order to fulfill the requirement (4), the results of the molecular
dynamics (Hansen and McDonald, 1981; Sjogren et al., 1981; Bernu, 1983) were
obtained only for degenerate strongly coupled two-component plasmas;
therefore, they must be considered at best as qualitative. A quantum
calculation of the transport coefficients of these systems is thus highly
desirable.
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CHAPTER 1V

ASTROPHYSICS



DENSE MATTER IN ASTROPHYSICS: SELECTED TOPICS

Evry Schatzman

Observatoire de Nice
BP 139, 06003 Nice Cedex
France

INTRODUCTION

Let me first briefly report on the conditions under which a stellar
object reaches the physical conditions of a highly correlated plasma.
Several review papers have been devoted to this problem, but I would like
to recommend especially the courses delivered by Iben, Renzini and
Schramm (1977), the review papers by Iben (1974) and by Iben and Renzini
(1984), which concerns isolated stars. See also Schatzman (1978, 1980).
The situation of binary stars is much more complicated, due to mass
exchange between the two components. This has been discussed several
times, but I would like to recommend the paper by Webbink (1979) and
the review paper of de Loore (1984). The effect of accretion on white
dwarfs is described by Nomoto (1982,1984), at least as far as the outer
layers are concerned. It should be noticed that fast accretion leads
in Nomoto's models to the formation of giants. '

The evolutionnary path towards the white dwarf stage determines the
chemical composition of the bulk of the white dwarf and the initial
radial distribution of the temperature.

The main point is that main sequence stars, after exhaustion of
hydrogen in the core become giants. Further evolution leads to an
important mass loss. Observational data (Weidemann and K8ster, 1984)
show the relation between initial and final mass. It seems that up to
8 to 10 solar masses all stars become white dwarfs, the total mass loss
reaching a maximum value of 85%. For a star with M < 2.25 solar masses,
the production of a low mass degenerate core leads to the formation of
a helium white dwarf, whereas for a star of larger mass, M > 2.25 solar
masses, the core reaches higher temperatures allowing helium burning
and leading to carbon-oxygen white dwarfs.
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The chemical composition of white dwarfs reflects the evolution of
the parent star. A discussion by Alcock (1979) of the gravitational
sorting in the outer layers of white dwarfs confirms the possible
existence of two classes of white dwarfs: for M < 0.4 solar masses,
helium white dwarfs, and carbon-oxygen white dwarfs for higher masses.

As already mentioned in other review papers (Schatzman, 1978, 1980),
it is not possible to review all problems of dense matter which are
raised by the study of astrophysical objects: the purpose of this paper
is not to draw a list of subjects, but rather to discuss some key problems.

I would like to concentrate on the following questions:

- the thermal history of white dwarfs,

- the equation of state,

- the thermonuclear-pycnonuclear reaction rate,
- the transport process,

- some remarks about Sirius,

and try to place these questions in their astrophysical framework.

THERMAL HISTORY OF WHITE DWARFS

The thermal history of white dwarfs implies two questions: (1) the
rate of heat transport in white dwarfs, compared to the classical rate
of cooling, and (2) the physics of the solidification of a mixture.

The thermal conductivities of the liquid metal phase and of the solid
metal phase have been calculated resp. by Itoh et al (1983) and by Itoh
et al (1984), improving appreciably its value (references to former work
can be found in these two papers). Even without carrying the calculation
of a complete solution of the equation of heat, it is possible to estimate
the rate of heat transport in white dwarfs and to compare it to the rate
of cooling.

My purpose here is not to solve the problem quantitatively, but to
give an idea of the problem. The argument is the following.

The rate of heat transport is given by the equation of heat :
2, oT oT

E_ r’K = C ——
r° or or ot

1
S 2

where K is the thermal conductivity and C the specific heat of the matter.
An order of magnitude of the time scale of heat transport will be given by

2
diff /)12
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This would have to be compared to the classical time of cooling :

Q

t o —

cool L

where Q is the total energy available in the white dwarf and L the lumino-
sity. This last relation can be expressed in terms of the internal tempe-
rature of the white dwarf, this temperature being defined by the relation:

Pdeg = Pgas

at the bottom of the radiative, non degenerate outer zone. In this sketch
of the radiative cooling of a white dwarf, it would be necessary to
distinguish between the case of a pure hydrogen envelope and the case of
a heavy elements rich envelope. We shall ignore this difference, as well
as the effect of the surface convection zone.

