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PREFACE 

A NATO Advanced Research Workshop on Strongly Coupled Plasma Physics 
was held on the Santa Cruz Campus of the University of California, from 
August 4 through August 9, 1986. It was attended by 80 participants from 
13 countries, 45 of whom were invited speakers. The present volume 
contains the texts of the invited talks and many of the contributed 
papers. The relative length of each text is roughly proportional to the 
length of the workshop presentation. 

The aim of the workshop was to bring together leading researchers from 
a number of related disciplines in which strong Coulomb interactions play 
a dominant role. Compared to the 1977 meeting in Orleans-la-Source, 
France and the 1982 meeting in Les-Houches, France, it is apparent that 
the field of strongly coupled plasmas has expanded greatly and has become 
a very significant field of physics with a wide range of applications. 

This workshop had a far greater participation of experimental 
researchers than did the previous two, and some confrontations of real 
experiments with theoretical calculations occurred. In the two earlier 
meetings the theoretical presentations were dominated by numerical 
simulations of static and dynamic properties of various strongly coupled 
plasmas. The dearth of experiments in the 1970's is now replaced by some 
very good experimental efforts. At the University of California San Diego 
a device for magnetically confining electrons cryogenically has made it 
possible to produce stable strongly coupled electron plasmas that are 
essentially the same as the one component classical plasma (OCP) that has 
been so extensively studied with computer simulations. Similarly the 
group at the National Bureau of Standards in Boulder, Colorado, have 
developed a successful arrangement for cryogenically trapping heavy ions 
to a coupling constant as high as r - 100. They anticipate seeing the 
fluid-solid phase transition predicted by simulation studies. These 
experiments give the promise in the next few years of observing in a 
laboratory strongly coupled Coulombic effects that are normally found in 
extremely high density astrophysical objects such as white dwarf stars and 
neutron stars. 

Other experimental groups from West Germany, Yugoslavia, France, and 
the United States reported on recent work on liquid metals in the vicinity 
of the critical point, electrical conductivity at intermediate coupling, 
light absorption in cesium plasmas, and high compression measurements on 
liquid metals. Some of these experimental results could be directly 
compared with earlier theoretical calculations, and have already provided 
theorists with suggestions for important future work. 

The theoretical calculations continue to include computer simulations 
of thermodynamic and transport properties from groups in Japan, France, 
and the United States. It is important to note that "numerical 
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experiments" have led to a much better understanding of how to calculate 
the fluid state properties of dense plasmas from 1iquid-state-integra1 
equations which require only a small fraction of the computer time needed 
for numerical simulation. The Japanese and the U.S. groups reported on 
successful use of coupled sets of hypernetted chain equations (HNC) that 
can largely reproduce most of the known numerical simulation results, and 
which have been extended to deal with electron screening and partial 
ionization. 

The density functional theQry has emerged as a powerful theoretical 
method for dealing with most strongly coupled plasma problems. 
Significant applications were reported for a first principles calculation 
of the fluid-solid phase transition, treatment of high Z ions in 
laboratory dense plasmas, and to a general treatment of quantum effects. 

Just as with the two earlier meetings, strongly coupled plasmas in 
astrophysics was an important topic with results reported for white dwarf 
star interiors, Jovian planetary interiors, transport properties of dense 
stellar interiors, and plasma effects on neutrino emission. 

As directors of the workshop, we would like to thank the North 
Atlantic Treaty Organization for its generous sponsorship of the 
workshop. We also wish to thank the National Science Foundation (U.S.A.) 
and the Lawrence Livermore National Laboratory (U.S.A.) for their 
supplementary sponsorship. 
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local arrangements; 

• to H. C. Graboske for making Lawrence Livermore National 
Laboratory staff and facilities available; 
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correspondence and recordkeeping associated with organizing and 
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CHAPTER I 

CLASSICAL STRONG COUPLING 



THERMODYNAMIC FUNCTIONS, TRANSPORT COEFFICIENTS 

AND DYNAMIC CORRELATIONS IN DENSE PLASMAS 

Set suo Ichimaru, Hiroshi.Iyetomi and Shigenori Tanaka 

Department of Physics 
University of Tokyo 
Bunkyo, Tokyo 113, Japan 

I. INTRODUCTION 

Since one of the present authors wrote a previous review on strongly 
coupled plasmas [Ichimaru, 1982], remarkable progress has been achieved in 
the field of statistical physics of dense plasmas. It is the purpose of 
this article to present a coherent review on the recent progress in our 
understanding of the thermodynamic properties, transport coefficients and 
dynamic correlations in dense plasmas and related plasmalike materials. 
This paper takes a form of an extended abstract on those various topics in 
dense plasma physics; a detailed account of the review will be published 
elsewhere [Ichimaru, Iyetomi and Tanaka, 1987]. 

II. PARAMETERS OF DENSE PLASMAS 

We begin by introducing several of dimensionless parameters character­
izing the dense plasmas; those will facilitate classifying the physical 
problems involved in each case of the plasma under consideration. Let us 
for the moment assume a plasma consisting of a species of ions (with the 
electric charge Ze, the mass M and the number density nil and the electrons 
(with the electric charge -e, the mass m and the number density ne = Zni)' 
a system referred to as a two-component plasma (TCP). The one-component 
plasma (OCP), on the other hand, consists of a single species of charged 
particles embedded in a uniform background of neutralizing charges. 

For the ion system, the Wigner-Seitz radius or the ion-sphere radius, 
defined as 

(1) 

measures the average distance between neighboring ions. A comparison between 
the ion-sphere radius and the thermal de Broglie wavelength yields 

a 
fi(Mk T)-1/2 

B 
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( 2 ) 

where T is the temperature and kB(= 1.3807 x 10-16 erg/deg) denotes the 
Boltzmann constant. In Eq. (2) as well as in analogous expressions occurring 
later, we use the mass number A and the mass density Pm = Mni of the ions, 
for convenience in application to examples of real plasmas. When a » 
ft(MkBT)-1/2, one may ignore the wave nature of the ions and treat them as 
a system of particles obeying the classical dynamics and statistics. 

The Coulomb coupling constant of such a classical ion system is defined 
as [Baus and Hansen, 1980; Ichimaru, 1982] 

r _ 

( 3) 

A weakly coupled plasma corresponds to the case with r « 1, where the 
Coulomb interaction can be treated perturbation-theoretically. A strongly 
coupled plasma refers to the case with r ~ 1, where a perturbation theory 
is no longer valid and the system begins to exhibit features qualitatively 
different from those in a weakly coupled plasma. The statistical physics 
of dense plasmas involves the charged liquid (or solid) problems where the 
strong Coulomb-coupling effects play a major part. 

A typical dimensionless parameter characterizing the system of electrons 
is [Pines and Nozieres, 1966] 

n _ ( e 

1.6 x 1024 

-1/3 
-3) 

cm 
(4 ) 

It is the Wigner-Seitz radius of the electrons in units of the Bohr radius 
and depends only on the electron density. The Fermi energy of the electrons 
is then given by 

( 5 ) 

with inclusion of the relativistic effect. The electrons can be treated 
nonrelativistically in the low-density regime such that rs» 10-2 . 

The degree of the Fermi degeneracy is described by the parameter, 

e _ (6) 

-2 In the final expression of Eq. (6), rs» 10 has been assumed. When 
9 « 1, the electrons are in the state o£ complete Fermi degeneracy; e = 1 
corresponds to a state of intermediate degeneracy; when e » I, we may 
regard the system of electrons as in the nondegenerate, classical state. 
The Coulomb coupling constant of the completely degenerate electrons is given 
by rs of Eq. (4), rather than by r of Eq. (3). A remarkable feature in 
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dense-plasma problems is involvement of the varied degrees of Fermi 
degeneracy in the treatment of the electrons. 

The condition that the atomic nuclei are all stripped of their orbital 
electrons may be derived roughly from the requirement that the Fermi energy 
be greater than the binding energy of an orbital electron, EF > 13.6 z2[ev], 
that is 

When this condition is not satisfied, the atomic nuclei may retain some of 
the orbital electrons. 

Although Eq. (7) is known to provide qualitatively a correct criterion 
for the pressure ionization, its quantitative accuracy remains to be ascer­
tained. It is in fact related directly to those frontal problems in 
condensed-matter physics such as the metal-insulator transition and the 
localization of electrons in random fields. Those involve strong interplay 
between atomic physics and statistical physics in dense plasmal ike materials. 

III. DENSE PLASMAS IN NATURE 

The neutron star [Shapiro and Teukolsky, 1983], one of the final stages 
of the stellar evolution, is a highly condensed material corresponding 
approximately to a compression of a solar mass ( = 2 x 1033g) into a radius 
of -10km. According to theoretical model calculations, it has a crust with 
a thickness of several hundred meters and a mass density in the range of 
10 4 - 107 g/cm3 , consisting mostly of iron. The condition that Pm > 104 
g/cm 3 corresponds to Eq. (7), so that we may assume each iron atom contri­
buting 26 conduction electrons. When T = 107 - lO tl K, the ratio (2) takes on 
a magnitude greater than 20, so that we may regard the iron nuclei as forming 
a classical ion system. The r value varies in the range of 10 - 10 3 . It 
is thus an essential problem to analyze the phase properties of the system, 
with inclusion of the possibilities of Wigner crystallization [Slattery, 
Doolen and DeWitt, 1980 and 1982] and the glass transition [Ichimaru, Iyetomi, 
Mitake and Itoh, 1983; Ichimaru and Tanaka, 1986]. 

The electron system, with the rs value ranging 10-2 - 10-1 , satisfies 
the condition for the complete Fermi degeneracy. At rs ~ 10-2 , the Fermi 
energy EF ~ mc 2 (~ 0.5 MeV) is much greater than the typical value mz 2e 4/ 
2fi2 ( ~ 9 keV) of the electron-ion interaction energy. Hence, the Coulomb 
field associated with the iron nucleus does not significantly disturb the 
distribution of the conduction electrons; the polarization (screening) effect 
of the electrons can thus be ignored. Consequently, the system of electrons 
acts as a uniform background of negative charges neutralizing the average 
space charge of the positive ions. It is in this sense that we may treat 
the outer crustal matter of a neutron star as an OCP of iron. The state of 
matter and the transport properties in the outer crust are considered to 
form those physical elements which crucially control the cooling rate of a 
neutron star [Gudmundsson, Pethick and Epstein, 1982]. 

The interior of a white dwarf [Shapiro and Teukolsky,1983J, another final 
stage of stellar evolution, consists of dense material with Pm and T compara­
ble to those of the neutron-star crust. In connection with the supernova 
explosion, one may extend the range of the parameters and consider the cases 
up to Pm ~ 1010 g/cm3. For the progenitor of the type I supernova, one often 
assumes a white dwarf with interior consisting of carbon-oxygen mixture, a 
kind of the binary-ionic mixture (ElM). Physical problems in ElM include 
assessment of the possibilities of phase separation and formation of eutectic 
alloys rStevenson, 1980J; those are related to the cooling rate [ Mochkovitch, 
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1983] and a detailed mechanism of the supernova explosion [canal, Isern and 
Labay, 1982; Isern, Labay and Canal, 1984]. 

The material inside a Jovian planet offers an important subject of 
study in the dense plasma physics [Stevenson, 1982J. Here one considers a 
hydrogenic plasma with a few percent admixture of helium at Pm = 1 - 10 g/cm3 
and T = 104 K. It is thus a strongly coupled plasma with mixed ionic 
species at r = 20 - 50 and rs = 0.6 - 1. The electron density of Jovian 
interior being smaller substantially than that of a white dwarf, new electro­
nic problems emerge in the treatment of dense Jovian matter, such as the 
polarization (and screening) effect of the electrons and a possibility of 
electrons forming bound states with the helium nuclei. Jupiter, for example, 
is known to emit radiation energy in the infrared range, 2 - 3 times as much 
as that which it receives from the sun [Hubbard, 1980J. To account for the 
source of this excess energy as well as the internal structure of a JOvian 
planet, thermodynamic and transport properties of dense Jovian matter need 
to be clarified. 

The interiors of main sequence stars such as the sun are plasmas consti­
tuting mostly of the hydrogen. The central part of the sun has the pressure 
of approximately 105 Mbar and the temperature of approximately 107 K. Since 
r :: 0.05, 6 = 4 and rs -:. 0.4, the plasma may not be said strictly in the 
strongly coupled state; the polarization and quantum effects of the electrons 
play significant parts in determining the plasma properties, however. The 
dense plasma effects are crucial also to the analyses of atomic states for 
those "impurities" starting with helium. In the calculation of miscibilities 
for high-Z elements such as iron, the strong coupling effects need to be 
carefully taken into account [Alder, Pollock and Hansen, 1980; Iyetomi and 
Ichimaru, 1986bJ. 

The states of those plasmas aimed at in the inertial confinement fusion 
(ICF) researches [Brueckner and Jorna, 1974J are similaI' to those in the 
solar interior mentioned above. The ~rOjected temperatures in the ICF 
plasmas need to be on the order of 10 K, so that the r values of the "fuel" 
material (isotopes of the hydrogen) may remain smaller than unity. Those 
materials which drive implosion of the fuel, however, consist of high-Z 
elements, such as C, AI, Fe, Au, Pb ••• , which after ionization form plasmas 
with r > 1. Atomic physics of those high-Z elements is influenced strongly 
by the correlated behaviors of charged particles in dense plasmas. 

The conduction electrons in metals and in liquid metals form strongly 
coupled, quantum plasmas, where the wave nature of the electrons as fermions 
plays an essential part. The metallic electrons at room temperatures have 
rs = 2 - 6, and may be regarded as in a state of complete Fermi degeneracy 
(6 «1). Owing to the presence of the core electrons, the ion-ion and 
electron-ion interactions are described by the pseudopotentials, deviating 
away from the pure Coulombic form. The strong coupling effect between the 
conduction electrons has a strong influence in the determination of those 
pseudopotentials [Singwi and Tosi, 1981 J. 

Some of the strongly coupled plasmas in the laboratory setting have 
the spatial degrees of freedom in the particle motion less than three. For 
example, those electrons (or holes) trapped in the surface states of liquid 
helium [Grimes, 1978; Ando, Fowler and Stern, 1982J or in the interfaces of 
the metal-oxide-semiconductor system [Ando, Fowler and Stern, 1982J form a 
pseudo-two-dimensional system. The electrons on the liquid-helium surface 
are characterized bv the densities and temperatures in the ranges of 107 
- 2 x 109 cm-2 and 0.1 -1 K; they thus form a classical two-dimensional OCP. 
Grimes and Adams [1979J found a crystallization of such a system at 
(nn)1/2 e2/kBT = 137. 
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In addition to those two-dimensional systems mentioned above, there 
exists a second class of strongly coupled charged systems in two dimensions, 
where the "particles" interact via a logarithmic potential in the x-y plane. 
This system corresponds physically to a collection of line charges in the 
z direction and has been adopted as an approximate model to those electrons 
in strong magnetic field. 

Important examples of the three-dimensional strongly coupled plasmas 
in the laboratory include those plasmas produced in the shock tubes [Fortov, 
1982] and the pure electron [Malmberg and O'Neil, 1977; Driscoll and Malmberg, 
1983] or ion [Bollinger and Wineland, 1984], Penning trapped plasmas at 
cryogenic temperatures (10-2 - 100 K). The latter plasmas rotate around 
the magnetic axis due in part to the space-charge field in the radial direc­
tion. In the frame corotating with the bulk of the plasma, such a system 
of charged particles may be regarded effectively as an OCP. The pure ion 
Penning-trapped plasmas have been stably maintained [Bollinger and Wineland, 
1984] for many hours at a r value on the order of 10. 

IV. THERMODYNAMIC AND CORRELATIONAL PROPERTIES OF FINITE-TEMPERATURE 
ELECTRON LIQUIDS IN THE SINGWI-TOSI-LAND-SJOLANDER APPROXIMATION 

The electron liquid is a strongly coupled OCP of the electrons embedded 
in a uniform neutralizing background of positive charges. The static corre­
lations in such electron liquids at finite temperatures were studied in the 
dielectric formulation mostly with the random-phase approximation (RPA) 
[see e.g., Fetter and Walecka, 1971], where the local-field correction (LFC) 
[Ichimaru, 1982] is set equal to zero. The properties of the free-electron 
polarizability at finite temperatures have been analyzed extensively [Khanna 
and Glyde, 1976; Gouedard and Deutsch, 1978; Arista and Brandt, 1984]. 

The strong exchange and Coulomb coupling effects beyond the RPA may be 
taken into account through the static LFC; the static correlations and the 
thermodynamic properties are thereby analyzed. On the basis of the Singwi­
Tosi-Land-Sjolander (STLS) [1968] approximation, Tanaka, Mitake and Ichimaru 
[1985; see also Tanaka and Ichimaru, 1986a] calculated the static correlation 
functions and the interaction energies of the finite-temperature electron 
liquids for 70 combinations of the density and temperature parameters in the 
range of rs ~ 73.66 and 8 = 0.1, 1 and 5. Tanaka and Ichimaru [1987a] then 
used the computed results to construct an analytic expression for the inter­
action energy in the form: 

Here 

a(8) + b(8)r1/ 2 + c(S)r 

1 + d(8)r 1/ 2 + e(S)r 
(8) 

a(8) __ (~)2/3 0.75 + 3.04363S2 - 0.092270S 3 + 1.7035084 1 
2 4 tanh(e) (9) 

2n 1 + 8.310518 + 5.11058 

represents the Hartree-Fock contribution derived originally by Perrot and 
Dharma-wardana [1984], 

b(8) 0.341308 + 12.07087382 + 1.14888984 81/2 1 

1 + 10.49534682 + 1.32662384 tanh(8 1/ 2 ) 
(10) 
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c(a) 

d( a) 

e( a) 

1 
[0.872496 + 0.025248 exp(- a)]e(a) 

0.614925 + 16. 996055a2 + 1. 489056a4 1/2 1 
1 + 10.109350a2 + 1.221840a4 a tanh(a1/2) 

0.539409 + 2.522206a 2 + 0.178484a4 

1 + 2.555501a 2 + 0.146319a 4 

( 11) 

(12) 

(13) 

In the classical limit (a » 1), the ratio c(a)/e(a) approaches 
0.897744, the coefficient a in the liquid internal energy formula of Slattery 
et al. [1982] derived from their Monte Carlo (MC) simulation data. The 
formulas (8) - (13) in fact reproduce the hypernetted chain (HNC) values for 
r < 1 with digressions of less than 1% and agree with the liquid internal­
energy formula within 0.5% for 1 < r < 200 in the classical limit. 

The functions b(a), c(a), d(a) and eta) vanish at a = 0 in such a way 
that Eq. (8) becomes a function of rs. The formulas (8) - (13) are therefore 
applicable to the electron liquids in the ground state as well, and the 
interaction energy (8) agrees with the results of Green's function Monte 
Carlo (GFMC) calculations [Ceperley and Alder, 1980] for rs ~ 100 within 
0.4%. 

It has been well known [e.g., Ichimaru, 1982] that the STLS values of 
the internal energy exhibit systematic departures from the exact MC or GFMC 
values as the Coulomb coupling constant r or rs increases in the classical 
(a» 1) or degenerate (a + 0) limit. In the derivation of Eqs. (8) - (13), 
this feature has been taken into consideration by anticipating similar devi­
ations in the 70 STLS values computed at a = 0.1, 1 and 5: Those formulas 
reproduce the 70 STLS values so corrected with digressions of less than 0.6%. 

The expressidn for the excess free energy Fex is then obtained by per­
forming the r integration [e.g., Ichimaru. 1982] of the interaction energy. 
Figure 1 compares the values of f ex = Fex/NkBT on the basis of Eq. (8) with 
those in other theoretical schemes at a = 1. As one would expect, the RPA 
values show a trend of systematic underestimation of f ex as compared with 
the present evaluation; the deviations between those two values become 
remarkable for r ~ 1 at a = 1. 

The formula proposed by Richert and Ebeling [1984] results from a Pade­
approximant fitting by the use of only the information obtained from the 
GFMC values at a = 0 and an expansion of Debye- Huckel type with quantum 
corrections. It fails to account for the exchange effects appropriately in 
the weak coupling regime, and thereby predicts the values of f ex even lower 
than the RPA values over a significant domain of r, as Fig. 1 illustrates. 
Since no reliable information was included at a ~ 1 or for r ~ 1 at a » 1, 
their formula appears applicable only in the domain a » 1 and r « 1. 

Pokrant [1977] evaluated f ex by a method in which the quantum pair 
potential was obtained with the aid of a finite-temperature variational 
principle and the correlation functions were calculated in the HNC appro­
ximation. His results appear to contain slight but systematic overestimation 
of fex as Fig. 1 illustrates. 

v. HYPERNETTED CHAIN ANALYSES OF DENSE PLASMAS 

It has been known empirically that the HNC approximation provides an 
accurate description of correlations in the classica~ plasmas [e.g., Ichimaru, 
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1982]. The HNC internal energy reproduces the exact MC data [Slattery, 
Doolen and DeWitt, 1980 , and 1982] within errors of 1% over the whole fluid 
region; the HNC scheme correctly accounts for the qualitative features of 
the correlation functions in the OCP. This situation presents a sharp cont­
rast to the cases of a short-ranged hard-core system, for example, where the 
Percus-Yevick equation is known to be superior to the HNC equation. A 
question then arises as to why the HNC equation works so well for the 
Coulombic system. 

HAATAEE-FOCK - 0.2 ------------------

- 0. 

--- .~. -_ ........ ',,)I. 
....... , \ JC: 

-PRESEN~"\, 

- 0 . 

- 0. 

- 0 . 
--_. RPA '", 
--- RE \' - 0 . 

- 0 . x POKRANT \. 

- 0 
_ 1 .()L-..L...W..L.WJI--L...u..LLWL-.......... .J..UUI 

0:01 0 .1 1 r 10 

Fig. 1. Excess free energy f ex divided by r calculated in various schemes 
at e = 1. "PRESENT" refers to the values based on Eq. (8); RPA, 
the RPA calculations; RE, the formula by Richert and Ebeling [1984]; 
"POKPANT", the calculation by Pokrant [1977]. Two horizontal dashed 
lines represent the evaluations based on the Hartree-Fock approxi­
mation (fex = - O.174r) and the ion-sphere model (fex = - O.9r). 

This question has been answered by Iyetomi [1984] through diagrammatic 
analyses of the bridge functions, which are the neglected terms in the HNC 
approximation. For the long-ranged Coulombic system, it has been recognized 
essential to maintain the sequential relations or the charge neutrality 
conditions at each stage of the higher-order correlation functions. The 

• charge neutrality conditions then guarantee the short-rangedness of the 
bridge functions to all orders, and may thereby be interpreted as conditions 
ensuring perfect screening in the Coulombic system. It is shown that the 
multiparticle correlation functions constructed in the convolution approxi­
mation exactly satisfy the sequential relations and lead to the HNC equation. 

Iyetomi and Ichimaru [1986a] have derived free energy formulas appli­
cable to the electron-screened ion plasmas in the HNC approximation. The 
formulas, expressed in terms of the correlation functions, enable one to 
avoid the more cumbersome and less accurate calculations involving the 
thermodynamic integrations. 

As an application of the generalized HNC free-energy formula, Iyetomi 
and Ichimaru [1986b] then revisited the miscibility problem of iron atoms 
in hydrogen plasmas under the solar interior conditions, with a hope of 
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shedding light on solution to the solar neutrino problem [Alder and Pollock, 
1978]. The temperature and the pressure of the solar plasma were assumed to 
be in the vicinity of 1.5 x 107 K and 105 Mbar. The relative concentration 
of the irons near the thermonuclear burn region was assumed to take on a 
value close to the cosmic abundance (2.5 x 10-5 ionic mole fraction). 

The calculation [Iyetomi and Ichimaru, 1986b] have been carried out 
with special emphasis on the role of the screening effect arising from 
semiclassical electrons in the solar interior; such a semiclassical electron 
gas acts to screen the ion-ion interaction quite efficiently, and hence 
modifies the thermodynamic properties of the plasma substantially. The 
calculations thus improve over those of Alder, Pollock and Hansen [1980] in 
two ways: (i) a proper account of the electronic polarization through the 
static screening function of the electrons, and (ii) a corresponding account 
of the exchange and correlation contributions to the thermodynamic functions 
for the electron system. Since the electrons are weakly coupled in the 
solar interior, the RPA is applicable for the description of the correla­
tional properties of the electrons. The strong coupling effects between 
ions are treated accurately in the HNC scheme, as Alder et at. [1980] have 
done. 

The Gibbs free energy of m~x~ng is expressed as the sum of the electro­
nic, ideal-gas, and excess contributions. Qualitatively, the electronic and 
ideal-gas terms favor phase mixing, whereas the excess term promotes phase 
demixing. Phase separation of the plasma mixtures takes place as a consequ­
ence of delicate balance between those physically distinct contributions. 

Figure 2 shows the phase diagram for the hydrogen-iron mixture calcu­
lated in the present scheme at P = 0.5 x 105 Mbar. The critical point for 
demixing takes place at Tc ~ 5.5 x 106 K and x : 2.4 x 10-2 . Comparing the 
present results with those of Alder et aI, we rind an increase of Tc by 15% 
arising from the electronic screening effect. The increase, however, is 
not sufficient so as to resolve the solar neutrino dilemma through the idea 
of a limited solubility of the iron atoms in the solar interior plasma. 
Figure 2 also exhibits the substantial influence of the adopted electronic 
equation of state exerted on the phase diagram calculations. 

The calculations presented in the preceding paragraphs have been success­
ful because the plasma density in the solar interior is not so high as to 
require an improvement over the HNC approximation. In many other examples 
of astrophysical dense plasmas, such as the interiors of Jovian planets and 
white dwarfs, the relevant density and temperature parameters are such that 
it becomes essential to develop a theoretical scheme which significantly 
improves over the HNC approximation. 

Numerous schemes have been proposed thus far, a~m~ng at such an improve­
ment over the HNC approximation. Particularly notable among them is the 
semi-empirical scheme developed by Rosenfeld and Ashcroft [1979] on the 
basis of the universality ansatz for the bridge function; they assumed the 
OCP bridge function B(r) as given in effect by that of an equivalent hard­
sphere reference system and modified the HNC scheme by adopting the effective 
HNC potential 

(14) 

Iyetomi and Ichimaru [1982 and 1983] proposed a scheme of improvement 
over the HNC approximation, on the basis of the density-functional analysis 
of the multiparticle correlations. It has been noted that the convolution 
approximation on which the HNC scheme is based takes accurate account of 
the long-range correlations and that the bridge functions, which are 
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neglected in the HNC approximation, represent basically a short-range effect. 
An approximate expression for B(r), to be substituted in Eq. (14), is thus 
obtained in accord with the ion-sphere model by paying a special attention 
to the correlations in the short-range domain. The J.mproved HNC scheme has 
reproduced almost exactly the existing MC data [Slattery, Doolen and DeWitt, 
1980 and 1982] of the radial distribution function for r < 160. 

Fig. 2. 
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Phase diagrams for the H+ - Fe 24+ mixture with the electronic 
screening at P = 0.5 x 105 Mbar. The temperature T in the ordinate 
is normalized with T@ = 1.5 x 107 K, the interior temperature of the 
sun. The solid and dashed curves are the coexistence and spinodal 
curves, interpolated by the spline method with the third order poly­
nomials; the closed circles and triangles represent the calculated 
points. The cross refers to the critical point obtained without 
the electronic screening by Alder, Pollock, and Hansen [1980]. 
The chain curve is the coexistence curve calculated by retaining 
only the ideal-gas term in the equation of state for tpe uniform 
electron gas. 

Solution to the improved HNC scheme has been extended to cover the 
supercooled fluid regime up to r = 1000 [Ichimaru and Tanaka, 1986; Tanaka 
and Ichimaru, 1987b]. Figure 3 exhibits the graphs of the radial distri­
bution function calculated in this scheme. We clearly observe splitting of 
the second peak and structural developments around the third peak in g(r) 
as r increases to and beyond r = 500. 

Noting that an exact summation of all the bridge diagrams can be carried 
out in the density-functional formalism [e.g., Evans, 1979], Iyetomi and 
Ichimaru [1987] have derived new formulas for the bridge function with the 
aid of a nonlocal density-functional approximation to the direct correlation 
function. Consequences of those new formulas in the improvement of the HNC 
scheme have thereby been numerically examined. 
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VI. DYNAMIC THEORY OF THE GLASS TRANSITION IN DENSE CLASSICAL PLASMAS 

A new theory of dynamic correlations in a strongly coupled, classical 
OCP is developed within the generalized viscoelastic formalism [Ichimaru 
and Tanaka, 1986; Tanaka and Ichimaru, 1987b]. Fully convergent kinetic 
equations for the strongly coupled OCP are thereby derived with the aid of 
a fluctuation-theoretic formulation of the collision integrals [e.g., 
Ichimaru, 1986]. 

g l r ) 
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[o j r· soo 
[ J r ' 200 

00 1 

Fig. 3. Radial distribution functions of the supercooled OCP computed in the 
improved HNC scheme at various values of r. 

The dynamic structure factor S(k,w) and the coefficient n of shear 
viscosity are calculated both in the ordinary fluid state and the metastable 
supercooled state through a self-consistent solution to the kinetic equation 
[Ichimaru and Tanaka, 1986; Tanaka and Ichimaru, 1987b]. The numerical 
results for S(k,w) in the ordinary fluid state are shown to agree well with 
other theoretical [e.g., Sjodin and Mitra, 1977; Bosse and Kubo, 1978; Cauble 
and Duderstadt, 1981] and molecular-dynamics (MD) simulation [Hansen, Pollock 
and McDonald, 1974; Hansen, McDonald and Pollock, 1975] results. The 
computed values of n in the fluid state also agree with other theoretical 
[Wallenborn and Baus, 1978] and MD simulation [Bernu, Vieillefosse and 
Hansen, 1977; Bernu and Vieillefosse, 1978] data, as Fig. 4 illustrates. 

A possibility of the dynamic glass transition is predicted in the 
supercooled OCP at r = 900 - 1000 through the analyses of the variation in 
n (see Fig. 4), the quasielastic peak in S(k,w) and the behavior of the self­
diffusion coefficient. Relevance to a laboratory experiment [Bollinger and 
Wineland, 1984] is examined in terms of the metastable-state lifetimes 
against homogeneous nucleation of the crystalline state. 
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VII. THERMODYNAMIC AND TRANSPORT PROPERTIES OF DENSE, HIGH-TEMPERATURE 
HYDROGENIC PLASMAS APPROPRIATE TO THE INERTIAL-CONFINEMENT-FUSION 
EXPERIMENTS AND INTERIORS OF THE MAIN-SEQUENCE STARS 

In a series of papers we have presented the results of a systematic 
study of multiparticle correlation effects in those dense (n ~ 10 28 cm- 3), 
high-temperature (T = 106 - 109 K) hydrogenic plasmas appropriate to the 
ICF experiments and the interior of the main-sequence stars. The Coulomb 
coupling constant takes on a value r ~ 3, while the degree of Fermi degene­
racy 9 varies widely. 

• 
0.1 

0.1 

• PRESENT 
• WB 
o MD 

'.'r • 

• .. . . . .. 

10 100 r 1000 

Fig. 4. The reduced shear viscosity n* = n/Mnw a2 calculated in the generali­
zed viscoelastic theory [Ichimaru and ~anaka, 1986] (solid circles). 
The crosses refer to the calculation by Wallenborn and Baus [1978] 
the open circles, the MD simulation result [Bernu, Vieillefosse and 
Hansen, 1977]. 

A general density-response formalism has been developed with inclusion 
of the varied degrees of the electron degeneracy and the LFC's describing 
the strong Coulomb-coupling effects [Ichimaru, Mitake, Tanaka and Yan, 1985]. 
An explicit theoretical scheme of calculating the static LFC's has been 
advanced on the basis of the HNC approximation. 

Interparticle correlations in dense plasmas have been investigated 
quantitatively and the physical implications are clarified [Tanaka and 
IChimaru, 1984; Mitake, Tanaka, Yan and Ichimaru, 1985J. 

On the basis of the general formalism and the calculations of the 
correlation functions mentioned above, various thermodynamic quantities have 
been evaluated explicitly for the dense, high-temperature plasmas [Tanaka, 
Mitake, Yan and Ichimaru, 1985]. The numerical data for the interaction and 
excess free energies have been parametrized accurately, so that the resulting 
analytic formulas exactly satisfy the known boundary conditions at complete 
degeneracy as well as in the weak- and strong-coupling regimes [Tanaka and 
Ichimaru, 1985J. 
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The stopping power of a dense TCP has been calculated in the dielectric 
formulation, where the static and dynamic LFC's are explicitly taken into 
account [Yan, Tanaka, Mitake and Ichimaru, 1985]. The extent to which the 
LFC's and the presence of ions act to modify the rate of inelastic scattering 
has been clarified. 

Ichima:y and Tanaka [1985] calculated the electric and thermal conduc­
tivities, p and K, of the dense, high-temperature hydrogen plasmas over 
the domain r < 2 and 0.1 < 9 < 10 on the basiS of the aforementioned corre­
lation analyses. They used the correlation functions obtained by Mitake, 
Tanaka, Yan and Ichimaru [1985] and parametrized the numerical results for 
the generalized Coulomb logarithms LE and LT, introduced via 

p 

1 
K 

3/2 
4(~)1/2 _r_ L 

3 w E pe 

52(61T)1/2 2 r3/2 
(_e_) __ L 

75 k 2T W T 
B pe 

where wpe = (41Tne2/m) 1/2. Their results are expressed as 

LE(r,9) 
a(9)R.nr + b(9) + c(9)r 

1 + d(9)r 3 

LT(r,9) 
p(9)R.nr + g(9) + r(9)r 

1 + s(9)r 3 

where 

a(9) 
_9 3/ 2 

29 3/ 2 - 0.579239 + 0.232729 1/ 2 + 1. 4853 

93(iR.n9 - 0.18603) + 1.27049 3/ 2 

b(9 ) 
93 + 1.899392 + 4.32439 + 1 

c(9) 
93/2 0.6246091/2 + 0.24228 

92 + 1. 7768 

d(9) 93/2 0.135509 1/ 2 + 0.083521 

92 + 0.36797 

p(9) 
_9 3/ 2 

29 3/ 2 + 0.0292209 - 1.466191/ 2 + 2.6858 

93(iR.n9 - 0.18603) - 0.98787ff + 0.874229 3/ 2 
q(9) '" 63 2 

+ 4.93129 + 9 + 1 
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(15) 

(16) 

(17) 

(18) 

(19) 

(20) 



r(6) 

s(6) 

63/2 0.636076 1/ 2 + 0.033439 

62 - 0.361866 + 1 

63/ 2 0.0318566 1/ 2 + 0.42460 

62 - 0.299336 + 0.5 

The analytic forms of those formulas retain the following features: 
(i) In the classical (6 » 1) and weak-coupling (r « 1) limit, both LE 
and LT approach the same value, 

(21) 

where ~ = fi2ko2/4mkBT, kO = (4nne2/kBT)1/2 and y = 0.57721 is Euler's 
constant. 
(ii) In the limit of complete Fermi degeneracy (6 + 0), LE and LT behave 
proportionally to 63/ 2• 
(iii) In the strong-coupling regime (r » 1~, both Eqs. (17) and (18) behave 
proportionally to r-2, This is a consequence of the ion-sphere scaling in 
the interparticle correlations for a strongly coupled plasma. 

In a remarkable e~periment, Ivanov, Mintsev, Fortov and Oremin [1976] 
measured the Coulomb conductivity of non-ideal plasmas which were produced 
by ~ dynamic method based on compression and irreversible heating of gases 
in the front of high-power ionizing shock waves. Gases used were argon, 
xenon, neon and air; those were rega~ded as forming singly ionized (Z = 1) 
plasmas. Each of the experimental values aexp for the Coulomb conductivity 
derives from an average of five to ten independent measurements and is 
attached to a 10-50% error bar. 

We compare those experimental values with the present th~oretical 
predictions. Since the classical statistics applies to the electrons for 
all the cases of the experiment, we take account of the electron-scattering 
factor 1.97 and write the electric conductivity as 

o (22) 

When LE given by Eq. (17) is substituted in place of L, we denote the result­
ing value of Eq. (22) as 0th' Wheq the first two terms on the right-hand 
side of Eq. (21) is used for L in Eq. (22), the resulting value ofOis called 
00' 

In the weak-coupling domain r < 1, we find that 0 p is fairly well 
represented by 00' In the four strong-coupling cases rf > 1) of Xe, however, 
00 shows a large departure from 0exp, which increases systematically with 
r. 

In the comparison between 0ex~ and 0th' such a systematic discrepancy 
is completely erased, and we now f1nd that the values of 

(23) 

are confined within 0.31 for all the 15 cases of the experiment. In view 
of the large error bars associated with the experimental data, we find such 
an overall agreement to be rather remarkable. We emphasize in this connec­
tion that the generalized Coulomb logarithms are functions of two parameters 
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rand e, rather than of a single parameter r, even for those plasmas where 
the electrons may obey the classical statistics. 

The coefficient of the ionic shear viscosity has been calculated through 
a solution to the kinetic equation for dense hydrogenic TCP with a fully 
convergent collision integral [Tanaka and Ichimaru, 1986b]. An analytic 
expression for the generalized Coulomb logarithm of the shear viscosity has 
been obtained through parametrization of those numerical results, in a way 
analogous to the derivation of Eq. (17) or (18). 

VIII. ELECTRICAL AND THERMAL CONDUCTIVITIES OF DENSE MATTER 
IN THE LIQUID METAL PHASE, APPROPRIATE TO THE INTERIORS 
OF WHITE DWARFS AND THE CRUST OF NEUTRON STARS 

Electrical and thermal conductivities have been calculated for the dense 
matter (r » 1 and e « 1) in the liquid metal phase for various elemental 
compositions of astrophysical importance [Itoh, Mitake, Iyetomi and Ichimaru, 
1983]. The calculation based on the Ziman formula takes into account the 
dielectric screening due to the relativistic degenerate electrons [Jancovici, 
1962] and uses the ionic structure factors obtained in the improved HNC 
scheme. The low-temperature quantum corrections to the transport coeffici­
ents arising from the quantum nature of the semiclassical ions have been 
evaluated by using the frequency-moment sum rules and the Wigner expansion 
in powers of fi for the ionic correlation [Mitake, Ichimaru and Itoh, 1984]. 

IX. SUMMARY 

In the main text we have reviewed the present status of the theoretical 
understanding, concerning the static and dynamic properties as well as the 
transport and elementary processes in dense plasmas and plasmal ike materials. 
It may fairly be said that we now have reliable theoretical devices, suppor­
ted by the computer-simulation results, by which to analyse the strong 
Coulomb-coupling effects in classical and quantum, OCP systems; their static 
and dynamic properties have been elucidated. 

Good progress has been achieved also in the understanding of the ion­
electron TCP systems, where one takes account of the strong Coulomb-coupling 
effects between ions and the varied degrees of Fermi degeneracy in the 
electrons. Strong Coulomb-coupling effects between the ions and the elect­
rons, including the possibility of formation of the bound states, have been 
investigated to an extent [see e.g., Van and Ichimaru, 1986a, b], but it 
still appears that much more work remains to be done in this area. 

In this connection we remark that the atomic and molecular processes 
in dense plasmalike materials, involving electrons in bound or localized 
states, offer varieties of outstanding, unsolved problems that deserve 
further study in the future. Here it is necessary to solve a self-consistent 
problem in which the states of atoms and localized electrons are influenced 
in an essential way by the correlations between the atoms and the charged 
particles in free states, while the correlated states of the plasma parti­
cles depend strongly on the states that the atoms and the localized electrons 
assume. 

We have seen some significant progress in the study of the properties 
of mUlti-ionic plasmas including the effects of electronic polarization. 
Construction of phase diagrams for realistic plasmas, describing the possi­
bilities of demixing and solidification, requires an extremely accurate 
assessment of the relevant thermodynamic functions. We will see further 
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progress in these directions in the coming years. 
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STATIC AND DYNAMIC PROPERTIES OF STRONGLY-COUPLED 

CLASSICAL ONE-COMPONENT PLASMAS: NUMERICAL EXPERIMENTS ON 

SUPERCOOLED LIQUID STATE AND SIMULATION OF ION PLASMA IN THE PENNING TRAP 

Hiroo Totsuji 
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Tsushimanaka, Okayama 700, Japan 

I. INTRODUCTION 

Among various strongly cOijpled Coulombic systems, the classical one­
component plasma (OCP), the classical system of charged particles of one 
species in the uniform background of opposite charges, is the simplest one 
which nevertheless manifests fundamental characteristics of Coulomb system. 
The OCP may also be one of most-thoroughly-investigated classical systems 
from statistical mechanical point of view. Since most of its static and 
dynamic properties in thermal equilibrium are known accurately (e.g., Baus 
and Hansen, 1980; Ichimaru, 1982), it works as a useful reference system for 
other more complicated Coulombic systems. 

Since OCP is a classical system with unique dimensionless coupling 
parameter, its state in thermodynamical equilibrium is either liquid (or 
fluid, including gaseous state) or solid. Static and dynamic properties of 
OCP in the domain of liquid has been clarified through various theoretical 
approaches and extensive numerical experiments and recent investigation is 
focused on the domain of liquid with extremely strong coupling near or 
beyond the liquid-solid phase transition. Here OCP may possibly become the 
metastable supercooled liquid associated with this first order phase transi­
tion or even the amorphous glass as in the case of rapidly quenched metals 
or simple liquids. The interparticle potential in OCP, however, is very 
soft and has different nature from the short-ranged ones such as the 
Lennard-Jones potential. It is therefore of interest to follow the behavior 
of rapidly quenched OCP and observe the properties of these states, if they 
exist. 

The first part of this paper is concerned with the static and dynamic 
properties of these strongly coupled OCP liquids. We analyze the results of 
molecular dynamics numerical experiments in comparison with those obtained 
earlier for liquids with smaller coupling parameters. 

In investigating the properties of OCP, results of numerical experi­
ments of both Monte Carlo and molecular dynamics have been quite useful as a 
guide for theoretical approaches giving various thermodynamic quantities and 
transport eoefficients: Real experiments on OCP in laboratories have been 
possible only for the two-dimensional electron system on the surface of 
liquid He and other material. 

19 



In these circumstances, recent experiments indicating the possibility 
of realizing the strongly coupled OCP of ions in the Penning trap (Bollinger 
and Wineland, 1984) are of interest and simulation of this plasma may be 
useful for observation of strong coupling effect by laboratory experiments. 
In the second part of this paper, we present the results of numerical 
simulations of ion plasmas in the Penning trap and show some examples of 
strong coupling effects appearing in these experiments. 

II. OCP IN SUPERCOOLED LIQUID STATE 

A. Method 

Our system is composed of charged particles of one species in a uniform 
background interacting through the Coulomb interaction. The nondimensional 
coupling constant r characterizing our system is defined by 

(1) 

where e is the char~3 of a particle, a the mean distance between charges 
given by a=(3/4TIn) , n the density, T the temperature, and kB the 
Boltzmann constant. 

In order to analyze both static and dynamic properties, we apply the 
method of microcanonical molecular dynamics to our system (Hansen et al., 
1975; Totsuji et al., 1980). We put N particles in the cubic cell and 
impose periodic boundary conditions. We use N=432=2.63 or 1024=2.83 
independent particles and main results presented here are based on experi­
ments with 432 particles. The force acting on each particle is computed by 
the Ewald method and the equations of motion are integrated by the fourth 
order Runge-Kutta method. The time step is taken to be as large as possible 
to minimize the computational time satisfying the condition that the total 
energy and total momentum are conserved with sufficient accuracy during the 
whole experiment. 

The supercooled liquid state is obtained by quenching liquid OCP in 
thermodynamic equilibrium into the domain where the coupling parameter is 
larger than the critical value of solidification rm=178 (Slattery et al., 
1982). To realize the rapid cooling of the system, we simultaneously scale 
the velocity of all particles by a factor between 0.7 and 0.8. By this 
scaling, the total kinetic energy is instantaneously reduced in proportion 
to the square of the scaling factor. In the course of subsequent micro­
canonical evolution, the kinetic energy partly recovers from this re1uction. 
This recovery takes place in a relatively short time less than lOw -. The 
pair correlation function relaxes to a new stationary value much mgre slowly 
than energy. The relaxation1time for the pair correlation function, 
however, is less than 500wp-' We monitor the behaviors of kinetic and 
potential energies and the pair distribution function, and regard the system 
to be in a new stationary state when the pair distribution function becomes 
stationary. Our rnalyses of new stationary states are made for durations of 
more than 3000wp- with N=432 and 1500wp- with N=1024. 

In contrast to the Monte Carlo (MC) numerical experiments, the value of 
the coupling parameter r cannot be specified in advance but have to be 
determined by the average value of the kinetic energy per particle K=<mv2/2> 
as 

r = e2/[a(2/3)K]. (2) 

Her~-we assume that velocities are distributed by the Maxwellian. The 
parameters of our liquid states and supercooled liquid states are summarized 
in Table 1. 
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Table 1. Value of f Estimated by Kinetic Energy and 
Thermal Part of Correlation Energy. 

f 100.2+0.2 
(ec)th/kBT 2.07±:007 

N=432 
175.0+0.6 229.2+1.7 
2.39±:014 2.56±:02 

N=1024 

294.6+1.5 
2.67±:02 

f 202.5+0.7 313.6+2.1 394.4+2.1 
2.74±:02 (ec)th/kBT 2.43~01 2. 61±:02 

B. Correlation Energy 

The correlation energy ec (per particle) of OCP in thermal equilibrium 
has been known very accurately from the Monte Carlo numerical experiments 
and fitting formulae have been given for both the liquid and solid states 
(e.g. Slattery et al., 1980 and 1982). When the coupling parameter is 
sufficiently large, the correlation energy is dominated by the contribution 
of the Madelung-energy-like term proportional to f. To observe the behavior 
of the correlation energy more closely, we define the thermal part of the 
correlation energy (ec)th subtracting the Madelung energy of the bcc lattice 
(ec)bcc/kBT=0.895929f as 

(3) 

The bcc lattice has the lowest energy among simple lattices of OCP. 

In Fig.1 we show the values of the thermal part of the correlation 
energy obtained by our numerical experiments in comparison with those for 
liquid and solid in thermal equilibrium (Slattery et al., 1982). We see 
that the thermal part of the correlation energy of the supercooled meta­
stable state is clearly larger than that of solid state with the same value 
of f, 

In the domain of supercooled liquid, there has previously been reported 
one result for f=200 obtained by Monte Carlo method by Slattery et ale 
(1982). As is shown in Fig.1. this results is consistent with our results. 
We also plot the values given by extrapolating the interpolation formula for 
liquid (Slattery et al., 1982) into the supercooled domain and see that our 
experimental results are close to those extrapolation. It should be kept in 
mind that this domain is beyond the original applicability of the formula. 

C. Pair Distribution Function 

The values of the pair distribution function (PDF) for f=175, 229. and 
295 pbtained by experiments with 432 particles and those for f=203 and 314 
obtained with 1024 particles are shown in Fig.2. We also plot the pair 
distribution function obtained by the Monte Carlo numerical experiments by 
Slattery et ale for f=180 (1980) and 200 (DeWitt, 1982) to show that our 
results are consistent with MC experiments. 

With the increase of f, the height of the first peak increases. We 
note, however, that, in the domain of f of our experiments, there seems to 
be no remarkable change in the structure at the second peak of the pair 
distribution function such as the splitting which characterizes the so-
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Fig.2. Pair distribution function. 
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(a) Solid liije: r=17S(N=432). Dot: MC r=180. 
(b) Solid line: r=229(N=432). Dot: r=203(N=1024). Cross: Me r=200. 
(c) Solid line: f=295(N=432). Dot: r=314(N=1024). 



called amorphous state (e.g., Kimura and Yonezawa, 1983; Ichimaru and 
Tanaka, 1986). 

D. Velocity Autocorrelation Function and its Spectrum 

The velocity autocorrelation function (VAF) Z(t) is defined by 

(4) 

where ~i(t) is the velocity of i-th particle and < > denotes the average 
with respect to t' and particles. 

The behavior of VAF in the domain of liquid (Hansen et al., 1975) may 
be summarized as follows. For sufficiently small values of r, the VAF 
decays monotonically as a function of time. When r~10 the tail begins to 
have the component which oscillates with the plasma frequency and the tail 
can be regarded as the damped oscillation with the plasma frequency for 100< 
~~. -

The values obtained by our experiments are shown in Fig.3. We see that 
the values of the first and second peaks and the second dip decrease with 
further increase of r and the first peak becomes negative for 300~r. At the 
same time the oscillation with the plasma frequency becomes less signifi­
cant. The velocity autocorrelation function may thus be considered as a 
superposition of damped oscillation with the plasma frequency wand the 
overdamped oscillation which is observed in simple liquids, forPexample, of 
inert atoms (e.g., Hansen and McDonald, 1976). With the increase of r, the 
relative importance of the wp-component first increases for 100~r~180 and 
then decreases for 200~r. 

In Fig.4 we show the spectrum of the velocity autocorrelation function 
Z(w) defined by 

Z(w) = (1/2rr)Jdt exp(iWt)Z(t). (5) 

In Z(w) we observe the above mentioned change of the relative importarice of 
two components. For r=175, the spectrum is not so different from the one 
obtained previously for liquid with f=152 (Hansen et al., 1975). For r=229 
and 295, the relative importance of the peak corresponding to the plasma 
oscillation is decreased. This change is consistent with the behavior of 
VAF in time space. 

E. Diffusion Constant 

The self-diffusion constant D is defined by 

D = lim <[6;i(t)]2>/6t, 
t~ 

where 

At.(t) = i.(t + t') - i.(t'). 111 

(6) 

(7) 

We plot the numerator of (6), the mean square displacement (MSD), in Fig.5 
as a function of t. For r=175 and 229, the MSD increases almost linearly 
with time. For r=295, however, it first seems to increase rapidly and then 
the phase of slow increase appears. The latter behavior of the mean square 
displacement has beeh observed in various rapidly quenched systems (e.g., 
Kimura and Yonezawa, 1983). 

The diffusion constant is evaluated by the slope of MSD plotted as a 
function of time. The results are shown in Fig.6 where the diffusion 
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constant obtained by experiments with 1024 particles are also shown. We 
note that the self diffusion constant D is related to Z(~O) as 

D = nZ(w = 0). (8) 

Values of the diffusion constant given by (8) are not exactly the same as 
those obtained from MSD but agreement is satisfactory. In Fig.6 we also 
show the values for liquid state obtained by Hansen et a1. (1975). Tkey 
have interpolated their results by the fitting formula 

(9) 

We see that the diffusion constant decreases rapidly and becomes much 
smaller than the values extrapolated from the values for liquid state (9). 
It is, however, difficult to discuss whether the diffusion constant shows 
some qualitative change or not in the domain of supercooled liquid. 

F. Shear Viscosity 

The shear viscosity coefficient n is evaluated from the long-wavelength 
limit of the autocorrelation funct~on of the transverse part of the stress 
tensor a as 

k,~S 

n = fOOdt n(t), o 
(10) 

where 

(11) 

The values of the transverse stress autocorrelation function are shown in 
Fig.7 and resultant values of shear viscosity are plotted in Fig.8. The 
correlation function is obtained by dividing the whole stationary state into 
several shorter parts and taking the average of the correlation functions 
obtained in each division. 

The most remarkable change of the stress correlation function is the 
increase of the relaxation time with the incriase of r. The estimated . 
values of relaxation time (in the unit of w - ) for r=175, 229, and 295 are 
6, 9, and II, respectively, when simple expgnentia1 decay is assumed for the 
first part of the autocorrelation function. For r=229 and 295, however, 
there appears the tail which decays much more slowly: The relaxation time 
of the tail for r=295 is about 40. These values are much larger than that 
in the domain of liquid obtained by Bernu, Viei11efosse, and Hansen for 
r=100 (1977, 1978). 

The increase of relaxation time naturally leads to the increase of the 
shear viscosity as is shown in Fig.8. Combined with earlier results, we see 
that the viscosity increases with the increase of r after attaining its 
minimum around r=10. It seems, however, to be impossible to draw definite 
conclusion about the existence of drastic change related to transition to 
amorphous state. 

G. Spectrum of Density Fluctuation 

The density fluctuation spectrum is expressed by the dynamic form 
factor defined by 

S(k,w) = (1/2n)jdt exp(iwt)<Pk(t)P_k(O», (12) 

where 
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Pk(t) = ~ exp[-iR.ti(t»). 
~ 

(13) 

The results for S(k,w) are shown in Fig.9. 

Compared with the values in the domain of liquids (Hansen et al., 
1975), we observe that the peak structure representing the well-defined 
plasma oscillation extends to larger values of the wave number. At the same 
time, we observe the concentration of the spectrum at zero frequency with 
the increase of r. 
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The behavior of the plasmon peak is summarized in Fig.l0 where the 
central frequency and the width at the half maximum are shown. The central 
frequencies for r=229 and 295 are fitted by the dispersion relation as 

(14) 

H. Transverse Current Fluctuation Spectrum 

The spectrum of current fluctuation is defined by 

(15) 

where 

.... .... ........ 
gk(t) L vi(t)exp[-ik.ri(t)]. (16) 

i 
The spectrum is divided into the longitudinal and the transverse parts as 

.... ++2 ++2 
C(k,w) = (kk/k )C~(k,w) + (I - kk/k )Ct(k,w), (17) 

and the former is related to the dynamic form factor by the equation of 
continuity. We have confirmed that this relation is satisfied by our 
results. 

The results for the transverse part are shown in Fig.ll. We observe 
that the shear mode extends to smaller wave numbers with the increase of 
r. We also observe the small shoulder which has been observed earlier by 
Hansen et al. (1975). Compared with the longitudinal or density fluctuation 
spectrum, the increase of r does not cause significant change in the trans­
verse current fluctuations. 
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I. Example of Solidification 

In order to show the difference in the pair distribution functions in 
supercooled liquid and solid states, we present an example which undergoes 
the solidification. We have prepared this system by quenching tye system at 
r=295 which, after microcanonical evolution of more than 300Owp- , can be 
regarded as in stationary state from the behaviors of the pair distribution 
function and thermodynamic quantities. 

After quenched into the supercooled liquid state with r~380, the system 
makes the transition to the solid with dislocations. The orbit of particles 
projected onto planes and the change in the pair distribution function in 
the course of solidification are shown in Fig.12. We see that the PDF 
changes into that of bcc solid. (The analysis of the distribution of 
Voronoi polyhedra also confirms that the lattice is bcc.) 

Since the latent heat of liquid-solid transition is released, the value 
of r estimated by (2) decreases when the system solidifies. The behavior of 
estimated value of r is shown ~n Fig.1. The mean square displacement needed 
for solidification is about 3a • 

III. STRONGLY-COUPLED ION PLASMA IN THE PENNING TRAP 

A. Method 

The Penning trap is composed of the uniform magnetic field (in the z­
direction) which prevents ions from escaping in the x- or y-direction and 
the electric field due to electrode which suppresses the motion of ions 
along the z-axis (e.g., Brown et al., 1986). 

In these magnetic and electric fields, charged particles rotate as a 
whole and, in the rotating coordinate system, ions behave as if they are in 
the neutralizing background or OCP (Malmberg and O'Neil, 1977). In the 
experiment by Bollinger et al. (1984) the narrow laser beam is used to cool 
the ion plasma. In the process of fluorescence scattering, ions lose their 
kinetic energy and the total angular momentum. 

In order to observe the behavior of strongly coupled ion plasma realized 
in these experiments and examine the possibility to observe strong coupling 
effects by these experiments, we perform numerical simulation. 

We numerically integrate the equations of motion for N ions 

(18) 

-+ A 

B = Bz. 
-+ 

Here E is the electric field due to electrode and the magnetic field is 
uniform and in z-direction. 

We take the origin of the coordinates at the center of the plasma and 
assume that the laser beam in the positive x-direction is irradiating the 
plasma in the domain with y>O. In order to simulate the cooling by laser 
beam, we scale the velocity by a ratio a as 

(19) 
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Fig.12. Solidification of supercooled liquid OCP into bcc lattice. Pair 
distribution function and orbits of particles projected onto x-y 
and y-z planes. Orbits are followed for_r50 p- after (from top to 
bottom) 130, 640, 1140, 1650, and 2160 p from quenching. 
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after each step of integration by the Runge-Kutta method of fourth order. 
The scaling ratio a is chosen between 0.995 and 0.9: This cooling is about 
7 to 25 times fasteb than the value calculated from the rate of scattering 
phenomena (e.g., 10 per second per ion, as in Bollinger et al., 19S4). 

B. Result 

Starting from the random configuration in a sphere of radius RO=10-2cm. 
we integrate equations (IS). The average angular frequency of rotation is 
computed and the temperature is evaluated as the kinetic energy in the frame 
of coordinate rotating with average angular frequency. The total energy and 
the total angular momentum are monitored to check the accuracy of numerical 
integration. Parameters of ion plasma obtained by our simulations are shown 
in Table 2. The coupling parameter is estimated by the central density and 
the temperature parallel to the magnetic field. We have used larger cooling 
rate than experiment in order to save the computational time. Resultant 
plasmas, however, seem to be similar to those obtained by real experiments: 
For example, ratios of the parallel and perpendicular temperatures are 
consistent with extrapolated value from experiments. 

o. 

Table 2. Parameters of Plasma Composed of 150 9Be Ions in 
the Penning Trap with B=0.SI9T and wz/2rr=200kHz. 

n(center) 

-2 
(XIO em) 

a 

2.0.1O-~cm 
1.9·10- cm 

1.0 

Fig.13. Distribution of ions 
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The distribution of ions computed assuming the spherical symmetry is 
shown in Fig.13. We clearly see that the oscillation of density occurs for 
these intermediate values of the coupling parameter. 

The oscillation of the density profile has been observed in numerical 
experiments where the background charge density is distributed uniformly in 
a sphere (Badiali et al., 1983; Levesque and Weis, 1983) or in a slab 
(Totsuji, 1986). Fig.13 shows that this oscillation can be observed by real 
experiments in the Penning trap. 

The pair distribution function is computed for ions in the central 
domain where the density is approximately uniform. An example is plotted in 
Fig.14. Our results are similar to the pair distribution function of OCP 
with the same value of the coupling parameter. 

These results of numerical simulations indicate that ion plasmas in the 
Penning trap may be quite useful to observe various strong-coupling effects 
in OCP by real experiments in laboratories. 
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EXTRACTION OF THE ONE-COMPONENT PLASMA BRIDGE FUNCTION FROM 

COMPUTER SIMULATION DATA 

INTRODUCTION 

P. D. Poll and N. W. Ashcroft 

Laboratory of Atomic and Solid State Physics 
Cornell University 
Ithaca, New York 14853-2501 

What follows is motivated by the classical inverse problem for 
homogeneous highly correlated systems: Given complete structural 
information [at the pair level this will be the static structure factor 
S(k) for all k], find the effective pair-potential ¢(r) that will 
generate that structure. There is a unique functional relationship 
p¢(r) = F[S(k)] [with P the inverse temperature l/(kT)], between 
the pair-potential and the static structure factor. However, in practice 
this is a very difficult problem to solve, in part, because of the extreme 
sensitivity of the resultant p¢(r) to the input functions S(k). 

Consider the diagrammatic resummation result for homogeneous classical 
fluids within the pair-potential approximation 

p¢(r) = -In[g(r)] + g(r) - 1 - c(r) + E(r), (1) 

where g(r) is the radial distribution function and c(r) is the Ornstein­
Zernike direct correlation function defined, again for homogeneous 
classical fluids by 

(2) 

Here h(r) = g(r) -1, p is the average one-particle number density, and 
E(r) is the bridge function. Now in general, E(r) is also a unique 
functional of the total correlation function h(r), as is known from its 
expansion in highly connected h-bond diagrams. Thus the classical inverse 
problem is solved in principle through complete knowledge of h(r), or of 
S(k) [= 1 + ph(k)]. The diagrammatic expansion, however, is slowly 
convergent and is not suitable for practical calculations. To perform a 
practical inversion of structural data, theories for the bridge function 
E(r) are needed. The simplest such theory sets the bridge function to 
zero: this is the hypernetted-chain (HNC) approximation. The results of 
this approximation in the context of the inverse problem are generally 
very poor for highly correlated systems. The appropriate energy scale is 
incorrectly determined and spurious structure appears in the resultant 
pair-potential. A more refined theory, the modified hypernetted-chain 
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approximation,l replaces the bridge function by its value for some 
hard-sphere reference system. Even though this equation yields fluid 
structure to within 1% of the best computer simulation results in the 
forward direction, where t~e pair-potential is known, the work of 
Levesque, Weis, and Reatto ,3 has shown that the theory is actually 
inadequate for a detailed direct inversion of known structural data. 

There has been progress in determining even more accurate representa­
tions of the bridge function for an eventual application to the classical 
inverse problem. However, it is already clear from (1) that we need a 
complete set of functions (p~(r), g(r), c(r), E(r)} for various reference 
systems in order to test any proposed inversion scheme. The purpose of 
this article is to provide this reference data. Two sets, one for the 
classical Lennard-Jones (LJ) system and one for the classical one­
component plasma (OCP) , will be presented. The latter involves a new 
extension of finite range computer simulation data. 

EXTENSION OF COMPUTER SIMULATION RESULTS 

General Remarks 

Computer simulation methods, either Monte Carlo or Molecular Dynamics, 
normally start with an assumed pair-potential (one body, or three and 
higher body, potentials may also, in principle, be considered). The 
simulati~n, for three dimensional systems, is performed in a box with 
volume L and with periodic boundary conditions imposed. The result is 
generally a radial distribution function for radii up to a certain cutoff 
r c ' with rc typically less than L/2. Now, to obtain the radial 
distribution function for all r we need a procedure for dealing with the 
region r>rc. The subsequent evaluation of the radial distribution 
function for all r, along with all the other correlation functions, for a 
given procedure, is then referred to as an "extension" of computer 
simulation data. The key to meaningful extensions is a corresponding 
physically meaningful and accurate procedure for the behavior of the 
system under consideration in this unsimulated region. 

In early work, Ceperley and Chester4 assumed that the radial distribu­
tion function takes the form 

n 
g(r) - 1 + Re[ L Aj 

j-l 

exp(-z.r) 
J 

r 
] , r>r . 

c 
(3a) 

The parameters Aj and Zj are complex numbers, and are simply chosen to 
fit the simulation results for r<rc; usually 3 or 4 terms are sufficient 
for a reasonable extension. In an alternative approach, VerletS has 
worked in~tead with the direct correlation function, and has invoked the 
Percus-Yevick approximation for the unsimulated region, i.e., 

c(r) = cpy(r) = g(r){l - exp[p~(r)]}, (3b) 

By using the simulation results for g(r) for r less than r c ' both g(r) 
and c(r) are then obtained via a standard iterative solution. In a 
variation of this method, Galam and Hansen6 have proposed the mean­
spherical approximation, i.e., 

c(r) - cMSA(r) = -p~(r), (3c) 

This form for c(r) might be expected to yield a more meaningful extension 
of the computer simulation data for the OCP, a system that is very poorly 
described by the Percus-Yevick approximation. 
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The methods just described are not exhaustive, they merely demonstrate 
that different approaches exist and a good choice for the extension 
procedure is by no means unique. As noted, to test an inversion scheme we 
need very accurate determinations of the various correlation functions, 
typically better than 0.5%. To this end accurate simulation data as well 
as accurate extensions of the simulation data are both essential. 

The Lennard-Jones Potential 

The (6-12) pair-potential for the classical Lennard-Jones system is 
given by 

12 
t/>(r) = 4E[ ( Q. ) 

r 

where € is the well depth and a is the diameter. For this system 

(4) 

Molecular Dynamics results have been obtained by Lev~sque, Weis, and 
Reatto. 2 ,3 These correspond to a reduced density pa = 0.84 and a 
reduced temperature kT/€ = 0.747. Some 6800 steps were used with 864 
particles, and a cutoff in the pair-potential (4) of 4a was introduced. 
Typical fluctuations in the resultant g(r) were at most 0.3% in the region 
r-a. This is considered to be a very accurate simulation, and it has, in 
fact, been used by the original authors as a test of their own predictor­
corrector approach to the classical inverse problem. We now report our own 
extension of this data using the MSA extension method (3c). Since g(r) from 
the simulation is given to the limit of the pair-potential cutoff of 4a, we 
have chosen a cutoff rc in the data at the last node prior to the pair­
potential cutoff. The extended g(r) shown in Figure la is in units of ria 
(the arrow indicates the position of rcla ) , and the corresponding bridge 
function E(r), determined by use of the diagrammatic resummation result 
together with knowledge of the initial pair-potential, is presented in 
Figure Ib, again in units of ria. 

A test of the accuracy of any extension procedure, including those to 
be described below, can be obtained by investigating the change in the 
extracted pair-potential as rc is increased towards the actual value 
used. This can be done by using any of the theories mentioned in the 
introduction; most simply the HNC approximation. An accurate extension 
requires that the effective pair-potential should stabilize before the 
actual data cutoff used is reached. The Molecular Dynamics simulation 
data used here passes this test; this success is due to the fact that 
simulation data is supplied right up to the pair-potential cutoff of 
4a (most earlier work using just 2.Sa). 
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The Classical One-Component Plasma 

The classical one-component plasma consists of N particles of charge 
Q, interacting through a Coulomb pair-potential 

g: 
tP(r) = r (5) 

and immersed in a uniform, rigid, compensating background. We now report 
our analysis of the Mont~ Carlo results of Slattery, Doolen, and DeWitt7 ,8 
at r = 100, whrr~ r - PQ rWS is the Coulomb coupling parameter and 
rWS - (4~p/3)- / is the Wigner-Seitz or ion-sphere radius. This 
particular simulation was carried out for 1024 particles, and involved 
21.3 million configurations. 

The long-range nature of the Coulomb interaction complicates the issue 
of the choice of an appropriate extension procedure for the one-component 
plasma correlation functions beyond rc' As a first attempt, we may 
extend the r = 109 Monte Carlo data with the MSA extension method of 
Ga1am and Hansen, again with rc taken at the last node in the supplied 
g(r). This procedure leads to a failure of the accuracy criterion discussed 
above and to a discontinuity in all of the real space corre1ati~n functions, 
the reason for this being well understood. From the work of Ng we know 
that when seeking numerical iterative solutions with Coulomb like pair­
potentials, the pair-potential must usually be formally rewritten as a 
long-range piece tP1r(r), and a short-range piece tPsr(r), with tP(r) = 
Slr(r) + tPsr(r). This division then allows the use of Fast Fourier 
transform numerical techniques. We then have a short-range Ornstein-Sernike 
direct correlation function csr(r) = c(r) + tPP1r(r), and a new diagram­
matic resummation result with c(r) and ptP(r) replaced by their short-range 
values. As a consequence the Ornstein-Zernike relation is modified; if this 
were not the case, all systems could be trivially transformed into an ideal 
gas! Although -PtP(r) gives a very accurate determination of c(r) relative 
to -ptP(r) beyond r c ' the short-range part -ptPsr(r) does not give an 
accurate determination of csr(r). This discontinuity in csr(r) enters, by 
continued iteration of the extension algorithm, into the extended g(r) and 
then into the extracted bridge function E(r). 

To overcome this difficulty we propose a new procedure which, by 
construction, corrects for any discontinuity in csr(r). It is 

cs/r) -M(r) 
A exp( ->.r) - + r r>rc ' (6) 
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N 
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with A and A now chosen to enforce continuity in csr(r) and its first 
derivative. Equation 6 is physically motivated by the appearance of 
Debye-Huckel like functions in a variety of diagrammatic approximations to 
the plasma problem. In Figure 2a we summarize the extended g(r) in this 
new extension procedure in units of r/rWS ' As before, the arrow 
indicates the position of rc/eWS' In Figure 2b we summarize the 
extracted bridge function for this extended data, again in units of 
r/rWS' 

Further Remarks 

A comparison of Figures lb and 2b show that the basic features of the 
bridge function are identical. This is in agreement with the short-range 
universality hypothesis of Rosenfeld and Ashcroft; 1 both bridge 
functions continue to be well represented at short-range by the bridge 
function of an appropriately chosen hard-sphere reference system. But 
beyond this universal core behavior the OCP bridge function becomes more 
highly "attractive" than its LJ counterpart. In addition, the OCP bridge 
function does not; display the characteristic -Dh2(r) behavior at long­
range; this is a direct consequence of the long-range nature of the 
Coulomb pair-potential itself. 

We believe that our extended results of the OCP at moderate coupling 
represent an accurate extension of the most precise computer simulation 
data to date. There remain, however, deficiencies in the extension 
procedure. In particular, the isothermal compressibility does not agree 
with the equation of state results of Slattery, Doolen, and DeWitt. 7 ,H 
The extension estimate for the isothermal compressibility moves toward the 
desired value, but subsequently drifts away as the number of iterations 
increases. This can, in principle, be corrected by enforcing agreement 
with the equation of state result. Work on the consequence of imposing 
this additional constraint is progressing. 
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SOME PROPERTIES OF A POLARIZED OCP 

H. L. Helfer and R. L. McCrory 

Laboratory for Laser Energetics 
University of Rochester 
250 East River Road 
Rochester, New York 14623-1299 

This paper reports on Monte Carlo calculations of properties of 
polarizable one-component plasmas (OCP). The purpose of this research is 
to supplement the classical OCP investigations by determining the 
thermodynamic properties of dense plasmas that are only partially 
degenerate. This work extends similar calculations by DeYitt and Hubbard 
(1976) and Totsuji and Takami (1984). An additional purpose is to 
determine radial distribution functions for partially degenerate plasmas; 
these can be used for testing theoretical methods of calculating plasma 
properties (cf. Rogers et. al., 1983). 

To evaluate U = -(8lnZ/8p)V' PP - (8lnZ/8V)T' etc., we start with N 
pointlike ions and the expression for the partition function: 

Following a procedure discussed by Ashcroft and Stroud (1978), the 
trace may be evaluated when the e!ectron 2ensi!y fluctuations are linear 
in the electric potential, say, 6p(k) - q ~(k)~(k) (where the tilde signifies 
the Fourier transform). The Helmholtz free energy, F, can be evaluated 
for a given Hamiltonian, by the prescription: 

The form of the dielectric function used was calculated using the 
linear form of a density matrix procedure developed by March and Murray 
(1961); this gives: 

2 4 [ k' 
q ~(k) = ~a k l+exp{p[E(k')-~l} 

Bohr 0 
Ik+2k'l ' ln k-2k' dk . 

Here ~ is the chemical potential, and k2[f(k)-11 - q2~(k). 
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This form is in agreement with the RPA dielectric function used by 
Totsuji and Takami. The potential closely approximates exp(-qr)/r, where 
q i~ the Thomas-Fermi wavenumber. There are additional oscillatory terms, 
ocr- , which amount to a few percent at values of r of interest. 
These minor Friedel oscillation terms can provide long-term coupling of 
the plasma at distances greater than a few ion-sphere radii. 

One gets Z in a form useful for performing a Monte Carlo calculation: 

Z e (1dea1 ions) (free electrons) pol • ~ e e " -IJ[F. +F +F 1 J 3N -IJU ff 

= ~ 

where 

and 

For the plasmas being considered, Fpo1 is a small second order term 
which can be ignored. The calculations use an Ewald sum technique for 
calculating </JUeff> and evaluating the pair distribution function. 
In effect, the plasma is represented as a cubic lattice, with N (-128) 
ions per cell. (For details, see Helfer et. a1., 1984). 

In addition to the internal energy and pressure terms one associates 
with non-interacting electron and ion gases, one finds excess energy and 
pressure terms attributable to the interactions; these are: 

/JUexcess = < /JUeff > 
N N 

where </JUeffjN> and qr, are quantities resulting from the Monte 
Carlo calculation, and q* is calculated from the limiting value of the 
effective two ~ody potential when r ~ O. Here, a is the ion sphere 
radius and r=e lakT. 

Figure 1 shows the excess energy term. It has been divided into two 
parts: (1) the energy per ion of a reference rigid BCC lattice; and (2) 
the difference in energy per ion between the plasma and the BCC lattice. 
At large r the BCC lattice energy dominates. The BCC excess energy 
decreases from the OCP value as the density decreases. This reflects the 
binding energy of the electrons as they cluster around individual ions. 
For the plasmas studied, the difference in excess energy, plasma -
lattice, also decre~~es w~th density, amounting to -10.5 kT per ion at ion 
densities of 2 x 10 cm" (for Z=l). The difference in energies is 
not a strong function of r at low densities. The very low density 
high-r models may be quite unphysical because de-ionization is not 
taken into account; for these models the plasma excess energy is less than 
that of the BCC lattice. 
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The calculations show the following crude approximations may be used: 

/3Ueff > 2 
< N - - (0.9 + 0.033rs )rZ where rs a/aBohr ' 

2 * <qr> - min (3Qa,2) and q - Q 

For the OCP, the terms involving q and q* are absent in the expression 
for the excess pressure. These extra terms can cause the eXCeSS pressure 
to be more negative by up to -20% more than in the OCP case. 

The pair correlation functions show some unusual features (cf. 
Fig. 2). The minor oscillations beyond the first maximum first decrease 
in amplitude as one goes to lower densities and then increase in strength 
(with a phase shift) as one goes to the lowest densities studied. This 
behavior is seen for all the models, down to the lowest value of 
r(>10) for which the oscillations can be studied. 
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PERTURBATION THEORY OF THE MISCIBILITY GAP IN METAL SALT SOLUTIONS 

G. Chabrier 

Dpt. Physique des Materiaux 
Universite Claude Bernard Lyon I 
69622 Villeurbanne Cedex, France 

REFERENCE SYSTEM: IONIC FLUID IN A RIGID NEUTRALIZING BACKGROUND 

The metal-salt solutions are regarded as being composed of Nl 
positive ions of charge Zle and N2 negative ions of charge Z2e in a 
volume 0; the corresponding number densities and concentrations are 
defined as Pa = Na/O and xa=Na/N (a-l,2), with N=Nl +N2 . The excess of 
positive charge is compensated by the conduction electrons which are 
assumed to provide a rigid, uniform background of charge density 
epo' ensuring overall charge neutrality: 

(1) 

This reference system will serve as a starting point for our perturbation 
expansion. In that case the ions are assumed to interact via the 
following potential: 

2 
Z~Zae 
...!l:....#. + 

r 

where the short range repulsion, which acts only between oppositely 
charged ions, is taken to be of exponential form: 

(2a) 

(2b) 

The potential (2) is a simplified version of the usual Born-Huggins-Mayer 
potential, retaining only its essential features. We have dropped the Van 
der Waals dispersion terms, as well as the short range repulsion between 
equally charged ions, since the Coulomb repulsion is sufficiently strong 
to keep them apart. The limiting situations of the potential (2) are: 
i) x-l, i.e. the pure metal, for which we recover the one component plasma 
(O.C.P.) mode13 ,4; ii) x=O, i.e. the pure salt, reasonably well described 
by a Born-Huggins-Mayer rigid !on potential, provided ion polarizability 
effects are not too important. The pair correlation functions are 
calculated through the closed set of equations composed of the ~rnstein­
Zernicke relation and the hypernetted-chain (H.N.C.) equations. The 

U.EX p.EX 
1 1 reduced excess (non ideal) internal energy Nk T and excess pressure ~ 

B P B 
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are calculated in termS of integrals over the static correlation 
functions, via the standard energy and viria1 e~tions. In the HNC 
approximation the excess chemical potentials Pa of both ionic 
species ar~ also expressible in terms of the pair correlation 
functions. Hence the excess free enthalpy and free energy per ion 
follow directly from: 

(3) 

PERTURBATION EXPANSION: RESPONSIVE BACKGROUND7 

The total hamiltonian of the system is written now as the sum of three 
terms: 

(4) 

Hii is the hamiltonian for the ions in a neutralizing background and has 
been detailed in the previous section. Hee is the familiar "je11ium" 
hamiltonian for the electrons in a uniform background which exactly 
cancels the previous one. Vie describes the ion-electron interaction 
minus the i9t3raction energy of the ions with their associated 
background.' This term can be split in two terms: 

V _.1 L 
ie 0 a-1 2 , 

(Sa) 

where Uo describes the non-cou10mbic structure independent term: 

U 
o 

.1 lim ; (k) 
o k-+o oa 

2 
411'Z e 

a 
+ k T 

B 
* P-+ p.... = Po 

k k 

2 Z e2 

L N I v (r) + --lL-- dr 
a-l a 0 oa r 

a 0 (5b) 

The Pki (i=0,1,2) denote the Fourier components of the microscopic 
densities (0 for the electrons) and voa(k) is the dimensionless 
Fourier transform of the ion-electron pseudopotentia1 voa(r). The 
hamiltonian specified by Eqs. (2), (4), and (5) is in fact quite general 
and describes a number of coulombic systems besides metal-salt solutions 
MxMl -x : molten salt (x-O) , liquid metals (x-l), binary ionic mixture 
(Zl Z2>O) in which case the short range repulsive term may be omitted, 
binary metallic alloys which differ from the case of BIM in that the ions 
have a finite core radius so that the ion-electron interaction is no 
longer purely conlombic but must be described by a psuedopotential. For 
the ion electron psuedopotentials occurrin§ in Eqns. (Sa) and (5b), we 
have chosen the Ashcroft "empty ,core" form for the cation, with a core 
diameter rc determined at melting, from compressibility data. Much less 
1s known about the electron-anion pseudopotentia19which wiohave chosen to 
be an interpolation between the Ashcroft and Shaw forms, i.e.: 

2 
- eZ2e /r ; r<r c2 c2 

(6) 
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For r we have chosen the ionic Pauling radius. e will in fact be the 
only ~ajustable parameter in our perturbation theory. The special case e-O 
corresponds to the "empty core" model. To this order the ionic and 
electronic components, neutralized by their respective uniform 
backgrounds, are assumed to be completely decoupled so that the Helmholtz 
free energy is then simply the sum of the two independent contributions: 

;F(O) ... F. + F 
~ e 

(7) 

Fi is given by ~qn. (3) whereas fOl Fe we have used the equation of 
state given by Richert and Ebeling 1 calculated in a wide range of 
density, even in the strongly coupled regime (rs»l). Since the two 
components are completely decoupled in the reference system, 

* * <p p > ... <p > <p > = 0 due to translational invariance, it 
ka kO ka 0 ko 

follows immediately that to first order in perturbation theory the 
ion-electrpn coupling (Sa) contributes the term7 : 

... <v. > 
~e 0 

... U 
o 

3 
'"'3 

r 
s 

the second order ion-electron contribution to the free energy is 
calculated via linear response theory with the result 

1 J <v. >,d>' o ~e A 

J; (K); {3(K)S {3(K) K22 
OQ 0 Q 4~e 

_1_ ... 
E (k) -1 dK. 
e 

(8) 

(9) 

For the dielectric function Ee(k) we have chosen the zero-temperature 
form proposed by Ichimaru and Utsumi, adapated to the highly correlated 
regime (rs»l). By truncating the perturbation expansion of the free 
energy after second order, we restrict ourselves to linear screening in the 
description of ion-electron coupling. This is a priori inapplicable in the 
regime of low metallic concentration. However, since the weight of the 
electronic contributions to the thermodynamic properties of a metal salt 
solution decreases with decreasing metal concentration x, we have used the 
results of second order perturbation theory throughout the entire range of 
concentration. 

THE PHASE DIAGRAM 

The total free energy of the system is now taken to be the sum: 

F = F. + F + F(l) + F(2) 
~ e (10) 

The vo~ume derivative yields the total pressure P, and the molar Gibbs 
free energy Gm(T,P,x) follows from Gm ... Fm + POm where Fm and Om 
are the Helmholtz free energy and volume per mole of the solution. The 
corresponding excess free energy of mixing is defined in the ususal way 
as: 

... G (P,T,x)-xG (P,T,x=l)-(l-x)G (P,T,x=O) m m m (11) 
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e 

Tc(k) 

Xc 

Table 1. Critical Coordinates for KxKc11_x for 
several values of e. 

Experiment 0.01 0.05 0.2 

1073 1250 1650 2300 

0.35 0.25 0.25 0.35 

0.333 

25,.00 

0.4 

In practice the various contributions to Fm or Gm are calculated as 
functions of the variables T, x and 0, and for fixed T and x the 
latter is then varied to yield zero total pressure. The corresponding 
excess molar volume of mixing: 

80 (P-o,T,x) - 0 (P-o,T,x)-xO (P-o,T,x-1)-(1-x)0 (P-O,T,x-o) (12) m m m m 

is shown to be surprisingly large and negative for all x (see Ref. 7). 

To zeroth order, if only the ionic and electr~nic co¥t~ibutions were 
included, 8Gm should be a convex function of x«8 8Gml 8 x )p T<o) so 
that the solution would be thermodynamically unstable at all concentrations. 
This behavior contrasts with the case of BIM or metallic a!~oys where the 
ionic contribution always tend to stabilize the mixture. 6 , But when the 
first and second order corrections due to the ion-electron coupling are 
added, 8Gm gradually builds up a convex portion on the salt rich side, 
signaling phase separation. The concen~rations of the coexisting liquid 
phases are determined by the usual double tangent construction. The critical 
coordinates Tc and Xc depend sensitively on e and are compared to the 
experimental values in the case of KxKcl1_x in Table 1, for several 
values of e. While the calculated critical temperature can be brought 
into agreement by an adequate choice of e, the corresponding critical 
concentration Xc is too small; this is probably a consequence of the 
inadequacy of linear screening theory on the salt rich side of the diagram. 
Typical phase diagrams calculated for KxKc11_x and RbxRbBr1_x are 
shown in Ref. 7. 
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CHAPTER II 

PLASMA EXPERIMENTS 



A HIGH-f, STRONGLY-COUPLED, NON-NEUTRAL ION PLASMAt 

INTRODUCTION 

L.R. Brewer, J.D. Prestage*, J.J. Bollinger, 
and D.J. Wineland 

Time and Frequency Division 
National Bureau of Standards 
Boulder, Co. 80303 

We have produced a strongly coupled non-neutral 9Be+ ion plasma with a 
coupling parameter of approximately 100 or greater •. The ions were 
spatially confined by a Penning trap [Penning 1936, Dehmelt 1967, 1969, 
Wineland et al. 1983] and cooled and compressed using laser cooling [ltano 
and Wineland 1982]. Measurements were made of the plasma shape, rotation 
frequency, density and temperature. In this paper we describe the 
experimental confinement geometry, the laser cooling of ions and the 
experimental data which are compared with theoretical predictions. Future 
experiments to measure the plasma static structure function, measure ion 
diffusion, and improve the temperature measurement are discussed. 

CONFINEMENT GEOMETRY 

The Penning trap, shown in Fig. 1, is composed of two "endcap" 
electrodes and a "ring" electrode which are biased with respect to each 
other by a d.c. electric potential. The electrode surfaces are approximate 
hyper bolo ids of revolution. The symmetry axis of the trap is parallel with 
a static magnetic field. The configuration is similar to that used by the 
group at the University of California at San Diego (UCSD) [Malmberg and 
deGrassie 1975]. The hyperboloidal shaped electrodes give rise to an 
applied trap potential 

2 
IIlWZ 2 2 

<PT = "4q (2z - r ) (1) 

where m is the ion mass and the axial frequency Wz is defined by the 
equation 

4qVo 
(2) 

Vo is the electric potential applied between the ring and endcaps and ro and 
Zo are the characteristic trap dimensions as shown in Fig. 1. There are 
three principal motions of a single ion in this trap. The potential IPT is 
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quadratic in z, and this gives rise to simple harmonic motion of the ion at 
frequency Wz along the z axis of the trap. In the radial direction the 
ions are confined by a magnetic field, and the ion motion is a 
superposition of two circular motions, the cyclotron and magnetron motions. 
The cyclotron motion is shifted somewhat in frequency from its value in a 
pure magnetic field by the radial electric field [Dehmelt 1967, 1969, 
Wineland et al. 1983]. The magnetron or rotation motion is a circular 
drift of the guiding center of the cyclotron motion due to the E x B forces 
of the trap. These motions are shown in Fig. 2. 

For the work discussed in this paper, typical trap parameters are an 
electric potential Vo of 2 volts, a B field of 1.4 tesla and trap 
dimensions of ro = 0.417 cm and Zo = 0.254 cm. For these parameters the 
magnetron frequency for a single 9Be+ ion is 15.1 kHz, the cyclotron 
frequency is 2.38 MHz and the axial frequency is 267 kHz. 

Fig. 1. The Penning trap consists of two endcaps and one ring electrode 
which are biased with respect to each other by a potential Vo' The 
hyperbolic surfaces of the electrodes produce a quadrupole 
potential which confines the ions in the z direction. The static B 
field confines the ions in the radial direction. 

THERMAL EQUILIBRIUM STATE 

For a collection of ions in the trap, the resulting single species 
plasma is assumed to be in thermal equilibrium because of Coulomb 
collisions. If the plasma is in thermal equilibrium there is no shear in 
the plasma and the plasma rotates as a rigid body. The density is constant 
up to the edge of the plasma where it drops off in a distance that is 
characterized by the Debye length [Prasad and O'Neil 1979]. 

The single particle distribution function for a magnetically confined 
non-neutral ion plasma has been given by Davidson [Davidson 1974] and by 
Malmberg and O'Neil [Malmberg and O'Neil 1977]. For positive ions we have 

f(r,z,v) = n(r,z) [m/(2nkBT)]3/2exp{-(m/2kBT)(v + wre)2} (3) 

n(r,z) = noexp{-(1/kBT)[q~(r,z) + (mw/2)(Q - w)r2]}. (4) 

Here ~ is the total electrostatic potential, w can be identified as the 
rotation frequency of the. plasma, Q = qBo/mc is the cyclotron frequency, 
and no is the density of the ions at the center of the trap. 
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In the T = 0 limit, in order that f and n remain finite we find that 

q~(r,z) + (mw/2)(Q - w)r2 ~ 0 (5) 

for r,z inside the plasma. This equation tells us that the electrostatic 
potential is independent of z and along with Poisson's equation, t~at the 
density must be constant throughout the plasma and equal to no. From 
Poisson's equation and Eq. 5, no is given by 

mw(Q-w) 
n -o - 2nq2 (6) 

The distribution function predicts simple shapes for the plasma in the 
limits that T = 0 and the trap dimensions are large compared to the plasma 
dimensions. The potential of the plasma is given by the expression 

~ = ~I + ~T + ~ind' (7) 

where ~I is the Coulomb potential of the ions in the absence of the trap 
walls and ~ind is the potential due to the charges induced on the trap 
electrodes. If the electrode spacing is large compared to the dimensions 
of the plasma we can neglect ~ind and solve for the ion potential. From 
Eqs. 1, 5, and 7 we find that 

mw 2z2 
~I = ;~ {w(Q - w) - wz2/2}r2 -~ 

= -2/3 nqn o(ar2 + ~z2) 

(8) 

(9) 

where Eq. 9 is used to define a and~. In general Eq. 9 represents the 
potential inside a uniformly charged spheroid. For example for a=~=l, ~I 
is the potential inside a uniformly charged sphere. 

y 

x 

Fig. 2. The orbit of a single ion in the x-y plane consists of two circular 
motions. rc is the radius of the cyclotron motion and rm is the 
radius of the magnetron motion. The figure sketches the ion orbit 
for the case rc<rm. 
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ONE COMPONENT PLASMA 

In the frame of reference rotating about the trap axis with frequency 
w, the ion plasma behaves like a neutral one component plasma. That is, 
the positively charged ions behave as if thay are moving in a uniform nega­
tively charged background. In particular, Malmberg and O'Neil [Malmberg 
and O'Neil 1977] have shown that the static properties of magnetically con­
fined non-neutral plasma are the same as those for a one component plasma. 

A one component plasma [Ichimaru 1982J is composed of a single species 
of charge imbedded in a uniform background of neutralizing charge. The one 
component plasma is characterized by a coupling constant 

(10) 

which is the ratio of the nearest neighbor Coulomb energy to the thermal 
energy of a particle. The Wigner-Seitz radius a is defined by 

a3 = 3/(411n) (11) 

where n is the particle density. When r > 1 the plasma is said to be 
strongly coupled. When r > 2 the plasma should exhibit liquid like 
behavior and the particles should exhibit short range order. Slatterly. 
Doolen.and DeWitt [Slatterly et al. 1980] have predicted that at r = 178 
the plasma undergoes a phase transition to become a crystal like structure. 

Because the transition is of the first order, the plasma may remain in 
a metastable fluid like state when it is supercooled below the transition 
temperature. Ichimaru and Tanaka have investigated the supercooled one 
component plasma and presented evidence for a possible dynamic glass 
transition at a value of r ~ 1.000 [Ichimaru and Tanaka 1986]. (The 
correspondence between the magnetically confined non-neutral plasma and the 
one component plasma rigorously exists only for static properties. The 
possibility of a dynamic glass transition in a one component plasma is 
therefore a suggestion of what might happen in the magnetically confined 
non-neutral plasma.) 

LASER COOLING 

The technique of laser cooling utilizes the resonant scattering of 
laser light by atomic particles. By directing a laser beam at the plasma 
one can decrease the thermal velocity of the particle in a direction 
opposite to the laser beam. The laser is tuned in frequency to the red. or 
low frequency side of the atomic "cooling transition" (typically an 
electric dipole transition). Some of the ions moving toward the laser will 
be Doppler shifted into resonance and absorb a photon. Ions moving away 
from the laser will be Doppler shifted away from resonance and the 
absorption rate will correspondingly decrease. When an ion absorbs a 
photon its velocity is decreased by an amount 

6.v = hk/m (12) 

due to momentum conservation. Here 6.v is the change of the ion's velocity 
in the direction of the laser beam. k = 211/A where A is the wavelength of 
the cooling radiation. and m is the mass of the ion. The ion spontaneously 
re-emits the photon in a random direction (for low laser intensities where 
the stimulated emission rate is small). which when averaged over many 
scattering events does not change the momentum of the ion. The net effect 
then is that for each photon scattering event the ion's average velocity is 
reduced by the amount shown in Eq. 12. To cool an atom from 300 K to mK 
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temperatures takes tvpically 104 scattering events. For this experiment 
the cooling limit, due to photon recoil effects [Wineland and Itano 1979], 
for a given transition is given by a temperature equal to hy/2kB' where y 
is the radiative linewidth of the atomic transition. For a linewidth y of 
2n·19.4 MHz, which was the natural linewidth of the cooling transition in 
our experiment, the minimum obtainable temperature is 0.5 mK. 