It is usually assumed that the thermal diffusivity inside white
dwarfs is so high that the degenerate star is isothermal during cooling.
However, this is not quite the case. In order to carry properly the
discussion, let us consider once more the diagram (log p, log T) where I
have plotted (fig. 1) the boundary between degenerate and non degenerate
matter, the melting boundary for 10, the Debye temperature and the lines
defined by the conditions

Jar | i

q1iq 9s01id
where U1 is the internal heat of the electrons, given by

2

_37? kT 2 1
Qe1 = 9 Z [m c? ) M % Ni
e
with
Pp
X = —
mc
e
valid for
x >> 1

q1iq is the internal heat of the ions :

Njw

qliq = Kgﬁ kT

q solid is the internal heat of the solid,

o5 (1] yq8;
AH

9501id = 5 @D

with the Debye temperature, as given by Shapiro et al (1984) :
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log O

6 7 8 9 10

Fig.l. The different regions in the log p, log T plane. The curve
"melting", inbetween the Debye temperature and the standard melting
curve, has been obtained by applying a Debye correction to the mean
kinetic energy kT (see text).

D~k H A

=

a-tfae ] ]

where H is the atomic mass unit.

It will immediately be noticed that in the range of densities and
temperatures of interest, the Debye temperature is above the fusion
temperature of oxygen. As the Debye temperature is non Z dependant, the
crossing point of the two curves depends on the melting temperature,

1/3 1/3
T _ g5/3 e [4m p) Z 1
melt k 3 H A T

/3

which is proportionnal to 25 .
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Having a Debye temperature above the melting temperature is obviously
meaningless. This comes only from a wrong definition of the melting
temperature. If we replace in the definition

the mean kinetic energy kT by (T/0,)® k T, which is sort of taking into
account the quantum nature of the solid, we obtain

3
£ 1

= a%x7T |T

from which we derive, with I' = 171, an intermediate melting curve, sitting
this time below the curve T = OD,

3|1/4

p11/24

1/3 5 5
1 (47 3/2 Z e
Tﬁelt ['F L__% (4 )

7
3 (A H)10/3 k4

_ 3 5/12 11/24
Trrlelt =6.71 . 10° (Z/8) o}
In the range of interest, we shall consider two cases, the hot case
( T = 10% °K ), where most of the star is liquid, and the cold case

(T = 107 °k ), where most of the star is solid.

R
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The internal temperature of the star will be defined by the canonical
condition of degeneracy at the bottom of the outer radiative zone. This
gives the two definitions :

5/3 2/3
hot case : T = (kéH) [ 30L ]

bTmacGM

where 0 is the diffusion coefficient, 0 = 0.2 (1+X), and

8 12,75 ¢
cold case : T = (k/u)®/7 k787 [__.0__

16 TacGM

where K is related to the pressure of the degenerate gas,

5/3
P =K (p/u)Y
and KO is related to the absorption coefficient with a Kramers law:

-3.5
K = KO o T

In these two cases, we obtain the approximate expressions :

- hot case:
13 ,2/3
taifs = 1.914 , 1077 M* / years,
_ 5. 1/2
teool = 1.332 . 10 T8 years,

cold case :
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4/3 2/3

9q3 Mx years,

tdiff =9.92 . 10 T8 pc6

¢ . =6.496 . 1013 o 43y 2/3

ears
cool cb y ’

which means that in the liquid star, the time scale of heat propagation is
larger than the canonical cooling time. This is due to the low conductivity
and high specific heat in the liquid phase. The reverse is true in the
solid star, where the conductivity is high and the specific heat is low.

This means that the hot liquid white dwarf cools first in the outer
region, and that, with a thermal diffusivity

-5 -2/3

3.78 . 10 p6

Dthermal =

the central region of a dense white dwarf (close to the Kaplan-Chandrasekhar
limit) may eventually never become solid. In 108 years, the thermal wave

has reached 6% of the star, and a density of the order of 0.06 p . For

0. = 10° this gives p = 6.107. ¢

SOLIDIFICATION AND IGNITION

Whatever is the exact solution T(r,t), the problem of the solidifica-
tion of a n-component plasma has to be considered, and it has a large
variety of implications on stellar evolution : novae, type I supernovae,
origin of pulsars and neutron stars.