It is interesting to see how the laser affects the angular momentum 
of the plasma [Wineland et al. 1985]. The z component of the canonical 
angular momentum for a single particle is 

(13) 

where va is the ion's azimuthal component of velocity and r is the ion's 
radial cylindrical coordinate. The two terms represent the mechanical 
angular momentum and the field angular momentum. The total z component of 
the angular momentum is 

Lz = /dz/2nrdr/d3vf(r,z,v)lz 

= m(Q/2 - w)N<r2> • 

(14) 

(15) 

Eq. 15 tells us that the total angular momentum about the z axis is 
proportional to the mean of the square of the radius of the plasma. Here N 
is the number of ions and f is the distribution function. For our 
experimental conditions Q is usually much larger than w [O'Neil 1980] so 
that 

(16) 

If the cooling laser is directed at the side of the plasma which is 
receding from the laser (due to the plasma rotation), angular momentum is 
removed from the plasma and the radius of the plasma must decrease. As the 
radius decreases, the density of the plasma increases. The limiting 
density, known as the Brillouin density [Davidson 1974], occurs when the 
rotation frequency w = Q/2. The Brillouin density is given by 

mQ2 
n =--2 8nq 

(17) 

Collisions with background gas particles increase the angular momentum 
of the plasma. This is one of the effects that could limit the compression 
of the plasma. Axial asymmetry of the trap is also a limiting effect. The 
plasma group at UCSD has observed that the axial asymmetry of their 
cylindrical traps plays an important role in the electron confinement time 
[Driscoll et al. 1986]. It is also expected to be a limiting effect in the 
experiments reported here [Wineland et al. 1985]. 

At a magnetic field of 1.4 T, the Brillouin density for 9Be+ is 
5.9'108 ions/cm3• This density and the 0.5 mK temperature limit gives a 
theoretical limit on the coupling of r ~ 4,500. Consequently the 
possibility of obtaining couplings large enough to observe a liquid-solid 
phase transition looks promising. If the cooling or quench can be done 
rapidly enough, it appears possible to investigate the existence of a 
dynamic glass transition at r ~ 1000. Currently the laser cooling 
technique is capable of reducing the temperature of a cloud of ions from 
room temperature to less than 10 mK (r ~ 100) in a few seconds. This 
cooling rate, if continued to lower temperatures, compares favorably with 
the minimum nucleation times ranging from 80 to 8.105 seconds as estimated 
by Ichimaru and Tanaka [Ichimaru and Tanaka 1986] for a 9Be+ plasma with 
the above density. 
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PRODUCTION OF HIGH r NON-NEUTRAL PLASMAS 

The experimental configuration reported in this paper was similar to 
that reported by Bollinger and Wineland [Bollinger and Wineland 1984] where 
plasma coupling parameters as high as 10 were achieved. In their paper 
they suggested that by cooling the plasma in directions both perpendicular 
and parallel to the trap B field one could achieve lower temperatures and 
higher coupling. The results of this experiment are reported below. 

Excitation Scheme 

The excitation scheme is shown in Fig. 3. The cooling laser drives 
9Be+ ions between the 2s2S1/2' mj = +1/2 and the 2p2P3/2' mj = +3/2 states. 
Ions are optically pumped into the 2s2S1/2 mj = +1/2 state with 94 % 
efficiency [Wineland et al. 1984]. That is, for laser intensity below 
saturation, 94 % of the ions reside in the 2S2S1/2 mj = 1/2 state. The 
cooling laser has a wavelength of 313 nm and a power of approximately 50 
~W. Resonance fluorescence (i.e. the scattered light) from this transition 
is detected in a photomultiplier tube. A second laser drives ion 
population from the 2s2S1/2' m· = +1/2 state to the 2p2p3~2' mj = -1/2 
state where the ions decay wit~ 2/3 probability to the 2s Sl/2' mj = -1/2 
state causing a decrease in the observed fluorescence from the ions. The 
power of this "probe laser" is « 1 ~W. Fig. 4 shows the resonance line 
shape when the probe laser is scanned through the transition. The probe 
laser is used to measure the shape of the plasma, its rotation frequency, 
density, number of ions, and temperature as described below. 

Experimental Apparatus 

The experimental apparatus is shown in Fig. 5. The cooling laser 
passes through a 50% beam splitter. Upon exiting the splitter one beam 
enters the plasma perpendicular to B and the other beam (diagonal cooling 
beam) enters between the ring and one endcap at a angle of 55 degrees with 
respect to B. The probe beam passes through a telescope which is used to 
precisely translate the beam spatially. Because the diagonal cooling beam 
scatters so much light from the steering mirrors it is chopped at 1 kHz and 
resonance fluorescence from the perpendicular cooling beam is detected only 
when the diagonal beam is off. The B field strength is 1.4 tesla. The 
vacuum in the Penning trap is approximately 10-8 Pa (133 Pa = 1 torr) 
allowing the ions to be trapped for many hours. 

3/2 

P3 1/2 
T 

-1/2 

-3/2 

<7 
IPump Probe 

1/2 
51 
T -1/2 

m, 

Fig. 3. The excitation scheme for the n=2 level of the 9Be+ ion showing the 
laser cooling (pump) and depopulation (probe) transitions. 
Hyperfine structure has been neglected. 
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~------------2GHz------------~ 

Background--

Fig. 4. The ion resonance fluorescence as a function of probe laser 
frequency. The bottom of the right most feature is the background 
signal. 

Diagnostics 

The depopulation signal is observable only when the probe 
beam intersects the plasma. This is used to determine the shape of the 
plasma. Spheroidal plasma shapes (with symmetry axis along z (Fig. 1» 
with dimensions ranging from 200 ~m to 500 ~m were measured. A spheroid is 
the volume obtained when an ellipse is rotated about one of its axes. 

---t----.--+-- B 

Pump Probe 

313nm 

Fig . 5. The experimental apparatus for probing strongly coupled plasmas. 
The plasma is cooled and probed by lasers both perpendicular and at 
a 55 degree angle with respect to the B field. 
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The probe depopulation signal shifts in frequency as a function of the 
radial distance from the trap axis due to the Doppler shift caused by the 
rotation of the plasma. The rotation frequency 

w/2w = (~V/~Y)(A/2w) (18) 

is calculated from the frequency shift ~v when the probe laser position is 
moved by an amount ~y. The density was determined from the zero 
temperature formula Eq. 6. The number of ions is given by the volume of 
the spheroidal plasma times the density. 

The temperature of the plasma can be measured in directions both 
perpendicular and parallel to the magnetic field. The temperature in the 
perpendicular direction is measured by pointing the probe laser at the 
plasma in the direction perpendicular to the B field. This laser is 
scanned in frequency and the full width half maximum of the unsaturated 
depopulation transition is measured. The lineshape is a Voigt profile 
whose width is composed of the natural linewidth, the Doppler width, and a 
width due to the convolution of the laser spot size with the plasma 
rotation. The Doppler width can be deconvoluted from the Voigt width 
giving the temperature of the plasma. The probe laser can also be pointed 
at the plasma at an angle of 55 degrees with respect to the B field. The 
full width at half maximum of this resonance contains Doppler widths from 
temperatures in both perpendicular and parallel directions to the magnetic 
field. With the perpendicular temperature from the previous measurement 
the parallel temperature can be determined. Table 1 summarizes the 
measurements on seven ion clouds. 

Table 1. The experimental data. The error convention is as follows -
1.8(10) = 1.8 ± 1.0. Va is the trap voltage in V, 2Z and 2R are the axial 
and radial extent of the plasma in ~, n is the density of the plasma in 
units of 10 7 /cm3 , w/2w is the plasma rotation in kHz, Til and Tl are the 
parallel and perpendicular temperatures of the plasma in mI, and r is the 
coupling parameter for the plasma based on 11' 

Va 2Z 2R n #IONS w/2w Tl ~ r 

2 130(30) 450(30) 2.4(6) 330(170) 25(6) 2.3(5) 10(5) 80 
2 150 450 1.9(5) 300(150) 20(5) 1.8(10) 7.4(70) 100 
2 130 480 2.2(6) 350(170) 23(6) .9(15) 8.9(60) 90 
2 160 450 2.6(7) 450(230) 27(7) 2.4(10) 6(6) 130 
2 160 260 2.8(7) 150(80) 30(7) 2.7(30) 2.4(60) 340 
4 80 390 3.9(10) 250(120) 40(10) 2.9(20) 20(12) 50 
1 190 360 1.2(3) 150(80) 13(3) 2.9(10) 4.7(60) 130 

DISCUSSION OF THE DATA AND CONCLUSIONS 

The plasmas are oblate spheroids of rev~lution. The Brillouin density 
at a field strength of 1.4 tesla is 5.9 ~ 10 ions/cm3• The measured 
densities were typically 2 x 107 ions/cm. This is a factor of 30 less 
than the theoretical limit. The mechanism which limits the density is not 
well understood but it may have to do with axial asymmetries in the Penning 
trap [O'Neil 1980, Wineland et al. 19851. 

The theoretical cooling limit discussed earlier is 0.5 mK. While the 
uncertainty in the temperature measurement is large enough to include this 
limit in some cases, the temperatures measured were consistently higher by 
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about an order of magnitude. The 0.5 mK limit was derived for the case of 
a single ion in a trap. Recently it has been shown [It~no 1986] that for a 
cloud of ions, the temperature limit depends on the distance the cooling 
laser is from the center of the cloud, the rotation frequency, and the 
saturation of the cooling transition. These factors could account for the 
temperatures we measured. With some small changes in the way the laser 
cooling is done we should be able to reach the 0.5 mK limit. 

The largest coupling parameter measured was r ~ 340. The uncertainty 
in this measurement was large due to the uncertainty in the temperature 
measurement, which in this case was 2.4(60) mK. This temperature 
uncertainty results in a range of values for r of 100 to a maximum of 2,000 
due to the theoretical cooling limit. This coupling may be in the range 
where we would expect the plasma to be crystalline. 

The lowest temperatures were measured on plasmas of several hundred 
ions. This can not be truly called a three dimensional plasma. 
Since surface effects in the ion clouds may be important in our experiment 
the results are probably best compared to a theory which is somewhere 
between a plasma theory and a theory for ion clusters. 

BRAGG SCATTERING FROM A STRONGLY COUPLED PLASMA 

Slatterly, Doolen, and DeWitt [Slatterly et al. 1980] have derived 
expressions for the pair distribution function and the static structure 
function. The static structure function is the spatial Fourier transform 
of the pair distribution function and is what one expects to see in the 
diffraction pattern resulting from the scattering of coherent light from 
the ions. For low coupling parameter r the function is fairly flat but for 
r - 100 one sees sharp peaks in the amplitude of the structure function 
due to short range order. It should be possible to measure S(q) directly 
and compare this result to the calculations of Slatterly, Doolen and 
DeWitt. 

An experimental apparatus to observe Bragg scattering which is 
currently under construction is shown in Fig. 6. Light from the cooling 
laser is scattered by the plasma and produces an interference pattern. 
This pattern is detected by a photon counting imaging tube. 

For the densities we have measured the first interference fringe 
should occur at an angle of 0.6 degrees. We expect that the total count 
rate into the detector should be on the order of 100 counts/so Therefore 
the suppression of background and scattered light into the detector will be 
of primary importance. 

TAGGED ION DIFFUSION 

A measurement of the ion diffusion may tell us whether the plasma is 
solid or liquid. Some experiments have observed crystallization in two 
dimensional [Grimes and Adams 1979] and solid state systems [Rosenbaum et 
al. 1985]. Wuerker et al. [Wuerker et al. 1959] observed crystallization 
of aluminum particles in a Paul trap. A possible technique for measuring 
ion diffusion in our experiment is as follows. The probe beam will be 
tuned on resonance and then pulsed on for a short period of time thereby 
"tagging" a group of ions. If the plasma is liquid, the tagged ions will 
diffuse between the spatially separated probe and cooling lasers and a 
depopulation signal will be observed at some time after the probe laser 
pulse. If the plasma is solid no tagged ion diffusion occurs and no signal 
will be observed. 
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IMPROVED TEMPERATURE MEASUREMENT 

One difficulty with the present temperature measurement technique is 
that the natural linewidth of the probing transition ultimately limits the 
sensitivity of the measurement. Stimulated resonant Raman transitions, as 
fOr example studied by Thomas et al. [Thomas et al. 1982], avoid these 
difficulties. The natural linewidth of these nonlinear transitions is 
equal to the natural linewidth of the ground states which can be extremely 
small. If the angle between the two Raman beams is appropriately chosen 
the spectrum contains information about the velocity distribution of the 
plasma and is not affected by the upper state linewidth [Wineland 19841. 

D-Detector 

Glan-Taylor 
Polarizer 
Beam Stop 

Trap 

Glan-Taylor 
Polarizer 

313 nm 
Fig. 6. The proposed apparatus for detecting the Bragg interference 

pattern. The probe beam is collinear with the B field along the 
symmetry axis of the trap. The Glan-Taylor polarizers are crossed 
to suppress light which does not come from the ions. 

CONCLUSION 

In this paper we have discussed the measurement of the temperature, 
density, rotation frequency, and shape of a 9Be+ ion plasma. Temperatures 
as low as 2 mK were measured. This, along with a measured density of 
3'107 cm- 3 corresponds to a coupling parameter of r = 340. With an 
improved, highly axially symmetric trap operating at high magnetic fields 
we hope to be able to reach even lower temperatures and higher densities. 
This should result in values of the coupling parameter r that are much 
higher than the value predicted to observe crystallization in a one 
component plasma. 

The technique of Bragg scattering resonant coherent laser light from 
the plasma makes possible a measurement of the static structure function. 
This measurement can be compared to the theoretically predicted value for a 
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one component plasma. A measurement of the ion diffusion in the plasma may 
allow uS to determine if the plasma is a liquid or a solis. Finally a 
measurement of the plasma velocity distribution using a stimulated Raman 
transition should improve the temperature measurement. 
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LASER SCATTERING MEASUREMENTS OF THERMAL ENTROPY AND ION-ACOUSTIC 

FLUCTUATIONS IN COLLISION-DOMINATED PLASMAS 
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Yi Quang Zhang and Alan W. DeSilva 
University of Maryland 

Laser scattering is an ideal diagnostic tool for studying the 
kinetic properties of plasmas because the power spectrum of scattered 
light is directly proportional to the dynamic spectral density function 
S(k,w) of the plasma. Furthermore, S(k,w) is the Fourier transform of 
the spatial two-particle correlation function. As a result, scattering 
experiments, in addition to measuring the density fluctuation spectrum 
of the plasma, also obtain valuable information about pair correlations 
in the plasma. 

In weakly coupled plasmas (r « 1) laser scattering has been 
routinely used to investigate collective plasma modes, to observe 
instabilities, and to measure electron temperatures 1 • While extremely 
useful for these purposes in the weakly coupled regime, laser 
scattering, also has the potential for producing the most direct 
experimental measurement of correlations and coupling properties in 
strongly coupled plasmas. In practice, this has been rather difficult 
becausp. the strongly couPl~d plasmas produced, to date, in the 
laboratory have been either too optically thick to permit scattering 
diagnostics or so cold and dense that absorption of the probing laser 
would perturb the plasma. 

In this paper we present laser scattering measurements of thermal 
ion-acoustic and entropy fluctuatio~s from moderately coupled (r~.05), 

highly C971i~~onal Argon and Helium Plasmas. t The plasma conditions 
(n = 10 cm ,T = 2eV) were such that it was possible to circumvent the 

opacity problems 5f a strongly coupled plasma while still sampling a regime 
where3the standard weakly coupled plasma approximations (Vlasov theory; 

1/nA « 1) are of dubious validity. The efforts by several authors 2-7 to 
generRlize the kinetic theory for this parameter regime have Paoduced 
differing predictions for which the current experimental data -10 are 
insufficiently preCise to test their validity. In this experiment the 
measured spectra d3ffered substantially from spectra observed in collisionless 
plasmas where 1/nAD «1. Fluctuations at the ion-acoustic frequency were 
strongly enhanced and the width of the resonance was significantly narrowed in 
comparison to the colisionless case. Also, strong fluctuations around zero 
frequency, due to non-propagating entropy fluctuations, beca~e visible for the 
first time in a plasma. Finally, the plasmas in this experiment were fully 
diagnosed by independent spectroscopiC, interferometric. and probe 

tThe reader is refered to Refs. 14,15 for more details concerning this work. 
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measurements. This allowed a complete characterization of the plasma 
equilibrium, as well as faithful comparison to theoretical predictions without 
resorting to parameter fitting schemes. 

Ion-acoustic fluctuations were selected because of their high 
sensitivity to the effects of collisions, given their relatively low 
frequency. In particular, the degree to which the scattering spectra 
can be expected to be altered by the presence of collisions is determined 
by the ratio (v .. /kC ) of the ion-ion collision frequency to the 
ion-acoustic {/~~uen~y [where k=4n/A sin(e/2) is the fluctuation wave number 
and C =(YkT/m) is the ion-acousticOvelocity, e represents the scattering 
angle~ and m is ion massJ. If, v .. /kC > 1 collisional effects are important 
and for given plasma conditions tA~y c~n-be maximized by a choice of small 
wave numbers. This is best seen by examining a sample calculation 
(Fig. 1) of the ion-acoustic fluctuation spectra due to Debois and Gilinsky 
for several values of the normalized collision frequency (v .. /kC ). It is 
clear that the collision frequency must be at least severalltime~ the ion­
acoustic frequency for a discernible effect. In this work collisional effects 
were maximized by the use of a long-wavelength (10.6 pm ) CO2 laser and small 
scattering angles (40 - 90 ). This choice of scattering parameters was, in 
fact, ideally suited to test the validity of the various theories, since in 
this parameter regime the predicted ion-acoustic fluctuation spectra vary 
substantially from theory to theory, as is demonstrated by the calculations 
for an argon plasma in Fig. 2. 

The curv~ due to Salpeter 11 , the standard Vlasov result, was put in 
for comparison. In equilibrium where the electron and ion temperatures 
are equal it predicts a very broad quasi-resonance due to strong Landau 
damping. The theory of Dubois and Gilinsky corresponds to a solution of 
the Balescu-Lenard equation in the limit of a collision dominated 
plasma. It predicts an enhanced ion peak at the ion-acoustic frequency 
and a second peak at zero frequency corresponding to entropy 
fiuctuations. It is interesting that the intensity, width, and 
position of these peaks are very different from the BGK calculations 
which also predict the same peaks. If the isothermal approximation is 
made in the BGK calculations then the entropy fluctuation peak totally 
disappears. Physically, the entropy fluctuations can be understood as 
non-propagating density fluctuations which have corresponding 
fluctuations in temperature, constrained to keep the pressure constant. 

Fi g. 1 
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Entropy fluctuations become visible in a collisional plasma because the 
thermal conductivity, the normal damping mechanism for temperature 
fluctuations, becomes relatively weak at high collision frequencies. 
Similarly, if the plasma is assumed isothermal then entropy fluctuations 
are not allowed because of the implied infinite thermal conductivity. 
The enhancement of the ion-acoustic resonance occurs because the 
otherwise strongly Landau damped electrostatic restoring force is 
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Fig. 2 Ion-acoustic spectra for a collisional agron plasma as calculated 
from the various collisional theories (Refs. 2-6) and compared to a 
collisionless calculation [Salpeter (Ref. 11)J. 

replaced with a much stronger ion-ion collisional restoring force. 
This is exactly the same mechanism as the one which supports 
ordinary sound waves in fluid media. Finally, if we look at the 
Linnebur-Duderstadt calculations, based on the generalized Langevin 
equation, and the Fokker-Planck equation, based on a Brownian collision 
term, we find that they predict an almost complete damping of the 
ion-acoustic resonance at high collision frequencies, 

The testing of the various collisional theories previously 
discussed requires the use of a very dense low temperature plasma which 
is in thermodynamic equilibrium and for which the plasma density, 
temperature, and impurity content are accurately known. These 
requirements where satisfie~7bY_§he use of a pulsed arc, designed to 
produce plasmas with n = 10 cm ,T = 2eV and to last for about 100 ~sec. 
The arc was made capable of high repetition rates (.5 Hz) in order 
to allow for integration of the scattering signals cumulatively over 
many shots. 

The arc consisted of a quartz tube (r=2.3cm, ~=22cm) mounted 
between two copper-tungsten alloy electrodes which were fed by 1200 ~F 
capacitor bank charged to 1-2 kV. To produce a relatively flat current 
pulse over the time of the discharge and hence a quiescent plasma, the 
capacitor bank used to drive the arc was constructed as a lumped delay 
line which has the characteristic of producing square discharge pulses. 

67 



In normal operation, the arc was f.illed with 1-7 Torr of helium or 
argon gas and discharge currents of abogt 10-21 kA ~roduced plasmas with 
densities and temperatures of about 101 - 101 cm- and 2-4 eVe For 
scattering measurements, the plasma collisionality was maximized by 
operating the arc at the highest pressure (3 torr for Ar and 7 torr for 
He) and the lowest bank voltage (1500V) consistent with stable plasma 
discharges. This ~roduced plasmas with 1.95 eVand 1017cm-3 for argon 
and 2.3 eV and 101 cm- 3 for helium. The corresponding degree of 
ionization was 100% in argon and about 50% in helium. 

The electron density and temperature of the arc plasma was 
determined from interferometric and spectroscopic measurements 
(Fig. 3). From these measurements, the electron density was 
found to be a smooth function of time, roughly following the profile of 
the current pulse. Similarly, measurements at various radial positions 
showed that the plasma density and temperature were relatively flat 
across the diameter of the discharge tube, indicating a very uniform arc 
discharge. 

The stability properties of the plasma where checked by use of high 
speed photography, inductive probes, and electric Langmire probes. 
Framing camera photographs with exposure times as short as 5 nsec showed 
the plasma to be stable, uniform, and reproducible in both helium and 
argon discharges in the 1-7 torr and 1-3 torr pressure ranges, 
respectively. Magnetic and electric probe measurements showed that t.he 
plasma was very uniform and quiescent showing no signs of large-scale 
fluctuations or changes in the equilibrium state for times as long as 50 
llsec. 

Scattering measurements with long-wavelength lasers from dense 
low-temperature plasmas are generally very difficult to perform since 
whenever the input laser power is sufficiently intense to produce a 
discernible scattering Signal, it is also sufficiently intense to 
perturb the plasma by heating it. In this experiment, the problem 0, 
heating the plasma was overcome by the use of a heterodyne technique 2,13 
which is capable of boosting the detected signal many orders of 
magnitude; as a result, it permits the use of a relatively low-power 
laser (200 W) which does not perturb the plasma. 
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A schematic of the heterodyne scattering configuration is shown in 
Fig.4. First,a small fraction of the main laser beam (TEMoo ' P = 200 watts, 

L = 100~sec) is split off to form a local oscillator beam and, subsequently, 
the main and local oscillator beams are focused into the plasma with a 10-cm­
focal-length lens. Any light that is scattered out of the main beam and into 
the solid angle subtended by the local oscillator beam is imaged onto a 
liquid-helium cooled Ge:Cu detector. The non-linear mixing of the scattered 
and local oscillator beams produce a detected photocurrent, which contains the 
plasma fluctuation spectra. In particular, the photocurrent can be expressed 
as: 

where P=C(EE*/8~) is the average power of the individual fields, nand G 
are the detector quantum efficiency and gain, w is the fluctuation 
frequency and ~ is the mixing efficiency which measures the extent to 
which the two radiation fields are in phase over the surface area of the 
detector. The form of this photocurrent shows that mixing the scattered 
light with a local oscillator beam produces a signal that is composed of 
two distinct components: a slowly varying (Freq. ~ 1/laser pulse 
length) average power envelope that is due to the local oscillator and 
scattered light beams (Ps + PLQ); and a high frequency beat term (i .e., 
heterOdyne~ which contains the plasma fluctuation spectrum 
[(PSPLO )11 cos (wt)]. The heterodyne term is in the radio frequency range in 
this work. Consequently, it is easily differentiated from the low frequency 
average power terms and its spectrum is analyzed at high resolution 

(6f = 6MH ) by the use of a scannable electronic filter. In addition, the 
capabilityZto separate the heterodyne term from the very large average power 
terms permits scattering measurements in the high stray light environments, as 
is the case for small angle scattering. The stray light not being frequency 
shifted by the scattering process only contributes to the average power terms 
which are easily filtered out. 

In practice, the mean-square current analyzed by the data-acquisition 
unit is composed of not only the scattering signal, but also of signal 
currents from various noise sources in the detection system. As a result, 
good signal to noise ratios can only be obtained for long integration times. 
For the data presented in this paper, the integration time per shot was set at 
40 ~sec and 50 to 100 shots were averaged for each frequency value. 
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Fig. 4 Diagram of the optical system and scattering geometry. 
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Initial scattering measurements were made in argon plasmas for the 
two cases of k parallel and perpendicular to the discharge current. The 
observed spectra are displayed in Fig. 5 and show substantial peaking 
near the ion-acoustic frequency (50 MHz at 2 eV). Each data point 
corresponds to a scattering signal averaged over 50 discharges of the 
arc and the error bars are derived from the standard deviations of the 
mean. Even though the observed enhancement of the ion-acoustic 
resonance is interpreted as evidence of collisional plasma behavior, it 
is important to rule out the possibility that such enhancement could 
also have been produced by collisionless mechanisms. Most importantly, 
reduction of Landau damping due to unequal electron and ion temperatures; and 
non-thermal excitations due to the discharge current could have both produced 
the observed spectra. 

Reduction of Landau damping due to unequal electron and ion 
temperatures is very unlikely because the collisional equilibration time 
between ions and electrons ( 70nsec) is much shorter than the plasma 
lifetime (100 ~sec). Similarly, the electron temperature would have to 
be about eight times that of the ion temperature in order for the 
collisionless result to qualitatively reproduce the measured spectra. 
Such a large temperature differential is sufficient to substantially 
reduce (30%) the ion~acoustic frequency in comparison to its adiabatic 
value. Since no such shift was observed, it is safe to assume that the 
observed enhancements of the ion-acoustic resonance were not caused by a 
reduction in Landau damping due to unequal electron and ion temperatures. 

Enhancements of the spectra due to current-driven ion-acoustic waves 
were not expected to be very important because the electron drift 
velocity due to the current was only 20% of the ion-acoustic velocity. 
Nevertheless, measurements with k i J and k 1 J showed that there was a 
30% enhancement of the scattering spectrum parallel to the current. 
This relatively small level of enhancement suggested that the 
ion-acoustic waves parallel to the current are weakly driven, and are 

Fig. 5 
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Fig. 6 Scattered light spectra in argon for 4.70 and 8.750 scattering 
angles. 

thus uncoupled from fluctuations perpendicular to the current. As an 
additional test, the k I j scattering spectrum was also measured both 
during the discharge, when the current was about 17 kA, and during the 
afterglow, when the current had fallen to zero and was incapable of 
driving instabilities. Again, this measurement showed that the 
enhancement due to the discharge current was about 30%, thereby proving 
that the ion-acoustic waves perpendicular to the current were not 
coupled to the current, thus only exhibiting thermally excited 
fluctuation spectra. 

A comparison of the theories displayed in Fig. 2 with the scattering 
results required that the data originate from thermal fluctuations. 
Final data were, therefore, taken with k 1 j . Specifically, scattering 
spectra from both helium (2.3 eV, 1x1017 cm- 3) and argon (1.95 eV, 1x1017 
cm-3) plasmas were each measured at scattering angles of 8~75° and 4.70 • 
These spectra are shown in Figs. 6 and 7; as expected, they show 
substantial enhancement and narrowing, with the peak amplitudes being 
about 10 times the predicted amplitudes of collisionless theory. For 
the spectra at 4.70 vi./ke is about 2 times as large as for the one at 
8.70 • This shows up as1an ~ncreased narrowing of the ion-acoustic 
resonance at the lower ion-acoustic frequency. As before each data 
point corresponds to a scattering signal averaged over fifty discharges 
of the arc and the error bars are derived from the standard deviation of 
the mean. 

From all of the theoretical models previously discussed, the BGK 
theory proved most successful in reproducing the data. Theoretical 
curves due to the BGK theory are presented alongside the argon data in 
Fig. 8a. These curves were calculated for the specific plasma 
temperatures and densities that were measured by independent 
diagnostics. No free parameters were used in the calculations other 
than a normalization of the calculated spectra to the peak amplitude of 
the data so as to allow for the uncertainty (factor of 2) in the 
absolute intenSity calibration of the detection system. Even though the 
general shape and position of the ion-acoustic resonances is predicted 
fairly well, there exists a discrepancy between the measured and 
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Fig. 7 Scattered light spectra in Helium for 4.70 and 8.750 scattering 
angles. 

predicted widths of the resonances. This difference, except for the 4.70 

argon spectrum, cannot be accounted for by the finite resolution of the 
experiment ( F=6Mhz, ak/k = 0.05 ). A calculation where the finite 
wavelength and frequency resolution of the experiment are convoluted 
into the theory is displayed alongside the data (dashed curves) in Fig. 
8a. The basis for this discrepancy probably lies in the fact that 
ion-electron collisions have been assumed to be unimportant in the 
theoretical formalism. For plasma conditions encountered in this 
experiment, however, such an assumption is most likely invalid because 
the collisional equilibration time between electrons and 
ions [v .(He) = 9nsec, v (Ar) = 70 nsec] is comparable to the period of ion­
acousti51oscillations. The main effect of collisional coupling between 
electrons and ions is to increase the effective thermal conductivity of the 
ions through contact with the highly conductive electrons. This increases 
the damping of ion-acoustic waves, thereby increasing the width of the 
observed resonances. 

Fluctuation spectra predicted by the Kivelson-DuBois solution of 
the Balescu-Lenard equation were also compared to the scattering data 
(Fig. 8b). On the high frequency side of the ion-acoustic resonance the 
theory produces a very good fit; however, at lower frequencies this 
model reproduces the data fairly poorly. It appears that the 
approximations employed by Kivelson and Dubois, in solving the 
Balescue-Lenard equation, somehow overestimate the width of the entropy 
fluctuation contribution to the total spectrum. Finally, it is 
important to point out that the Fokker-Plank and Linnebur-Duderstadt 
models are in total disagreement with the data since they do not even 
predict the existence of an ion-acoustic resonance in highly collisional 
plasmas. 

An issue still not addressed by this experiment is that of entropy 
fluctuations at zero frequency. Both the BGK and Debois-Gilinsky 
theories predict the enhancement of entropy fluctuations at zero 
frequency. In fact, the presence of these fluctuations is hinted by the 
data in Fig. 6. Complete verification of this effect could not be 
obtained with the initial experimental configuration because the finite 
pulse length of the laser and low frequency variations of the laser 
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absorption in the plasma imposed a lower limit on the detection . 
frequency. To overcome this limitation the whole frequency spectrum of 
the scattered light was shifted to higher frequencies by a shift of the 
laser local oscillator frequency. The shift in the local oscillator was 
accomplished by scattering the local oscillator beam from ultrasonic 
waves in a germanium crystal (accousto-optic Bragg cell). The frequency 
shifted scattered beam was then used as the new local oscillator. With 
this modification to the experiment it now became possible to directly 
measure the low frequency entropy fluctuation contribution as well as 
the ion-acoustic resonance in a single spectrum. Initial measurements 
in an argon plasma at 4.70 are shown in Fig. 9. t As expected from the 
BGK predictions, the entropy peak is strongly peaked and comparable to 
the ion-acoustic peak in intensity. 

The simultaneous observation of the entropy and ion-acoustic peaks 
afforded a unique opportunity to measure some basic thermodynamiC 
properties of the plasma. This was accomplished by assuming a fluid 
description of the plasma and comparing the scattered spectra to the 
general predictions of fluid theory. In particular, the spectrum of 
scattered light from a fluid in thermodynamic equilibrium is given by 

- *-<p(k,w)p (k,w» 

- *-<p(k)p (k» 

where Cs is the sound speed, Cp and Cv are the specific heats 
at constant pressure and volume, K is the thermal 
conductivity, and r is the damping coefficient for sound 
waves: 

and n hand nb are respectively the shear and bulk coefficients 
of vi~coSity. 

An examination of this equation reveals that the fluctuation 
spectrum of a fluid plasma is composed of two distinct components: one 
at zero frequency due to entropy fluctuations and one at the 
ion-acoustic frequency. The width of the two resonances is determined, 
respectively, by the thermal conductivity and the ion-acoustic damping 
coefficient. Furthermore, the ratio of the peak intensities is related 
to the ratio of heat capacities Y = C IC by ~(O)/I(kC ) = 2(Y-1) and the 
width of the entropy peak is given byP~wv= Kk Ip C • sThe curve plotted 
alongside the data in Fig. 9 is a least squares PiP to the fluid model. From 
the fit we fi~d that Y = 2.24 and that the thermal conductivity is 
K = 3.84x10 ergs/deg-cm-sec. In comparison we find §hat a calculation of 

the Braginskii thermal conguctivity gives K = 2.33 x 10 ergs/deg-cm-sec for 
the ions and K = 3.75 x 10 ergs/deg-cm-sec for the electrons. The fact that 
the experimental value of the conducti vi ty is about 60% higher than calculated 
ion conductivity but about 2 orders of magnitude lower than the calculated 
electron conductivity suggests that there is a relative small amount of 
coupling between the ions and electrons. Nevertheless, the width of the 
resonances is increased by this interaction between the electrons and ions. 

tThe instrument width of this data has been reduced to 2MH z 
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In conclusion, small-angle scattering measurements of thermal 
ion-acoustic fluctuations from highly collisional (vii/kCs~ 5-13) argon 
and helium plasmas have been obtained. These measurements show 
substantial enhancements of the ion,..acoustic and entropy fluctuation 
resonances due to collisional effects. A comparison to theoretical 
predictions calculated from independent measurements of temperature and 
density shows that the BGK theory is the most accurate in reproducing 
the data. It i,~ demonstrated that fluid theory combined with laser 
scattering experiments can be used to measure plasma transport 
properties. 

In addition to being very collisional, the plasma US3d in this 
~;~:~~~:~~ was characterized by a fairly large (g = 1/mAD~.3) plasma 

Thus, there was a good possibility that, in exception to the 
Linnebur-Duderstadt model, the theoretical models examined in this work 
were inapplicable, due to their formal dependence on g being small. 
Nevertheless, even with g~.3 the BGK and Balescu-Lenard models seem to 
be qualitatively correct. 
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PRODUCTlON AND DIAGNOSIS OF DENSE COOL ALKALI PLASMAS 

INTRODUCTION 

O. L. Landen and R. J. Winfield 

Lawrence Livermore National Laboratory, USA 
Imperial College, Blackett Laboratory, London, UK 

In strongly-coupled plasmas, the electrostatic energy becomes comparable 
to, or larger than, the thermal energy, i.e.: 

2 411'N 113 
_e_ ( __ e) > kT 
411'E 3 e 

o 

In addition, the parameter number of electrons/Debye sphere, NO = 1.7 x 
109 Te3/Z/NeI/Z becomes less than 1 and hence the term non-Debye plasma. 
Under these conditiotls, deviations in electron and ion structure factors 
from the well-known Weakly coupled limits(l) are expected. These devi­
atiotls in plasma behavior should be observable spectroscopically from line­
shape studies and Thomson scattering. 

Non-Debye plasmas amenable to such diagnostics have been produced here by 
resonant and multiphoton excitation of sodium and cesium vapors. (2-5) 
Detailed time-resolved emission spectroscopy and Thomson scattering from 
the ensuing long-lived (> 100 ns) and optically thin plasmas was performed 
and compared with theory. 

EXPERIMENTAL DETAILS 

The experimental set-up consisted of a tunable dye laser pumped by a 
frequency-doubled Nd: glass laser, sodium and cesium ovens and a spectro­
meter/photomultiplier system for spatial, temporal and partial spatial 
resolution of plasma fluorescence and scattered laser light. The typical 
laser output was 25 mJ in 25 ns focussed to a few mm2 in the oven and 
tunable between 5800 and 6900 A by using a variety of laser dyes. Oven 
vapor densities were monitored by using saturated vapor pressure tables(6) 
and measured oven temperatures, and by curves of growth on sodium and 
cesium resonance lines. The plasma and laser light emitted at 90° to the 
laser beam within the ovens was focussed onto 50 to 100 ~m wide horizontal 
slits of an fl4.2 30 cm grating spectrometer. Lineshapes were recorded on 
a shot-to--shot basis with 15 ns, 1.8-2.3 A resolution for the 0.5 cm by 
100 ~m plasma area viewed. Detector sensitivities and spectral calibrations 
were performed using tungsten ribbon lamps and low pressure discharge lamps. 
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IONiZATION SCHEMES 

Sodium plasmas were produced by saturating the resonance transition 
3s~3p at ~ = 5896 A or by two-photon resonant (3s~3d) three-photon ioniza­
tion at ~ = 6854 A. The ionization mechanism in the former case was 
believed to be associative ionization between two sodium atoms excited to 
the 3p state. Cesium plasmas were induced by two-photon ionization at 
~ = 5266 A and ~ = 6354 A. 

EMISSION SPECTROSCOPY: SODIUM 

The column of laser excited sodium vapor emitted a white glow in which 
the following atomic doublet transitions were identified: 3p-ns for n=5-9, 
3p-nd for n=3-10, 3p-nf (dipole forbidden) for n=4-6 and the D lines 3s-3p. 
Lineshapes were recorded for various times between 30 and 400 ns after the 
end of the laser pulse for the transitions 3p-3d, 3p-4d, 3p-5d, 3p-6d, 
3p-5s, 3p-6s at various initial sodium densities, NNa' between 2x 1016 
and 4 x 1017 cm-3. A selection of doublet lineshapes with theoretical 
fits are shown in Figs. 1-3. The 3p-3d transition is optically thick, 
whereas the 3p-4d transition is optically thin but broadened and shifted by 
the ion microfield and electron collisions. The forbidden components 3p-4f 
(Fig . 3) appear on the blue wing of 3p-4d due to mixing of eigenstates by 
the ion microfield. The theoretical fits which include the instrument 
function, resonance broadening,(7) radiation transport and plasma-induced 
broadening(8) are good. 
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Fig. 1. 3p-3d emission line shape for NNa = 1017 cm-3, t = 100 ns. 
Solid line is continuum level and solid curve is theoretical 
fit (Ref. 8) including radiation transport. 
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Fig. 2. 3p-6s emission line shape for NNa = 8 x 1016 cm-3, t = 50 ns. 

Fig. 3. 

Solid line is continuum level and solid curve is theoretical 
fit (Ref. 8). 

500 
3p -4d 

400 

~300 t ,. 30 ns 
';; 
c: 
!! 
~200 

t = 80 ns 
100 

t = 160 ns 
0 5750 5600 5650 

X(AI 

TemPoral history of 3p-4d emission line shape for NNa = 4 x 
1017 cm-3 . Solid curves are theoretical fits (Ref. 8) 
excluding forbidden components and including radiation 
transport. Line shapes are displaced vertically for ease of 
viewing. Vertical solid line is unperturbed 3P3/2-4dS/2 line 
center. 
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F'or isolated lines, plasma- induced line shifts are predominantly due to 
the ion quadratic Stark effect and weak, distant elastic electron collisions. 
Since the shift depends on distant collisions, there is a greater discrepancy 
than for linewidths between theories including and ignoring Debye screening 
of collisions. Hence the ratio of shifl- to--width can be used as a measure 
of the applicability of Debye shielding for dense cool plasmas. This ratio 
is plotled for various electron densities determined from the plasma-induced 
linewidlhs in Fig. 4, showing betler agreement with- theory including Debye 
screening. 

Fig. 4. 
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3p-4d shift-to-width ratio vs Ne measured from 3p-4d 
widths. Dashed line represents theory without shield i.ng and 
solid line includes Debye shielding. 

The spectrally integrated ratio of 3p- 4f forbidden component intensity 
to 3p-4d allowed transition intensity is also an electron density diag­
nostic.(8) The ratio of electron densities determined by such forbidden 
component intensities and by the 3p-4d width is shown in Fig. 5 versus 
electron density detet1nined from the 3p- 4d width. Agreement is good at low 
densities (Ne < 1.5 x 1016 cm-3). The discrepancy at higher densities 
is attributed to the breakdown of the perturbation theory used since the 
intensity ratio has reached 20~ at Ne = 1.5 x 1016 cm-3 . 

The electron temperature was measured from relative line intensities of 
high- lying It'ansitions which are collisionally coupled to free electrons at 
the present densities. For both ionization schemes, Te varied between 
0.19 and 0.28 eV during the first 400 ns of the plasma recombination phase. 
Hence a minimum of 1 electron/Debye sphere was attained, limited by three ­
body recombination which acts to reduce the electron density and raise the 
electron temperature. 
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Fig. 5 Ratio of He measured by intensity of 3p-4f forbidden compOtlent 
and by 3p-4d width vs He measured from 3p-4d width. Solid line 
represents same Ne measured by both diagnostics. 

EMISSION SPECTROSCOPY: CESIUM 

A bluish-white column was formed for all Cs densities above 1016 cm- 3 
for both laser wavelengths used, ~ = 5266 A and ~ = 6354 A. Emission 
lineshapes from the 6p-6d, 6p-7d, 6s-7p, 6p-8d, 6p-9d, 6p-8s and 5d-Sf 
transitions were recorded from the recombining plasmas for various times 
between 50 and 400 ns after the start of the plasma. Electron densities 
below 1017 cm-3 were inferred from the plasma-induced broadening of the 
6p-· 7d, 6p-8d and 5d- 5f transitions. Densities above 1017 cm- 3 were 
deduced ft"om the plasma- induced shift of the 6s- 7p line. (8,9) Time 
resolved electron temperatures were deduced from relative line intensities 
of 6p- 8d, 6p- 7d, 6p- 8s and 6p- 6d, assumi.ng partial T.TE for a 11 states 
above 5d. The results for various initial Cs densities, 50 - 100 ns into 
the plasma phase, are shown in Table 1 for ~ = 6354 A. The plasmas 
produced for ~ = 5266 A yielded electron densities between 1016 and 
1017 cm- 3 and hoUer tmuperatUt"f's, 0.25 - 1 eV. 

Table 1. Results of emission spectroscopy on cesium plasmas produced by a dye laser at >. = 6354 A, 
50-100 nsec into the afterglow. 

Value of Nee. Ne• Te' Ionization, NO 
cm-3 cm-3 eV ~ 

1.5 X 1016 3.0 ± 1 • 1015 0.18 ± .02 20~ 1.7 - 3.4 

4.2 • 1016 1.5 ± .3 • 1016 0.3 ± .05 m 1.6 - 3.2 

1017 3.0 ± .5 • 1016 0.2 ± .05 30~ 0.5 - 1.3 

3 • 1017 1.0 ± .3 • 1017 0.25 ± .05 33~ 0.4 - 1 

5 x 1017 4.0 ± 1 x 1017 ' 0.8 ± .1 60J 0.8 - 2 
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The Cs 1 Sd-Sf lineshape was then recorded in detail at nearly constant 
density but varying temperature and hence varying degree of plasma nonideal­
ity. A typical optically thin allowed 5dS/2-Sf7/2 line and its associated 
forbidden component 5dS/2-5g7/2,9/2 arising from the plasma microfield is 
shown in Fig. 6 for Te = O.S eV. The electron density, Ne = 1.1 x 1016 cm-3 , 
detet~ined from the linewidth and shift agree within experimental error 
(ANe '" 1. lOIS cm--3) and the I ineshape fit is good, Figure 7 shows the 
same transition at a lower temperature (Te = 0.2 eV). The experimental 
lineshape exhibits more asymmelt·y than predicted by theory. Moreover, the 
measured shift-to-width ratio, 0.13 1. .03, is smaller than the theoretical 
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F'ig. 6. Emission tine shape of the Cs I 5dSI2-5f7/2 allowed transition 
and SdS/2-Sg7/2,9/2 forbidden component at Te=O.S eV. The solid 
curve is a theoretical fit (Ref. 8) yielding Ne=l.l 1. 0,2 x 1016 
cm-3 . The so lid tines represent the unperturbed line centers. 
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F'ig.7 Emission line shape of the Cs 1 SdSI2-5f7/2 allowed transition at 
Te = 0.2 eV. The solid cut've is a theoretical fit (Ref. 8) 
yielding Ne = 2.1 x 1016 cm- 3 . The solid line represents the 
unperturbed line center. 
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values including Debye screening (0.18) and excluding screening (0.35).(8) 
Contributions to the lineshape from ion-quadrupole, Van der Waals and 
dipole-dipole interactions are calculated to be negligible. However, more 
exact potentials would be needed to evaluate the effects of close neutral­
neutral collisions on the shape of the 5d-5f line wing. 

LASER SCATTERING: CESIUM 

A 0.1-1 MW, 30 ns laser beam at ~ = 5266 A was used to both ionize and 
scatter from the resultant Cs plasma. The results for the high frequency 
"electron feature" for an initial Cs density of 3.5 ± 0.5 x 1016 cm-3 at 
three progressively decreasing laser fluxes are shown in Fig. 8. The 
plasma parameters deduced are tabulated in Table II. The theoretical fits 
shown by the dashed lines which include the instrument function (FWHK = 
2.5 A) and laser bandwidth (FWHK = 2.5 A) are derived from the usual 
collisionless theory.(10) For the nearly fully ionized plasmas of Table II 
laser flux inhomogeneities will create temperature rather than density 
variations. The wings of the spectra at large detunings (>20 A) shown in 
Fig. 8 which deviate from the theoretical curves could then be explained by 
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Figure 8a. (See page 84 for legend). 
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Figure 8b. (See page 84 for legend). 
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Fig. S. (a) Elect~on feature of scattered spectrum fitted by c = 1.55 ± 
0.05 of collisionless theory (Ref. 10), dashed line, and 
c = 1.55, ce = 0.1 of collisional theory (Ref. 13), solid line. 
(b) Elect~on feature of scattered spect~um fitted by c = 1.7 
± 0.05 of collisionless theory (Ref. 10). (c) Electron 
featu~e of scattered spectrum fitted by c = 2.2 ± 0.1 of 
collisionless theory (Ref. 10). 

lower c scattering ft· om higher temperature fully ionized regions, but only 
if these exceeded 2 eV. It is unlikely, however, that this explanation can 
account for all three wings of ii·ig. 8 since the laser flux was decreased by 
a factor of 7.5 between Figs. Sa and Sc. 

oc 

1.55 ± 0.05 
1.70 ± 0.05 
2.2 ± 0.1 

TABLE Il Results of laser scattering shown In Figs. 8(a}-8(c). 

(GW cm- 3) N, (em -3) T, (eV) 

1.5 3.5 ± 0.2 x 1016 0.9 ± 0.05 
0.7 3.5 ± 0.2 x 1016 0.78 ± 0.04 
0.3 3.15 ± 0.3 x 10 16 0.42 ± 0.04 

ND 

7.8 ± 0.09 
6.3 ± 0.06 
2.6 ±0.05 

Moreover, collisions alter the scattered spect~a as either the non-Debye 
limit is approached(11) or as c becomes large.(12) For 1 < c < 3, 
Lorentzian wings due to collisional damping become observable on the 
electron feature for ce = vec/Wp > 0.05, where ce represents a ratio of 
collision f~equency ve to elect~on plasma f~equency Wp.(13,14) The solid 
curve in Fig. 8a represents a bette~ theoretical fit by including elect~on­
ion collisions(13) for c = 1.55 and ce = 0.1. As expected theoreti­
cally,(ll) it seems clear that the classical theo~y(10) does not breakdown 
substantially at the elect~on featu~e fo~ ND as low as 2.6 at c = 1-3. 
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SUMMARY 

Long-lived (> 100 ns) alkali plasmas with < 1 electron/Debye sphere 
were produced by 1 HW, 25 ns laser beams focused to 107 - 109 W cm-2 in 
dense vapors. Good fits to emission spectra and scattered spectra were 
obtained after including the effects of electron-ion collisions and Debye 
shielding in all cases but the Cs I 5d-5f transition. Since the degree of 
nonideality achieved appeared to be limited by recombination and diffusion 
rates, experiments using shorter pulse lasers and faster diagnostics should 
be used to probe more non-Debye systems. Specifically, a 1 mJ, 1 ps dye 
laser at ~ = 6150 A focused to lOll - 1012 W cm-2 in moderately dense 
(NC~ = 1016 cm-3) cesium vapor should produce a fully ionized (Ne = 1016 
cm- ) lower temperature (Te = 0.1 eV) plasma amenable to pico-second 
Thomson scattering (a = 2-3) with 0.5 electron/Debye sphere. 
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SHOCK WAVES AND THERMODYNAMICS OF STRONGLY COMPRESSED PLASMAS 

INTRODUCTION 

V. E. Fortov and V. K. Gryaznov 

Institute of High Temperatures 
USSR Academy of Sciences 
Moscow 

Nonideal plasmas, the most widely spread state of matter occurring in 
nature, have always attracted the attention of physicists due to a great 
variety of physical propertiesl -.3 and practical applications in some 
modern high energy installations and astrophysical projects. 4 ,5 The 
physical properties of plasmas are greatly simplified at extremely high 
pressures and temperatures, when the kinetic energy of particles consider-­
ably exceeds that of interparticle interaction, such that models of ideal 
homogeneous degenerate (or Boltzmann) plasmas can be applied with assurance. 
A weak interparticle interaction can then be taken into account with the 
perturbation theory methods in the framework of classica16 (Debye .. Hiickel) 
or quasiclassica1 7 (Thomas-Fermi) self-col\sistent field methods. In 
strongly compressed plasmas the interaction energy is comparable to or 
exceeds the kinetic energy of particle motion, which hinders the application 
of perturbation theory to such systems. Parameterless numerical simulation 
methods (Monte-Carlo, molecular dynamics)8-l0 provides comprehensive 
information about the simplest models beyond the framework of the perlur­
bation'theory, e.g., the one-component plasma8 ,9 and the pseudopotential 
model of multicomponent plasma. lO However, for the second model great 
difficulties arise when one tries to choose a qualitatively correct electron­
ion pseudopotential, while it is difficult to apply the one-component plaRma 
results to real plasmas. Therefore, for a qualitative analysis of the 
thermodynamical properties of stL'ongly compressed plasmas there are 
heuristic models in use now, based on extrapolations of general ideas 
concerning the role of collective and quantum effects by the Coulomb 
interaction. These models predict physical effects that are new in 
principle, e.g., metalization and clusterization of plasma as well as the 
formation of yet unknown exotic plasma phases. 2 ,lO-l2 Naturally, all 
these theoretical predictions need verification in experiments with real 
plasmas at high pressure. 

In spite of the fact that the major part of matter in the Universe is 
in the state of a strongly compressed plasma, our experimental knowledge 
about such plasma has been quite limited until now because of great 
difficulties in generation and diagnostics of the high pressure plasma ul\der 
laboratory conditions. 2 ,l2-14 
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The main difficulties in the production of a nonideal plasma are to make 
considerable local energy concentrations, which produce high pressures and 
temperatures above the thermostrength limits of the devices structural 
materials. Consequently, it is necessary to carry out experiments in a 
forced pulsing regime at high power levels. In this case a serious problem 
is the diagnostics of a strongly compressed plasma which is opaque to the 
light. 

In the experimental physics of strongly compressed plasmas the most 
widely used are dynamical methods13 ,15 which employ intense shock wave 
techniques for the compression and irreversible heating of matter due to the 
viscous dissipation of energy in the shock front. In this way physical 
measurements have been carried out over a wide range unaccessible to 
traditional plasma experimental methods; in particular aluminum superdense 
plasma of extremely high energy concentration - 0.7 GJ/cc and pressure - 4 
Gbar has been created. 16 

In this review we discuss experiments on the thermodynamics of nonideal 
plasmas and theoretical models for their interpretation. Data on radiative, 
electrophysical and gas-dynamic properties have been given. 1- 4 

SHOCK WAY!!: COMPRESSION 01," NONlDEAL PLASMAS 

In Fig. 1 the possibilities of the dynamical methods are schematically 
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F·ig. 1. Regions of non ideal plasma existence. The pointers show the 
directions of interaction reduction and simplification of the 
plasma physical properties description. Experiment: Hl' 
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shock waves, Sl-isentropic compression of cesium, H2' H2 
- noble gases compression by the incident and reflected shock 
waves; shock compression of solid H3 and porous Hm metals, 
S2' S3-isenlropic expansion of shock compressed metals. 



outlined. In addition, the boundary of strong nonideality for classical 
(ne~~ « 1, r = (e2/KBT)3/2 (8 ~ ne)1/2 = 1) and degenerate 
(tF = (3 ~ ne )2/3 /(2me) - e2n~/3) plasmas is shown. Use of various energy 
sources, vis. compressed17 ,18 and electrically heated19 gas, chemical21- 23 
and nuclear24 ,26 explosives, powerful laser25 and electron27 beams, 
pneumatic28 and electrod~\amic29 guns has made it possible to create 
strongly compressed plasmas of different elements over a wide region in the 
phase diagram. 

The Boltzmann nonideal gas-like plasma was obtained by the dynamic 
compression of high-pressure gases, the initial states of which were in the 
neighborhood of the saturation curve (cesium,17,18 noble gases20- 22 ,30) 
or even under supercritical conditions. 31- 33 While registering the states 
of single (H) and double (H') compressions, one manages to obtain plasmas 
with supercritical parameters at pressures up to 170 kbar, temperatures up 
to 105 K and electron densities up to 1022 cm-3 and to gain access from the 
side of the "gas" phase to the region of a condensed state. In the case of 
xenon plasmas32 ,33 a maximum density of 4.5 g/cc has been obtained which 
is 1.5 times larger than the xenon crystallographic density and near to the 
solid aluminum density. Adiabatic compression of saturated vapors of cesium 
and potassium34 ,35 (adiabat Sl in Fig. 1) leads to less intensive heating 
of plasmas when charge-neutral interaction prevails. It is essential that 
the shock-wave and the adiabatic compression product not only a nondegenerate 
plasma with extremely high energy concentrations over a wide range of the 
phase diagram, but also under these conditions to perform detailed thermo­
dynamical13 ,14,17-23 electrophysical12 ,31,32 and optica130 measurements 
as well as those of the laser beam reflection. 33 

The compression of metals by intense shock waves enables one to create 
strongly compressed plasmas with the electron's component either degenerate 
or partially degenerate (states H3 on Fig. 1). For this purpose explosion 
and cumulation15 ,36-38 methods, light-gas gun,28 laser25 and electron27 
beams, powerful underground explosions are applied successfully. Of special 
interest for plasma physics are experiments16 ,43,44 in which, by using 
porous samples and ultraintense shock waves, the plasma states at record 
high temperatures and concentrations of heat energy with nondegenerate 
electron component at densities ne - 1023 cm-3 have been obtained. These 
experiments make it possible to investigate the thermodynamics of metal 
plasmas over the entire range of condensed state and to penetrate into the 
region of quantumstatistical description7 up to exotic conditions, where 
the pressure and the energy of the equilibrium radiation become important. 

The method of adiabatic expansion (curves S2) of metals, compressed 
and heated by powerful shock fronts (H3)' is quite effective for the 
generation of plasmas with densities below those of the normal solid. This 
technique makes it possible to explore a wide region of the phase diagram 
from the strongly compressed metallic liquid to the ideal gas, including the 
nonideal degenerate, Boltzmann plasma region, and the critical point 
region. 2 ,13,14 These results serve as a base for wide-ranged semiempirical 
equations of state,14,23 and, in combination with the data from static46 
and electroexplosive46 experiments, enable one to draw more definite 
conclusions as to the form of the phase diagram of metals-which may be 
distorted by plasma phase transitions. 1- 3 ,11,14 

THERMODYNAMIC MODELS OF STRONGLY COMPRESSED PLASMAS 

Analysis of existing experimental thermodynamic information on high 
density plasmas show the absence of any noticeable anomalies,2,12,47 that 
might be interpreted as phase transitions. The phase diagram of metals 
turns out to have a single high-temperature boiling curve and a single 
critical point. We point out also the strange anomaly in the shock 
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compr~ssibility of ion crystals in the liquid phase at r - 1. 48 Their 
discussion,47 and erroneous works49 on Wigner electronic crystals in 
detonation waves corrected in Ref. 50. 

For the interpretation of the thermodynamic experiments the chemical 
picture,1-4 based on the explicit separation of free and bound states, is 
used 

F({N.},V,T) 
1 

+ llF n + llF cou.. ea 
+ llF • f (~ ) 

aa' p e 

3 n;it . 
~ N.~T(1n ~ -1) 
j J j 

-1--1 r(P+1) 
o 

tPdt 
t-~ e e+1 

(1) 

Here nj=Nj/V the densities of the corresponding species, Qj-partition 
functions of the species j, Pe = ~eKBT -the electron chemical potential, 
that satisfies the condition f1/2(~e) = neX~/2, llF- configurational terms. 
At sufficiently low plasma densities, when naB~ « 1 (Bo-ao-atomic 
radius, na -density of atoms) the interatomic interaction can be 
neglected. In addition, far from the saturation curve, where 
~ = (na/KBT) J ~(r)dr«1 (~(r) -charge-neutral interaction potential), the 
charge-neutral interaction is also negligible and the main configurational 
effect is connected with the Coulomb interaction. The usual approaches 
based on the perturbation theory6,51,52 are developed for determining the 
equation of state of reacting Coulomb gases well fitted for the weak 
nonideality limit r«1. Nevertheless some of these approaches are 
satisfactorily extrapolated to the strongly nonideal region, where r-1. 
One of these approaches is the ring Debye-Huckel approximation in the Grand 
canonical ensemble for which configurational term can be expressed according 
t053 

and the partition function is given by 

Qj = ~ gn [exp(-~En)-1 + ~En] ; ~ = (KBT)-1 
n 

The comparison of the P-V-T and P-V-E data obtained in the framework of this 
model with experiments18 ,20--22 reveals good agreement within 20%.4 Never­
theless the difference between the experiment and the theory exceeds the 
experimental error18 ,20-22 both for this approximation and for the other 
usual plasma models with different nonideality corrections (including 
diagranunatic terms of the higher order than ring ones) and various partition 
function cutoff procedures. 4 At the same time the ideal plasma model with 
the weight of the ground state as the atomic partition function gives the 
equation of state quite close to the experimental one. 18 This fact has 
made it necessary to assume17 the existence of an additional repulsion in 
the strongly compressed plasma and (or) a deformation of bound state­
effects, which are not taken into account in usual plasma models. 

In fact under high pressures and temperatures a lot of atoms are 
excited. Their sizes can considerably exceed the size Bo of atoms in the 
ground state and are comparable with the average interparticle distances. 
In this case the restriction of the volume available for the realization 
of excited bound states leads to the strong perturbation of the energy 
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spect~um. To account fo~ this effect in the cu~~ent wo~k the confined atom 
model (CA) is used, which has been ~ecently developed54 fo~ dete~ining 
the equation of state of dense matle~. 

The CA model ~equi~es each atom to be placed in a sphe~ical cell with 
hard walls, hence the effective inle~action ene~gy of atpmic nucleus with 
elect~ons is given by 

U(~) 

o < ~ < ~ - - c 
~ < ~ c-

(3) 

The calculations of ene~gy levels fo~ the g~ound and the excited states 
of the confined hyd~ogen atom54 have shown the dependence of the excited 
state ene~gies on ~c inc~easing sha~ply with the p~incipal quantum numbe~. 
To calculate the energy spect~a of the confined multielect~on atoms the self­
consistent Ha~t~ee-·Fock method (restricted va~iant)55,56 is used in this 
wo~k. The system of integ~odiffe~ential equations is solved fo~ all 
elect~onic te~s appearing in the f~amewo~k of LS-coupling. 

x (~~')f (~')d~' nR.' nR. 

(4) 

+ I 
nl:n' 

tft ,ftf,ft(~) n ... n .. n .. 

fo~ the ~adial pa~ts fnR.(~) of the one-elect~on atomic wave functions. 
He~e VnR.(~) is the self-consistent potential involving inte~action of 
elect~ons with the nucleus and with each othe~. The integ~al in the ~ight­
hand pa~t of (4) is the non-local pa~t of the potential o~ the exchange 
te~. tnR.,n'R. and tnR. a~e nondiagonal facto~s and eigen values dete~ined 
f~om the conditions 

fnR.(O)=Oj fnR.(~c)=O 

)ffnl(~)fn'l(r)dr = 0nn' 
(5) 

The system (4) is numerically solved for various values of tnl and defines 
a discrete spectrum of atoms in the plasma (Fig. 2). The equilibrium value 
of the parameter rc is obtained from the condition of the free energy (1) 
minimum 

aF = 0 
ar 

The free energy depends on rc through both the partilion function 
Qa = Qa(rc ) and the configurational te~ AFaa • which has the fo~57 
corresponding to the interaction of hard spheres 

AF aa - AF'HS N~T~y y 
a O_y)2 

approximating the results of numerical calculations by the molecular 
dynamics method. 58 

(6) 
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'I'his thermodynamically enclosed model is in fact the synthesis of purely 
plasma ideas on ionization equilibrium and a model of hard spheres taken 
from the theory of simple fluids. In contrast to cell models of solids59 ,60 
the above approximation is made in the framework of a description taking 
explicit account of translational degrees of freedom of separate particles 
and which distinguishes between free and bound electrons. The comparison of 
this model with experiments (Figs. 3, 4) shows. that the CA model.* cort'ectly 
reflects the experimentally obeserved tendency towards the decrease of 
plasma compressibility, overestimating, in some way. the repulsion effects 

F·ig. 2 
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Quantum-mechanical calculation of the energy spectrum of 
compressed argon in the framework of the confined atom model. 

at high compressions. To improve the CA model both the boundary conditions 
for wave functions (5) and the interatomic repUlsion model (6) should be 
replaced by more adequate ones. 

One of the main problems of the quasichemical model of the strongly 
coupled plasma is the dividing of charges into free and bound. Separation 
of bound states demands the modification of the interaction between free 
electrons and ions at short distances. This effect in plasmas is taken into 
account by the introduction of the pair electron-ion pseudopotential. 61 
Calculation of its parameters is very complicated problem, but in the 
strongly compressed plasma it can be solved semiempirically.62 In this 
case the pseudopotential is given by62 

2 
!L [1 - exp 
l' 

2 
!L 
l' 

Parameters of the pair correlation function 

F ± (1') = 1 ± Co exp ( - vr) [s:;wr)] 

"'0' v, ware determined from the screening conditions 
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Fig. 3. 
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Equation of slale for Cesium Plasma at V=200 cclg (a) and V=lOOO 
cclg (b): I-Experimental data;18 2-Debye -Huckel approximation 
in the Grand canonical ensemble to 6Fco ~;53 atoms-ideal sub-· 
system; 3-CA model; 6Fcou~ corresponds;~ 4-approximation62 for 
6J.i·cou~; atoms-non interacting particles; 5-CA model wilh62 the 
Coulomb interaction term; 6-ideal plasma model; the parlilion 
function Qa=go -the weighl of the ground state. 
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and approximate relation between the amplitude of a screening cloud 
and the depth of the pseudopotential 

Corrections to the ideal-gas thet1Uodynamic function are given by 

n = Vne f (e2/r) [F+ - F_l dr 

liE = Vne f [F+~ei'- F_~iil dr 

llPV=1I3 (2AE-n) 

Where n is the potential energy. To choose the main parameter of the 
model, the depth of the pseudopotential ~ei(O), use is made of the 
experimental data on shock-wave compression of cesium plasma,17,18 which 
shows that the best description of this experiment can be obtained on 
putting ~ei(O) equal to the value of energy which divides particles into 
free and bound -KBT. This model works properly at considerable degrees of 
ionization, and in combination with the CA model (4-6) shows the satis­
factory description of the experimentI8 over all the experimental region 
(Fig. 3). 
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Thermal Equation of state for Argon Plasma: I-Experimental 
data;20 2-approximation53 for charged subsystem; 3-pseudo­
potential mode161 with the second virial coefficient66 for 
atomic interaction; 4-CA model with approximation53 for 
charged subsystem. 

An extremely interesting region for applying the chemical model of the 
plasma is the multi-megabar pressure range, realized by compression of 
solids by shock waves of extreme intensities. One of the examples of 
chemical model applications is the interpretation of the experiments on the 
shock compression of porous copper samples by superintensive shocks,43,44 
which make it possible to obtain extremely high concentrations of thet1Ual 
energy (- 0.75 MJ/cc) of a superdense (ne - 2 1023 cm-3) plasma 
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of high (P up to 20 Mbar) pressure. At the maximum temperatures attained, 
T-3-5 0 105 K, degeneration of electron is removed, ne~~ - 0.7, the 
ionization degree of such plasma reaches five, while short-range and Coulomb 
interactions (r - 2) are strong. It should be noted that the Thomas-Fermi 
model with quantum and exchange corrections63 gives values of density 
20-30% exceeding the experiment43 ,44 and distinction in pressure reaches 
up to several times. The chemical model of plasmas9 makes it possible to 
analyze qualitatively some effects of the equation of state including the 
so-called electron-shell structure effects. In the equation of state of 
copper the Coulomb corrections (2), electron degeneration according to (1), 
and the short-range repulsion (6) of ions are taken into account. The 
parameter rc of the short-range repulsion is evaluated from the Hartree­
Fock calculations under boundary conditions (5) and is chosen to be 1.75 ao ' 
Partition functions of atoms and ions are calculated using energy levels65 
and ionization energies from. 64 Degrees of ionization up to tenth are 
taken into consideration. 

The Hugoniots calculated by the plasma chemical model are represented in 
Fig. 5, for initial porousities of sample m=poolpo=3(a) and 4(b). One can 
see the satisfactory agreement with the experiment in opposite to the Thomas­
Fermi 63 model. From the chemical model effects under consideration the most 
essential is the short-range repulsion, the absence of which leads calculated 
plasma densities to be 1.5 times more than measured. The results of calcula­
tion are less depended upon the Coulomb correction and excited states, 
inclusion of both leads to an increase of calculated density. The least 
significant is the degeneration of electrons according to (1). 
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F'ig. 5. Compression of Porous Copper with m=3(a) and 4(b) by Intense 
Shock Waves: l-Experiment,43 2-experiment;44 3-the Thomas-
Fet~i model;63 4-current work. 
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STRONGLY-COUPLED PLASMA DIAGNOSTICS AND EXPERIMENTAL DETERMINATION 

OF DC ELECTRICAL CONDUCTIVITY 

INTRODUCTION 

Marko M. Popovic~ and 
Svetozar S. Popovic 

Institute of Physics 
Beograd, Yugoslavia 

In the last few years a remarkable "effort was made to collect and 
analyze the observed behavior of plasmas with 0.1 < r < 10 produced 
under conditions of high densities of charged particles (1017 cm- 3 or 
more) and temperatures around 104 _105 K. Dense plasmas with lower 
values of coupling factor are produced by stationary or pulsed electrical 
and optical discharges. Higher values of r can be obtained in shock-
wave generated plasmas and there is an overlapping region where both 
experiments in discharges and shock tubes can be performed. This is an 
important fact for the reason that the results obtained by diagnostics of 
shock-wave produced plasmas can be compared and checked by more 
sophisticated methods of arc physics. This paper will try to point out 
some of the problems the diagnostics of dense plasmas are faced with, to 
show how arc physics is solving them, and to propose some experiments to 
be done in order to establish more reliable diagnostic methods for plasmas 
with higher values of r. 

A comprehensive study of weakly nonideal plasmas from the point of 
view of arc physics was given by K. Gunther and R. Radtke (1). This book 
explained the physical background of the observed efforts and the 
experimental techniques used in electric arc plasma diagnostics and 
determination of transport properties. Although quantitative 
understanding of phenomena in arcs is quite satisfactory, very low r 
values do not offer many possibilities for universal conclusions. 

Methods of generation of nonideal plasmas are discussed in detail by 
Kulik2. A wide variety of devices, from electric furnaces with steady 
or pulsed heating, electric arcs including free-burning, wall-stablized, 
stationary, as well as pulsed discharges were described. Dynamic 
compression and ex~ansion methods are also given, but more details could 
be found elsewhere. Plasma diagnostics could be in a sense facilitated 
if one of the thermodynamic properties would be kept constant during 
observation time. Some of the experiments do offer such pOrsibilities and 
so there are isochoric gas heating in an electric discharge , isobaric 
capillary discharge,Z isobaric expansion of an exploding wire4 , and 
adiabatic compression. S 
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Results of dynamic experiments that have had remarkable progress in 
the last decade are also reviewed in Ref. 3 and Ref. 6. 

The present status of knowledge on physical phenomena in non-ideal 
plasmas are synthesized in the monograph by V. E. Fortov and I. T. 
Iakubov. 7 This systematic description and analysis of phenomena in 
dense plasmas revealed a lot of open questions, most of them connected 
with the influence of elementary processes to the macroscopic properties 
that are usually derived from measurements. In that sense, static 
electrical conductivity being the most illustrative and easiest to 
observe, can be used for demonstrating solutions to more general problems, 
provided that adequate diagnostic methods were used. 

Presently there are many types of plasma devices that could under 
certain conditions give reliable information of plasma state and other 
parameters necessary to localize the measured DC electrical conductivity. 

Among those that are mostly used one could point to plasma arcs (r ~ 0.3), 
shock-compression devices (r ~ 10), ballistic compressors (r ~ 1) and 
isobaric expansion devices (r ~ 2). At certain well- controlled conditions 
these devices could give local values of parameters with satisfying 
reproducibility. 

Plasma parameters and macroscopic properties are evaluated from basic 
diagnostic data such as intensity of radiation, interferometric pattern, 
shock-wave velocities, electric potential, etc. 

Pressure and mass density are the only parameters that are relatively 
free from traps consisting of certain model assumptions that are not 
satisfactory describing the complete plasma dynamics. Temperature 
particle number densities, electrical conductivity absorption coefficient 
and other parameters should be measured and evaluated with much more care 
due to their relations to the basic diagnostic data. Quantitative 
description of these relations is presently very doubtful in the case of 
plasmas with higher coupling parameter r. 

Additional experimental difficulties arise from the fact that high 
particle density regions make difficult the penetration of a diagnostic 
tool into the plasma core. Therefore, for every particular case it is 
necessary to find a new way to avoid strong absorption on boundary layers 
and high gradients of plasma parameters along the observation path. 

Insufficient knowledge of elementary processes and underdeveloped 
diagnostic devices complete the list of technical problems that are to be 
considered in order to make a properly designed experiment in this field. 

TEMPERATURE MEASUREMENTS 

There are two principal ways to derive temperature from basic 
diagnostic data in dense plasmas: 

1. Quantitative spectroscopy based on elementary processes that may occur 
in dense plasmas. Spectra of optical radiation offer a variety of 
effects that could in principle be used for temperature diagnostics. 
Temperature-dependence of spectral line broadening and shift, spectral 
line intensity, relative line-to-continuum intensity and relative 
continuum intensity are among them. However, traditional approaches 
to the plasma optical properties based on impact or quasistatic 
microfield approximations, are no longer applicable. There are 
significant deviations from simple analytical expressions for density 
and temperature dependence of spectral line widths which make the 
diagnostics based on line spectrum rather doubtful. 
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2. Absolute measurement of radiation intensity in spectral regions where 
it is completely independent of atomic properties. Considering the 
problems concerned with the quantitative knowledge of elementary 
processes we would prefer using thermodynamic properties of the 
radiation in nonideal plasma. This method is very convenient for 
spatially extended plasma arrangements of constant temperature with 
comparatively high absorption. 

At least two measurements of radiation intensity are necessary. One of 
these measurements should be absolute. 

We will illustrate briefly the method on a few examples. 

Pulsed Arc 

A typical pulsed arc device is described in detail in Ref. 1. For the 
purpose of temperature diagnostics plasma is observed end-on through a 
quartz window and the observation path is following a layer of constant 
temperature except for the boundary region near the window. An auxiliary 
movable electrode is providing the possibility of two intensity 
measurements at two different observation lengths without disturbing 
isochoric nature of the discharge. 

Temperature distribution along observation path is given in Fig. 1 and 
its typical time dependence in Fig. 2. 

Intensity I (A,x) emitted along the observation path is given by 
radiation transfer equation 

d I (A.x) 
d x 

where 

K'B (A,T) - I (A,x) 

K' = K(A,T)(l - e 

- hc 
KT 

B(A,T) - blackbody intensity at the temperature T. 

(1) 

Measured values of radiation intensity at particular distance 1 is 
introduced by boundary condition 

(2) 

T I 

-obs 

x t 
Fig. 1 Fig. 2 
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By combining measured intensities with inherent boundary. condition 

I(~,O) = B(~,T) (3) 

one can develop a procedure for evaluation of unknown values B(A,T), 
K(~,T) and finally temperature T. 

In certain cases absorbance in boundary inhomogeneous layer can be 
neglected and (1) can be reduced to 

I(~,T) - 11 - exp(-K(A,T) xl B(~,T) 

with unknown values K(A,T), B(A,T) and T and measured values 
I 1(A,T) at observation length 11 as an absolute intensity, and 

1 - exp( -K11 ) 

1 - exp( -K12 ) 

Then T is obtained from blackbody function 

B(~,T) 

Shock-Compression Tubes 

(4) 

(5) 

(6) 

There are many different constructions of explosive shock-compression 
devices which are reviewed in Ref. 3 and Ref. 6. 

Temperature profile along the observation path is similar to the case 
of pulsed arc, except for the fact that both the front and rear edge of 
the plasma are moving during measurements with shock-wave velocity D, and 
free surface velocity U. Temperature profile and time dependence are 
given in Figs. 3 and 4. 

When absorbance along shock front can be neglected, intensity of 
radiation emitted from a homogeneous layer along the observation path is 
given by 

I(T,A,t) = B(A,T) {l-exp -IK'(D-U)lt} 

with K' being absorption coefficient corrected for stimulated 
emission, D shock-wave velocity, U free surface velocity. 

I1T,A,tl 

- obs 

x 
~u 1--0 

Fig. ~ Fig. 4 
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Saturated values of radiation intensity in Fig. 4 Is(A,T) is 
then interpreted as blackbody function B (A,T). The second measured 
value is the ratio of radiation intensity I(A,T,t) to saturated 
intensity Is(A,T). 

However, the assumption of negligible absorbance along shock-wave 
front should be checked carefully for every particular experiment~l 
condition. If this assumption is violated, then radiation transfer 
differential equation similar to. (1) - (3) should be used. 

Optical Discharges 

Optical discharges created in the focus of laser radiation require an 
inversion procedure for exact profile T(x) measurement. The full 
procedure is rather complicated ang it has been performed until now only 
in a stationary optical discharge. 

In performing absolute measurements of radiation intensity one has to 
take care of some conditions that are to be fulfilled if simple relations 
as (4) or (7) are used. 

First, absorbance at boundary layers should be small for the 
particular wavelength of observation 

x+d 

A - J K(T(x» d x « I 

x 

(8) 

Although the thickness of the boundary layer is of the order of one tenth 
of a millimeter in cases of higher density this layer is able to reabsorb 
the emitted radiation. If this happens, brightness temperature that can 
be obtained by comparing plasma radiation to standard brightness source is 
different than the actual thermodynamic temperature. 

Second, relative error in temperature measurement is connected to the 
radiation intensity by the following relation 

c 2 dI 11 - exp (- AT )1 I (9) 

where c2 is the constant from Planck's blackbody radiation law. This 
relation suggests the choice of small products of wavelength A and 
plasma temperature. For a given plasma temperature observation wavelength 
should be as small as possible. 

Also, the temperature determination method suggested here can be 
applied if the optical thickness of the boundary layer is negligible and 
the product AT so small as to diminish the experimental error. 

Both conditions can be fulfilled if the observation wavelength is as 
short as possible. 

Transverse gradient of temperature, particle number density and 
consequantly refractive index along the observation path could cause a 
substantial deviation of the observation beam in the direction of 
increasing r~fraction. 
expressed by : 

This deviation in radiation direction can be 
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L an aT 
2n aT ar (10) 

where 2 is the plasma length, n reflective index and T(r) radial 
temperature profile. This deviation can produce serious distortions in 
the measured temperature profiles. 

Finally, the comparison of radiation intensity from plasma and 
standard radiation sources has its own rules. The ideal situation that 
both plasma and standard radiation source have the same temperature and 
directly comparable radiation intensities is never fulfilled. The problem 
then is consisted in the large attenuation necessary to compare the plasma 
intensity with a radiation standard. One or more reflections of the 
observation beam at a pure glass surface can yield attenuation by 
incidence sufficient enough for comparison of the two radiation 
intensities. According to Fresnel's law for one reflection one gets 

r 
2 

(l+~ 
2 

2 - 0: 

• 
2 

!L 
2 

n 
(11) 

where n is the refractive index of the glass and 0: is the angle of 
incidence. In this case a well calibrated glass reflector with accurately 
determined refractive index is necessary. 

Different timing of gated detectors gives another possibility for a 
controlled reduction of plasma radiation intensity. 

These problems connected with absolute intensity measurement should 
not be neglected in the design of experiments in dense plasmas. There are 
two main principles: 

1. Absorption coefficient at the observation wavelength K(A,T), 
plasma length and the thickness of boundary layer d have to be chosen 
so that 

. (12) 

If it is not possible, a new procedure for temperature determination 
should be developed, based on more treatment of radiation transfer. 

However, by choosing observation wavelength in ultraviolet region one 
can avoid these problems with interpretation of basic diagnostic 
data. For instance, for a shock-c~mpressed argon with typical values 
of plasma parameters ne = 1020 cm- , T = 20000 K, D = 7 km/s, 
2 = 10 mm, d = 0.3 mm, r = 1.9, the absorption coefficient in 
the ultraviolet region is low enough so that condition (12) can be 
fulfilled at r < 270 mm. For higher observation wavelength a 
differential equation of radiative transfer has to be used. 

2. The temperature of standard radiation source should be as high as 
possible, with the necessary precision in radiation intensity. 
Unfortunately, standard radiation sources with precision within 1% in 
intensity, tungsten ribbon lamps and carbon arcs, have much too low a 
temperature. Therefore, new standard sources are to be developed. A 
possible candidate for pulsed arc experiments could be a pulsed arc in 
xensn which already can reach a precision of order of 5% at 12000 
K.l Detonation wave in some gas mixturesll or shock-compressed 
xenon could be possible secondary standards for shock tube experiments 
in the future. 
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For the reason of strong absorption in boundary layers standard 
brightness sources could give doubtful information on temperature in 
plasma core. 

PRESSURE MEASUREMENT 

Usual detectors for transient pressure measurements in pulsed arcs are 
piezoresistive or piezocapacitive probes. They have a linear response 
from DC to several hundred kHz, and can be calibrated in stationary regime 
and used for measurements with pulses longer than 10 ~s. A protection 
against thermal stress should be provided. 

In shock-compression experiments, pressure is evaluated from shock and 
particle velocities and mass density measurements. This procedure is very 
well established due to extended EOS measurements, so that pressure is not 
considered as a parameter which could cause any problem in dense plasma 
diagnostics. 

MEASUREMENTS OF PARTICLE NUMBER DENSITIES 

Diagnostic methods based on elementary processes inside the plasma are 
not to be considered as independent diagnostic tools for determination of 
particle number densities in high pressure plasmas 

All methods that produced more or less reliable results were based on 
the analysis of the interaction of external radiation with the plasma. 
Among them, measurements of refractive index are mostly used. 

In the case of large gradients over the whole observation path, as in 
cascade arcs, capillary discharges, and optical discharges, the Schlieren 
technique has a certain diagnostical capability.12 This method is based 
on recording the deflection of a light beam travelling through a plasma 
density gradient. 

The laser interferometry method is usually based on recording the 
temporal change of refraction index, corresponding to a simultaneous 
change of plasma parameters1 It is still considered as a suitable method 
for pulsed arc diagnostics. 3 

Methods based on direct measurements of plasma frequency are suggested 
in literature14 , 15 but these ideas need further development. 

Particle number densities are often evaluated from relations 
describing equilibrium plasma composition and direct measurements of 
pressure and temperature only. These results can be treated only as a 
rough estimation since the equilibrium plasma composition is itself a 
subject of investigation. 

DETERMINATION OF ELECTRICAL CONDUCTIVITY 

Local values of electrical conductivity in a plasma are usually 
derived from Ohm's law 

I 
E J a(x,y) d s 

S 

(13) 

105 



where I is the electric current, E is the electric field and a(x,y) 
local value of electrical conductivity. 

In cylindrical symmetry (13) takes the form 

I 

R 

2 ~ E J a(r) r d r 

o 

where R is the plasma radius. 

(14) 

In pulsed arcs two probes for electrical measurements are enough. In 
shock-compression experiments two probes for current test and two 
potential probes are necessary. 

The unknown quantity in (13) is the electrical conductivity a 
which is basically a function of temperature. It can be transformed to a 
standard form of an inhomogeneous Volterra integral equation of the second 
kindl : 

a(T ) ax K (T,T ) a (T) d T ax f (T ) ax (15) 

where tax is the plasma axis temperature, TO wall temperature and we 
identify as the imhomogeneous part 

f(T ) 1 _d_ I 
ax R2 g (Tax,Tax) d T E 

~ 
ax 

and as the kernel 
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K(T,Tax) 
g 

where g(T,T ) ax 

1 

(Tax' Tax) 

ax 
aT 

a g (T, Tax) 

a T ax 

2 x = (r/R) . 

Now a(T) is an unknown function. 

Equation (15) has a convergent numerical solution in the form: 

a(T) 

Pn+l(T) 

f(T) 

T 

-J K (T' ,T) Pn(T') dT' 

TO 

(16) 

(17) 

(18a) 

(18b) 

(18c) 



Measured values in this procedure are axis temperature Tax' 
corresponding voltampere characteristics liE = F(Tax) and observation 
layer radius r. 

This is a eonsequent procedure with well defined and controlled 
numerical accuracy but with high demands in accuracy of basic experimental 
information, such as voltampere characteristics, axis temperature and 
radial temperature profiles. If this cannot be fulfilled methods based on 
a priori assumptions on the temperature dependence of the electrical 
conductivity can be developed Some arbitrary constants should then be 
optimized so that (13) is satisfied. 

In some recent papers16 -18 trial function a(T) was constructed 
in the same way as calculated a(T) for ideal plasmas with interaction 
of electrons with neutral included. A free parameter is introduced in the 
Coulomb logarithm through effective screening radius rs = xD, where D is 
Debye length and x is to be changed in an iterative procedure until the 
relation (13) with experimental values for electric current and field 
strength is satisfied. 

Finally, the evaluat~on of electrical conductivity can be trivial by 
applying simply a = I/~R E is one assures homogeneous plasma in 
his experiment. It should be noted, however, that even in radiation 
dominated plasmas where the radiation transfer is cooling the inner parts 
of plasma and flatten temperature profiles, the results obtained by this 
simple formula proved to be incorrect. 

It is the fact that experiment results for static electrical 
conductivity differ in plasmas with 0.1 < r < 10 sometimes by a factor 
of 2 or more while authors claim accuracy in measurements within 10 to 40 
percent. In that sense a(T,P) and K(A,T,P) are still not 
perfectly established (see Fig. 12, 14 and 15 in Ref. 6 and Fig. 8 in Ref. 
5. Although pressure diagnostics has a satisfying precision, temperature 
diagnostics suffer from the lack of reliable absolute radiation intensity 
measurements and the influence of elementary processes which is still not 
clearly observed. Besides, unprecise radiation standards at elevated 
temperatures are the limiting factor for optical radiation measurements. 

REFERENCES 

1. K. 

2. P. 

3. V. 
4. G. 

5. K. 
6. V. 

7. V. 

8. C. 

9. S. 
10. K. 
11. R. 

12. J. 
13. N. 

Gunther, R. Radtke, Electric Properties of Weakly Non-Ideal 
Plasmas, Birkhanser Verlag, Basel, Boston, Stuttgart (1984). 

P. Kulik, V. A. Ryabiy, N. V. Yermokhin, Neidealynaya Plasma, 
Energoatomizdat, Moscow (1984) in Russian. 

E. Fortov, Sov. Phys. - Uspekhi 25:781 (1982). 
R. Gathers, J. W. Shaner, D. A. Young, Phys. Rev. Lett. 33:70 

(1974). 
Gunther, H. Hess, R. Radtke, Inv. Papers, 17th ICPIG 120 (1985). 
A. A1ekseev, V. E. Fortov, I. T. I akubov, Sov. Phys. - Uspekhi 

26:99 (1983). 
E. Fortov, I. T. I akubov, Fizika Neidea1ynoy Plasmi, Cernogolovka, 

In Russian (1984). 
Car1hoff, E. Krametz, J. H. Sch~fer, J. Uhlenbusch, J. Phys. B, 

19:2629 (1986). 
S. Popovic; N. Konjevic; Zs. Naturforschung 31a:1042 (1976). 
G~nther, R. Radtke, J. Phys. E 8:371 (1975). 
G. Mcqueen, J. N. Fritz, Proc 1st Conf. Shock Waves in Condo 

Matter, Menlo Park 193 (1981). 
Glasser, R. Villadrosa, J. Chapalle, J. Phys. D, 11:1703 (1978). 
Uzelac, N. Konj,evic; Phys. Rev. A, 33:1349 (1986). 

107 



14. M. Skowronek, J. Rous, A. Goldstein, F. Cabannes, Phys. Fluids 13:378 
(1970). 

15. P. Bakshi, G. Kalman, Phys. Rev. A, 30:613 (1984). 
16. K. Gunther, M. M. Popovic; S. S. Popovic; R. Radtke, J. Phys. D, 

9:1139 (1976). 
17. C. Goldbach, G. No11ez, M. M. Popovic; S. s. Popovic; Zs. Naturf. 

39a:11 (1978). 
. 

18. K. Gunther, s. Lang, R. Radtke, J. Phys. D, 16:1235 (1983). 

108 



CHAPTER III 

MOLECULAR DYNAMICS AND 

KINETIC THEORY 



TWO-COMPQ;\iENT PLASMAS IN TWO AND THREE DIMENSIONS 

J~nn-Pierre Hansen 

Li1bcri1toin~ de Physique Theorique des Liquides 
UniVf'fsitP Pierre et Marie Curie 
75252 Paris Cedex 05 

1 - 1 NTR.ODlr(;nON 

The two-component plasma (TCP) is a model system made up of Nt 
positive charges ql and N2 negative charges q2 in a d-dimensional volume 
Q. The corresponding number densities na = Na /Q satisfy the charge 
neutrality requirement 

(1.1 ) 

We shall be mostly concerned with point charges, and more specifically 
with fully stripped ions (qt = + ze) and electrons (q2 = - e, where e is 
the elementary charge) ; the interact.ion is then purely Coulombic and the 
total Hamilt.onian of the system can be cast in the form : 

(1. 2a) 

where 

Nee 
') 

p~ 
'\ '\ 

~ ~ 

Haa = _1_ + ( I ri - r j I ) 
i::l "" <""jVeea 2ma i 

(1. 2b) 

Nl N2 
'\ '> 

~ ~ 

V12 ... 
j::l V'2 ( Iri - r -I) 

i=1 J 
(1. 2c) 

(1. 2d) 

and ~(r) is the solution of t.he d-dimensional Poisson equation, i.e. 
~(r) = 1/1' in 3d and ~(r) = -In(rIL) (with L an arbitrary scaling length) 
in 2d. Partially stripped ions (of well-defined valence Z) have a finite 
core, so that the ion-ion potential v11 (r) must then include a 
short-range Born-Mayer repulsion, while the ion-electron interaction can 
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be described by a pseudo-potential for distances shorter than the core 
radius. However, except at very high temperatures, the Coulomb repulsion 
between ions is sufficiently strong to prevent the cores (of diameter ~ 
say) to come into contact (i.e. Z2e2/~»kBT in 3d) so that a point ion 
description is generally adequate. 

Now it is convenient to add opposite uniform backgrounds (of charge 
density Po % n1q1 % n2q2) to the ion electron system; the 
correspondIng ion-background, electron-background and background-back­
ground Coulomb interactions are divided among H11 , H22 and V12 in such a 
way that each term has now separately a well-defined meaning in the 
thermodynamic limit. The total hamiltonian takes then the form1 : 

(1. 3) 

where H11 is the familiar "one component plasma" (OCP) hamiltonian of the 
ions, H22 is a similar oCP (or "jellium") hamiltonian for the electrons, 
and V12 is the sum of V12 and of the background-background potential 
energy. 

Dimensionality has a strong influence on the behaviour of a 
two-component Coulomb gas. In ld, the Coulomb gas is a dielectric at all 
temperatures oppposite charges are always bound in pairs2. In 3d the 
Coulomb gas is believed to be a conductor (or plasma) as long as it 
remains in a disordered (fluid phase), but Quantum Mechanics is essential 
to prevent collapse of opposite point charges due to the attractive r- 1 
singularity of the Coulomb potential. The 2d case is the most 
interesting, since the corresponding Coulomb gas is a dielectric below 
some density-dependent critical temperature, while it is a plasma above 
that temperature. This dielectric-plasma transition is the prototype of a 
Kosterlitz-Thouless (KT) transition in 2d systems, which is always 
characterized by a divergent response (susceptibility) to an external 
field3 ,4,s. 

In the next two sections, we first consider the two-component plasma 
(or Coulomb gas) in 3d, while the 2d Coulomb gas will be subject of the 
last sections. 

2 - DIFFERENT REGIMES IN THREE DIMENSIONS 

Two complementary approaches have been used to describe ion-electron 
plasmas in 3d they apply to different degeneracy regimes of the 
electronic component. 