I can summarize the problem in the following way :

If we consider a C-0 mixture, we find in the literature two
possibilities :
(a) solidification takes place at a temperature which is intermediate
between the solidification of carbon and oxygen, and the solid is an
homogeneous mixture of carbon and oxygen.

Jancovici (1982) has considered an elegant approach of the problem by
comparing the free energy of two carbon atoms close together in an infinite
solid of oxygen to the free energy of two carbon atoms isolated in an
infinite solid of oxygen (Schatzman, 1983). Assuming no deformation of the
lattice we find for the difference in free energy of the two configurations

(zl-zz)2 e?
AF: —_
a

If we compare to

212 e2
T =
akT
we can write
(2,-2,)°
AF = - 5 'k T
Z1

For 2, =6 , 2, =8, T =171, AF =-19 k T, which means that for a low
concentration of carbon in oxygen , or of oxygen in carbon, there is
complete miscibility.
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(b) on the other hand, Stevenson (1980) suggests that carbon and oxygen
are not miscible in solid phase. An oxygen-poor eutectic is predicted, with
a carbon mass fraction X, ~ 0.6 and a low freezing temperature T_ = 0.63 T.,
where TC is the freezing temperature of pure carbon at the conisgered density.

An old white dwarf, almost completely solid, accreting matter and
increasing its mass will evolve differently according to the chemical
composition of its central region.In case (a), the solid is an alloy of
carbon and oxygen, and when the mass of the star increases, the pycno-
nuclear regime of the C-C reaction can overtake the electron capture on
oxygen ( then explosion rather than collapse) , wheras in case (b) the
fall of oxygen snow flakes towards the center (Schatzman,1982) produces
a pure oxygen core,where the electron capture dominates (and then collapse).
However, the final result depends on the ignition density.

For the time being, I would like to discuss briefly the problem of
propagation of ignition in solid layers. Conductive velocities can be
estimated from the expression (Landau and Lifshitz, 1971)

%
K

-l
where (K/C) is the thermal diffusivity and T the characteristic time for
the nucelar reactions. According to Isern et al (1986), we have, with an
ignition density P. = 10® g cm™3, as given by Mochkovitch and Hernanz (1986)
the following tablé (table 1) , with the result that the central part of

the white dwarf has time enough to collapse to a neutron star, with a
possible off-center ignition follown by an explosion.

PYCNO-NUCLEAR REACTIONS

Two Body Reaction Rate

It seems to me that the problem is almost entirely understood. I would
like just to mention the points which are not clear to me .

In the fluid case, the rate of nuclear reactions has been studied in
detail by Alastuey and Jancovici (1978) for a o.c.p., including the effect
of the fluctuations of the potential.

There are two major contributions, one is the classical contribution,
due to the pair correlation function, giving for the enhancement factor

EF(classical) = exp C
with

1
A

C=1.0531T+ 2.2931 T* - 07551 In " - 2.35

which has been derived from Hansen (1973) simulation. The other part is the
quantum part, which comes mainly from the classical screened potential

Table 1. Characteristic Times

Detonation 0.1 s
Convective Deflagration 1 s
Conductive Deflagration 3-17 s
Electron Capture 1 s
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W(r). The screened potential is linear close to the potential minimum,
according to De Witt et al (1973) and quadratic near the origin, according
to Jancovici (1977). The departure from linearity produces a small effect.
However, it seems to me that it would be useful to reach an agreement on the
screening potential which is used.

If we ignore the non-linear effects, we can accept the treatment of
Itoh et al (1980) for a t.c.p.. However, the values of the coefficient of
the linear screening potential should be taken exactly and their weak
dependance on I taken into account (compare the values of the coefficients
of the linear approximation derived from Hansen data (equ. 2.5 of Itoh et al)
and the values derived from the harmonic oscillator model (their equation
2.10).