For strongly or partially degenerate electrons (i.e. for 
temperatures T ~ TF, the Fermi temperature), a two-fluid description, not 
unlike that of liqujd metals 6 , appears to be the most natural. According 
to (1.3), the ion-electron system appears as the superposition of two 
independent OCP's which are coupled by V12 . The properties of the 
classical ionic OCp? and of the fully or partially degenerate electron 
"jellium"a,9 are reasonably well known, so that it appears natural to 
treat the ion-electron coupling V12 by perturbation theory. To zeroth 
order in V12 , the plasma properties are just the sums of their ionic and 
electronic OCP counterparts. The first order term vanishes, due to 
spatial homogeneity and charge neutrality. To second order, ion-electron 
coupling is described by linear response theory. Such a program was 
carried through for the thermodynamic properties of very denses plasmas 
with fully degenerate (possibly relativistic) electrons 1o • The procedure 
has been considerably deve loped and improyed by Ichimaru and coworkers 11 , 
who studied static and dynamic (transport, collective modes) properties 
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of i on-e 1 ectron pI asmas over an extflns 1 ve l'f1ngfl of f-] ectron degenen1cy, 
including static local field corrections. Similar ideas have been applied 
to the two-temperature ion-electron plasma12 • 

To go beyond the linear screening approximation in the treatment of 
the ion-electron coupling, one can resort to the familiar 
Kohn-Sham-Mermin density functional formalism, as illustrated by the work 
of Chihara13 and Perrot and Dharma-Wardana t4 , described elsewhere ill the 
present procedings. 

Tn thfl opposite regime of weak degeneracy (T ~ TF), an alternative 
description of ion-electron plasmas is based on the use of effective 
pntp.(!tials t.o modp.l quantum effects a.t !'!hort distances, jn conjun('tion 
with classical Statistical Mechanics. This approach is presented ill the 
next section in the case of a hydrogen (electron-proton) plasma. 

3 - THE SEMJ-CLASSfCAJ. HYTlROGF.N PLASMA 

To evaluate the importance of quantum effects for electrons, we must 
compare the following three fundamental lengths : 

I (Landau length) (3.1a) 

a = (electron sphere radius) (3 .lb) 

(thermal de Broglie length) (3.1e) 

The ratio of the first two lengths defines the dimensionless Coulomb 
coupling parameter: 

e 2 
I'=_e_= __ _ (3.2) 

a akBT 

In the absence of interactions (e ~ 0), only a and ~2 are relevant length 
scales. The corresponding ideal Fermi gas is non-degenerate, provided ~2 
< a (or T > TF), which implies the following condition: 

a 
(3.3) 

In the presence of interactions, close electron-electron collisions can 
be treated classically, provided ~2 < 1, which yields the condition 

(3.4) 

Hence a semi-classical description of the plasma may be expected to be 
reasonable as long as : 
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1 
(3.5) 

which requires, in particular, that r ~ 1. Notice that, for any fixed 
density, quantum effects eventually take over at sufficiently high 
temperatures, i.e. in the weak coupling limit. 

Since the classical partition function for an electron-proton plasma 
does not exist at any temperature, due to the Coulomb collapse of 
oppositely charged particles, the use of an effective ion-electron 
potential, accounting for the "smearing" of the electron charge over a 
sphere of radius ~ A2 (Heisenberg uncertainty principle) was suggested a 
long time ago by Morita's. A very simple form for the effective 
potentials, valid for sufficiently low densities, was suggested by 
Deutsch and collaborators16 , namely 

[1 - exp { - r/Aa~}] (3.6) 

where 

(3.7) 

and lJa~ is the reduced mass for an a-~ pair. This "primitive model"of a 
hydrogen plasma accounts for quantum diffraction, but not for electron 
symmetry (Pauli principle) effects, and is expected to be physically 
relevant in the thermodynamic range (3.5). Electron symmetry effects may 
be approximately accounted for, by adding a "Pauli repulsion" term to 
v2Z(r)16 ; an even finer semi-classical description distinguishes between 
eIectron pairs with parallel and antiparallel spins, with a.Pauli 
repulsion acting only between the former l7 • This procedure may be 
adequate for the description of static structure, but is dubious when 
applied to dynamical properties (like electron transport), as shown by 
the recent kinetic theoretical investigation of Wallenborn et al. 
reported in the present procedings. 

The "primi ti ve model" ( 3.6) of a hydrogen plasma has been 
extensively studied in the strong coupling regime (r~l) compatible with 
the restrictions (3.5) by Molecular Dynamics (MD) computer simulations 
and by Kinetic Theory. One of the main difficulties in the simulations 
is that two very different time scales are involved, since the ratio of 
the electronic and ionic plasma frequencies wp2 /wpl scales as 
(m,/m2 )1/2 ~ 43. The M.D. time step must be adapted to the faster elec­
tronic motions IS. This means that little or no information is gained 
concerning the much slower ionic motions and the dynamical properties 
associated with them, like the shear viscosity of the plasma. This is 
illustrated in Fig. 1, taken from the thesis of B. Bernu, which shows the 
decay of the normalized autocorrelation function (ACF) ~(t) of an 
off-diagonal element of the stress tensor. 

The initial, rapid decay may be associated with the fast electronic 
motion, wile the subsequent slow deoay is intimately related to the ionic 
degrees of freedom ; this slow decay precludes any reasonable estimate of 
the shear viscosity ~(t). 
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Fortunately the fast electronic motions dominate electrical and 
thermal conduction and the wavenumber and frequency-dependent charge 
fluctuation spectrum SZZ(k,w), which determines the dispersion and 
damping of the plasmon mode. The spectrum ls defined by : 

Flg.l 

2 1t 

~lt) 
1 . 

• S 

1 
( 3.8) 

Normalized ACF ~(t) versus reduced time t- = wp2 t for the 
semiclassical hydrogen plasma with r = 0.5 ; rs = 1 

where PkZ(t) is a Fourier component of the microscopic charge density at 
time t 

(3.9) 

An elementary application of Ohm's law, Poisson's equation and charge 
conservatj on (conti nui ty equation) leads to the following exact 
expression of the long wavelength limit of the spectrum19 : 
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SZZ(k,w) 1 1 
s(w) lim = -IR 

k~O SZZ(k) n: -iw + 4n:0'(w) 13.10 ) 

4 itO" , (w) 

n: [w-4n:0"" (w)]2 + [4n:0" , (w) ] 2 

where O'(w) = 0"' (w) t ian (wI 
related tv the nvrmalized 
Grpen-Kubo rplfltion 

is the 
electric 

complex a.c. conductivity which is 
current ACF J(t) by the standard 

W 2 

O"(W) =--L 
4n 

[ 
00 • 

J(t)e1wt dt 
• 0 

(3.11 ) 

It is clear from 13.10) that the imaginary part O'''(w) determines the 
position of the plasmon resonance, while the real part O"(w) determines 
the (collisional) damping of the mode in the long wavelength limit. 

The electric current ACF J(t), as well as the electron velocity ACF 
Z2(t) have been calculated for several states of the hydrogen plasma 
around r~l, r ~1 by MD slmulations 1S •20 . The ACF J(t) turns out to decay 
considerably ~ore slowly than Z2(t), so that a Nernst-Einstein-like 
relation between the d.c. conductivity 0' and the electron self-diffusion 
constant D2 which follows if all cross-correlations between velocities 
of different'electrons are neglected, namely 

m2 

0" "' w2 --- 10 p2 k T 2 
B 

(3.12 ) 

underestimates 0" by a factor of 2-3. This can be qualitatively 
understood, since electron-electron collisions conserve the electric 
current, but not individual electron velocities. For similar reasons it 
is found that the Kubo current associated with thermal conduction decays 
on roughly the same time scale as individual electron velocities, i.e. 
again much faster than the electric current 21 

According to (3.10) and (3.11), J(t) also determines the frequency 
and damping of the plasmon mode at k = O. The most important finding is a 
significant shift above the plasma frequency, i.e. 

lim w(k) = w 2[ltA] 
k~O p 

(3.13 ) 

where A is typically of the order of + 0.02 for r~l, r ~120. This 
collisional effect persists to finite wave numbers, where ~he plasmon 
resonance in SZZ(k,w) is considerably shifted and broadened relative to 
the collisionless mean-field (Vlasov) result18 . The collisional damping 
is reasonably well described by a memory function analysis18 or by 
generalized Fokker-Planck-like equations22 . 

Kinetic theory has also been applied to the calculation of the 
electron collision frequency and of the transport coefficients (D2, 0', K) 
of the hydrogen plasma in the framework of the "primitive model" (3.6)23, 
and its extensions which include a Pauli repulsion between 
electrons 20 ,24,2s. It should be stressed once more that such calculations 
apply only if the conditions (3.5) are satisfied. The link between the 
non-degenerate and degenerate regimes has been investigated by Boercker 
et al. 26 , while Wallenborn and his collaborators report their results on 
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the weak coupling limit in the present proceedings. 

Finally, the thermal relaxation of a two-temperature plasma (where 
T1 = T2 has been the object of extensive M.D. simulations 27 which are in 
good agreement with the predictions of the standard Landau-Spitzer result 
for the thermal relaxation rate, provided an adequate definition of the 
Coulomb logarithm is used. 

4 - THE TWO-DIMENSIONAL COULOMB GAS 

Due to the (weakly) binding nature of the logarithmic attraction 
between opposite charges, the proporties of the two-dimensional Coulomb 
gas (or two-component plasma) differ profoundly from those of its 
three-dimensional counterpart, particularly at low temperatures, as 
already mentionned in the introduction. The symmetric Coulomb gas is made 
up of oppositely charged hard disks of diameter a ; the corresponding 
pair potentials are : 

00 r < a 

r > (f 

where qa = ± q (1 ~ a ~ 2). 

First consider the case of point charges (cr =0) 
thermodynamically stable as long as the Coulomb coupling 

q2 
r < 2 

kBT T* 

since the Boltzmann factor for a pair of opposite charges 

exp ( -

(4.1 ) 

this plasma is 

(4.2) 

is clearly integrable for r < 2. A simple scaling argument leads to the 

exact equation of state28 : 

f3PS r 
1 - (4.3) 

2N 4 

where S is the area containing N charges of each species. The partition 
function and its temperature derivatives diverge as r ~ 2- due to the 
collapse of pairs of opposite charges. In particular the internal energy 
U and the specific heat at constant area, cs ' diverge as 28 ,29 : 

U 
lim '" (,2 - r)-1 (4.4a) 
r~2- 2NkBT 

lim 
_c_s_ 

~ ( 2 _ r)-2 (4.4b) 
r~2- 2NkB 

The collapse of the 2d TCP in the limit r ~ 2- is intimately related to 
counter-ion condensation in polyelectrolytes30 . This "recombination" of 
pairs of opposite charges has profound effects on the pair correlations 
between charges of the same sign31 • According to Widom's conjecture32 , 
one would expect the pair distributlon functions to have the following 
behaviour at short distances : 
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( 4.51 

This behaviour appears to be obeyed by ~+_Ir). but the formation of ti~ht 
+ - pairs chan~es the behaviour of ~++(r). = ~ __ (r) relative to the 
prediction (4.5) for r ) 1. In fact it is expected that 31 

r 
"" r o < r < 1 

(4.6) 

.. , r 2-r 1 < r < 2 

Thus like-particle correlations are weakened for r) 1 due to 
pro~ressive recombination of opposite char~es. One of the unexpected 
consequences of (4.6) is that the familiar HNC equation. which is 
~enerally quite accurate for Coulombic systems. admits no solution for 
r > 131. 

The Coulomb ~as of finite size char~es (" = 0) leads to much richer 
physics. The system is now thermodynamically stable and all its 
properties depend on two variables, which may be chosen to be r and the 
ratio ~/a z 2~1/2. where a = l~nl-1/2 (n = n1 n21 is the ion-disk 
radius, and ~ is the packin~ fraction. This Coulomb ~as is known to 
under~o a dielectric-plasma transition at some density-dependent critical 
couplin~. The dielectric-plasma transition is the prototype of 
Kosterlitz-Thouless (KT) transitions33,34 in 2d systems. which are 
characterized by a diver~ent response (susceptibilityl to an external 
field; simultaneously the decay of spatial correlation chan~es from 
exponential (screenin~ !l in the hi~h temperature phase to a power law 
below the critical temperature35 • 

In the Coulomb ~as the relevant static response function is 
obviously the dielectric function elk) which diver~es as k ~ in the 
plasma (conductin~l' phase. while it is finite in the dielectric 
(insulator) phase. elk - 0) is related to the fluctuations of the total 
dipole moment M = ~ Qi fi of the sample. which have been calculated in 
recent Monte Carlo1simultations to locate the KT transition for several 
densities 36• The critical Coulomb couplin~ is found to be r = 4 in the 
low density (~~ 0) limit. in a~reement with the prediction of a simple 
mean-field calculation33 • 

5 - A FIXED ION MODEL 

The most natural dYnamical characterization of the dielectric-plasma 
transition is provided by the d.c. conductivity which is non-zero only in 
the plasma phase. However this collective property cannot be computed 
with a hi~h de~ree of accuracy in a M.D. simulation. By fixin~ the 
char~es of one species (the positive ionsl on the sites of a hexa~onal 
lattice. while the particles of the opposite species (the ne~ative 
electrons) move in the periodic field due to the former. the TCP becomes 
equivalent to an inhomo~eneous OCP in a periodic (rather than uniform) 
back~round. and the dielectric-plasma transition is mapped onto a 
"delocalisation" transition3?: at low temperatures electrons are 
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localized, because they are individually paired with one of the fixed 
ions, while above the transition, the ion-electron pairs are broken, i.e. 
electrons become delocalized. The advantage of this transformation of the 
original Tep model is the emergence of a second "diagnostic" for the 
transition, which is more useful in practical M.D. computations, namely 
the electron self-diffusion coefficient ID 2 • If ti(t) denotes the position 
of the i th electron at time t, the Einstein relation reads : 

with 

lim < Iti(t) - ti(0)1 2 ) - a + bt 
t-+GII 

b .. 0 

(5.1 ) 

(5.2a) 

(5.2b) 

where <IAfI 2 ) denotes the mean square displacement of an electron around 
its host ion in the dielectric phase and T1 is the threshold temperature 
for self diffusion, which we tentatively identify with the 
dielectric-plasma transition temperature. 

Some of the salient results of recent M.D. simulation37 ,38 of the 
fixed ion model, for q/a c 0.1 and 0.02, and for various couplings r, are 
the following. 

a) Typical electron trajectories at a temperature slightly above T1 
are shown in Fig.2. Localized and mobile electrons are seen to coexist 
over time spans of several hundred plasma periods • 
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Fig.2 Trajectories of 108 eletrons in the periodic field of as man¥ 
fixed ions, at q/a - 0.1 , r - 4.2 ; exposure time is 250 wp2 
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b) The velocity ACF ZIt) and current ACF J(t) are shown in Fig.3 together 
with de power spectrum Z(w) for two states, one in the dielectric phase, 
and one in the plasma phase. In the former phase, ZIt) and J(t) are very 
similar and exhibit oscillations which originate in the rotational and 
vibrational motions of the electrons which are individually bound to 
ions. The two components are clearly resolved in the power spectrum Z(w), 
where the low frequency peak can be associated with the rotations while 
the broad feature at higher freauencies is the vibrational band ; note 
that ID2 ~ Zlw = 0) is strictly 'zero (insulator phase). In the plasma 
phase, on the ot.her hand, Z(t.) and .l(t.) are monotonous functions of time, 
with Jlt) decaying considerably more slowly than ZIt), as already noticed 
for the 3d hydrogen plasma in section 3. 

" 

-.4 

«I .. .. 
u 
! .. 
" II 

" ' . Z{t) J (t ) 
.......... 

............................................ ~ 

2 4 6 B 
reduced time ("'p) 

Z(w) r lew) 

r =1.8 r:51 

a 

.!! 

~ 
ii 
E 

U .. -"---:--:'-" 0 c 
5 10 5 10 15 

frequency (w/wp) b 

Fig.3 a) Normalized velocity and current ACF ZIt) (full curves) and 
J(t) (dotted curves) versus reduced time for O'la = 0.1, r = 5.7 
and 1.8. 
b) Normalized spectra Z(w) versus reduced frequency. 

c) The coupling f1 = liT! 
For O'la = 0.1 (Le. 
l~ = 0.0004) [ ~ 2.8. It 

at which ID2 drops to zero depends on density. 
~ = 0.01) [1 ~ 5.5, while for O'la = 0.02 
is conjectured that lim f1 = 2, while the 

'Il'+0 
correRponding limit for the symmetric case, where ions are mobile, is 
bplievpd to be f1 = 433 ,36, 

dl Ion-Electron recombination lead to a pronounced maximum in the specific 
heat Cs at a temperature T2 > Tt • 
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e) J(t) can be used to calculate the a.c. conductivity ~(w) according to 
eqn.(3.11l (with 4n replaced by 2n in 2d), and hence the long wavelength 
limit of the charge fluctuation spectrum according to eqn.(3.10). Some 
representative results are shown in Fig.4. The plasmon resonance is found 
to be quite sharp at high temperatures, but with increasing coupling, 
plasma oscillations are increasingly damped due to electron localization. 
The mode is overdamped long before the transition temperature is reached. 
The plasmon frequency at k = 0 drops with temperature, in qualitative 
agreement with the predictions of the collisionless Vlasov equation for 
the inhomogeneous electron gas in the periodic field of the ions 39 • Note 
however that this mean field kinetic equation does not lead to a KT 
transition. but predicts the 2d Coulomb gas to be a conductor at all 
temperatures. 

f) M.D. computations of SZZ (k,w) at non-zero wavenumbers in the 
plasma phase show that the plasmon dispersion relation w(k) is not 
monotonous, but has an unusual oscillatory behaviour38 which may be due 
to a coupling bptween the individual motion of each electron in the field 
of the nearest ion and the collective charge oscillation mode. 

6 - CONCLUS ION 

Molecular Dynamics simulations have been instrumental in our present 
understanding of single-particle and collective dynamics in strongly 
coupled two-component plasmas. In 3d the usefulness of the method is 
however limited to the range (3.5) in the density-temperature plane, 
where a semi-classical modelization based on the effective potentials 
(3.6) may be expected to be reasonable. The 2d Coulomb gas model allows 
simulation of the influence of an "ionization" equilibrium on the 
dynamics of a two-component plasma in purely classical terms. The most 
striking result is the unexpectedly large importance of "recombinational" 
damping of plasma oscillations. More work in that direction is in 
progress. 

Fig.4 

! 
n 
II 
: t 

i\ 
: i 
t : 
! i r, 
, I 
1 , 

.... "... . ........ . 

r=O.9 

r=2.3 "; 
r=3.2 

•. 
............. 

\ 

"'~ ----....... 
233 

frequency w/wp 

s(w) versus reduced frequency for ~/a = 0.1 and four couplings 
in the plasma phase. 

121 



ACKNOWLEDGEMENTS 

The author is indebted to Jean Clerouin for his efficient help 
during the preparation of this paper. 

REFERENCES 

1. N.W. Ashcroft and D. Stroud, in "Solid State Physics", vol. 33, 
F.Seitz and D. Turnbull, eds., Academic Press, New York (1978). 

2. A. Lenard, J. Math. Phys. ~, 682 (1961). 
3. J.M. Kosterlitz and D.J. Thouless, J. Phys. C6, 1181 (1973). 
4. J.M. Kosterlitz, J. Phys. CI, 1046 (1974) ; 10, 3753 (1977). 
5. J. Frohlich and T. Spencer, Phys. Rev. Lett. 46, 1006 (1981). 
6. M.P. Tosi, in "Electron Correlations in Solids, Molecules and Atoms", 

J.T. Devreese and F. Brosens, eds., Plenum Press, New York (1983). 
7. M. Baus and J.P. Hansen, Phys. Rep. 59, 1 1980. 
8. S. Ichimaru, Rev. Mod. Phys. 54, 1057 (1982). 
9. C. Gouedard and C. Deutch, J. Math. Phys. 1[, 32 (1978). 
10. S. Galam and J.P. Hansen, Phys. Rev. A. !i, 816 (1976). 
11. S. Ichimaru, S. Mitake, S. Tanaka and X.Z. Yan, Phys. Rev. A32, 

1768, 1775, 1779, 1785, 1790 (1985). 
12. D.B. Boercker and R.M. More, Phys. Rev. A33, 1859 (1986). 
13. J. Chihara, J. Phys. C~, 3103 (1985). 
14. F. Perrot and M.W.C. Dharma-Wardana, Phys. Rev. A29, 1378 (1984). 
15. T. Morita, Progr. Theor. Phys. 22, 757 (1959). 
16. Minoo, M.M. Gombert and C. Deutsch, Phys. Rev. A23, 924 (1981). 
17. B. Bernu, J.P. Hansen and R. Mazighi, Phys. Lett. A100, 28 (1985). 
18. J.P. Hansen and I.R. Mc Donald, Phys. Rev. A23, 2041 (1981). 
19. J.P. Hansen and L. Sjogren, Phys. Fluids 25, 617 (1982). 
20. L. Sjogren, J.P. Hansen and E.L. Pollock, Phys. Rev. A24, 1544 

(1982). 
21. B. Bernu and J.P. Hansen, Phys. Rev. Lett. 48, 1375 (1982). 
22. R. Cauble and D.B. Boercker, Phys. Rev. A~~, 944 (1983). 
23. M. Baus, J.P. Hansen and L. Sjogren, Phys. Lett. A82, 180 (1981). 
24. R. Cauble and W. Rozmus, Phys. Lett. Al!1, 345 (1986). 
25. V. Zehnle, B. Bernu and J. Wallenborn, Phys. Rev. A33, 2043 (1986,. 
26. D.B. Boercker, F.J. Rogers and H.E. DE Witt, Phys. Rev. A25, 1623, 

(1982). 
27. J.P. Hansen and I.R. McDonald, Phys. Lett. A97, 42 (1983). 
28. E.H. Hauge and P.C. Hemmer, Phys. Norv. ~, 209 (1971). 
29. C. Deutsch and M. Lavaud, Phys. Rev. A9, 2598 (1974). 
30. G.S. Manning, J. Chem. Phys. Ql, 925 (1969). 
31. J.P. Hansen and P. Viot, J. Stat. Phys. 38, 823 (1985). 
32. B. Widom, J. Chem. Phys. 39, 2808 (1963). 
33. J.M. Kosterlitz and D.J. Thouless, J. Phys. C~, 1181 (1973). 
34. J.M. Kosterlitz, J. Phys. CI, 1046 (1974) ; 10, 3753 (1977). 
35. J. Frohlich and T. Spencer, Phys. Rev. Lett. 46, 1006 (1981). 
36. J.M. Caillol and D. Levesque, Phys. Rev. B33, 499 (1986). 
37. J. Clerouin and J.P. Hansen, Phys. Rev. Lett. 54, 2277 (1985). 
38. J. Clerouin, J.P. Hansen and B. Piller, to be published. 
39. A. Alastuey and J.P. Hansen, Europhys. Lett. ~, 97 (1986). 

122 



KINETIC THEORY OF THE INTERDIFFUSION COEFFICIENT IN DENSE PLASMAS 

INTRODUCTION 

David B. Boercker 

Lawrence Livermore National Laboratory 
University of California 
P. O. Box 808 
Livermore, California 94550 

Ionic diffusion in dense plasma mixtures has been of interest recently 
for a number of reasons. In astrophysics, diffusion plays a central role 
in understanding tye distribution of heavy elements in the atmospheres of 
White Dwarf stars. The performance of multi-layer x-ray mirrors should 
be affected by diffusion, and the evaporation rate of metal "chunks" 
injected into the fuel of an ICF capsule by hydrodynamic instabilities is 
controlled by the diffusion coefficient. 

In all of these applications, the pl~smas can be very dense and 
estimates based upon the Spitzer formula are often inadequate. In 
fact, naive applications of Spitzer's theory can lead to negative 
diffusion coefficients. Simple modif~cations, such as placing a "floor" 
on the value of the Coulomb logarithm can eliminate such unphysical 
results, but they are untested under these conditions. 

The interdiffusion coefficients in Binary Ionic Mixtures (two species 
of point ions in a uniform neutralizing background) have been calculated 
recently using molecular dynamics techniques by Hansen et al. 4 and by 
Pollock. 5 These calculations can provide useful benchmarks for 
theoretical evaluations of the diffusion coefficient in dense plasma 
mixtures. This paper gives a brief description of a kinetic theoretic 
approximation to the diffusion coefficient which generalizes Spitzer to 
high density and is in excellent agreement with the computer simulations. 

DIFFUSION IN A BIM 

As mentioned above, a Binary Ionic Mixture is a model of a plasma 
mixture with two species of classical point ions immersed in a uniform 
neutralizing background. The charge and mass of ion species "u" are 
indicated by Zue and mu ' respectively. Similarly, the number and mass 
densities are nu and Pu = munu' The corresponding total densities are 
n - nl + n2 and P = PI + P2' 
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The strength of the Coulomb coupling among the ions is measured by the 
parameter, 

r 
2 

e 

where T is the temperature and rO is the ion sphere radius 

3 
471'rO lin 

3 

There are two characteristic plasma frequencies in a BIM. One is the 
Vlasov plasma frequency defined by 

+ 
2 2 

47rne Z 1m ( 1) 

The other is the so-called "hydrodynamic" plasma frequency defined by 

( 2) 

In the above, barred quantities are number weighted averages, 

A ( 3) 

where ca E naln is the number concentration. The corresponding mass 
concentration is Xa = Palp. 

The rate at which concentration fluctuations dissipate in a mixture is 
governed by the interdiffusion coefficient, D, which linearly relates mass 
fluxes to gradients in the mass~concentration. Specifically, if the 
center-of-mass velocity field, u, is defined by 

2 
~ ~ 

u(r,t) L 
a=l 

~ ~ ~ 

X (r,t) u (r,t) 
a a 

where ~a is the velocity field of species "a", then the mass 
flux of "a" is 

-+ -+ -+ -+ -+ -+ 
j (r,t) e p (r,t)(u (r,t) - u(r,t» 

a a a 

( 4) 

( 5) 

and the interdiffusion coefficient is defined by the relationship,6 

~ ~ 

j (r, t) 
a 

~ ~ ~ 

-p(r,t)D V X (r,t) 
a 

( 6) 

As is the case with many other transport coefficients, D can be 
related to an equilibrium time correlation function. In particular, it 
can be shown that7 
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D ( 7) 

where 

( 8) 

is the autocorrelation function for the (microscopic) diffusion velocity 

( 9) 

The concentration structure factor, Scc(k), is defined in terms of 
the partial structure factors, Sur(k) , as 

(10) 

In the low-k limit, Scc is related to the Gibbs free energy through 

S (k=O) 
cc 

(11) 

The appearance of the factor clc2/Scc(k=0) in the expression for D, 
therefore, accounts for the fact that diffusion is really driven by 
gradients of the chemical potential, not density. For neutral gases, this 
factor reduces to unity for all concentrations in the low density limit. 
For charged particles, however, clc2/Scc remains concentration 
dependent even in the weak-coupling limit. This may be seen by using the 
Debye-Huckel estimates of the partial structure factors to obtain 

(12) 

which is greater than unity whenever clc2 ~ O. 

THE ENHANCEMENT FACTOR AND THE AMBIPOLAR FIELD 

As seen in the previous section, the long-range nature of the Coulomb 
potential leads to an enhancement of ion diffusion in a binary mixture, 
even in the low-density limit. In this section it will be shown that an 
identical result follows from the usual Boltzmann theory of diffusion, 
provided the ambipolar field of the electron background is taken into 
account. 

If temperature gradients are neglected, the standard Boltzmann 
approach gives8 

(13) 
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~ 

where DO is the Spitzer estimate of the diffusion coefficient and d1 
is 

The ambipo1ar field is E and the pressure is given by p = nkBT. By 
assuming the system is mechanically stable, 

and that it is charge-neutral over hydrodynamic scale-lengths, 

it is straight-forward to find 

(14) 

(16) 

(17) 

Comparison with (12) shows that, at least in the low-density limit, the 
thermodynamic factor, c1c2/Scc(k=O), may be thought of as an enhancement 
of the ion diffusion due to the ambipo1ar electric field of the electrons. 

KINETIC THEORY FOR THE TIME-CORRELATION FUNCTION 

Any time correlation function may be expressed in terms of the 
correlations of the phase space densities 

-f (rp,t) (J 

..... -+ ......-+ 
= L S(r - r.(t»S(p - p.(t» 

if(J ~ ~ 
(18) 

If Sf(J represents the deviation of f(J from its equilibrium average value, 
then the phase-space correlation functions are 

~ ~ 1-++ -++ -+ -+ C (r-r' ,t pp') & <Sf (rp,t) Sf (r'p'O»O 
(JT (J T 

(19) 

It is usually more convenient to deal with the transformed functions 

- - f izt J 3 ~ ~ - -ik.(~-~') S (kz;pp') e dte d rC (r-r' ,tlpp')e 
(JT 0 (JT , 

The diffusion coefficient may be written in terms of these latter 
functions as 

D = 
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where 

1~2 with ~1 = - -- and ~ m1 n1 2 
-1_ 5 

= m2-Y~' 

(22) 

The transformed ~hase-space correlation functions obey a kinetic 
equation of the form 

in 
q 

-+ -+ -
~ (p) [6 6(p-p') + n ~ (p') h (k)] 

q qr r r qr 

where ~q(p) is the normalized Maxwell-Boltzmann distribution for 
species "q" and hqr(k) is related to the radial distribution 
function through Fourier transformation 

-+ -+ - J 3 ikor h (k) e d re (g (r)-l). 
qr qr 

The operator ~qr is written as 

-+-+ 

-nq ~ ~q(p) cqr(k) + Mqr(kz;pp') 
q 

(23) 

(24) 

(25) 

which is the sum of a mean-field term involving the direct correlation 
functions 

c (k) 
qr 

= ii (k) - I C , (k) ii, (k) 
qr q' qq q r 

and the "memory" function, Mqr , which contains the effects of 
collisions. 

(26) 

The standard procedure for solving (23) is to expand the momentum 
dependence of the Sqr'S in terms of Hermite polynomials, which are a 
complete set of orthogonal polynomials with Maxwell-Boltzmann weight 
functions. The Hilbert space defined by these functions is then divided 
i~to two subspaces: the "hydrodynamic subspace" spanned by the ten (five 
for each species) functions corresponding to the hydrodynamically 
conserved quantities, number, three components of momentum and (kinetic) 
energy,10 and its complement, the "non-hydrodynamic" subspace. 
Projecting the kinetic equation onto the "hydrodynamic" subspace then 
yields a closed set of equations for the hydrodynamic matrix elements of 
the Sqr's. ~r details of this procedure are well described in the 
paper by Baus and will not be given here. 
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Applying Baus' method to the problem at hand ultimately yields 

1 - 2 -3 Vi (z) + 3 V~(z) 

where 

2 2 2 2 2 
z (z -w ) + izv(z)(z -0 ) 

P P 

is the correlation function for the longitudinal component of the 
diffusion velocity and 

v~ (z) 
iz 

2 z + izv(z) 

(27) 

(28) 

(29) 

is the correlation function for the transverse components. If the 
coupling to the non-hydrodynamic subspace is completely ignored,12 the 
collision frequency is 

v(z) (30) 

where 

M (k=o,zlpp') ~ (p') p~ 
aa a.< 

(31) 

In terms of v(z) we find 

D 
c l c 2 pkBT 

Scc nml m2v(O) 
(32) 

Hence, to proceed we need an expression for the memory function. 

THE DISCONNECTED APPROXIMATION 

The memory function may be expressed in "time space" in the form9 

M (12;t) 
aT - r 

J.tV 

8 I ~ ~ ~ 8 -1 • ~ G (11' '22' t)'V v (r -r') • ~ ~T (P2) 
8Pl ajl; TV' 2 TV 2 2 8P2 

(33) 

where the four-point function, G~'VT' represents the propagation 
of pairs of particles between interactions. If this function is simply 
factored into a product representing the propagation of single particles 
through the plasma, then in the long time limit M reduces to the usual 
Lenard-Balescu collision operator. 13 In the Disconnected Approximation14 
the four-point function is factorized in such a way as to preserve its 
exact initial value. The principal effect of this modified factorization 
is to renormalize one of the potentials and replace it with a direct 
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, f l' f f h' " 15 correlation unction, An a ternatlve orm 0 t IS approXimation 
renormalizes both potentials. This has the advantage of giving a positive 
definite "cross-section", but destroys the short-time behavior of the 
memory operator. In this paper, the first form of the Disconnected 
Approximation will be adopted, but some comparisons with the second form 
will be made. 

Using this approximation the collision frequency reduces to 

v(z) 

which for low frequencies becomes 

v~O) 

To complete the calculation estimates of the dynamic structure factors are 
needed. These are obtained by substituting static structure factors 
obtained from the HNC equation into (23) with Mar = O. 

COMPARISON WITH MOLECULAR DYNAMICS 

Calculations of the interdiffusion coefficient have been made using 
(35) in (32). The results for a 50% mixture of H+ and He2+ at various 
r values are shown in Table I. The reduced diffusion coefficient, D*, 
is given by 

* D 

Table I. 

r 

0.4a 

LOb 

4.0a 

40.a 

Comparison of theoretical 
simulation results for D* 
mixtures. 

D* 
MD 

D* T 

3.00 3.18 

.915 .792 

.142 .154 

.0109 

aFrom Ref. 4 
bFrom Ref. 5 

(36) 

and numerica1 
in 50% H+-He + 

* D GM 

5.25 

1.44 

.265 

.0165 
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Table II. D*'s for Si+14_Sr+36 mixtures. 

%Si D* MD 
D* T 

25 .552 .477 

50 .605 .508 

75 .628 .545 

The subscript MD indicates the results from the Molecular Dynamics studies 
of Hansen et al. 4 for r~ 1 and Pollock5 for r - 1. D*T 
is calculated using the theory described here and D*GM is calculated 
from the symmetric form of the Disconnected Approximation. 15 As can be 
seen from the table, the agreement between D*T and D*MD is quite 
~ood for the lower three r values. At r = 40, the oscillations in 
c12(k) lead to a negative result for D*T' The symmetric theory does 
not run into this difficulty, but it gives results for all r values 
which are 50% too high. 

Table II compares the resulrZ from the asymmetric theory to computer 
simulations for mixtures of Si+ and Sr+36 at various concentrations, 
but all at r = .005. Once again the agreement is in the 10-20% range. 

TIME CORRELATION FUNCTIONS 

In order to study the behavior of the time-correlation function, 
VD(t) , the high-frequency behavior of v(z) is observed to be 

v(z .... "") .... i 
z 

Using this result in (28) and (29) yields 

p~T i 
[1 + (!) 

2 (o! -
2 

Vi(z) 
2 _ 47rZl Z2e p) 

w nml m2 z p 3ml m2 

and 

pkBT i 
[1 _ (!)2 

2 

V.L(z) 
47rZ1Z2e p 

+ ... J nml m2 z 3ml m2 

Hence, one notes that 

2 

Vi (t=O)/V.e (t=O) (w2 02 + 
47rZ1Z2e p 

P P 3ml m2 
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VJ.(t=O)/VJ.(t=O) (41) 

Since w2p ~ 02p' the correlations of the longitudinal component of 
the diffusion velocity have a more rapid initial decay than the t~ans­
verse components. Combining (40) and (41) gives the known result 

(42) 

The more rapid initial decay of V.£(t) illustrated by the "dashed" 
and "dash-dot" curves in Figure 1. The solid curve and the dots compare 
the theoretical estimate ~f VD(t)/VD(t=O) to the corresponding simulation 
results for the 50% H+-He + mixture at r=l. The comparison is 
reasonable out to about six inverse plasma frequencies, but the theoretical 
curve seems to miss the "shoulder" at 12 wp - . This may be due to 
V.£ oscillating too rapidly in this region. 

DISCUSSION 

The results presented here in~kcate that the Wallenborn and Baus form 
of the Disconnected Approximation agrees to about 10-20%, with 
numerical simulation values for the interdiffusion coefficient. Such 
agreement is quite good, especi~lly in view of the 10% uncertainties in 
the molecular dynamics results. ,5 The only problem arises at very 
strong coupling where the theory apparently breaks down and gives a 
negative result. This is not a serious limitation, however, since most 
plasmas of practical interest are in the weak to moderate coupling 
regime. In general this calculation is another indication of the success 
of the Disconnected Approximation. 
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TRANSPORT PROPERTIES OF A FULLY IONIZED PLASMA: SEMI-CLASSICAL 

OR QUANTUM MECHANICAL APPROACH 

J. Wallenborn,l B. Bernu2 and V. Zehnlel 

lChimie-Physique II, C.P. 231 
Universite Libre de Bruxelles 
B-lOsO Brussels, Belgium 

2Laboratoire de Physique Theorique des Liquides 
Universite Pierre et Marie Curie 
F-7s230 Paris Cedex OS, France 

Purely classical statistical mechanics cannot describe the thermo­
dynamics of a dense multicomponent plasma. It is necessary to take into 
account the quantum diffraction which avoids the collapse of electrons 
with ions. When computing the equilibrium properties, the quantum effects 
can be included in the classical partition function with the help of a 
temperature-dependent effective interaction potential (see e.g. Pokrant 
and Broyles, 1974, and references therein). 

Minoo et al. (1981) have proposed an analytical expression for this 
effective interaction potential vab between two particles of species a 
and b respectively (a and b stand for e or i, electrons or ions): 

(1) 

where 

q q -r/* 
~ (1 _ e ab) 

r 
(2) 

accounts for the quantum diffraction effects as well as for the bare 
Coulomb interaction and where 

o 0b kBT (In 2) ae e 
e 

2 2 -r /~~ ln2) ee 
(3) 

accounts for the quantum symmetry or correlation effect. In Eqs. (2) and 
(3), qa and qb are the charge of the particles of species a and b 
respectively and_Aab = ~(2~~abkBT) is the thermal de Broglie wavelength 
of the pair (a,b). 
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Let us point out that vab is a purely two-particle density-dependent 
interaction potential which does not include any collective effect. In 
addition, the expressions (2) and (3) are valid only under the following 
assumptions: s-scattering states alone are considered, there are no bound 
states, and the electrons are weakly degenerate. These ri~t two 
assumptions imply kBT > 1 Ry and Aee < a where a=(3/4~h) 
is the ion-sphere sphere radius, or equivalently 

where rand rs are the usual dimensionless parameters which define 
the thermodynamical state of the system: 

r 

with aO - ~2/mq2e' the Bohr radius. 

(4) 

(5) 

During the last few years, the effective potential vab (or vdab 
alone) has been used to study, in the parameters domain defined by (4), 
the non-equilibrium properties of a two-component plasma (Baus et al., 
1981; Hansen and McDonald, 1981; Sjogren et al., 1981; Bernu, 1983; and 
Zehn1e et a1., 1986). However it is questionable that such a potential, 
which is constructed to evaluate static properties, will be adequate for 
the calculation of dynamical properties. In a recent paper (Zehn1e et 
a1., 1986), we indeed found some unexpected results. We studied the 
thermal conductivity of a fully ionized hydrogen plasma in the framework 
of the classical kinetic theory developed for strongly coupled plasmas 
(see e.g. Wa11enborn, 1985, and references therein) using the effective 
potential vab of Minoo et a1., [Eq. (1)]. One of our results was that 
the electronic part of the thermal conductivity, which classically 
dominates, can become of the same order of ma~nitude as the ionic part due 
to the quantum symmetry effects included in v ab [Eq. (3)]. This 
quantum reduction of the thermal conductivity is important when the 
product r x rs is small, i.e. in the same domain of parameters where 
the quantum effects are important for equilibrium properties. However, 
though the thermodynamics tends to that of a perfect Fermi gas as r 
decreases, the thermal conductivity does not. 

In order to test the physical validity of these surprLsLng results, we 
have computed the thermal conductivity of a weakly-coupled electron one­
component plasma (OCP) in two ways (Wa11enborn et al., 1986): i) by a 
semi-classical kinetic theory, a calculation which is just the 
one-component analog of our previous two-component one (Zehn1e et a1., 
1986), and ii) by a purely quantum kinetic theory starting from first 
principles. 

In the semi-classical approach, we considered two models for the 
interaction potential between electrons: (cf. Eqs. (1) and (2»: 

d 
v (r) 

ee 
and = v (r) ee (6) 

One may easily compute analytically the semi-classical thermal conductivity 
K of the OCP in the first Sonine polynomial approximation by standard 
methods (see e.g. Ba1escu, 1975). The result can be written in the 
following form for both model potentials vi(r) (i-l,2): 

(i=1,2) (7) 
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where w = (4~e2n m)1/2 is the plasma frequency and where 
Ai is tRe so-called "Coulomb logarithm". To avoid the remaining 
divergence at large distance, the integrals were truncated at ic which 
is the Thomas-Fermi length if the system is degenerate and the Debye length 
if not. One then has: 

-ln€ 1 2 1!: ) 
1 

+ 2' [In (€ + 2 -
2€2 

1 + --

(8) 

~ 

~ (In 22 3 
A1 + '8 rr s 

3/2 (In 22 5/ 2 1!:ln 2 
-~-- 4 ~ 

+ 4 (rr )1/2 
e E1('4 1n 2) 

s 

(9) 

where € = (~/2m)1/2h/ic and where E1 is the exponential integral. 

The purely quantum calculation of the thermal conductivity of the OCP 
was made in the Wigner function formalism. The quantum Landau kinetic 
equation, which is based on the Coulomb potential, can be found in the 
literature (see e.g. diffraction, exchange and symmetry. This last effect 
is included in the quantum distribution function. In this formalism, the 
th:rma1 conductivity Kq (in the first Sonine polynomial approximation) is 
wr~tten: 

* 
K 

;~ J3; r- 5/ 2 A~l K g 
(10) q 2 

kBna wp 

A C [ - A 1n € + B ] (11) q 

where € is the same truncation parameter as in the semi-classical case, 
C is a combination of Fermi integrals, A and B are, respectively, a four­
and a five-dimensional integral which are evaluated numerically. The 
important point is that A, Band C depend only on ~/kBT or, equivalently, 
on the ratio r/rs (~ is the chemical potential). Moreover, in the 
limit of no degeneracy (r/rs«l) they can be calculated analytically. 

As an example of our results we show in Fig. 1 the comparison between 
the quantum and semi-classical evaluations of the thermal conductivity a~ a 
function of the degeneracy parameter ~/kBT at fixed temperature. It 
is seen that K2 never agrees with Kq . In particular, Kq is two orders 
of magnitude larger than K2 when the electrons are degenerate (~/kBT 
~ 3). This means that the reduction with rrs of the electronic 
thermal conductivity of the hydrogen plasma is a spurious effect of the 
symmetry potential vSee [Eq. (3)]. On the other hand, K1 and K are 
in agreement as far as the system is not degenerate (~/kBT ~ -11 or 
r/rs < 0.25) i.e. as far as the quantum symmetry doesn't enter into 
play. 

These results illustrate the difficulty in including non-dynamical 
effects, such as the quantum correlations, in an effective potential which 
is used to generate the dynamics. One could be tempted to use the 
potential v2 to describe equilibrium properties and the potential v1. 
to describe the transport properties. This, however, implies a local 
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Reduced thermal conductivity K*=K/(kBna2wp) of an 
electron gas as a function of the degeneracy parameter ~/kBT' 
for a temperature of 1360 eV; A Kq , Eq. (10); • Kl , Eq. 
(7); • K2 , Eq. (7). 

source term in the energy balance which certainly is not desirable. Most 
likely one has to choose between a good description of the statics Q£ of the 
dynamics. 

So far our conclusions are strictly valid only for weakly coupled 
plasmas. Yet, they rest on the value of the degeneracy parameter r/rs 
and not on r alone. It would be very surprising if they were not 
correct in the case of strongly coupled plasmas. 

In order to fulfill the requirement (4), the results of the molecular 
dynamics (Hansen and McDonald, 1981; Sjogren et al., 1981; Bernu, 1983) were 
obtained only for degenerate strongly coupled two-component plasmas; 
therefore, they must be considered at best as qualitative. A quantum 
calculation of the transport coefficients of these systems is thus highly 
desirable. 
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DENSE MATTER IN ASTROPHYSICS: SELECTED TOPICS 

INTRODUCTION 

Evry Schatzman 

Observatoire de Nice 
BP 139, 06003 Nice Cedex 
France 

Let me first briefly report on the conditions under which a stellar 
object reaches the physical conditions of a highly correlated plasma. 
Several review papers have been devoted to this problem, but I would like 
to recommend especially the courses delivered by Iben, Renzini and 
Schramm (1977), the review papers by Iben (1974) and by Iben and Renzini 
(1984), which concerns isolated stars. See also Schatzman (1978, 1980). 
The situation of binary stars is much more complicated, due to mass 
exchange between the two components. This has been discussed several 
times, but I would like to recommend the paper by Webbink (1979) and 
the review paper of de Loore (1984). The effect of accretion on white 
dwarfs is described by Nomoto (1982,1984), at least as far as the outer 
layers are concerned. It should be noticed that fast accretion leads 
in Nomoto's models to the formation of giants. 

The evolutionnary path towards the white dwarf stage determines the 
chemical composition of the bulk of the white dwarf and the initial 
radial distribution of the temperature. 