Finally, after freezing, the potential changes and there is a dis-
continuity in the pycnonuclear reaction rate. In the lattice model, the
screening potnetial is smaller than in the liquid model (Itoh, 1981) and I
would guess that the enhancement factor is smaller after freezing ( or
larger after melting).

If we remember that, as underlined by Mittler (1977) the WKB
approximation is not satisfactory, it is quite clear that the value of the
physical parameters for ignition depend on the exact value of the thermo-
nuclear reaction rate and not only on the efficiency factor.

Electron Polarization

Ichimaru and Utsumi (1983) first found a strong effect of the
polarization of the electrons, then corrected it to a small effect (1984).
Mochkovitch and Hernanz (1986) have reconsidered the polarization effect,
following the perturbation method of Galam and Hansen (1976). The electronic
enhancement factor is given by

kT

where AFPOl is the contribution of the electrons to the Helmoltz free energy
of the plasma.

pol
EEF = exp[AF ]

Mochkovitch and Hernanz (1986) obtain for I = 36, p=109

AFpol
kT
EEF = 1.7

= 0.55

Screening of Photo-desintegration Reactions

20 Mochovitch and Nomoto (1986), in connection with the rate of the
Ne(y,a)" "0 reaction have the problem of the efficiency factor resulting
from the change in the potential barrier.

The major contribution to the efficiency factor for the reaction
80¢a,v)?Ne in 1n EF , is

C =Up +Hy - Hy = Au

where My is the contribution to the chemical potential of nucleus i,
resulting from the Coulomb interaction. On the other hand the energy
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threshhold of the reaction is shifted ,

Q=Q0+AU

so that the reaction rate for the photodesintegration,

« -8Q
Agy <0 V19 > e

is related to the low density rate AgY by the relation :

0
AB ) ABYEF exp(- BQO - B M)
o - 0
A3Y A3Y

The major effect is then the quantum effect. To a first approximation, for
a non-resonnant reaction,

A 3
A T
3y

For the case of neon burning,which takes place during pre-supernova
evolution, the ratio is close to 1 . A similar result is obtained for the
resonant case,

3-alpha reactions

In the case of the *He(ay )®Be reaction, the energy threshold of the
reaction is 0.094 kev. As mentionned by W.Fowler (1981) at p = 6.89 10°
cm °, ®Be becomes stable and then the 3-a reaction proceeds on stable
Be. Eventually, as W.Fowler suggests, the reaction ®Be(®Be,a)!?C will be
the dominant one.

This has to be considered as an important effect when descriging the
gamm-flare stars, which are presently explained by accretion on neutron
stars (Woosley et al, 1982, Hameury et al 1982)(even if Woosley and
Hameury do not agree on the details of the mechanism itself).

All Channels Included

Thielemann and Truran (1986) have developped a complete ser of
equations for the efficiency factor, taking into account all channels of
the 4-body reactions like i(j,k)n . The main question, naturally concerns
the screening effect of the outgoing particle. It should be noticed first
that the equilibrium concentrations are changed, due to Coulomb inter-
actions. Thielemann and Truran notice also that the WKB approximation to
Coulomb barrier penetration is not good and that the transmission
coefficients calculated entirely within the WKB approximation are in error
by appreciable factors. However, confirming a result of Mittler (1977),
they mention that the ration of transmission coefficients (screened and
unscreened) turn out to be quite accurate.

I shall 1limit my self to two examples, borrowed to Thielemann and
Truran (1986).Introducung their notations :
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U ¢ reduced mass of the system

- (1 ) _ 1/3

aij = (2)(ai+ aj) ;oay _((3/4ﬂ)(Zi/ Zijnj)) 22 22 s s
- 2 . - 2 4% °

Fij = (Zizj/aij)(e /kT) Tij = (27 ©*/4) 2 Uij o Mz

Vscr(r) = — kT Pij (1.25 - 0.39 (r/aij))

V(r) = (Zi Zj e2 / r) - U0 + c(r /a)

- 2 . _ '
r; = (Zi Zj e“ /E) ; r, —(aij E )/(c1 Fij kT)
c, = 0.39
1 . 9
N 3nm 71 . 1/2
E(E') = exp |- 8K T, (2 4 E