The main point is that main sequence stars, after exhaustion of 
hydrogen in the core become giants. Further evolution leads to an 
important mass loss. Observational data (Weidemann and KBster, 1984) 
show the relation between initial and final mass. It seems that up to 
8 to 10 solar masses all stars become white dwarfs, the total mass loss 
reaching a maximum value of 85%. For a star with M < 2.25 solar masses, 
the production of a low mass degenerate core leads to the formation of 
a helium white dwarf, whereas for a star of larger mass, M > 2.25 solar 
masses, the core reaches higher temperatures allowing helium burning 
and leading to carbon-oxygen white dwarfs. 
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The chemical composition of white dwarfs reflects the evolution of 
the parent star. A discussion by Alcock (1979) or-the gravitational 
sorting in the outer layers of white dwarfs confirms the possible 
existence of two classes of white dwarfs: for M < 0.4 solar masses, 
helium white dwarfs, and carbon-oxygen white dwarfs for higher masses. 

As already mentioned in other review papers (Schatzman, 1978, 1980), 
it is not possible to review all problems of dense matter which are 
raised by the study of astrophysical objects: the purpose of this paper 
is not to draw a list of subjects, but rather to discuss some key problems. 

I would like to concentrate on the following questions: 

the thermal history of white dwarfs, 

the equation of state, 

the thermonuclear-pycnonuclear reaction rate, 

the transport process, 

some remarks about Sirius, 

and try to place these questions in their astrophysical framework. 

THERMAL HISTORY OF WHITE DWARFS 

The thermal history of white dwarfs implies two questions: (1) the 
rate of heat transport in white dwarfs, compared to the classical rate 
of cooling, and (2) the physics of the solidification of a mixture. 

The thermal conductivities of the liquid metal phase and of the solid 
metal phase have been calculated resp. by Itoh et al (1983) and by Itoh 
et al (1984), improving appreciably its value (references to former work 
can be found in th~se two papers). Even without carrying the calculation 
of a complete solution of the equation of heat, it is possible to estimate 
the rate of heat transport in white dwarfs and to compare it to the rate 
of cooling. 

My purpose here is not to solve the problem quantitatively, but to 
give an idea of the problem. The argument is the following. 

The rate of heat transport is given by the equation of heat 

1 a r2K aT aT 

2 
c--

r ar ar at 

where K is the thermal conductivity and C the specific heat of the matter. 
An order of magnitude of the time scale of heat transport will be given by 
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This would have to be compared to the classical time of cooling 

Q 
t =­
cool L 

where Q is the total energy available in the white dwarf and L the lumino­
sity. This last relation can be expressed in terms of the internal tempe­
rature of the white dwarf, this temperature being defined by the relation: 

p = p 
deg gas 

at the bottom of the radiative, non degenerate outer zone. In this sketch 
of the radiative cooling of a white dwarf, it would be necessary to 
distinguish between the case of a pure hydrogen envelope and the case of 
a heavy elements rich envelope. We shall ignore this difference, as well 
as the effect of the surface convection zone. 

It is usually assumed that the thermal diffusivity inside white 
dwarfs is so high that the degenerate star is isothermal during cooling. 
However, this is not quite the case. In order to carry properly the 
discussion, let us consider once more the diagram (log p, log T) where I 
have plotted (fig. 1) the boundary between degenerate and non degenerate 
matter, the melting boundary for 160, the Debye temperature and the lines 
defined by the conditions 

where qe1 

qe1 

with 

x 

valid for 

1 

is 

3 

m c 
e 

x » 1 

the 

1T2 

2 

1 

internal heat of the electrons, 

2 

Z [!fz] mc2.lN. 
e x 1 

e 

q1iq is the internal heat of the ions 

3 p 
q1iq = 2 A H k T 

q solid is the internal heat of the solid, 

16 1T4 
qsolid = -5-

given by 

with the Debye temperature, as given by Shapiro et a1 (1984) 
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Fig.I. The different regions in the log p, log T plane. The curve 
"melting", inbetween the Debye temperature and the standard melting 
curve, has been obtained by applying a Debye correction to the mean 
kinetic energy kT (see text). 

e _! [4 7T e 2 p [L) 2 ) 1/2 
D - k H2 A 

where H is the atomic mass unit. 
It will immediately be noticed that in the range of densities and 

temperatures of interest, the Debye temperature is above the fusion 
temperature of oxygen. As the Debye temperature is non Z dependant, the 
crossing point of the two curves depends on the melting temperature, 

T = Z5/3 ~ 
melt k 

[4 7T P JIIa Z 1/3 1 
3 H A r 

which is proportionnal to Z5/3. 
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Having a Debye temperature above the melting temperature is obviously 
meaningless. This comes only from a wrong definition of the melting 
temperature. If we replace in the definition 

the mean kinetic energy kT by (T/eD)3 k T, which is sort of taking into 
account the quantum nature of the solid, we obtain 

from which we derive, with r = 171, an intermediate melting curve, sitting 
this time below the curve T = eD' 

T --[ 
1 

melt - r (4 n)I/3 3/2 3""" (4 n) 
(A H)1O/3 

e5 1'\3]114 11/24 -- P 
k4 

T = 6.71 . 103 (Z/8)5/12 pl1/24 
melt 

In the range of interest, we shall consider two cases, the hot case 
( T ~ 108 oK ), where most of the star is liquid, and the cold case 
( T ~ 107 oK ), where most of the star is solid. 

The internal temperature of the star will be defined by the canonical 
condition of degeneracy at the bottom of the outer radiative zone. This 
gives the two definitions : 

(k/H)5/3 
hot case : T = ~K::-"-- ( 3 a L ) 2/3 

4 n a c G M 

where a is the diffusion coefficient, a ~ 0.2 (l+X), and 

] 
2/7 

8/7 -6/7 [12.75 KO L 
cold case T (k/jJH) K ---"---

16 n a c G M 

where K is related to the pressure of the degenerate gas, 

P = K (p/jJ )5/3 

and KO is related to the absorption coefficient with a Kramers law: 

K 

In these two cases, we obtain the approximate expressions 

- hot case: 

tdiff 1.914 1013 M*2/3 years, 

t cool 1.332 105 T 1/2 
8 years, 

cold case : 
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9.92 . 109 T83 pc6- 4/ 3 W-2/ 3 years, 

6.496 . 1013 Pc6 -4/3 W<-2/3 years, 

which means that in the liquid star, the time scale of heat propagation is 
larger than the canonical cooling time. This is due to the low conductivity 
and high specific heat in the liquid phase. The reverse is true in the 
solid star, where the conductivity is high and the specific heat is low. 

This means that the hot liquid white dwarf cools first in the outer 
region, and that, with a thermal diffusivity 

-5 -2/3 
Dthermal = 3.78 . 10 P6 

the central region of a dense white dwarf (close 
limit) may eventually never become solid. In 108 

has reached 6% of the star, and a density of the 
P = 10 9 this gives P = 6.10 7 • 

C 

SOLIDIFICATION AND IGNITION 

to the Kaplan-Chandrasekhar 
years, the thermal wave 
order of 0.06 P . For 

c 

Whatever is the exact solution T(r,t), the problem of the solidifica­
tion of a n-component plasma has to be considered, and it has a large 
variety of implications on stellar evolution: novae, type I supernovae, 
origin of pulsars and neutron stars. 

I can summarize the problem in the following way 

If we consider a C-O mixture, we find in the literature two 
possibilities : 

(a) solidification takes place at a temperature which is intermediate 
between the solidification of carbon and oxygen, and the solid is an 
homogeneous mixture of carbon and oxygen. 

Jancovici (1982) has considered an elegant approach of the problem by 
comparing the free energy of two carbon atoms close together in an infinite 
solid of oxygen to the free energy of two carbon atoms isolated in an 
infinite solid of oxygen (Schatzman, 1983). Assuming no deformation of the 
lattice we find for the difference in free energy of the two configurations 

2 2 
(ZCZ2) e 

lIF 
a 

If we compare to 

Z 2 2 
r 

1 e 
---

a k T 

we can write 

lIF 
Z 2 

r k T 

1 
For Zl = 6 , Z2 = 8 , r 
concentration of carbon 
complete miscibility. 
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(b) on the other hand, Stevenson (1980) suggests that carbon and oxygen 
are not miscible in solid phase. An oxygen-poor eutectic is predicted, with 
a carbon mass fraction XE ~ 0.6 and a low freezing temperature TF, = 0.63 Te, 
where TC is the freezing temperature of pure carbon at the conisoered denslty. 

An old white dwarf, almost completely solid, accreting matter and 
increasing its mass will evolve differently according to the chemical 
composition of its central region.In case (a), the solid is an alloy of 
carbon and oxygen, and when the mass of the star increases, the pycno­
nuclear regime of the C-C reaction can overtake the electron capture on 
oxygen ( then explosion rather than collapse) , wheras in case (b) the 
fall of oxygen snow flakes towards the center (Schatzman,1982) produces 
a pure oxygen core,where the electron capture dominates (and then collapse). 
However, the final result depends on the ignition density. 

For the time being, I would like to discuss briefly the problem of 
propagation of ignition in solid layers. Conductive velocities can be 
estimated from the expression (Landau and Lifshitz, 1971) 

where (K/C) is the thermal diffusivity and T the characteristic time for 
the nucelar reactions. According to Isern et al (1986), we have, with an 
ignition density p = lOw g cm-3 , as given by Mochkovitch and Hernanz (1986) 
the following tabl~ (table 1) , with the result that the central part of 
the white dwarf has time enough to collapse to a neutron star, with a 
possible off-center ignition follown by an explosion. 

PYCNO-NUCLEAR REACTIONS 

Two Body Reaction Rate 

It seems to me that the problem is almost entirely understood. I would 
like just to mention the points which are not clear to me 

In the fluid case, the rate of nuclear reactions has been studied in 
detail by Alastuey and Jancovici (1978) for a o.c.p., including the effect 
of the fluctuations of the potential. 

There are two major contributions, one is the classical contribution, 
due to the pair correlation function, giving for the enhancement factor 

EF(classica1) = exp C 

with 
.! 

C = 1.0531 r + 2.2931 r 4 - 0?551 In r - 2.35 

which has been derived from Hansen (1973) simulation. The other part is the 
quantum part, which comes mainly from the classical screened potential 

Table 1. Characteristic Times 

Detonation 
Convective Deflagration 
Conductive Deflagration 
Electron Capture 

0.1 
1 
3-17 
1 

s 
s 
s 
s 
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W(r). The screened potential is linear close to the potential mlnlmum, 
according to De Witt et al (1973) and quadratic near the origin, according 
to Jancovici (1977). The departure from linearity produces a small effect. 
However, it seems to me that it would be useful to reach an agreement on the 
screening potential which is used. 

If we ignore the non-linear effects, we can accept the treatment of 
Itoh et al (1980) for a t.c.p .. However, the values of the coefficient of 
the linear screening potential should be taken exactly and their weak 
dependance on r taken into account (compare the values of the coefficients 
of the linear approximation derived from Hansen data (equ. 2.5 of Itoh et al) 
and the values derived from the harmonic oscillator model (their equati~ 
2.10) . 

Finally, after freezing, the potential changes and there is a dis­
continuity in the pycnonuclear reaction rate. In the lattice model, the 
screening potnetial is smaller than in the liquid model (Itoh, 1981) and I 
would guess that the enhancement factor is smaller after freezing ( or 
larger after melting). 

If we remember that, as underlined by Mittler (1977) the WKB 
approximation is not satisfactory, it is quite clear that the value of the 
physical parameters for ignition depend on the exact value of the thermo­
nuclear reaction rate and not only on the efficiency factor. 

Electron Polarization 

Ichimaru and Utsumi (1983) first found a strong effect of the 
polarization of the electrons, then corrected it to a small effect (1984). 
Mochkovitch and Hernanz (1986) have reconsidered the polarization effect, 
following the perturbation method of Galam and Hansen (1976). The electronic 
enhancement factor is given by 

EEF = [6FPOl) eXPTT 

where 6Fpol is the contribution of the electrons to the Helmoltz free energy 
of the plasma. 

Mochkovitch and Hernanz (1986) obtain for r 1= 36, P=109 

6Fpol 
TT = 0.55 

EEF = 1. 7 

Screening of Photo-desintegration Reactions 

20 Mocy~ovitch and Nomoto (1986), in connection with the rate of the 
Ne(Y,a) 0 reaction have the problem of the efficiency factor resulting 

from the change in the potential barrier. 

The major contribution to the efficiency factor for the reaction 
16 20. O(a,y) Ne.lp In EF , is 

where W. is the contribution to the chemical potential of nucleus i, 
resultiffg from the Coulomb interaction. On the other hand the energy 
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threshhold of the reaction is shifted , 

so that the reaction rate for the photodesintegration, 

A ~ < 0 v > e-SQ 
3y 12 

is related to the low density rate A~y by the relation 

o 
~ A3yEF exp(- SQO - S ~U) 

A~y A~y 
The major effect is then the quantum effect. To a first approximation, for 
a non-resonnant reaction, 

~ 45 r3 
A 0 exp ( - 32 7) < 1 
3y 

For the case of neon burning,which takes place during pre-supernova 
evolution, the ratio is close to 1 . A similar result is obtained for the 
resonant case. 

3-alpha reactions 

In the case of the 4He(ay )BBe reaction, the energy threshold of the 
reaction is 0.094 kev. As mentionned by W.Fowler (1981) at p = 6.89 109 

§ cm- a , BBe becomes stable and then the 3-a reaction proceeds on stable 
Be. Eventually, as W.Fowler suggests, the reaction BBe(BBe,a)12C will be 

the dominant one. 

This has to be considered as an important effect when descriging the 
gamm-flare stars, which are presently explained by accretion on neutron 
stars (Woosley et aI, 1982, Hameury et al 1982)(even if Woosley and 
Hameury do not agree on the details of the mechanism itself). 

All Channels Included 

Thielemann and Truran (1986) have developped a complete ser of 
equations for the efficiency factor, taking into account all channels of 
the 4-body reactions like i(j,k)n . The main question, naturally concerns 
the screening effect of the outgoing particle. It should be noticed first 
that the equilibrium concentrations are changed, due to Coulomb inter­
actions. Thielemann and Truran notice also that the WKB approximation to 
Coulomb barrier penetration is not good and that the transmission 
coefficients calculated entirely within the WKB approximation are in error 
by appreciable factors. However, confirming a result of Mittler (1977), 
they mention that the ration of transmission coefficients (screened and 
unscreened) turn out to be quite accurate. 

I shall limit my self to two examples, borrowed to Thielemann and 
Truran (1986).Introducung their notations: 
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~ : reduced mass of the system 

a .. 
1J 

f .. 
1J 

(~)(a.+ a.) 
1 J 

1/3 
a. =«3/4TI)(Z./ L.Z.n.» 

1 1 J J J 

2 (Z.Z ./a .. )(e /kT) 
1 J 1J 

- kT f. . (1. 25 - 0.39 (r / a .. » 
1J 1J 

VCr) = (Z. Z. e2 / r) - DO + c(r fa) 
1 J 

2 
r 1 (Zi Zj e / E) r 2 =(aij E')/(c1 f ij kT) 

c1 = 0.39 

,CE') = exp [- ~ ; 

2 
r 

_1_ (2 ~ E' 
r 2 

1/3 

We consider the existence of a final nucleus for which the Q values 
of individual channels are corrected by Coulomb effects: 

Q = Q + DO . - DO scr,n n ,J ,n 

The nuclear potential in the incoming channel is lowered by the amount DO . 
and thus a state with a higher intrinsic excitation energy is produced ,J 
at r = O. The nuclear potential in the outgoing channel is lowered by DO 
and the available kinetic energy at infinity is reduced by that amount. ,n 

For a capture reaction at low temperature, the dominant channel is 
given by the y-transition to the ground state (n=y,k=y) and the whole 
screening factor is given by 

exp(H. ) = exp[1.25 f .. - 0.0975 T .. (3 fii)2] 
J, Y 1J 1J T .. 

1J 

In the case of a reaction with a negative Q value, Thielemann and 
Truran ibtain a new result . The incoming channel is then the dominant one. 
The maximum value of the integrand in <0 v> occurs at Qk(negative) + E' 
= EGa w kl ' which the Gamow energy in the outgoing channel. In thatca~~~ 
the ef~lc1ency factor becomes : 

exp(H .. k) = exp[1.25 f .. - 0.0975 Tk [3 fkn)2] , 
1J, 1J n 'kn 

Miscellaneous 

Equation of state. White dwarfs with surface hydrogen (Schatzman, 1945) 
may have a deep hydrogen convection zone (Schatzman, 1958). However, the 
exact boundary is an equation of state problem. It seems, from my readings, 
that there remain some uncertainty in the equation of state and in the 
degree of ionization. A careful application of the developments due to 
Ebeling (1973) should be carried. 

Transport problems. The deep convection zone dredges up heavy elements 
at the bottom of the hydrogen convection zone, allowing the presence of 
heavy elements in the spectrum (like Van Maanen 2). There is controversy 
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about the rate of gravitationnal sedimentation of the elements. The exact 
treatment has an important effect on the M, R, T ff' chemical composition 
of a white dwarf, withh all possible consequence~ on the mass function of 
white dwarfs, thermal evolution of white dwarfs. 

Similar problems arise at the boundary of the degenerate core of giants 
as discussed by Iben and Tutukov (1984), and a detailed treatment to 
appreciably different paths of evolution. 

What About Sirius? 

See (1892) has carried a remarkable analysis of the informations from 
the ancients of the colour of Sirius. I shall notice especially the remark 
concerning the Almagest. Ptolemey mentions six bright red objects : 
Arcturus, Aldebaran, Pollux, Betelgeuse, Antares and Sirius. From Theon 
and Avenius, the red colour of Sirius has disappeared at the end of the 
4th century, and according to Al Sufi is definitely not red anymore at the 
10 th century. 

The question which has been raised several times (Brecher, 1977, 1979) 
is the following : was Sirius B a red supergiant which has quickly evolved 
to a white dwarf ? Was Sirius A temporary a bright red supergiant ? In 
the former case this raises an interesting problem of cooling. Anyhow, the 
presence of the most famous white dwarf in the binary system of Sirius, 
the probalby real fast evolution of one of the companions raises 
fascinating problems which I think deserved to be mentionned in this 
meeting on dense matter. 

SUMMARY 

A number of physical and astrophysical problems remain to be solved 
in order to have a better understanding of white dwarfs and of their 
transition to type I supernovae and neutron stars. 

From the point of view of physics, I would like to list 
-the r-dependance of the linear and quadratic part of the screening 
potential; 
-the exact solution of the penetration factor (the efficiency factor is 
relatively well known, but the WKB approximation is not good enough, 
especially for strong screening); 
-the discontinuity of the thermonuclear reaction rate at the freezing 
temperature; 
-the properties of the eutectic for C-O mixtures (or more complicated ones) 
-a better equation of state in the intermediate region and better values 
of the microscopic diffusion coefficients; 

From the astrophysical point of view, I would like to list 
-the chemical composition of the bulk of white dwarfs; 
-the initial temperature distribution at the time of white dwarf formation; 
-the solution of the propagation of heat, for the cooling of the star,with 
the description of solidification, including the oxygen snowfall mechanism. 
-the propagation of ignition in the solid layers, and its application 
to evolution towards supernovae type I and neutron stars; 
-a revised analysis of gravitationnal sorting and extension of the outer 
convection zone of white dwarfs. 

This is certainly not a complete list,but it corresponds to the 
unsolved questions which come up obviously when discussing the present 
litterature. 
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TRANSPORT PROCESSES AND NEUTRINO EMISSION PROCESSES IN 

DENSE ASTROPHYSICAL PLASMAS 

INTRODUCTION 

Naoki Itoh 

Department of Physics 
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7-1, Kioi-cho, Chiyoda-ku Tokyo, 102, Japan 

Strongly coupled plasma physics plays an important role in the 
elementary processes that occur in the interior of dense stars such as 
white dwarfs and neutron stars. One can have a unique opportunity of 
observing these strongly coupled plasmas through the comparison of the 
X-ray observations of the neutron star surface temperature with the model 
calculations of the neutron star cooling (Itoh 1986). In the present 
review paper, I will put special emphasis on the plasma physics aspects of 
the elementary processes. 

Transport processes and neutrino emission processes are important 
elementary processes which decide the evolution of dense stars. They are 
not only interesting from the astrophysical point of view but also from 
the point of view of plasma physics. Strong correlations in the dense 
astrophysical plasmas affect the transport processes and the neutrino 
emission processes in a crucial way. 

Flowers and Itoh (1976, 1979) presented extensive results of the 
calculation of the transport properties of dense matter. Their results 
were widely used for the model calculations of the neutron star cooling 
(Nomoto and Tsuruta 1981). Later Yakov1ev and Urpin (1980) and Raikh and 
Yakov1ev (1982) made significant improvements on the results of Flowers 
and Itoh (1976). More recently further improvements were made by Itoh et 
a1. (1983), Mitake, Ichimaru, and Itoh (1984), and Itoh et a1. (1984c). 

There are four major neutrino processes which involve electrons. They 
are pair neutrino, photo-neutrino, plasma neutrino, and bremsstrahlung 
neutrino processes. The former three processes do not involve ions. The 
bremsstrahlung neutrino process involves ions. Concerning pair, photo-, 
and plasma neutrino processes, Beaudet, Petrosian, and Sa1peter (1967) 
calculated the neutrino energy loss rates, using the Feynman-Ge11-Mann 
(1958) theory. Dicus (1972) calculated these neutrino energy loss rates 
using the Weinberg-Salam theory (Weinberg 1967; Salam 1968). However, his 
calculation did not cover a wide range of densities and temperatures. 
Thus Dicus' result could not be widely used in stellar evolution 
computations. To resolve this unsatisfactory situation Munakata, Kohyama, 
and Itoh (1985, 1986) calculated these neutrino energy loss rates using 
the Weinberg-Salam theory, and presented the results for a wide range of 
densities and temperatures. 
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Concerning the bremsstrahlung neutrino process Festa and Ruderman 
(1969) calculated the neutrino energy loss rates using the 
Feynman-Gell-Mann theory. Dicus et al. (1976) calculated the 
bremsstrahlung neutrino energy loss rate using the Weinberg-Salam theory. 
However, they did not take into account the ionic correlation effects 
accurately. 

TRANSPORT PROCESSES 

In the astrophysical dense plasmas relevant to white dwarfs and 
neutron stars electrons are generally strongly degenerate. This means 
that the temperature satisfies the following condition: 

where TF if the Fermi temperature, Z the atomic number of the nucleus, A 
the mass number of the nucleus, and P6 the mass density in units of 
106 gcm- 3 . For the ionic system we consider the case that it is in 
the liquid state. The latest criterion corresponding to this condition is 
given by (Slattery, Doolen, and DeWitt 1982) 

r ( 2) 

where a=[3/(4~ni)ll/3 is the ion-sphere radius, and T8 the temperature 
in units of 108 K. 

We define a parameter y such that 

y 

where kF=(3~2ne)1/3 is the Fermi wave number of the electrons. 
For the classical ions we have 

y < 0.01. 

For the semiclassical ions we have 

0.01 ::: y ::: 0.1 . 

For the calculations of the transport coefficients we use the 
relativistic version of the Ziman formula (Flowers and Itoh 1976): 

a = 

y;, = 
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8.693xlO A------S < a> 

( 3) 

( 4) 

( 5) 

( 6) 

( 7) 



R = 

1.018(Z/A)2/3p~/3 

1 + 1.018(Z/A)2/3p~/3 

The scattering integrals <Sa> and <S~> are given by (Mitake, 
1chimaru, and 1toh 1984) 

( 8) 

<S~> = <Sa> + ~ [ 3<1_ 1> - (2 + 3R) <1+1> + 2R <1+3> ], (10) 
7r 

<S> <S_l> - R<S+l> (11) 

1 
(l) (l)n+4 S{k} 

<S > = J d 
[(k/2kF) 2 2 

n ° 2kF 2kF €(k,O)] 
(12) 

1 
(l) (l)n+4 1 

<I > = J d 
[(k/2kF)2 €(k,O)]2 n ° 2kF 2kF 

(13) 

where S(k) is the static structure factor of the classical ions, and 
€(k,O) is the longitudinal dielectric function due to relativistically 
degenerate electrons (Jancovici 1962). 

1.0r-.---,----. 

O'--~2:---~3 --..... 4 
10gP (gcm-3 ) 

°2~--'---L4--L--6'--...J 
log P ( gcm-3 ) 

Fig. 1 Comparison of Yakovlev and Fig. 2 
Urpin's results (dashed curves) 

Same as Fig. 1, for the 
4He matter. 

with the results of 1toh et al. 
(solid curves) for the lH matter. 
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For the numerical calculation of the scattering integrals, Itoh et a1. 
(1983) and Mitake, Ichimaru, and Itoh (1984) used the static structure 
factor of the classical one-component plasma calculated by the improved 
hypernetted chain method (Iyetomi and Ichimaru 1982 and 1983). Some 
examples of the numerical calculations are shown in FigurQs 1-4. 

As is readily seen from Figures 1-4, Yakov1ev and Urpin's calculation 
generally overestimates the resistivity (underestimates the conductivity) 
at low densities by 20-60%. This discrepancy is mainly caused by their 
neglect of electron screening. 

In Figures 5-6 we show the ionic quantum correction to the 
resistivity. The corrections are typically 10-20%. 

NEUTRINO EMISSION PROCESSES 

Pair. Photo-. Plasma Neutrino Processes 

The neutrino energy loss rates due to pair, photo-, and plasma 
neutrino processes have been calculated by Munakata, Kohyama, and Itoh 
(1985,1986) in the framework of the Weinberg-Salam theory. The result of 
the neutrino energy loss rates due to pair, photo-, and plasma neutrino 
processes can be written as follows: 

~air 

+ 1 [<C2 
2 v 

Qphoto = 1 [<C! + C!) + n (C~2 + C~2)1 ~hoto + 2 

1 [<C2 2 
2 v CA) + n 

~lasma = 
(C2 + nc'2) ~lasma 

BPS 
v v 

C 1+ 2sin2e , 1 - cA = '2 v 2 w 

, 
C 1 - C CA = 1 - CA v v 

sin2e - 0.217 ± 0.014 w 

(C' 2 
v 

C' 2) 1 
A 

(14) 

~hoto- (15) 

(16) 

(17) 

(18) 

(19) 

In the above n is the number of neutrino flavors whose masses are 
negligible compared with kBT, and Qp.1asmaBPS is the plasma neutrino 
energy loss rate calculated by Beauaet, Petrosian, and Sa1peter (1967). 

The numerical results of the calculation are shown in Figures 7-10. 
It has been found that the calculation of Munakata, Kohyama, and Itoh 
(1985, 1986) based on the Weinberg-Salam theory gives a substantially 
lower neutrino energy loss rate than the result of Beaudet, Petrosian, and 
Sa1peter (1967) based on the Feynman-Ge11-Mann theory. For n=O, the 
reduction factor a is in the range 0.35 ~ a ~ 0.87, depending on 
the density and temperature. For n-1, the reduction factor is in the 
range 0.56 ~ a ~ 0.88, and for n=2, we find 0.77 ~ a ~ 0.88. 
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Bremsstrahlung Neutrino Process 

The energy loss rate due to bremsstrahlung neutrino process in the 
liquid metal phase has been calculated by ltoh and Kohyama (1983). The 
result is summarized as follows: 

Q 
p 

Fl' 'd ~qu~ 

Gl , 'd 
~qu~ 

1 2 f d S{g) If{g21 
q 2 2 

o q lE(q,O)1 

1 2 f d S(g) If(g)1 
q 2 2 

o q lE(q,O)1 

, 2 
nCA )Gliquid} , (20) 

1 1 
4 

- l(q) 
q (21) 

1 1 
4 

- J(q) 
q 

(22) 

where Seq) is the static structure factor of the ions, f(q) is the finite­
nuclear-size correction factor, I(q), and J(q) are functions of q and the 
electron energy. 

The results of the numerical calculation for 4He and 56Fe are 
shown in Figures 11-14. As is readily seen from the figures, the ionic 
correlation effects reduce the neutrino energy loss rate by a factor 2-20 
in the liquid metal phase. The curves denoted as r=o correspond to 
the calculation in which ionic correlation effects are totally neglected. 
They are essentially the same as the results obtained by Dicus et al. 
(1976). Therefore, strongly coupled plasma physics plays a crucial role 
in the bremsstrahlung neutrino process in dense stars. 
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Fig, 11 
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Fliquid for the 4He matter. 
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Fig. 12 Gliquid for the 4He matter. 
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Fig. 13 Fliquid for the 56Fe matter. Fig. 14 Gliquid for the 56Fe matter. 

CONCLUDING REMARKS 

An ideal form of strongly coupled plasmas can be found in the interior 
of dense stars. Transport processes and neutrino emission processes in 
dense stars are crucially affected by the nature of strongly couple 
plasmas. Thus the comparison of the X-ray observations of the neutron 
star surface temperature with the model calculations of the neutron star 
cooling offers a unique opportunity of observing the behavior of the 
strongly coupled plasmas in dense stars. Further development of the X-ray 
astronomy is strongly desired. 

REFERENCES 

Beaudet, G., Petrosian, V., and Salpeter, E. E., Astrophys. J. 150:979 
Dicus, D. A., 1972, Phys. Rev. D, 6:941. 
Dicus, D., A., Kolb, E. W., Shramm, D. N., and Tubbs, D. L., 1976, 

Astrophys. J. 210:481. 
Festa, G. G. and Rudrman, M. A., 1969, Phys. Rev. 180:1227. 
Feynman, R. P. and Gell-Mann, M., 1958, Phys. Rev. 109:193. 
Itoh, N., 1986, Invited review talk given at the IAU Symposium No. 125 

"The Origin and Evolution of Neutron Stars" (Nanjing, China), 
to be published. 

Itoh, N. and Kohyama, Y., 1983, Astrophys. J. 275:858. 
Itoh, N., Kohyama, Y., Matsumoto, N. and Seki, M., 1984a, Astrophys. J. 

280:787 
Itoh, N. , Kohyama, Y. , Matsumoto, N. and Seki, M. , 1984b, Astrophys. J. 

285:304 
Itoh, N. , Kohyama, Y. , Matsumoto, N. and Seki, M. , 1984c, Astro!1h;t:s. J. 

285:758 
Itoh, N. , Kohyama, Y. , Matsumoto, N. and Seki, M. , 1984d, Astrophys. J. 

279:4l3 
Itoh, N. , Mitake, S. , Iyetomi, H. and Ichimaru, S. , 1983, Astrophys. J. 

273:774. 

158 



Iyetomi, H. and Ichimaru, S., 1982, Phys. Rev. A 25:2434. 
Iyetomi, H. and Ichimaru, S., 1983, Phys. Rev. A 27:3241. 
Jancovici, B., 1962, Nuovo Cimento, 25:428. 
Mitake, S., Ichimaru, S., and Itoh, N., 1984, Astrophys. J. 277:375. 
Munakata, H., Kohyama, Y. and Itoh, N., 1985, Astrophys. J. 296:197. 
Munakata, H., Kohyama, Y. and Itoh, N., 1985, Astrophys. J. 304:580. 
Nomoto, K. and Tsuruta, S., 1981, Astrophys. J. Lett. 250:L19. 
Raikh, M. E. and Yakov1ev, D. G., 1982, Astrophys. Space Sci. 87:193 
Salam, A., 1968, "Elementary Particle Physics," edited by N. Svartho1m, 

Almquist and Wikse11s, Stockholm, p. 367. 
Slattery, W. L., Doolen, G. D. and DeWitt, H. E., 1982, Phys. Rev. A 

26:2255. 
Weinberg, S., 1967, Phys. Rev. Lett. 19:1264. 
Yakov1ev, D. G. and Urpin, V. A., 1980, Soviet Astr. 24:303. 

159 
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INTRODUCTION 
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The white dwarf phase corresponds to the final configuration in the 
evolution of the vast majority of stars. The Sun, for example, will end 
its life as a white dwarf. When nuclear fuel is exhausted in a typical 
star, gravity is no longer balanced by the internal pressure generated by 
nuclear energy sources and the star collapses on itself. Hydrostatic 
equilibrium is again restored when degenerate electron pressure takes over. 
At that stage, further contraction is prevented, the object has reduced its 
radius to about 1% of the solar radius, and we speak of a white dwarf 
star. 

It is generally believed that the immediate progenitors of white 
dwarfs are nuclei of planetary nebulae, themselves the products of 
intermediate- and low-mass main sequence evolution. Stars that begin their 
lifes with masses less than about 8 solar masses are expected to become 
white dwarfs. Those that have already ended their thermonuclear energy 
generation phases are objects which have burned hydrogen and helium in 
their interiors. Consequently, the essential of the mass of a typical 
white dwarf is believed to be contained in a core made of the products of 
helium burning: mostly carbon and oxygen. The exact proportions of C and 
o are unknown because of uncertainties in the rates of helium burning. 

The expected structure of a typical young white dwarf is that of a 
stratified object with a mass of ~ 0.6 M6 consisting of a C/O core 
surrounded by a thin He-rich layer itse11 surrounded by an unprocessed 
H-rich layer. The respective thicknesses of these outer layers are not 
known a priori and must depend on the details of pre-white dwarf evolution. 
On theoretical grounds, however, we expect that the maximum amount of He 
that can survive the hot planetary nebula phase is only 10-2 of the total 
mass of the star, while the maximum amount of H is about 10-4 (D'Antona and 
Mazzite1li 1979). Although these outer layers are very thin, they are 
extremely opaque and play an essential role in the evolution of a white 
dwarf (Van Horn 1971). 

The large opacity of the outer layers of a white dwarf implies that 
the radiation escaping from the star comes from the outermost regions -
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the so-called atmosphere - containing, typically, less than 10-14 of the 
total mass of the star. Spectroscopic observations can only probe these 
regions which are usually dominated by hydrogen. Thus, a majority of white 
dwarfs are referred to as "H-rich" objects. It turns out that about 25% of 
the white dwarfs do not possess a H-rich layer. Those are called "He-rich" 
white dwarfs, with, again, the understanding that C/O cores contain 
essentially all of the mass even though such cores are not directly 
observable. Now the question why one white dwarf out of four has not 
retained a H-rich layer remains unanswered. It is one of the current 
puzzles in the theory of evolving white dwarfs. 

A dying star begins the final phase of its history in the form of an 
extremely hot, collapsed object which can only cool off because its nuclear 
energy sources are depleted and gravitational energy can no longer be 
tapped efficiently as degenerate electron pressure prevents substantial 
contraction. Residual hydrogen burning may be present in the outer layers 
of some white dwarfs (Iben and Tutukov 1984), but this does not affect in 
an essential way the basic cooling picture of white dwarfs. Hence, a 
typical isolated white dwarf evolves with an almost constant radius, its 
mechanical structure being specified by the degenerate electron gas system. 
At the same time, the ions (largely decoupled from the electrons) provide 
the thermal energy which slowly leaks through to the outside, thereby 
producing the star's luminosity. With time, the ion system evolves from a 
gas to a fluid to a solid. Eventually, the whole star disappears from 
sight in the form of a cooled off, crystallized object known as a black 
dwarf. 

It should be clear that dense matter physics is directly relevant to 
the evolution and structure of white dwarfs. For example, a detailed 
knowledge of the opacity and equation of state of strongly coupled plasmas 
is necessary to compute the rate of cooling of a white dwarf. And indeed, 
this rate basically depends on how much thermal energy is stored in the 
interior of the star and how fast this energy is transferred from the hot 
core to the cold interstellar medium through the opaque outer layers. 
Thus, a reliable description of the constitutive properties of dense 
plasmas is required to build a theory of evolving white dwarfs. By the 
same token, the observed properties of cooling white dwarfs can be used to 
test our theories of strongly coupled plasma physics. In particular, white 
dwarf stars appear to be the natural environments that best mimic the 
properties of the one-component plasma model. 

PHYSICAL PROPERTIES OF EVOLVING WHITE DWARFS 

In the context of the present meeting, it seems worthwhile to discuss 
some basic characteristics of evolving white dwarfs. Results are presented 
in Figure 1 which shows the fractional mass depth as a function of 
effective - or surface - temperature (lower scale) and as a function of 
time expressed in years (upper scale). Note that the choice of the 
ordinate implies a very strong bias of the figure in favor of the outermost 
layers. The results presented here are for the typical case of a 0.6 Me 
"He-rich" white dwarf model made up, initially, of a pure carbon core 
surrounded by a pure helium layer containing 10-4 of the total mass of the 
star. 

First, the dotted line at the top of the graph corresponds to the 
position of the photosphere of the star, i.e. the layers from which the 
detectable radiation comes from. These layers are characterized by 
relatively low densities. The position of the photosphere changes with 
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time because cooling changes the surface opacity thereby allowing radiation 
to escape from various depths. 

The region defined by the two thick lines joined together by thin 
diagonal lines corresponds to a dense Coulomb fluid. The upper boundary is 
given by the condition r = 1, where r is the usual coupling parameter for 
dense plasmas. This condition loosely defines the transition between a gas 
and a liquid. The lower boundary (the curve labeled r = rm) corresponds to 
the crystallization/melting line. Note that more than 99.99% of the mass 
of the white dwarf is in the form of liquid during most of its evolution. 
Even the surface layers show strong non-ideal behavior in the cooler 
phases. After some 1010 years of evolution, more than 99% of the mass of 
the star has crystallized. 

The region defined by the thick curve and the thin vertical lines in 
the upper half of the diagram gives the location and extent of the helium 
convection zone that develops during the evolution. Indeed, as cooling 
proceeds, He begins recombining at an effective temperature of about 
65,000K which leads to the formation of a superficial convection zone 
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Fig. 1. Mass fraction (q = 1- M (r)/M*) versus effective temperature 
(lower scale) or time (upper scale) for an evolutionary sequence 
with M* = 0.6 Me and an initial configuration consisting of a pure 
C core surrounded by a pure He layer containing 10-4 of the mass 
of the star. The dotted line at the top of the figure gives the 
location of the photosphere. The first shaded area (vertical 
lines) corresponds to the He superficial convection zone and the 
second one (diagonal lines) to regions characterized by a dense 
Coulomb fluid. See text for further details. 
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from then on. With further cooling, the base of the convection zone sinks 
into the star as more and more He recombines and convection becomes the 
dominant energy transfer mechanism in the outer layers of the white dwarf. 
Note that the top of the convection zone always remains at or near the 
photosphere. This has some importance because convection is so turbulent 
in white dwarfs (Bohm 1979) that any process (such as diffusion) that may 
change the local chemical composition at the base of the convection zone 
also leaves its signature on the observable surface abundances. Note also 
that the base of the convection zone reaches a maximum depth and then 
retreats toward the surface. The physical reason for this behavior is that 
the base of the convection zone reaches eventually the boundary of the 
degenerate core. Because of highly efficient electron conductivity, 
convection is suppressed in degenerate matter. With further cooling, the 
boundary of the degenerate core goes up toward the surface which forces the 
base of the convection zone to move up also. The dashed line labeled ~ = 0 
(where ~ is the usual degeneracy parameter for non-relativistic electrons) 
shows precisely the behavior of the boundary of the degenerate core; below 
this line, electro~are degenerate. Quite clearly, it is seen that 
electrons can provide a uniform, neutralizing background of negative 
charges in the interiors of white dwarfs, a basic condition for the 
validity of the one-component plasma model. It is also interesting to 
point out that, for the coolest phases of its evolution, even the surface 
layers of a white dwarf are affected by electron degeneracy. In such 
cases, model atmosphere calculations must include conduction as well as 
radiation and convection as energy transport mechanisms (Bohm et al. 1977; 
Bohm 1979; Kapranidis 1983). 

The dashed line labeled HE = e corresponds to the depth where the 
number of He ions is equal to the number of e ions. This line has a 
certain functional dependence on time because helium and carbon diffuse in 
a complicated way with respect to each other (see below). The other dashed 
line, labeled e = 1, gives the depth where the Debye temperature of the e 
ions is equal to the local temperature. Quantum diffraction effects for 
the ionic system become important below that line. In the present case of 
an evolving 0.6 M@ model, we find that these effects set in before 
crystallization. Hence, there is no transition to the classical solid in 
the core of this model. 

Finally, the dotted line labeled Z(e) = 6 illustrates another feature 
of white dwarf physics, namely, the unusual ionization patterns that are 
found in such stars. It corresponds to the locus where the carbon ions are 
totally ionized. In the hotter phases, the degree of ionization increases 
monotonically with depth as in ordinary stars. (Note that He is completely 
ionized at the base of the convection zone which, in fact, acts as an 
almost perfect tracer of the partial ionization zone of He). In the cooler 
models, partial recombination always occurs until, at large enough depths, 
pressure ionization finally takes over. For example, the figure shows 
that, for the intermediate phases, carbon recombines at some depth before 
ionizing completely again. Such ionization patterns can have observational 
consequences (see below) and depend on the details of the envelope equation 
of state. 

The results presented in Figure 1 are quite typical of contemporary 
evolutionary calculations of white dwarfs. They were taken from the 
detailed computations of Tassou1, Fontaine, and Winget (1986) and those of 
Winget, Lamb, and Van Horn (1986). These studies incorporate as good a 
treatment of the imput physics as any that exists in the white dwarf field. 
Along with the standard inclusion of the Los Alamos radiative opacities 
(Huebner et al. 1977) and the conductive opacities of Hubbard and Lampe 
(1969), they make use of the totally ionized, pure substance equation of 
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state of Lamb and Van Horn (1975) for the liquid/solid deep interior and 
the non-ideal equation of state of Fontaine, Graboske, and Van Horn (1977) 
for the partially ionized, partially degenerate envelope. It seems 
appropriate here to point out that, after a decade, improvements to the 
equation of state and opacity data would be welcome. In particular, there 
is a need to further study the properties of C/O mixtures of deep white 
dwarf interiors after Shaviv and Kovetz (1976) and Stevenson (1977,1979). 
Also, it is hoped that improved models of pressure ionization such as those 
discussed by Hummer and Saumon at this workshop will soon be extended to 
the white dwarf envelope regime. 

USING WHITE DWARFS AS PROBES OF DENSE MATTER PHYSICS 

Under appropriate conditions, white dwarf stars can be used as proving 
grounds for theories of matter under extreme densities. For example, one 
of the very first tests of the validity of the Fermi-Dirac electron gas 
theory was offered when Fowler (1926) realized that stars with masses 
comparable to that of the Sun but with planetary dimensions could only be 
explained if their mechanical structure is specified by degeneracy 
pressure. Chandrasekhar (193la,b, 1935) further developed this idea in a 
remarkable way and found the existence of a curious relationship between 
the mass and the radius of a white dwarf as well as the existence of a 
limiting mass above which a white dwarf cannot exist. Since then, the 
sample of known white dwarfs has increased some 100 fold and, while it is 
true that relatively few white dwarfs have reliable and independent 
estimates of their masses and radii, no example has ever been found of an 
isolated white dwarf that has a mechanical structure different from that 
predicted by Chandrasekhar. 

A second method is to compare the actual observed distribution of 
white dwarfs (usually given in terms of the luminosity) with that predicted 
by detailed evolutionary calculations. For instance, at very high 
luminosities (i.e. in the early, hot phases of the evolution of a white 
dwarf), theory predicts that cooling is dominated not by thermal energy 
release but by neutrino processes occuring in the dense, hot core. The 
latest analyses (Fleming, Liebert, and Green 1986; Kawaler 1986) indicate 
that the observed distribution of hot white dwarfs is indeed consistent 
with evolutionary calculations that include neutrino emission processes and 
inconsistent with those that do not. Because the number of known hot white 
dwarfs is small, however, the statistics are not yet refined enough to 
distinguish between older values for the rates of neutrino emission and the 
newer ones discussed by Itoh at this meeting. It is hoped that future 
observations will provide a more stringent test. 

At lower luminosities, where the bulk of the white dwarfs is found, 
neutrino cooling becomes negligible and the method would be used to test 
mostly the thermal properties of white dwarfs. In principle, one could use 
different sets of constitutive physics, compute several evolutionary 
sequences, and find the theoretical distribution that best fits the 
observed one. Although this method is straightforward, it cannot presently 
be used with a high level of confidence because the issue of white dwarf 
statistics is somewhat clouded by the uncertainties of the stellar birth 
rate function. And indeed, there are strong reasons to believe that, over 
the last 1010 years (corresponding roughly to the age of the coolest 
observable white dwarfs), the rate of star formation was not constant, 
although we do not know exactly how this rate changed with time. 
Therefore, white dwarfs were not fed in at a constant rate at the hot end 
of the temperature sequence and their distribution in terms of luminosity 
(or equivalently age) is affected. So in terms of testing the thermal 
properties of white dwarfs by comparing their observed and predicted 
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distributions, we get into a Catch-22 situation: a perfect knowledge of 
the constitutive physics is required to derive the appropriate birth rate 
function and, at the same time, a perfect knowledge of the stellar birth 
rate is necessary for testing the predictions of various sets of 
constitutive properties. The situation will improve only if a reliable and 
independent means (i.e. not using white dwarf statistics) is found to 
derive the birth rate function. 

A third method shows very promising results. It uses the fact that 
white dwarfs become unstable against non-radial gravity-mode oscillations 
during a phase of their cooling history. These instabilities manifest 
themselves in the form of multiperiodic luminosity variations. It appears 
that all "H-rich" white dwarfs become non-radial pulsators in the narrow 
range of effective temperature 13,OOOK1tT :;c:l1,OOOK (Fontaine et a1-
1982), while the same may also be true fo~ the "He-rich" white dwarfs in 
the range 30,000K;t T ~ 24,000K (Liebert et a1. 1986). As discussed by 
Winget and Fontaine {1982), these instability phases are related to an 
ionization mechanism of the main atmospheric constituent (either H or He). 
Comparlng the observed properties of pulsating white dwarfs with those of 
models of such stars provides tests of both the mechanical and thermal 
structures of these objects. In particular, the very rich gravity-mode 
period spectrum of a white dwarf depends primarily on the density and 
pressure structures of the degenerate interior. At the same time, the 
composition stratification acts as a mechanical filter and only those modes 
that resonate with the thicknesses of the outer H- and He-rich layers can 
be amplified (Winget, Van Horn, and Hansen 1981). Moreover, a given mode 
is evanescent in the deep degenerate interior; it can only propagate in the 
partially degenerate outer layers. Thus, it can be driven unstable only if 
there exists a suitable instability mechanism in the outer layers. The 
hydrogen and helium ionization mechanisms discussed by Winget and Fontaine 
(1982) are believed to be the "driving engines" for the pulsating white 
dwarfs. They depend in a complicated and sensitive way on the thermal 
properties of the fluid envelope (adiabatic exponents, specific heats, 
,pressure and opacity derivatives, etc.). 

In practice, one could again use different sets of constitutive 
physics, build models of pulsating white dwarfs, and select those that best 
reproduce the observed properties of known pulsators. Although this method 
has already enjoyed some notable successes (see Winget et al. 1982a, 
1982b), its full power has not yet been fully exploited because actual mode 
identification in pulsating stars remains uncertain. More detailed 
observations in the future should remedy to this situation. It should also 
be added that perhaps an even more powerful tool for testing the internal 
constitution of pulsating white dwarfs is provided by our ability to 
directly measure the cooling time scales of these objects through the 
observation of small but detectable changes in pulsation periods (Robinson 
and Kepler 1980; Winget et al. 1985). Although some years of observing 
will be necessary before the appropriate data are acquired, this very 
promising technique should allow a direct confrontation of theoretical and 
observed cooling time scales without resorting to the use of white dwarf 
statistics which are plagued by uncertainties related to incompleteness and 
small sampling. 

Another method yet for probing the interior of a white dwarf is based 
on the realization that its atmospheric composition bears the signature of 
various competing mechanisms that are occuring inside the star. With 
cooling, the relative efficiencies of these mechanisms change, and so does 
the atmospheric chemical composition. While the atmospheres of white 
dwarfs are usually dominated by o~e element (either H or He), analyses of 
ground-based and satellite data reveal the presence of trace heavy elements 
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that show highly unusual abundance patterns. Understanding these patterns 
forms the basis of the theory of the spectral evolution of white dwarfs. 
In the last few years, a number of us at Montreal have been working to 
elaborate such a theory. It turns out that it can be used as a sensitive 
probe of white dwarf envelopes (see, e.g., Michaud, Fontaine, and Charland 
1984; Paquette et al. 1986a; Pelletier et al. 1986). 

One fondamenta1 result of these studies is that the surface abundance 
patterns of white dwarf stars can only be explained if diffusion processes 
are occuring in their envelopes. Consequently, one of the very basic 
ingredients in the theory of the spectral evolution of white dwarfs is a 
knowledge of the transport properties of the fluid envelopes. In general, 
in a star, the behavior of a trace element of species 2 in a background of 
species 1 is governed by a diffusion equation of the type: 

w = D12 [- dlnc2 + ( m2 (1+Z1)-Z2-1) dlnP + a dInT + I1Y2 g ] (1) 
12 --- -- --- t -- - r ' 

dr m1 dr dr kT 
where D12 is the diffusion coefficient, r the radius, c2 (= n2 / ~) the 
number fraction of element 2, mi the mass of an atom of element i (i = 1, 
2), Zi the average charge of element i (ZiS atomic number), P the pressure, 
at the total thermal diffusion coefficient, T the temperature, k the 
Boltzmann constant, and gr the radiative acceleration on element 2. In 
this convention, a negative velocity (w12< 0) means that element 2 sinks 

into the star. With the diffusion equation written as in equation (1), the 
processes that induce diffusion in a star become evident. The first term, 
the concentration gradient term, causes ordinary diffusion. The pressure 
gradient term is responsible for gravitational settling, and the 
temperature gradient term for thermal diffusion. Finally, the last term is 
responsible for selective radiative acceleration on the trace element. 
Statistical physics must provide the values of the transport coefficients 
D12 and at for conditions encountered in white dwarf envelopes. In the 
remainder of this paper, we will concentrate on this particular aspect of 
the problem. 

TRANSPORT PROPERTIES FOR WHITE DWARF PLASMAS 

Transport coefficients appropriate for the deep interiors of white 
dwarfs are available from molecular dynamics and Monte Carlo studies of the 
one- and two-component plasma models (cf. DeWitt 1976; Hansen 1978; 
Hansen, Joly, and McDonald 1985). At the other extreme, the usual formulae 
for the diffusion coefficients of dilutes gases can be found, for example, 
in Chapman and Cowling (1970). White dwarf envelopes, however, are 
characterized by plasmas that are neither weakly or strongly coupled, a 
regime in which both the above theoretical models fail. Developing a 
theory of the spectral evolution of white dwarfs requires a knowledge of 
diffusion coefficients in this difficult intermediate regime. To estimate 
such coeffiCients, we have used a simple kinetic theory approach based on 
the numerical evaluation of collision integrals for a screened Coulomb 
potential of the Debye-HUckel type. The screening length is taken as the 
larger of the Debye length or the average interionic distance. The method 
can be used within the framework of Chapman-Enskog's theory (Chapman and 
Cowling 1970) or Burgers's (1969) method of solution of the Boltzmann 
equation. It becomes rigorously valid in the limit of a dilute plasma and 
recovers approximately the results of theories applicable at very high 
densities. This suggests that the region of intermediate coupling is 
probably reasonably bridged. The details can be found in Paquette et al. 
(l986b) • 
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The transport coefficients D12 and a are expressible in terms of 8 
different collision integrals which have teen evaluated for a wide range of 
physical conditions. High-accuracy spline fits have been developed for 
these integrals and are presented in Paquette et al. (1986b). However, for 
quick estimations, the following fitting formula can be useful for the 
diffusion coefficient (cgs units): 

1 
2.5 

T 
(2) 

(3) 

(4) 

(1.78 x 10-9 

(5 ) 

In this formula, p is the mass density, Ai the atomic weight of element i 
(i = 1,2), and the other symbols have been defined previously. The 
fitting formula is restricted to the case of a trace element of species 2 
diffusing in a background of species 1. It rec~ the results of the 
exact calculations of collision integrals within less than 20% over the 
white dwarf regim'e (-7~'¥12:G3). At very high densities, the fitting 
formula assumes a functional dependence of the form D12 ~ TI.lO/pO.53, 
which is not unlike the results of Hansen and collaborators (Hansen 1973; 
Pollock and Hansen 1973; Hansen, McDonald, and Pollock 1975) and those of 
Stevenson and Salpeter (1977). Because thermal diffusion appears 
negligible as compared to gravitational settling and ordinary diffusion 
in white dwarf plasmas (see below), no fitting formula has been derived 
for at" 

It is of great interest to compare our results with the predictions 
of more sophisticated theories. At the time of the writing of the paper 
by Paquette et al. (1986b), the only results available to us were for the 
self-diffusion coefficient Dll in the limit of strong coupling. 
Recently, however, results for interionic diffusion (D12) have become 
avalaible from both molecular dynamics (Hansen, Joly, and McDonald 1985:: 
HJM; Boercker, Ladd, and Pollock 1985 ::BLP) and kinetic theory (BLP). In 
particular, the interesting work carried out by Boercker and his colla­
borators at Livermore has been summarized at this meeting. In Table 1, we 
compare our results for D12 with those of BLP and HJM for the mixtures that 
they have considered. In the top half of the table, a Si XV - Sr XXXVII 
mixture of various concentrations characterized by a total ionic number 
density n = 1022 and a constant coupling parameter y is considered. Our 
results recover the kinetic theory results of BLP within 10% while the 
deviations from their molecular dynamics calculations are less than 15%. 
The differences are somewhat larger (10 - 30%) for the equimolar H II - He 
III mixture considered in the bottom half of the table. In that case, the 
coupling parameter was allowed to vary to span the moderate to strong 
coupling region. Note that we have translated the results of BLP and HJM 
in terms of a total ionic number density n = 1026 • As compared to BLP and 
HJM, we find that our results show surprisingly good agreement, even for 
values of the coupling parameter that are more characteristic of the 
high-density interior of a white dwarf than its envelope. This comparison 
gives us added confidence that our estimates of DI2 for the moderately 
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Table 1. Interdiffusion Coefficients in Binary Ionic Mixtures 

y = fr (~)O.33 

Si XV - Sr XXXYVI % Si Y D12 (MD) D12(KT) D12 
n = 1022 (BLP) (BLP) ~Thi) ork 

0.1 0.005 1.85-1 1.90-1 
25.0 0.005 2.15-1 1.86-1 1.87-1 
50.0 0.005 2.17-1 1.82-1 1.85-1 
75.0 0.005 2.04-1 1.77-1 1.82-1 
99.9 0.005 1.68-1 1.80-1 

H II - He III % H Y D12(MD) D12(KT) D12 
n = 1026 (BLP,HJM) (BLP) &Thi~ ork 

50.0 0.4 6.67-2 7.06-2 8.53-2 
50.0 1.0 2.03-2 1.76-2 1.85-2 
50.0 4.0 3.15-3 3.41-3 2.55-3 
50.0 40.0 2.41-4 1.86-4 
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Fig. 2. Evolution of the carbon distribution for a typical white dwarf 
evolutionary sequence (see text). The carbon number concentration 
u is plotted as a function of the pressure in a given model. The 
third axis is the decreasing effective temperature. Note how 
traces of carbon can pollute the surface layers (low values of log 
P) in the range 20,000K-1tT ~5,000K. Note also that pollution 
reaches a maximum around T~ c: 12 ,OOOK, 
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coupled plasmas found in white dwarf envelopes are satisfactory. We empha­
size, however, that a much more detailed comparison involving conditions 
encountered in actual white dwarf models remains highly desirable. In 
addition, it seems imperative that computations such as those presented by 
BLP be extended to include thermal diffusion. And indeed, our results 
suggest (see Fig. 3 of Paquette et a1. 1986b) that the binary thermal dif­
fusion coefficient decreases to very small absolute values with increasing 
density for a given isotherm. This makes thermal diffusion a negligible 
transport process in white dwarf plasmas. The validity of this point rema­
ins to be verified by independent calculations. 

We conclude by discussing briefly an example of application in which 
one of the key features is a knowledge of the transport properties of white 
dwarf plasmas. The problem to be con~idered is the evolution of the carbon 
distribution in a "He-rich" white dwa~f (details are given in Pelletier et 
a1. 1986). From the original stratified distribution in which there is a 
near discontinuity in chemical composition caused by the very steep tempe­
rature dependence of the nuclear burning rate, we expect that carbon will 
migrate with time in a cooling white dwarf. Obviously, the evolution of 
the C distribution depends on both the diffusion coefficients and the local 
conditions. Figure 2 illustrates the results of a sample evolutionary 
sequence. It shows how the C distribution evolves in a 0.6 Me' He/C white 
dwarf model with a He layer containing 10-4 of the total mass of the star 
(this is the model discussed in the' second section of this paper). What is 
plotted is the number concentration of carbon (u = n(C)/(n(C) + n (He»)) as 
a function of depth - measured here in terms of the pressure - and as a 
function of decreasing effective temperature. In the early, high-tempera­
ture phases, the C profile "remembers" its initial condition; in the pre­
sent case, a step function log u = 0 / -5. The kink that is observed cor­
responds to the former plateau at log u = -5. Carbon that is located dee­
per than the kink diffuses upward through ordinary diffusion, while carbon 
located above the kink diffuses downward through gravitational settling. 
By the time the star has cooled down to an effective temperature of about 
30,000K, the transient phase is over and the star has now "forgotten" its 
assumed initial configuration. At that point in time, the flow of carbon 
becomes unidirectional: C migrates outward. With further cooling, the 
base of the He convection zone sinks into the star while more C diffuses 
upward. Carbon that arrives at the base of the convection zone is immedia­
tely distributed uniformly across the convection zone because the latter is 
highly turbulent. Eventually, enough C has migrated upward that signifi­
cant traces pollute the He convection zone, and, consequently, the observa­
ble atmosphere. With still further cooling, partial recombination of C 
(combined with the outward motion of the base of the convection zone) re­
verses the direction of the flow, and from an effective temperature of 
about 12,000K, C retreats from the convection zone. Carbon sinks back into 
the star as is neatly illustrated in the figure. 

The most interesting aspect of these events is that they leave a defi­
nite signature which can be observed: namely, that traces of C should 
pollute the atmospheres of "He-rich" white dwarfs, and that these traces 
should show a maximum at an effective temperature of about 12,000K. The 
fact that these predictions are indeed confirmed by the observations (see 
Pelletier et a1. 1986) constitutes, so far, one of the better successes of 
the theory of the spectral evolution of white dwarfs. It should be noted 
that the results are sensitive to the constitutive and transport properties 
of white dwarf plasmas as well as the choice of model parameters. Although 
it has not yet been possible to untangle these different effects, there is 
hope that the so-called carbon pollution phenomenon in "He-rich" white 
dwarfs will eventually shed additional light on the physics of white dwarf 
plasmas. 
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TOWARD AN IMPROVED PURE HYDROGEN EOS FOR ASTROPHYSICAL APPLICATIONS 

INTRODUCTION 

Didier Saumon and Hugh M. Van Horn 

Department of Physics and Astronomy and 
C. E. K. Mees Observatory, University of Rochester 
Rochester, New York 14627-0011 

The motivation for our equation of state (EOS) work derives from our 
interest in the structure and evolution of substellar "brown dwarf" stars. 
To construct an evolutionary model requires the solution of the 
differential equations governing stellar structure and evolution, which in 
turn requires knowledge of the EOS of stellar matter. 

A preliminary evaluation of current versions of the EOS for pure 
hydrogen from the Lawrence Livermore National and Los Alamos Scientific 
laboratories and from the work of Fontaine et al. (1977) has convinced us 
that significant improvements (> 5%) can be made. All three of these 
equations of state are widely used for stellar modeling and a new, 
independent calculation seems appropriate at this time. 

THE EQUATION OF STATE OF MOLECULAR HYDROGEN 

An EOS suitable for modeling brown dwarf stars must cover the 
following range of densities and temperatures: 200K < T < 2x106 K, p < 2000 
gram/cm3• A wide variety of physical conditions is encountered under these 
(p,T) regimes. In order to develop a facility for tackling such 
calculations, we have first considered the relatively simple case of fluid 
molecular hydrogen. 

To attack this problem, we have used the free energy minimization 
technique, employing hard sphere perturbation theory to describe the fluid 
properties of hydrogen. We have followed the work of Ross et al. (1983) 
closely in these computations. Our expression for the total Helmholtz free 
energy of H2 is: 

F = NkT ln~[211n2l3/2 
e mkT 

14 

- NkT In{~ L 
2 n=O 

J max 

L (2J+1) 
J=O 

e- E(n,J)/kT} 

[
11(4-3 11 ) - [112" + n2 + -211]] pN J + NkT (1-11)2 ., + 2 of(r)g(r,l1)d3r 
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(1) 

Here, N is the total number of molecules, V is the volume of the system, 
p=N/V, T is the temperature, n is Planck's constant, k is Boltzmann's 
constant and m is the mass of an Hz molecule. 

The first term in (1) is the translational free energy of the ideal 
gas. The second is the contribution from internal vibration and rotation 
states of the molecules. Excited electronic states as well as dissociation 
are negligible for T < 10 3K and were not included in this calculation. The 
energy of each level relative to the vibrational ground state energy E(O,O) 
is 

E(n,J) = ~ (n+1) - w x (n+1)2 + B J(J+l) - 0 J2(J+l)2 e - ee - e e 
2 2 

- Q (n+ 1)J(J+l) - w /2 + w x /4 e - e e e (2) 
2 

where nand J are the vibrational and rotational quantum numbers, 
respectively. The spectroscopic constants appearing in (2) were taken from 
Huber and Herzberg (1979). Because of the pathological behavior of (2) for 
large J, the sum over rotational states is cut off at the value Jmax which 
depends on n, Qe' Be and De' Note that this treatment of internal 
structure is appropriate only for isolated molecules, i.e. for the very low 
densities at which the spectroscopic measurements are made. 

The third term in (1) is the excess free energy of a gas of hard 
spheres, as given by Carnahan and Starling (1969) and modified by Ross 
(1979) to make the reference system closer to a 1/r12 repulsive core, which 
better approximates the actual potential. The hard sphere gas is 
characterized by one parameter, the packing fraction 11=!pa3 , where a is the 
hard sphere diameter. 6 

The fourth term in (1) is the first order correction to the expansion 
of the configuration integral, and the last term is the first order quantum 
correction in the Wigner-Kirkwood expansion (Landau and Lifshitz, 1958). 

In the last two terms, g(r,l1) is the pair correlation function for 
hard spheres. We have used the analytical expression of Smith and 
Henderson (1970) for the Percus-Yevick approximation of g(r,I1). 

The interactions between molecules are described by a spherically 
symmetric effective pair potential, ~(r). The potential we used was 
obtained by Ross, et a1. (1983) from shock tube experiments and static 
compression measurements. This effective pair potential, which implicitly 
includes many-body effects, agrees well with an extensive body of high 
compression data. 

Equation (1) must be minimized with respect to the hard sphere 
diameter (0), the only free parameter of the model. Any thermodynamic 
quantity can then be obtained by taking the appropriate derivatives of the 
free energy. 

For reasons stated below, we have also generated an equation of state 
for fluid molecular deuterium, O2 , This is done simply by using the 
appropriate value for m, the mass of the O2 molecule, and using a different 
set of spectroscopic constants in eq. (2) (Huber and Herzberg, 1979). The 
interaction potential is taken to be the same as for hydrogen, and thus 
non-ideal terms are unaffected. 
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To check the reliability of our computations, we have compared our 
results with the calculation of Ross et a1. (1983). Figure 1 shows the 
300K pressure isotherm up to the phase transition (around 5.4 x 10 10 

dyne/cm2 ). The agreement between our calculations (triangles) and the work 
of Ross et a1. (1983; open circles) is excellent. Comparison with the 
pressure, density and packing fraction of the fluid along the melting curve 
calculated by these authors again shows excellent agreement. This is 
strong evidence that our calculations are being done correctly. 

Our computations also reproduce the existing experimental data quite 
well, as shown by the generally good agreement with the experimental 
results of Mills et a1. (1978) and of Shimizu et a1. (1981) (solid curve in 
Fig. 1). The exception to this is the region V<10 cm 3/mole, where both our 
calculation and that of Ross et a1. (1983) yield too high a pressure. This 
is probably due to the uncertainty inherent in the theoretical calculation. 
Ross et a1. (1983) report a 4% uncertainty in the predicted volume arising 
from the large volume error bars in the experimental data (both shock tube 
and diamond anvil experiments) used to fit their effective pair potential. 
This uncertainty is shown by the error bar on Figure 1. 

We have also compared our Hz EOS with a table provided by the Lawrence 
Livermore National Laboratory (Graboske and Wong, 1980) and with the Los 
Alamos Scientific Laboratory SESAME equation of state (Material #5251). 
The latter is actually obtained by Los Alamos from a density scaling of the 
detailed deuterium EOS in the SESAME library (Material #5263). Since the 
scaling method can only give an approximate EOS for hydrogen, we have also 
compared our D2 EOS with the SESAME #5263 table (see below). Despite the 
approximate nature of the Los Alamos H2 EOS, Figure 1 shows that the SESAME 
#5251 300K pressure isotherm (squares) agrees very well with the 
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experimental curve and does not show the same high density departure as the 
results of our calculation and those of Ross et ai. (1983). 

Figure 2 shows P/p=C 2, the square of the isothermal sound speed, along 
isotherms for all three h~drogen EOS's. The SESAME #5251 table and our 
results agree very well, the largest difference being $6%. The larger 
deviation seen at the low density end of the 116K isotherm is probably due 
to the difficult interpolation between the OK and 178K isotherms in the 
SESAME table. The Livermore EOS, however, shows marginal agreement with 
the other two calculations. There is a hint of a break in the isotherms at 
p~O.l gram/cm3 • We compare the SESAME #5263 deuterium internal energy 
isotherms with ours in Figure 3. Again, the agreement is excellent if we 
substract what appears to be a constant, inconsequential, energy shift of 
~1.9 x 10 9 erg/gram apparent in the ideal gas regime~ The difference seen 
as p~ at 2127K is due to dissociation of the molecules, which is not 
included in our current model. 

Figure 4 shows that the good agreement between our internal energy 
calculations and those tabulated in the SESAME #5263 table does not hold 
for the density-scaled internal energies given in SESAME table #5251. 
There are at least two reasons for this. First, the internal partition 
function of H2 differs from that of O2 because the rotational and 
vibrational constants (or energy levels) depend on the moment of inertia 
<.md the reduced mass of the molecule. Density scaling is not an exact 
procedure for the internal free energy, and this is the origin of the 
temperature dependent gap between SESAME #5251 and our isotherms as p-+<>. 
Second, the mass dependence of the quantum correction (eq. 1) prevents 
direct density scaling, which accounts for the temperature dependent 
deviations between the two sets of isotherms at high density. Note that 
the two discontinuities in the SESAME 406K isotherm occur near the 
fluid-solid phase transition and are probably due to interpolation on the 
coarse grid of a discontinuous table. 
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Internal energy isotherms show a shallow dip at low temperatures for 
p<O.l gram/cm3 • This is due to the long range part of the interaction 
potential, i.e. the van der Waals attraction. As the temperature 
increases, collisions between molecules occur at energies high enough to 
probe the hard repulsive core, and the weak attractive well becomes 
negligible in comparison. Therefore, the depth of the dip in the internal 
energy isotherms must decrease as the temperature increases. The Livermore 
isotherms in Figure 4 show the opposite trend quite clearly. This cannot 
be understood on physical grounds. 

CONCLUSION 

In the molecular phase, we obtain remarkably good agreement wlth the 
SESAME deuterium EOS, considering the different approaches used in each 
case. However, we have shown (1) that scaling the deuterium EOS in 
density to generate an approximate hydrogen EOS is not an accurate 
procedure and (2) that the Livermore EOS obviously does not include the 
work of Ross et a1. (1983) (of Lawrence Livermore National Laboratory) and 
indeed suffers from severe difficulties at high densities. 

We are now concentrating on the regime 10 3K < T < 106K and p < 1 
gram/cm3 , where temperature and pressure dissociation and ionization take 
place. Accurate treatment of the equation of state of partial ionization 
zones has proven to be critical for a good understanding of the structure 
of white dwarfs (Fontaine, 1973) and we propose to perform a state of the 
art calculation of the thermodynamics of hydrogen under conditions 
appropriate to the envelopes of these stars and to brown dwarfs. We are 
currently working to adapt the hard sphere variational theory to a mixture 
of chemical species, including a statistical mechanically consistent 
treatment of internal energy levels (following Hummer and Mihalas, 1986). 
It is our hope that this will ensure a good treatment of the difficult 
phenomena of pressure dissociation and ionization. 
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SOLAR OSCILLATIONS AND THE EQUATION OF STATE 

INTRODUCTION 

Werner Dappen 

Observatoire de Paris-Meudon 
92195 Meudon 
France 

With suitable inversion techniques of solar five-minute oscillation 
frequencies, the local sound speed c(r) inside the Sun (r being the dis­
tance from the center) has b2come an observable quantity (Christensen-Dals­
gaard et al., 1985). Since c = y pi p , where y = ( d lnpl dIn p ) S' one 
expects modulations of the sound speed from the lowering of y in the 
zones of partial ionization of hydrogen and helium. Gough (1984) proposed 
to use this modulation to determine the solar helium abundance. Dappen 
and Gough (1984,1986) assessed the potential of this method with the help 
of theoretical solar models and numerically computed solar oscillation 
frequencies. They ~oncluded that the quantitative influence of the He II 
ionization zone on the sound speed (or more precisely on the derivative 
of sound speed with respect to depth) is sufficiently large to serve as 
a calibration of the helium abundance. 

By the very nature of the method, a good knowledge of the equation 
of state and of y in a partially ionized hydrogen-helium plasma is cru­
cial. It is important to know how uncertainties in the equation of state 
propagate into the helium abundance determination. Therefore I have re­
peated the analysis of Dappen and Gough (1984) with three different models 
of the equation of state. Sinc~3densi§Y in the solar He II ionization 
zone is fairly low (about 3 10 g/cm), the only nontrivial issue in 
the equation of state is the internal partition function for bound systems. 
The following three partition functions were used: (i) partition functions 
with ground-states only, (ii) partition functions truncated according 
to the static screened Coulomb potential (see, e.g., Rogers et al., 1970), 
and (iii) partition functions based on an occupation probability formalism 
that includes interactions by neutral and charged species (Hummer and 
Mihalas, 1987). 

In the following I outline the essential tool of the helium abundance 
determination, which is the diagnostic function that relates the observed 
sound speed to thermodynamical quantities inside the Sun. Then I discuss 
the change of this function due to different models of the equation of 
state. 
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Fig. 1. The functions Wand 8 defined by Equation (1) plotted against 
S = 10g10(1-r/R) (R bein~ the solar radius) in a typical solar 
model (for details see Dappen and Gough, 1986). The hump 
located at s =-1.75 is due to the He II ionization zone and 
its height is a measure of the helium abundance. 

HELIUM ABUNDANCE DETERMINATION 

The principal diagnostic equation relating the observed sound speed to 
thermodynamic quantities is (Gough, 1984) 

r2 2 
1 - yp -dc Y 

w - - 8 ( 1 ) 
Gm dl' 1 - Yc' 

Here, y = ( dlny/ dlnp) " y ,= ( dlny/ dIn / )p ,m is the mass 
in the ~Pherical shell of fadiuscr and G is the gravitational constant. 
In deriving this equation, one uses basically only the assumptions of 
hydrostatic support and of adiabatic stratification. The latter assumption 
is well justified, because the He II ionization zone is located in a region 
of efficient convection, for which both standard mixing-length theory 
and extrapolated laboratory experiments indicate a virtually adiabatic 
temperature gradient. 

Fig. 1. shows 8 and W for a theoretical solar model. Note that 
and W differ significantly for s < -2.5, which reflects the fact that 
the assumption of quasi-adiabatic stratification is not satisfied in the 
upper parts of the convection zone. The H I and He I ionization zones 
produce a composite hump for -4 < s <-2 and the He II zone produces a 
hump centered at about s =-1.75. This corresponds to a depth of 12400 km. 
It is intuitively clear that the height of this He II humps is a measure 
of the Sun's helium abundance. This is indeed the case as has been shown 
for solar models by Dappen and Gough (1984). 

The right hand side of Equation (1) indicates the importance of the 
equation of state in this method. The quantity y and even more its thermo­
dynamical derivatives 'depend on details of the partition functions. 
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Fig. 2. The helium hump of Fig. 1. for three different equations of 
state, but with all other model assumptions unchanged. The 
solid line refers to partition functions containing ground 
states only, the dashed line to partition functions of the 
static-screened Coulomb potential, and the dotted-dashed 
line to the partition functions of the occupational 
probability formalism of Hummer and Mihalas (1987). 

THE HELIUM HUMP FOR THREE DIFFERENT EQUATIONS OF STATE 

I have computed three different solar envelope models, differing 
only in the equation of state. The other specifications, described in 
more detail in Dappen and Gough (1984,1986), are as in Fig. 1. The first 
equation of state used is a simple Saha equation with partition functions 
that contain only the statistical weight of the ground states of bound 
systems. The partition functions of the second equation of state are based 
on the static screened Coulomb potential. A numerical realization of this 
equation of state has been used for solar models by Berthomieu et al. 
(1980). The third equation of state is based on the occupation probability 
formalism introduced by Hummer and Mihalas (1987) in the framework of 
an ongoing opacity recomputation. The equation of state contains partition 
functions with probability weights assigned to the energy levels. Neutral 
and charged surrounding particles reduce the occupation probabilities 
of upper levels, the first act through an excluded-volume effect, the 
second through Stark ionization. The numerical realization of this equation 
of state has been made very smooth, the free energy and its first and 
second thermodynamical derivatives are analytically expressed. This gives 
sufficient precision to compute the derivatives of y by numerical differ-
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entiation. First results of this equation of state will be presented else­
where (Mihalas et al. 1987; Dappen et al. 1987). 

Fig. 2. shows the resulting three different helium humps. 

DISCUSSION AND CONCLUSIONS 

The choice of the internal partion function does indeed influence 
the helium hump. Depending on how the height of the hump is defined, it 
can change by as much as 10-20% when different partition functions are 
used in the equation of state. Therefore the helium abundance determination 
will be critically dependent on the model of the equation of state. Never­
theless, there is hope for optimism. Since the local sound speed computed 
in an oscillation-frequency inversion contains more information than the 
helium abundance alone, it might become possible to obtain in a first 
step (perhaps from the form of the observed helium hump) constraints on 
the equation of state, and in a second step the helium abundance. 

A basic issue to which solar observations might contribute is the 
Planck-Larkin partition function (for the recent controversy about the 
Planck-Larkin partition function see e.g. Ebeling et al., 1985; Rouse, 
1983). While it has been recognized that the validity of the Planck-Larkin 
partition function cannot be tested in optical experiments (Rogers, 1986; 
Dappen et al., 1987), a determination of thermodynamical properties such 
as y in Equation (1) could be able to distinguish between different equa­
tions of states. Fig. 2.Sh~~S the reason: although the plasma is only 
at a density of about 3 10 (where for most purposes the deviations from 
simple ideal-gas treatments and the Saha equation are negligible), Wand 
e depend so sensitively on y and especially its thermodynamical deriva­
tives, that the partition function can leave its imprint on the helium 
hump. 

Acknowledgments: I am grateful to Forrest Rogers and Wolf-Dieter Kraeft 
for stimulating discussions about the Planck-Larkin partition function. 
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THERMODYNAMIC PROPERTIES AND PHASE TRANSITIONS IN HYDROGEN 

AND RARE GAS PLASMAS 

INTRODUCTION 

Helmut Hess* and Werner Ebeling** 

*GDR Academy of Sciences 
Central Institute of Electron Physics 
Berlin 1086, GDR 

**Humboldt University 
Department of Physics 
Berlin 1020, GDR 

Phase transitions are of great interest for the understanding of the 
properties of matter. The search for such transitions in hydrogen and 
rare gas plasmas under extreme conditions is not only important for basic 
research, but there are many interesting applications; for example, 
astrophysics. Further such studies may help to better understand the 
fascinating, very complex, mixed phase transitions in metal vapors which 
are of outstanding technological interest. 

Hydrogen and noble gas strongly coupled plasmas play an unique role 
with respect to their thermodynamic properties. In particular, this is 
due to their relatively high values of ionization energy. A direct 
consequence of this property should be the existence of two critical 
points which are well separated. 

T (1) 
c 

T (2) 
c 

The second critical point which is so far hypothetical is located in the 
strongly coupled plasma region. The corresponding phase transition is 
connected with an abrupt change in density and in the degree of 
ionization. 

The existence of a phase diagram of this type was first discussed by 
Landau and Zeldovichl in 1943. First calcu~a§ions of plasma phase 
transitions are due to Norman and Starostin' and Ebeling and 
sand~g.4,5 A more detailed discussion of this subject is given in a 
book whereas a critical review can be found in an invited lecture on 
the Budapest Ionization Phenomena Conference, 1985. 7 

As a rule of thumb, a simple relation was recently given by on~ of us 
for the critical temperature of the plasma phase transition (PPT): 
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kT (2) = 0.1 x Ei 
c 

(1) 

where Ei is the ionization energy of the undistuKbed atom. Eor the rare 
gases we get values approximately between 1 x 10 and 2 x 10 K. 

A closely related estimate is based on the Debye 1imitin~ law with 
quantum corrections for the chemical potential of the plasma 

2 
e 

I-'id - r - A /8 
D e 

(2) 

where I-' is the ideal chemical potential, r D is the Debye length, and 
Ae is the thermal de Broglie wavelength of the electron. The 
condition of thermodynamic stability 

o (3) 

where n is the free electron density yields 

(4) 

and 

kT (2) 
c 

(5) 

which is close to Eq. (1). 

Let us still note that in the Debye approximation without quantum 
corrections (Ae = 0) the critical temperature of the PPT would be 
infinite: 

T (2) _ «if h = 0 . 
c 

Coulomb interactions cause instabilities as well as van der Waals forces, 
the existence of repulsive forces due to quantum effects or hard cores of 
the charges produce a finite critical temperature. For T < Tc the 
system splits into two fluid phases with different densities and different 
degrees of ionization. The gas phase is usually only weakly ionized, and 
the dense phase is usually strongly ionized. The transition is a typical 
xirst order thermodynamic phase transition. 

Above the critical temperature there is a more or less steep increase 
in the degree of ionization near the critical pressure. Below the 
critical temperature there exists a line of coexistence connected with a 
sudden jump in the degree of ionization (~tch is more pronounced the 
deeper the temperature is. Far below Tc the system jumps from a 
dielectric atomic or molecular phase to a liquid metallic phase. 

The theoretical predictions are based here on the technique of Pade 
approximations which integrate the existing analytical knowledge about 
degenerated and non-degene9ated strongly coupled plasmas. An earlier 
result for hydrogen reads: 

T (2) = 16500 K, (2) = 23 GP (2) c Pc a, Pc 
-3 0.13 gcm a = 32%. 
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The predicted pressure is considerably lower than the existing 
estimates for the transition pressure at low temperatures which are in the 
region of 300 GPa. 

Considerations comparably as simple as those which lead to relation 
(1) shows that the critical density can be related to the, atomic diameter 
d as it is given, for example, by a Lennard-Jones or an exp-6 potential: 

n (2) 
c 

(7) 

As estimation of the pressure from the critical temperature and the 
critical density leads to values of about some GPa for the heavy rare 
gases which seem to be within reach of ballistic compressors - devices 
which are used in our laboratory to produce high-density plasmas. Now we 
shall present some theoretical considerations which were restricted on an 
elementary model only. 

ELEMENTARY MODEL 

Let us assume that the free energy density of the fluid is given by 

f (8) 

where ID denotes the ideal part, CI the contribution of Coulomb 
interactions and VW that of van der Waals interactions. Assuming that we 
have neutral atoms in the plasma with the density na and electrons with 
the density n the free energy density is approximately 

- n A 
a a 

- 2nkT In (l-~ ) . 
a 

Here Aa is the van der Waals constant of the atoms, and 

~a 

(9) 

(10) 

is the excluded volume of the atoms. The last term in Eq. (9) represents 
the fact that the electrons are excluded from penetrating into the 
interior of the atoms. This term plays an essential role in the limit of 
high electron density.9 

In order to find an approximate expression for the Coulombic 
contribution, let us start from an expression for the chemical potential 
corresponding to a Debye-type contribution (as in Eq. (2» and a Hartree­
Fock contribution 

2 

ItCI 
__ e __ 

r D + a 

'd Here In is the Fermi function, Q e = Ite~ /kT and a is a kind of 
minimum distance between electrons and ions. Due to Heisenberg's 
uncertainty relation 

t.p t.r ~ fi/2 

t.r > -1L 
- 41ft.p 

Ae 
8 

(11) 

(12) 
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electrons have an effective radius of about 

R "" 1 A 
e 8 e 

(13) 

This gives 

a "" 1 A 
8 e + R. 

1 
(14) 

where Ri is an assumed ion radius. 

By integration, we get for the free energy density 

r(X) 
2 

.l.. x 
X3 [ ln (1 + x) - x + ~ 1 . (15) 

The free energy density given by Eqs. (8-15) has to be minimized at fixed 
total electron density (which is equal to the total ion density) 

min at ne const (16) 

The relatively simple system given by Eqs. (8-16) describes at least 
qualitatively the thermodynamic behavior in the whole fluid part of the 
phase plane. The critical temperature of the PPT is given (neglecting the 
Hartree-Fock term and the hard core contributions) after Eq. (3) by 

2 
e 

From Eq. (17~ Tc (2) may be 
hydrogen Tc( ) "" 13,000 K. 
electrons follows from 

obtained by iterations. This gives for 
The critical density of the free 

kT(2) 
_c_)3. 

2 
e 

(17) 

(18) 

This corresponds to a relation given by Lika1ter10 for the critical 
density of metals. In order to get the critical pressure one has to solve 
first the Saha equation or to carry out the minimization after Eq. (16). 

Better approximations for the free ener~y density may be obtained by 
using the technique of Pade approximations. In this way Ebeling and 
Richert obtained the critical data for hydrogen given in Eq. (6).9. 

Similar results for hydrogen were obtained by Robnik and Kundt11 and 
by Kremp, Haronska, and Sch1anges. 12 A survey on the quantum 
statistical basis of the theory of Coulomb interaction is given 
recent1y.13 A more refined treatment of the van der Waals interaction 
between the neutrals was given by Nellis et a1. ,14 Zisman et a1. 15 and 
others. A survey of theoretical and experimental work was given by Fortov 
and Yakubov16 and by Ross. 17 
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DISCUSSION OF THEORETICAL RESULTS 

The theory of Coulomb interactions which is presented here in a 
rudimentary form only, shows that the attractive interaction of oppositely 
charged particles may lead to thermodynamic instabilities as well as van 
der Waals forces do it. So far pure Coulombic phase transitions have been 
experimenta±~y studied only in electron-hole fluids in semi-
conductors. 

In most of the phase transitions studied experimentally where charged 
particles are present as, for instance, in fluid metals, Coulomb and van 
der Waals forces both play an important role in determining the critical 
point. For this reason, the theoretical study of the phase transition in 
alkali metals and other metallic systems is extremely difficult. 13 ,18,19 

Another situation is met in systems which are insulators at normal 
conditions. Typical examples are hydrogen and the rare gases. However, 
to this class probably belong also water and the most organic fluids. 
These systems become metallic only at extremely high pressures. We expect 
that the liquid metallic state which should exist at high pressures and 
sufficiently high temperatures belongs to the same fluid phase as the 
plasma state of the corresponding system. Therefore, we expect for 
systems which show a pure van der Waals transition at low temperatures and 
low pressures the existence of a second, first order phase transition due 
to Coulomb forces at much higher temperatures and pressures: a plasma 
phase transition . 

On the basis of the theoretical arguments discussed here these authors 
are convinced that the existence of a plasma phase transition is more 
common among natural systems (especially those which are insulators at 
normal pressures and temperatures) as it is believed today. 

Fig. 1 
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The difficulty of an experimental verification of this supposed 
transition in its pure form is connected with the enormous pressures and 
temperatures which are simultaneously required. Therefore, in first line 
dynamic methods can be successful. The parameters which should be reached 
in the most favorable case: pressures in the GPa range and temperatures of 
about 10,000 K. These parameters lie within the reach of modern shock 
wave technique and of ballistic piston compressors. 

EXPERIMENTS 

What is the difference in the possibilities between shock tubes and 
ballistic compressors (Fig. 1) both working in gaseous media? The shock 
compression in its ideal form is an adiabatic but non-isentropic process, 
whereas the compression of a gas by a piston (without producing shock 
waves, that is at a piston speed smaller than the sound speed in the 
compression medium and a not too long compression way) is adiabatic as 
well as isentropic 

Therefore, the high pressure which can be reached in both devices is 
more due to a high temperature in shock tubes, whereas it is more due to a 
high density in a ballistic compressor. In other words, in shock tubes 
the density mUltiplication is limited, whereas in ballistic compressors 
the temperature multiplication is rather limited. Fig. 2 shows this for 
an ideal monatomic gas. As a result, the shock pressure is over wide 
ranges proportional to the temperat~re whereas in the piston compressor 
the pressure is proportional to TS/ Z. This behavior, of course, is 
modified by the real-gas properties of the investigated species 
(dissociation, ionization, nonideality). 
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Fig. 2 Temperature and density mUltiplication in shock tubes and in 
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A further difference is in the power. In shock tubes the character­
istic velocity is large compared with the sound speed. In ballistic 
compressors it is lower than the sound speed. Therefore, the rate of 
energy release can differ by orders of magnitude what in the case of shock 
tubes often leads to destruction at each shot whereas ballistic 
compressors can withstand thousands of shots without severe damage. 

In the Central Institute of Electron Physics in Berlin, two ballistic 
compressors are used for h~Gh-density plasma research especially in the 
field of nonideal plasmas. The larger one is called AICA which means 
Adiabatic lmpluse ~ompression Apparatus. It has a length of 7.5 m and an 
inner diameter of 150 mm (cf. Fig. 1). Due to the large diameter, a lot 
of diagnostics can be done simultaneously which can be used to study 
thermodynamic, electrical, and optical properties of nonideal plasmas. 

For instance, we have found spectral line shifts in neutral xenon due 
to Stark effect u~ t~ 3 nm, i.e. one order of magnitude greater than 
earlier reported. Zl - 3 Deviations from the linear dependence upon the 
electron density are indicated (Fig. 3). Now theoretical work is under 
way to explain these effects. 

A smaller device is called LAICA, which means little AICA. It has a 
length of 2 m and an inner diameter of 18 mm. Whereas the AICA piston is 
driven by a highly compressed gas, in LAICA cartridges are used. The 

Fig. 3 
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maximum pressu20 obtained in LAIeA was about 1.5 GPa at a temperature of 
about 10,000 K (Fig. 4). In this device pressures of some GPa may be 
obtained, and therefore, the PPT line may be crossed'and detected, for 
instance, by plasma resistance measurements. 

There are, however, already experiments which seem to cross the 
predicted coexistence lines. In Fig. 5 a phase diagram of hydrogen in the 
p-T plane is shown. Beside the usual low-temperature, low-pressure part 
the expected behavior at higher pressure and higher temperature can be 
seem. The different phase-separating lines, triple and critical points 
are from calculations and speculations of different authors.~,ll,12 The 
principal behavior of the curve labelled by "Ebeling" seems to be the most 
realistic: if the temperature is Iowa higher pressure is needed to 
initiate the ionization catastrophe which is characteristic of the PPT. 
Also shown in Fig. 5 are shockwave experiments by Nellis et al. 14 ,24 in 
hydrogen and deutegium which cross the coexistence line predicted by 
Ebeling and Richer at about 30 GPa. 

We should not over stress the accuracy of the theoretical predictions 
as well as of the experiments. However, the questi~R ~~: are there any 
irregularities in the measurements of Nellis et al. ' in the range of 
some ten Gigapascals? 

Unfortunately, just in the range of intersection the experiments 
change from single to double shock so that there is, of course, a pressure 
jump in the p-T plane connected, however, with the density jump behind the 

Fig. 4 

192 

1,5 ,---,---,----r-----, 

o 
n. 
C) 

0. 

0.5 

o 

He 

-1,00 

LAI CA 

-200 a 200 400 
t/IJS 

Pressure pulse obtained in the ZIE ballistic compressor 
UIeA. 



reflected shock wave. 24 ,31 A further irregularity can be seen in Fig. 
6. 24 At the highest pressure reached the pressure decreases with 
increasing density. This result was obtained by two experiments done with 
a time difference of nearly one decade. 24 ,25 If this is a real effect, 
it could be interpreted as a run into metastable states similar as in a 
supercooled gas due to the fast shock process which may be faster than the 
corresponding relaxation time. However, it is also possible that the 
experimental error is so large that such speculations are irrelevant. 

Further detailed studies should give the 
easier if the pressure were not so high. 
introduction should help to find species 
lower pressures. 

answer but these studies would be 
Scaling laws as mentioned in the 

in which a pure PPT may occur at 

SCALING LAWS 

The idea for estimating the critical temperature of the PPT is as 
follows: the PPT is characterized by an ionization catastrophe. The 
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critical temperature is reached when the plasma at low pressure is already 
highly ionized , so that an increase in pressure or density cannot 
essentially increase the degree of ionization. 

The temperature at which a plasma at low pressure - say at atmospheric 
pressure - is ionized is well-defined as is known from arc physics ; it is 

kT (2) ~ 0.1 Ei 
c 

(19) 

where Ei is the ionization energy of the undisturbed atom. This can be 
seen from Fig. 7 where the degree of ionization at constant pressure is 
shown in dependence upon the temperature for different gases as it is 
given by the Saha equation . (A refinement of Eq . (19) can thus be 
obtained taking into account the ratios of the partition functions of the 
atom and the ion which are different for hydrogen and the rare gases.) 

Fig . 6 
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Fig. 7 
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The criticai temperature of different gases of the liquid-gas 
transition (Tc( » and of the PPT according to Eq. (19) are the 
following: 

Species Tc(l)/K Tc (2)/K 

He 5 28,500 
H 33 15,800 
Ar 151 18,300 
Xe 290 14,100 

Cs 1,924 4,500 

The main difference between the rare gases on the one hand and the 
metal vapors on the other is in the ratio of these critical temperatures 
or of the underlying energies. Whereas in rare gases this ratio is larger 
than or about 100, in metal vapors it is near unity (taking into account 
the lowering of the ionization potential by cluster formation) and the two 
kinds of phase transitions are mixed. 