We consider the existence of a final nucleus for which the Q values
of individual channels are corrected by Coulomb effects:

Q =Q + UO,j - UO,n

scr,n

The nuclear potential in the incoming channel is lowered by the amount U
and thus a state with a higher intrinsic excitation energy is produced
at r = 0. The nuclear potential in the outgoing channel is lowered by U
and the available kinetic energy at infinity is reduced by that amount. ’

For a capture reaction at low temperature, the dominant channel is
given by the y-transition to the ground state (n=Y,k=Y) and the whole
screening factor is given by

2
37T,,
eXP(Hj,Y) = expl|l.25 Fij - 0.0975 Tij [ - 1]J ]
ij

In the case of a reaction with a negative Q value, Thielemann and
Truran ibtain a new result . The incoming channel is then the dominant one.
The maximum value of the integrand in <o v> occurs at Q (negative) + E'm X
= E , which the Gamow energy in the outgoing channel. In thatcaSe:

Ga?%w kl )

the erfié¢iency factor becomes :
2
3 Fkn] ’

eXP(Hij,k) = exp|l.25 Fij - 0.0975 Tkn[ T

Miscellaneous

Equation of state. White dwarfs with surface hydrogen (Schatzman, 1945)
may have a deep hydrogen convection zone (Schatzman, 1958), However, the
exact boundary is an equation of state problem. It seems, from my readings,
that there remain some uncertainty in the equation of state and in the
degree of ionization. A careful application of the developments due to
Ebeling (1973) should be carried.

Transport problems. The deep convection zone dredges up heavy elements
at the bottom of the hydrogen convection zone, allowing the presence of
heavy elements in the spectrum (like Van Maanen 2). There is controversy
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about the rate of gravitationnal sedimentation of the elements. The exact
treatment has an important effect on the M, R, T .., chemical composition
of a white dwarf, withh all possible consequences on the mass function of
white dwarfs, thermal evolution of white dwarfs,

Similar problems arise at the boundary of the degenerate core of giants

as discussed by Iben and Tutukov (1984), and a detailed treatment to
appreciably different paths of evolution.

What About Sirius?

See (1892) has carried a remarkable analysis of the informations from
the ancients of the colour of Sirius. I shall notice especially the remark
concerning the Almagest. Ptolemey mentions six bright red objects :
Arcturus, Aldebaran, Pollux, Betelgeuse, Antares and Sirius. From Theon
and Avenius, the red colour of Sirius has disappeared at the end of the
4th century, and according to Al Sfi is definitely not red anymore at the
10 th century.

The question which has been raised several times (Brecher, 1977, 1979)
is the following : was Sirius B a red supergiant which has quickly evolved
to a white dwarf ? Was Sirius A  temporary a bright red supergiant ? In
the former case this raises an interesting problem of cooling. Anyhow, the
presence of the most famous white dwarf in the binary system of Sirius,
the probalby real fast evolution of one of the companions raises
fascinating problems which I think deserved to be mentionned in this
meeting on dense matter.

SUMMARY

A number of physical and astrophysical problems remain to be solved
in order to have a better understanding of white dwarfs and of their
transition to type I supernovae and neutron stars.

From the point of view of physics, I would like to list
—-the I'-dependance of the linear and quadratic part of the screening
potential;
—the exact solution of the penetration factor (the efficiency factor is
relatively well known, but the WKB approximation is not good enough,
especially for strong screening);
—-the discontinuity of the thermonuclear reaction rate at the freezing
temperature; .
-the properties of the eutectic for C-O mixtures (or more complicated ones)
-a better equation of state in the intermediate region and better values
of the microscopic diffusion coefficients;

From the astrophysical point of view, I would like to list
—the chemical composition of the bulk of white dwarfs;
—the initial temperature distribution at the time of white dwarf formation;
—-the solution of the propagation of heat, for the cooling of the star,with
the description of solidification, including the oxygen snowfall mechanism.
—-the propagation of ignition in the solid layers, and its application
to evolution towards supernovae type I and neutron stars;
-a revised analysis of gravitationnal sorting and extension of the outer
convection zone of white dwarfs.

This is certainly not a complete list,but it corresponds to the

unsolved questions which come up obviously when discussing the present
litterature.
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