The density at the critical point C2 may be nearly the same as in 
the liquid phase near the critical point Cl . This is an empirical 
result which can be seen from isochores in the p-T plane and their 
intersection with the calculated PPT as can be seen in Fig. 826 - 28 for 
xenon. (Also shown in Fig. 8 are lines of constant degree of ionization. 
If the coexistence line of the PPT is the locus of an ionization 
catastrophe, then all the lines of constant ionization degree should lie 
on this coexistence line i~ the transition region. How well it is 
realized can be seen here. 6) 
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Fig. 8 
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An estimation of the liquid state density can be obtained from an 
atomic diameter d: 

n (2) 
c (20) 

For different species we get (by using ideal gas (id) or hard core 
(hc) formulae for the pressure35 ) the following values: 

Species 

H 
H 
He 
Ar 
Xe 
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d/A Reference (2) I -3 p(2).IGPa n cm cr cr,ld 

1.04 12 8.89 + 23 194 
1. 63 9 2.31 + 23 50 
2.97 30 3.82 + 22 15 
3.85 32 1. 75 + 22 4.4 
4.47 29 1.12 + 22 2.2 

read 8.89 + 23: 8.89 x 1023 ; n = plm, 
p - mass density, m - atomic mass. 

p(2) IGPa 
cr,hc 

2910 
750 
225 

66 
33 



The critical pressures estimated here are only very rough values but 
the hard core pressure should be an upper limit. In general, however, 
this estimation explains why the critical temperature calculated by 
different authors are always nearly the same, whereas the critical 
pressure strongly depends upon the chosen atomic diameter. 

The estimations for hydrogen and xenon can be compared with 
calculations: 

HYDROGEN: 

References 11 9 12 

Tc(2)jK 19,000 16,500 16,500 

n (2)jcm- 3 
cr 8.38 + 22 7.78 + 22 2.57 + 23 

pcr(2)jGPa 24 22.5 95 

XENON: 

References 26 33 34 

Tc (2)jK 12,000 14,000 16,000 

Incr (2)jcm- 3 6.93 + 21 1.46 + 22 7.00 + 21 

~cr(2)jGPa 1. 81 46 3 

Our Estimates 

15,800 

2.31 + 23 

50 to 750 

Our Estimates 

14,100 

1.12 + 22 

2.2 to 36 

Xenon due to its large diameter and its low ionization energy seems to 
be the favorite gas for study~ng the pure PPT. The predicted values of 
some Gigapasca1s and about 10 K seem attainable by one of our ballistic 
piston compressors. 

The plasma phase transition should be detected by a sudden decrease of 
the electrical resistance of the compressed plasma corresponding to 
electrical conductivities which exceeds remarkably typical plasma values 
of 102 0- 1 cm- 1 . 
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NONIDEAL PLASMAS AND BOUND STATES 

INTRODUCTION 
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For different applications it is necessary to know exact thermodynamic 
data for highly condensed plasma, e.g., highly compressed hydrogen plays 
an important role in present-time techniques and physics. Especially, one 
may mention that giant planets consist mainly of ionized dense hydrogen. 
Also the electron-hole plasma in optically excited semiconductors 
represents a dense plasma. Moreover, for many purposes it is also 
necessary to know transport and optical properties of dense plasmas. 

For this reason it is desirable to deal with statistical mechanics 
which takes into account strong coupling effects, i.e., effects in which 
the mean value of potential energies is of the same order as the kinetic 
energy. Of course, strongly coupled (nonidea1) plasmas were dealt with in 
the past; we mention here only the book edited by Kalman and Carini 
(1978), the Les Houches meeting in 1982, which was summarized by Baus and 
Hansen (1983), the article by Marvin Ross (1985) and the monograph by 
Kraeft et a1. (1986). There the reader may find a lot of further 
references - besides the sources given by the present 1986 Santa Cruz 
plasma physics meeting. 

Before going into the details we would like to list certain effects 
which are a consequence of taking into account nonidea1ity effects. 

While the single particle energy € for a state characterized by 
the wavenumber k is given in the simplest case (free particle) by 

€ = 

we must write in the strongly coupled plasma 

(1.1) 

(1.2) 
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where the quantity ~2(k) describes a finite lifetime of the single 
particle state, and ~l' which is negative, takes into account that 
the single particle interacts with its surrounding. We mention that it is 
impossible to write (1.2) in the shape of (1.1) using an effective mass: 

2 2 e(k) = n k /(2 meff). (1.3) 

Another effect simply described is the change of the two-particle 
energies. For an isolated pair of particles (say, electron and proton) 
the energy levels of bound states follow from the solution of the 
Schrodinger equation, 

(1.4) 

In order to destroy bound states we need the ionization energy I = -Eo. 

If we take into account the surrounding plasma, the energy levels are 
charged, and the ionization energy (difference between the ground state 
and the continuum) decreases. At certain density, the ionization energy 
tends to zero and no bound state exists. This condition is referred to as 
Mott condition and influences a lot of physical properties, such as 
transport, optical and thermodynamic ones. Especially the electroconduc­
tivity changes drastically on vanishing of bound states, and spectral 
lines are influenced. However, in contrast to the isolated pair, two 
particle energies are now complex, what corresponds to a finite lifetime 
of states and leads, e.g., to a spectral line broadening. 

Another effect of nonideality corresponds to the inclusion of higher 
order corrections to the electroconductivity. Here one may start from 
Spitzer's result which is derived from the classical Boltzmann equation 
for fully ionized plasmas. The quantum version leads to an inclusion of 
the scattering T-matix (scattering phase shifts) and gives a lowering of 
the conductivity as compared with Spitzer's result. The main deviation 
towards lower conductivity values for partially ionized plasmas is 
achieved by taking into account the scattering between charged and neutral 
particles. This latter effect is the second influence of the existing 
bound states (neutrals) which interferes with the first one, i.e., with 
the decreasing number of free charges according to the mass action law 
(MAL) which governs the plasma composition. 

The MAL is one of the results to be derived in thermodynamic 
calculations, and is very sensitive to single and two particle energies. 
Especially, the MAL describes the Mott transition, i.e., the degree of 
ionization increases steeply on vanishing of bound states (see Section V). 

Similarly, the pressure exhibits steep gradients, a physical quantity 
which is changed drastically by the formation of bound states. 

The variety of effects becomes much more extended if we discuss the 
question of thermodynamic stability. Then a separation between two 
entirely different phases may occur, and especially the Mott phase 
transition represents a coexistence of phases with different degrees of 
ionization (metal-insulator); see, e.g., Ebeling, Kraeft and Kremp 1986. 

As there is a rather large number of papers and monographs on strongly 
coupled systems which cover different areas of the field we want to 
outline essential features of techniques which may, in principle, be 
extended to describe many particle systems under arbitrary conditions. 
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In spite of the existence of such techniques, among which the Green 
function technique plays a very important role, there are fields of dense 
plasma physics which are not covered yet by reliable theoretical results. 

To give examples, we mention that there is no quantitatively correct 
description of phase transition in dense plasmas. Further, if one assumes 
the electroconductivity a of a plasma to be given as a function of the 
density n of charge carriers 

a = A ln n + B + C nl/2ln n + D nl / 2 + E n ln n + ... (1.5) 

only the coefficient A is known exactly; the higher orders are known only 
in different approximations. 

There are also no generally accepted theoretical expressions for the 
spectral line broadening and shift; of course there exists rather good 
results for special physical situations. 

II. BASIC CONCEPTS 

The method of Green functions is especially powerful in the 
thermodynamic equilibrium where the Kubo-Martin-Schwinger condition for 
imaginary times is fulfilled, and, consequently, a Fourier expansion with 
respect to Matsubara frequencies is possible (Kadanoff and Baym 1962). 
Using imaginary time Green functions one may solve different problems of 
thermodynamics including dielectric and optical properties (Kilimann 1978, 
Kraeft et al. 1986). 

If we want to deal with nonequilibrium properties, such as kinetic 
equations and transport coefficients, one has to use real time Green 
functions as outlined by Kadanoff and Baym 1962, Keldysh 1964 and DuBois 
1967; see also Kremp, Schlanges and Bornath 1985, 1986. 

In this connection we have to start from the general equations of 
motion for Green functions according to Martin and Schwinger (1959). 

The s-particle Green functions are defined in the usual way as (h 1) 

with T being the Wick time ordering symbol and ~, ~+ annihilation 
and creation operators, respectively. 

(2.1) 

Here, < ... > = Tr{p ... } means the average with a statistical operator 
which is unspecified so far. 

Explicitly we have for gl with 

g~(l 1') = ± (l/i) < ~+(l')~(l» , 

Using for simplicity a Hamiltonian without external fields, i.e., 
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2 
H = L p./(2m) + L V. j 

i ~ i<j ~ 

the equation of motion for the field operators reads 

a v2 f (i -- + -- ) ~(r t) = dr'V(r-r')~+(r' t)~(r' t) ~(r t) at 2m 

For the Green functions we get the hierarchy of equations 

and 

v2 

(i -2- + -1 ) gl(l 1') - 6(1 1') ± if d2 V(1-2)g2(12 1'2+) at1 2m 

n 
g (1. .. n 1' ... n') = L 

n 

g 1(2 ... n 1' . .. v'-l v'+1. . . n') n-

v' 
(±) v'-l 6(1-v') . 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

As usual, one of the main problems of the theory is the truncation of the 
hierarchy, i.e., to express, approximately, ~+1 by lower order 
functions, gn' ~-1' ... 

As in the functional technique (Martin and Schwinger 1959), it is 
useful to introduce the self energy ~ by means of which a formal 
truncation is achieved. For example, the two particle Green function is 
expressed by the single particle self energy 

(2.7) 

As most of the physical properties may be expressed in terms of single and 
two particle operators, ~ turns out to be the most essential 
quantity. In this sense we get from (2.4) kinetic equations with ~ 
expressed approximately in terms of single particle Green functions. 

Of course, this latter procedure is not always possible, especially 
not for partially ionized systems where we have to consider coupled sets 
of kinetic equations, one for each chemical species (see Kl~montovich and 
Kremp 1981 and McLennan 1982). 

On the other hand, it is possible to express thermodynamic quantities 
by means of the self energy ~a. For instance, the mean value <V> of 
the potential energy is given by (G means imaginary time Green function) 
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<V> = -i(O/2) L I di La(l i) Ga(i 1+) 
a 

(2.8) 

III. APPROXIMATIONS FOR THE SELF ENERGY 

In the following section we want to give certain approximations for 
the self energy ~ which are of interest for two particle properties, 
for kinetic tasks and for thermodynamic questions. In close connection 
with the evaluation of any approximation of ~, we have to consider the 
screening. 

We do not want to go into the details (see, e.g., Kraeft et al. 1986); 
we mention only that classes of contributions of relevant quantities are 
partially summed up, and, as a consequence, instead of the bare potential 
V between two particles, there appears a dynamically screened potential 
VS which obeys the equation 

VS(l 2) = V(l 2) + i I di d2 VS(l i) IT (2i 2i)V(2 2) (3.1) 

In diagrams, Eq. (3.1) may be written as 

I'VVVV\ :: - - - - - + f)..fVVV\.@- -- -
The polarization operator IT, in turn, is connected with~; e.g., 
taking into account that as a result of screening, the self energy is 
renormalized, ~ ~ ~, we have instead of (2.7), 

(3.2) 

The renormalization of ~ means essentially that the self energy is now 
a functional of the screened potential and that the Hartree contribution 
does not exist. 

As already mentioned above, it is necessary to consider rather 
restricting approximations for ~, in dependence of the physical aim 
(see Kraeft et al. 1986). 

If one wants to discuss macroscopic physical quantities which are 
essentially determined by the behavior of single (elementary) particles, 
and, moreover, the number of bound (composite) states is small, one has 
mainly to consider the "Vs -approximation" of~. This approximation 
follows from (3.2), if IT is replaced by the simplest approximation, 
i.e., by the product of two single particle Green functions: 

f (1 i) (3.3) 

(G(l 1) .. ----- ) . 

Approximation (3.3) is appropriate for the application in kinetic 
equations and leads to the level of the (quantum) Lenard-Balescu equation 
(see Section IV), if the number of bound states is small. 
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Under such conditions, Eq. (3.3) is also sufficient for the 
determination of the deviation of two particle bound state energies from 
their values at vanishing density (isolated two particle problem). This 
question will be discussed in Section VI. 

For better approximations, however, it is necessary to take into 
account in ~ the formation of bound states. This is of relevance for 
the kinetic theory of partially ionized plasmas. In higher order 
approximations, it is also necessary to take into account the influence of 
neutrals (besides that of the elementary particles) in the vicinity of two 
particles on the binding energy of the latter. 

The inclusion of bound states is of special importance for the 
determination of thermodynamic functions of partially ionized plasmas. 
Here especially the mere existence of bound states contributes to the 
pressure (see Section V). 

A physically meaningful approximation is the inclusion of the bound 
states into the self energy~. In diagrams we may write (starting 
from (2.7) or (3.2» 

= L 'V 
b : ab 

-1 (x means Ga ) • (3.4) 

For Gab we may apply a cluster expansion (Schlanges 1985, Kraeft and 
Luft 1984), which includes the formation of bound two and three particle 
states, Le., 

t.:LTG2,-~ + ••• (3.5) 

Here GL2 , GL3 are the ladder sums of two and three particle 
complexes, respectively, and describe especially the formation of bound 
states. The relevant integral equation reads 

ill = (3.6) 

The three particle Green function is given by the equation (according to 
(2.6» 

(3.7) 

Here the approximation for G4 will be used. 

(3.8) 

Again, x means the operation G- 1 . 
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With the approximation (3.6) we get, from (3.7) with (3.8), the ladder 
approximation for G3 : 

(3.9) 
= 
-exch. 

On the introduction of T-matrices via 

-x = ]~ (3.10) 

and 

(3.11) 

exch. 

we get in the low density limit from (3.4) using (3.5) and (3.9) 

(3.12) 

= 

We used the T-matrix which is completely symmetric with respect to the 
channels (see Taylor 1972 and Schlanges 1985 for the discussion of 
multi-channel scattering). 

In order to derive (3.12) one must take into account that equations of 
type (3.6) contain any order of the density so far. According to Section 
II, the single particle Green function contains, in dependence of the 
argument, the correlation functions g< and g>. While the lowest order of 
g> with respect to the particle density n is nO, that of g< is n. For 
the application in (3.12), we need an approximation of GL2 , which 
contains at least one pair of functions Gl < (we denote such lines by 

o ) in order to fulfill the requirement of time 
integration in (3.12) (see Kraeft and Rother 1986). 

From the ladder equation of GL 
2 we may derive in this 

approximation 

ill ~K = G2 + IG~ I : IG~ (3.13) 

Here GL2 represents scattering according to the order nO in Eq. (3.10). 

IV. KINETIC AND TRANSPORT PROPERTIES 

The derivation of kinetic equations and the determinations of transport 
properties on the basis of density matrices was dealt with, e.g., by 
Klimontovich, Kremp and Schlanges (see Ebeling et al. 1983, 1984). Other 
references in this connection are McLennan 1982 and Klimontovich, Kremp and 
Kraeft 1986. 
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The linear response theory for the determination of transport 
quantities was developed on the basis of the Zubarev/McLennan formalism by 
Ropke; for references and results see Ebeling et al. 1983, 1984 and Kraeft 
et al. 1986. 

In this connection it is very powerful to use real time G~een 
functions (see e.g. Kremp, Schlanges and Bornath 1985, 1986) as outlined 
originally by Kadanoff and Baym 1962, Keldysh 1964 and DuBois 1967. 

In this paper we do not want to discuss the details of kinetic 
equations and of the determination of transport properties of nonideal 
plasmas. 

As a single example we give only an expression for the stopping power 
of charged (beam) particles entering a plasma. In principle, one has to 
use then a kinetic equation for the beam particles and each particle 
species of the plasma. As a simplification we assume the beam particles 
to be momoenergetic (velocity u) and the plasma to be in the equilibrium 
state and to obey the (quantum) Lenard-Balescu equation. In this way we 
consider only certain initial stage. 

According to Klimon'tovich (1975) we write such kinetic equation 

1 
dwdk -Z S(~k -p +p') 

k 

4~~ 1m €(w + is.k2 (f (p't) + f (Pt»} . 
1€(wk)12 a a 

(4.1) 

Under equilibrium conditions, the field fluctuations are given by 

(SESE) k + 8~ 1m €(w+iS.k) ~w _--,~""w"--__ 
W w IE(W,k)1 2 (~+ e~w/kBT _ 1 

(4.2) 

For the energy loss per unit time we get then (Kraeft and Strege 1986, see 
also Arista and Brandt 1981). 

2 

dE=L2~[dkr:ww 
dt b ~u 0 k w-

2 2 
w+ = ~ k /(2m ) ± ku _ a 

nB(w) 
Im--­

E(k,w) (4.3) 

According to Lindhard (1954) an expression for the energy loss reads (see 
also Maynard and Deutsch 1982) 
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dE [eb - L -dt = - b 0 ~u 

~k J+kU dw W 1m __ 1_ 
-ku E(k,w) 

(4.4) 



While (4.4) is zero for zero beam particle velocity and is negatively 
definite, Eq. (4.3) exhibits a positive (finite) value at zero velocity 
and is zero for certain beam particle velocity (near the thermal 
velocity). At higher velocities, (4.3) and (4.4) show similar behavior. 

This means the beam particles absorb energy at small velocities, and 
emit at higher ones. The difference between (4.4) and (4.3) is due to the 
neglection of field fluctuations; the latter were dealt with by Akhiezer 
et al. (1974). 

If one wants to deal with nonequi1ibrium plasmas and inhomogeneities, 
the question becomes much more complicated. Payne and Perez (1980) used 
for this purpose the Gould-DeWitt (1967) kinetic equation and applied the 
BGK collision term (Bhatnager, Gross, Krook 1954). An evaluation of 
(4,3,4) is shown in Figure 1. 

V. THERMODYNAMIC FUNCTIONS 

In this section we will outline how to determine thermodynamic 
functions. We will see that single particle and two particle energies 
enter the calculations; the latter will be dealt with in Section VI. 

A useful starting point is the connection between the density na and 
the chemical potentials of all species {~c} where c runs over the 
constituents. For fermions we may write 

n ({~ }) = (2 s + 1) J f (w)A (p,w) ~3 dw2 a c a a a (2~) ~ 
(5.1) 

fa is the Fermi function, and Aa is the spectral function of the 
single particle Green function, Aa = 1m Ga. 

Fig. 1 

:s: +1 
Lfl 
N 

I 
o 
~ 

2 

Stopping power as a function of veloc~~y ~~ T = 105K, 
a - Eq. (4.3), b - Eq. (4.4), ne = 10 cm , 
dielectric const~nt in random phase approximation; 
c - ne = 1023cm- , dielectric constant after Carini 
and Kalman 1984. (Electrons, electron plasma). 
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The spectral function is connected with the real and imaginary parts 
of the self energy via 

A (pw) 
a 

The Hartree Fock single particle energy EHF includes the 
corresponding frequency independent part of the self energy, ~HF, 
and ~corr is the remaining part: 

HF 
E 
a 

fl2p2 \,HF ( ) 
2m + L.a p 

a 

~HF is the approximation (3.3) with VS ~ V. 

(5.2) 

(5.3) 

Other thermodynamic properties, e.g., the pressure, may be determined 
from (5.1) by the relation 

As already mentioned above, the quality in which thermodynamics is 
determined, depends entirely on the approximation used for ~a in 
(5.2). 

(5.4) 

If bound states shall be included, at least the approximation of 
(3.12) 

(5.5) 

must be used. However, even in that case, the evaluation of (5.2) is not 
possible in a closed form. 

According to Kremp, Kraeft and Labert 1984, Redmer 1985, we develop 
(5.2) to give 

p 

E (p) 
a 

~ ~o= -
E + Re L. (p,E (p)); E (pw) a a a a 

We remark that Aa(p,w) has, for vanishing ~corr, the usual a-like 
shape. 

(5.6) 

In the coupled plasma, however, especially the last contribution of 
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(5.6) describes the formation of bound states, as we have 

~corr . 1m L (p,w + 1€) - 6(w-E /~) a n 
(5.7) 

where En are the two particle bound state energies. 

On inserting (5.6) into (5.1), we get different contributions to the 
density of species a; up to more refined questions which are connected 
with the long range divergencies of the Coulomb potential and screening 
and those connected with lower orders with respect to the coupling 
parameter we get two main contributions. The first part describes the 
existence of bound states, nabound, and the second one accounts for 
the free (scattering) states, nascatt: 

n 
a 

bound scatt 
n + n a a 

Here we have 

and 

bound 
n 

a 
(2s +1) I (2s +1) I [4W dP p2 ( ab(Eab ) - Ag(E)} 

a b b nl 0 (2w)3 g B nIP 

scatt f dn n = (2s +1) -=--
a a (2w)3 

IMW is the Montroll Ward approximation (3.3). 

(5.8) 

(5.9) 

The quantity Ag(E) accounts for lower orders and screening as 
mentioned above. At sufficiently low temperatures, Ag(E) is of minor 
interest. At higher temperatures, we have in (5.9) the Planck-Larkin sum 
of states (Ebeling, Kraeft and Kremp 1976, 1979; Ebeling, Kraeft and Ropke 
1985), what corresponds to the replacement 

(5.11) 

The physically interesting result is that in the bound state part of the 
density (5.9), there occur the two particle bound state energies 
EabnlP which must be determined under the influence of the surrounding 
plasma, see Section VI. On the other hand, the scattering state part of 
the density (5.10) contains the single particle energy ~2p2/ (2ma) + La 
which accounts for the interaction with the plasma. The (arbitrary) 
subdivision (5.8) corresponds to the introduction of a "chemical picture" 
which defines certain states of the (physically) elementary particles as 
new species. 

If we introduce the degree of ionization, i.e., the relative number of 
free electrons by 

, (5.12) 

we get in the non-degenerate case 
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J d fl2 2 HF ~ fl2 2 J d' 
~3 exp(-p ( 2~ + Le (p) + Le (P'2~») ~ [e ~ i] 
(21r) e e (21r) 

It can be seen frQm (5.13) that there is a competition between the bound 
state energies Ee1n1 (p) which ~r~ weakly density dependent only, and 
the single particle energies h p /(2m) +~. Especially there 
might be a conce11ation; this effect is referred to as the Mott 
transition, i.e., in connection with the vanishing of bound states, the 
degree of ionization increases to unity. The details of this point will 
be discussed now in Section VI. 

VI. TWO PARTICLE BOUND STATES 

For the discussion of two particle bound states we start from the 
ladder equation for G2 , according to (3.6) and mention that the lines 
corresponding to the single particle propagation, are Green functions 
which are subject to the Dyson equation 

(6.1) 

The inclusion of ~ in the approximation (3.3) into the ladder equation 
(3.6) gives a Bethe Sa1peter equation in which the influence of free 
particles on the two particle states (especially also bound states) is 
taken into account. 

The corresponding effective Schrodinger equation (homogeneous Bethe 
Sa1peter equation) reads 

(6.2) 

a are q~antum numbers, P the center of mass momentum. The c9ntribu­
tion HP to the hamiltonian represents the influence of the surrounding 
p1as~a and vanishes for the isolated pair. With the approximation (3.3), 
<IHP I> reads 

<IHP11> = J (2:~3 V(q) ([N(P1P2) - 1] ~z(P1+q,P2-q) (6.3a) 

(6.3b) 

(6.3c) 

(6.3d) 
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The first line (a) corresponds to the phase space occupation 
(statistical correlation), (b) exchange self energy (iHF) , (c) 
dynamical self energy, and (d) dynamically screened effective potential. 

It can be seen that there is a relative strong 
(a) and (b) and between (c) and (d), respectively. 
exact for the q=O contribution. From this follows 
contributions must be taken into account. 

compensation between 
The compensation is 

that all the four 

This compensation acts especially only for bound states, where the 
wave function is sharply localized in the coordinate space so that the 
Fourier transform does not vary strongly with q. This is not the case for 
scattering states, and thus there is no compensation of the type just 
mentioned. 

In the simple version which corresponds to the approximation (3.3), 
the effective potential correction is given by (Zimmermann et a1. 1978) 

. { 

+00 -J dw 1m V(g) 
~ E(q,w+ia) 

-~ 

nB(w)[fe (P1+q) - f e (P1)] + f e (P1+q) [1 - f e (P1)] 

- e(P1+q) + e(P1) 

+ E - w 

1 + nB(w) } 
() ( ) + e ~ p, P1 ~ P2' q ~ -q . (6.4) 

- Ee P1 - Ep P2- q 

It should be remarked that ~Veff does not coincide with the dynamically 
screened potential V(q)/E(q,w). This fact is a consequence of the 
retardation of the interaction which follows from the dynamical character 
of the screening. 

An approximation of physical relevance is the plasmon pole 
approximation for 1m liE; it reads 

-1 1m E (q,w+ia) (6.5) 

wp1 - plasma frequency. 

The resulting two particle state energies behave, consequently, as 
follows. 

For very low densities, the bound state energies do not vary with the 
density; especially they do not increase with the square root of the 
density. At higher densities, there is a slight decrease which is linear 
in the density of free charge carriers. At sufficiently high densities 
there appears also an energy shift linear in the number density of bound 
states (Redmer 1985). 

In contrast, the two particle continuum states decrease for small 
concentrations proportional to the square root of the density. 

As a result, there is a cross-over of the continuum states and the 
bound states, so that, at certain density, the bound states vanish. The 
ground state vanishes at the highest concentration; this concentration is 
referred to as the Mott density. 
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VII. CONCLUDING REMARKS 

It could not be the aim, of course, to cover the full area of dense 
plasma physics. 

Let us give some more hints to current literature of the field without 
achieving completeness. 

First we would like to draw attention to the "International Workshop 
on Nonideal Plasma" held in the GDR at different mostly resort areas: 1980 
Matzlow Garwitz, 1982 Wustrow (Kraeft and Rother, Eds., 1983), 1984 
Biesenthal (Radtke and Hess Eds., 1985). The 1986 Workshop will be held 
at Greifswald. 

The monographs by Gunther and Radtke (1984) and by Fortov and Yakubov 
(1984) cover certain experimental areas. Reviews were given by Baus and 
Hansen 1980 and by Ichimaru 1982. Extremely dense systems and scattering 
problems were touched only briefly. Here we mention Rogers 1981, Rogers, 
Young, DeWitt and Ross 1983, Kremp et al. 1984, Perrot and Dharma wardana 
1984, Ichimaru 1985 and Rother and Kraeft 1986. Certain topics of the 
present Santa Cruz 1986 meeting were not mentioned at all. For further 
references see also the invited paper by Ebeling, Kraeft, Kremp and Ropke 
1986, Statphys. 16, Boston. 
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HIGHER-ORDER LEVINSON THEOREMS AND THE PLANCK-LARKIN 

PARTITION FUNCTION FOR REACTING PLASMAS 

D. Bolll 

Instituut voor Theoretische Fysica ~ Universiteit Leuven 
B-3030 Leuven, Belgium 

1. INTRODUCTION 

We review higher-order spectral sum rules in scattering theory for 

d ~ 3 dimensions. These rules generalize the well-known Levinson theo­

rem [1] for partial-wave scattering, relating the number of bound states 

with the value of the scattering phase shift at the threshold energy 

zero, and they are valid for non-spherically symmetric short-range inter­

actions. They involve the scattering matrix, the bound-state wave func­

tions and some correction terms arising from the high-energy behavior of 

the scattering problem. These correction terms are shown to be d-dimen­

sional generalizations of the polynomial conserved densities of the 

Korteweg-de Vries equation [ 2] , [3]. The modifications of these rules 

necessary to allow Coulomb-type interactions are presented. 

We discuss the use of these rules in the context of the S-matrix 

approach to statistical mechanics [4]. We show that in a high-tempera­

ture expansion of the grand-canonical partition function, the bound­

state contributions explicitely cancel against scattering contributions. 

In this way we are able to (rigorously) derive and explain the underly­

ing structure of the Planck-Larkin partition function for reacting plas-

mas. 

* . 1 . Onderzoekslelder N.F.W.O., Be glum 
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2. SUM RULES IN SCATTERING THEORY 

For s-wave partial-wave scattering, described by the radial Schro­

dinger equation, Levinson proved the following theorem [I], using the 

theory of ordinary differential equations. If the spherically symmetric 

potential V(r) is short-range, i.e. if 

I dr r IV(r)1 + I dr r2 IV(r)1 

o 
< co , (I) 

then the s-wave phase shift 8(k), k the momentum, is continuous in k, 

the limit for k + co, 0(00), exists and 

1 8(00) - 0(0) = -n(N + 2 q) , (2) 

where N is the number of s-wave negative-energy bound-states and where 

q = 1 if there is a zero-energy resonance, q = 0 otherwise. FOe higher 

partial waves, R" (2) remains valid if we add to the r.h.s. (-nNO .Q,)' , 
with NO .Q, the number of zero-energy bound states. Zero-energy bound , 
states are solutions ~O of the zero-energy Schrodinger equation, 

(-~ + V(~»)~O(~) = 0, with ~ the 3 d-Laplacian, satisfying 

(3) 

while zero-energy resonances are such solutions ~O obeying 

(4) 

The result (2) turned out not only to provide some deep theoretical in­

sight into the scattering problem but also to be very useful in appli­

cations. Therefore one has tried to generalize this theorem to very ge­

neral scattering systems. In the following pages "Ie briefly discuss 

these generalizations. For more details and a list of references, we re­

fer to the recent review [51. 

A first interesting extension is the one to non-spherically symme­

tric potentials. The result reads (we use natural units such that 

h 212m = 1) 
00 

IdE {i Tr[S*(E) is(E)] __ I-Jd3xV(~)}=2n(Nb+No+}q). 
o 4nIE (5) 

2 
Here S(E) is the on-energy-shell scattering matrix, E k the energy, 

Nb the number of negative-energy bound states, NO the number of zero­

energy bound states and q as before. Tr is the trace on the appropriate 

space. (Here it is the integral with respect to the angles over the for­

ward matrix element of the operator in the brackets [ J.) For partial-
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wave scattering we know that S~(E) = exp(2io~(E)), so the only difference 

between (5) and (2) is the presence of the potential term. This correc­

tion term arises from the high-energy Born behavior of the S-matrix 

the first term in the integrand of (5) is not integrable for E ~ 00; by 

subtracting the potential term, this singular behavior is cancelled. 

The method of derivation of (5) and all other rules in this section 

is the following. We consider the trace in configuration space of the 

difference of the resolvents 

-1 
R(z) = (H - z) H = HO + V , 

-1 
RO (z) = (HO - z) ,HO = -/1 , 

(6) 

with z the complex energy. This quantity 1S a relevant one to look at 

since it is connected with the on-shell S-matrix, i.e. 

2 1m Tr[R(E + io) - RO(E + io)] = -i Tr S* (E) :E SeE) (7) 

We then study the analyticity properties of the resolvent difference in 

the complex-energy plane, especially at low and high energies. This 

study is strongly dimension dependent. Finally we apply contour inte­

gration techniques and integrate the resolvent difference around the 

spectrum of the Hamiltonian H in the energy plane. The well-known Cauchy 

theorem on analytic functions then immediately leads to the result 

(5) : the first term in the integrand arises from the real-axis contri­

bution together with eq (7), the second term comes from the circular 

contour at infinity; the r.h.s. represents the contributions from the 

small circle around the origin and from the circles around the (negative) 

discrete eigenvalues. 

In fact, the generalized Levinson theorem (5) is the first rule of 

a whole set obtained by contour integration of higher energy-moments of 

the resolvent difference. We then have 
co 

N+\ 
EN {i Tr[S* (E) ddE S(E)] - }: 

n=l 
an ,-n+I/2 j d'x 

where a is a numerical coefficient 
n 

a 
n 

(2n - 2)! [4n 22n-2 n!(n 
-1 

1) ! ] 

N;;;' 0 , 

p (x)} 
n-

(8) 

(9) 

and P (x) is a polynomial of order n in V and its derivatives that will 
n-

be discussed in Section 3. We recall that these correction terms arise 
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from the high-energy behavior of the scattering problem. At this point 

it is useful to write down the partial-wave version of the rules (8) for 

N = I, all J!. 

J
"" I do J!. 1 J 
odE E {i dE - 4n E3/2 dr V(r)} 

N 
b,J!. 2 
~ (-X· J!.) + 

j=1 J, 

2J!. + 
4 

V(O) 

(10) 

Due to the better high-energy behavior of partial-wave scattering quan­

tities, there is no correction term in the N = 0 rule (2) and only I 

correction term in the N = I rule (10) (compared with 2 in (8». 

Other extensions in d = 3 are possible : N arbitrary real, classi­

cal scattering, many-particle scattering .••. (See [5].) 

Concerning other dimensions we mention the new result on impurity 

scattering in d 1 [6] and we briefly state the results for d = 2 since 

they are recently completed and rather surprising [7]-[10]. First of all, 

the 2d partial wave Levinson theorem reads 

0(2)(00) - 0(2)(0) = -n N(2) - n Do 
J!. J!. b,J!. '" 

D = 0 o DJ!. = 0 or I for J!. ~ I . 

(11 ) 

So contrary to d = 3 (and d = 1), possible s-wave zero-energy resonance~ 

do not contribute, while there also exist p-wave zero-energy resonances 

that contribute exactly like (zero-energy) bound states. The non-sphe­

rically symmetric rules read, N ~ 0, 

* d Tr [S (E) dE S(E)] 

In contrast with 3d, where a number of correction terms appeared in the 

integral, we now have one "surface" correction. It again involves the 

polynomial P (x), which we want to discuss now. n-

3. HIGH-ENERGY CORRECTIONS AND KORTEWEG-DEVRIES INVARIANTS 

There exist different methods to obtain the correction terms in 

(5), (8) and (12). (See e.g. [II], [12]). In the heat-equation (or La­

place transform) method [12], one starts from the relation 
00 

R(z) = fodS e ZS e-SH Re z < - I Zo I , (13) 
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where the statistical operator exp(-SH) satisfies 

a -SH (as + H) e (~,~') o 
(14) 

-SH 
lim e (~,~')=c(~-~') 
s+O 

with T the temperature and kB the Boltzmann constant. One then writes 

the following asymptotic expansion, valid for B ~ 0 

-BH 
e (~,~') 

00 n 
~ (-S). p (x,x') 

nl n --n=O 
(15) 

and obtains, after insertion in (14), a recurrence relation from which 

the P can be determined. (Because of the Laplace transform (13), any 
n 

expansion of exp(-BH) implies a related expansion for R(z).) The re-

sults on the diagonal x = x' read 

(16) 

We will see that these polynomials P (x) are higher-dimensional generali-
n-

zations of the invariants of the one-dimensional Korteweg-de Vries equa-

tion (cf. e.g. [2], [3]). The fact that the correction terms in the 

higher-order Levinson theorems(8) and (12) are nothing but thes invari­

ants was only fully realized in the seventies ([II], [13]-[16]). The 

Korteweg-de Vries equation is one of the simplest non-linear dispersive 

wave equations and arose long ago in an approximate theory of hydrodyna­

mic waves. It reads (subscripts denote partial differentiation) 

(17) 

This equation possesses an infinite sequence of polynomial conservation 

laws in the form 

(18) 

where D, the conserved density, and (-X), the flux of D are polynomials 

(not explicitly dependent on x or t) in u and its derivatives. Two con­

servation laws are obtained immediately 

219 



(19) 
1 2 1 3 1 2 

(2 u )t + (- 3 u + uUxx - 2 u x)x o. 

The first is simply the equation (17) itself rewritten and the second is 

obtained after mUltiplying it by u and rewriting. These polynomials were 

first derived in [3]. There is a close relationship between these inva­

riant polynomials and constants of motion. For example, if one assumes 

that u and its x-derivatives vanish sufficiently rapidly at infinity, 

then each law (18) immediately yields a constant of motion In' i.e. 

I [u] =fdx D (u,u ••• ) , n n x (20) 

where D is a polynomial in u and its x-derivatives with orders up to 
n 

n - 2 which also contains un. 

The relationship with the high-energy correction terms P in the ld n 
Schrodinger equation can be understood on the basis of the following 

discovery [17] (see also [13]). Consider u(x,t) to be the one-parameter 

family of potentials satisfying the KdV equation, then the eigenvalues 

of the Schrodinger equation are time-independent. Furthermore, if the 
evolution of u in the Schrodinger equation is governed by any equation 

whatsoever which leaves the eigenvalues invariant, then that equation 

possesses all the same polynomial conserved densities as the KdV equation. 

Because of (20) the D and P are equal up to total derivatives in X. n n 
The present discussion assumes smooth potentials. For a generalization 

to screened Coulomb lattices, see [18]. We remark that in that case PI 

and P2 do not change. 

4. MODIFICATIONS IN THE PRESENCE OF COULOl{B INTERACTIONS (3d) 

For the pure repUlsive Coulomb scattering system, Levinson's theo­

rem (2) is violated since o~(k) ~ +00 as k ~ 0 and there are no bound 

states. For pure attractive Coulomb scattering, having an infinite num­

ber of bound states, both sides of (2) equal +00, 

For a spherically symmetric short-range potential in the presence 

of a repUlsive Coulomb interaction the form (2) stays valid when the 

phase shift is interpreted as the relative phase shift associated with 

the scattering by the total potential compared with the pure Coulomb po­

tential; in this case q is always zero. 

For a spherically symmetric short-range potential in the presence 

of an attractive Coulomb interaction, the equivalent of (2) reads (for a 

recent discussion see [19] and references therein) 
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where ]JQ, is the so-called quantum defect. It is a real number depending 

on the short-range potential, V ,that can be understood as follows. 
sr 

When the Coulomb potential is added to V ,the Balmer levels are changed 
sr 

according to 

E nQ, 

4 'V 
-m e 

2 2 + EnQ, 
2h Cn+ Q,+ I) 

The change depends on n, £ and V 
sr 

4 -m e 
2 2 • 

211 (n -]J (n, V ) + 9 + 1) 
~. sr 

In the limit n -;. co, we define 

(22) 

(23) 

The value of the largest integer contained in lJ represents the number of Q, 

additional bound-states due to Vsr ' 

A set of higher-order sum rules analogous to (8) has also been de­

rived in this case [20j. Because of the Coulomb potential, two changes 

have to be made. First, the contribution from the discrete spectrum has 

to be replaced by 

Nb 2 N co' co 
-2N 

Z; Z; In + 1-2N Z; (n + (24) (-X·) + Q,-ll - Q,) 
j=l J n=l n=1 

Secondly, for N;;' 2, correction terms of the form (Q,nE)j, j dependent on 

N, appear in the energy-integral of (8). For the exact expressions of 

the relations, which are rather involved, we refer to [201. 

5. THE PLANCK-LARKIN PARTITION FUNCTION FOR REACTING PLASMAS 

We now study the application of these sum rules to reacting plasmas, 

in the context of the S-matrix approach to statistical mechanics which 

formulates the statistical behavior of a system in terms of the collision 

processes of the constituent particles [4J. 

As is well-known, the grand canonical partition function:: can be 

expanded in powers of the fugacity z, using the Ursell and Mayer cluster 

expansion [21] 

_ (z,V,T) 
00 

exp {V Z 
n=1 

n 
b z} , 

n 

with V the volume of the system and where the coefficients b are the 
n 

cluster integrals. -Assuming the latter exist in the thermodynamic limit, 

they read 
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b l 
-3 A , 

23/2 -SH -SH2 0 
b2 --- Tr [e 2 - e '] 

2! A3 

33/2 -SH 
b = -- Tr [e 3 

3 3! A 3 

Here A is the thermal wavelength 

2 1/2 
(211 h S/m) 

3 
L 

a=1 

-BH 
(e 3,a 

(26) 

(27) 

-BH 
_ e 3,0)], 

(28) 

(29) 

and H2 , H2 ,0 are the total and free two-particle Hamiltonians, H3 , H3 ,a 

and H3 0 are the total, a-channel and free three-particle Hamiltonians • 
• 

The factors in front of the trace corne from the center-of-mass motion. 

We have assumed Boltzmann statistics. We remark that exchange effects 

do not introduce anything fundamentally new here but working out their 
th details may be highly non-trivial. The n- cluster coefficient only in-

volves n- and fewer-particle effects. 

Once we have an explicit form for the b , then the grand canonical 
n 

partition function and all other thermodynamic properties of the system 

are determined. The equation of state e.g. can be obtained as a series 

in the density particles p = N/V. The result is [21] 

SP L n 
n=1 an p 

(30) 

where the coefficients a in this expansion, which are the viral coeffi­
n 

cients, can be completely written down in terms of the cluster coeffi-

cients, viz. 

(31 ) 

We now want to evaluate these cluster integrals in terms of scatte­

ring quantities. ~he standard method is to use the Watson transform, 

which connects the statistical operator, exp(-SH), with the resolvent 

R(z) (crr. (6)), z the complex energy, ViZ. 

r -Bz 
Gl dz e R(z)) (32) 
j 
C 

where C is a contour around the spectrum of the Hamiltonian H (cfr. also 

section 2). From (27) we then get, recalling (7) and assuming for sim-
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plicity that there are no zero-energy resonances and no zero-energy bound 

states 

N 2 00 

b2 (fn = rz A -3 {.r,b /Xj + (211) -I J dE e -I3E Tr [-i S* (E) ddE S (E)]}. 
J=I 

o (33) 

Eq. (33) is a generalization of the Beth-Uhlenbeck result [21] to non­

spherically symmetric interactions. Indeed, in the case of spherical 

symmetry we know (see section 2) that the logarithmic derivative of the 

S-matrix is given by the sum of the energy derivatives of the partial­

wave phase shifts. A similar treatment for b3 , ••• has been discussed 

in the literature. There still exist some controversy about the pre­

sence of counterterms in the analogues of (33), originating e.g. from 

rescattering singularities in the S-matrix for three free particles 

going to three free particles. For more details we refer to [22]. For 

a recent review of various formalisms and calculation methods for the 

cluster integrals, containing a lot of references, see [23]. 

Let us look now at the continuum part of b2 in (33) and write it as 

00 

b~ (13) = 12 A -3 (211) -I I dE e -I3E {Tr[ -i S* (E) ddE S(E)] 

o 

--- d xV(x)} I J 3 
411vE -

+ rz A -3 (8112) -I J d3x V(~) (dE e -I3E E- 1/2 

o 
(34) 

The second term of (34) can be worked out explicitly. The first one can 

be written as a total differential in the following way 

00 00 

M -3 -I J -I3E d I * d I J 3 -v2 A (211) dE e dE { dEl [Tr(-i S (E I ) dE S(E I » --- d xV(~)]}. 
I 411~ 

o E 

Partial integration with respect to E and use of Levinson theorem (8) for 

N = 0 to evaluate the surface term gives then 

(35) 
00 00 

+I3JdEe-13E JdE I [Tr(-iS*(E I) d~ S(E I» __ 1_ Jd3X V(~)]}. 
I 411~ 

o E 

It is clear that this process may be repeated. For example, we now add 
-I -1/2f 3 2 and subtract (1611) E d x V (~) to the last integral in (35) and 
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we calculate this integral with the help of an integration by parts and 

the sum rule (8) for N = 1. In this way we arrive at 

Nb 
= rz ;\-3 ([ ~ 

j=l 

00 00 00 

Z 
X· ] 

J 

+ SZ J dE e -SE J dEl J dEZ [ Tr(-i S* (EZ) d~2 S(EZ» 

o E El 

Continuing further in this way we finally get (\'1 Z /Zm = 1) 

(36) 

(37) 

where the P (x) are the Korteweg-de Vries invariants discussed in see-n-
tion 3. This result is the well-known Wigner-Kirkwood expansion that can 

be derived in many other ways. We remark that this type of expansions, 

in the presence of magnetic fields ([24], [Z5] and references therein) 

have been used e.g. to discuss magnetic properties of one component plas­

mas in the nearly classical case [Z5]. 

In deriving (37) we have assumed smooth, not necessarily spherically 

symmetric, short-range potentials. For screened Coulomb ,interactions. 

having a l/r singularity at the origin, non-analytic terms, e.g. of order 
5/Z 13 ..•• appear [18]. [Z6]. It is important to note that in this case 

expression (36) remains valid since PI and P2 exist and the rules (8) for 

N = 0, 1 do not change. 

What is special about our derivation is that we explicitly see a 

cancellation between bound-state and scattering contributions. This com­

pensation has been studied before numerically and in WKB approximation in 

the framework of partial wave scattering [27]. The derivation presented 

here is rigorously valid on a fully quantum mechanical level. It also 

holds for higher cluster coefficients as can be shown e.g. for b3 star­

ting from (Z8) and the three-body sum rules derived in [Z8]. It stays 

even valid when there is an infinite number of bound states as has been 
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verified explicitly in a model calculation for the third cluster coeffi­

cient of binary mixtures of light and heavy particles allowing for the 

Efimoveffect [29]. 

For spherically symmetric interactions a similar procedure can be 

followed starting from (compare (33» 

b2 (f3) = 12 A -3 2: (U + 1) 
R, 

li 
{ 2: 
j=l 

2 
f3X· R- 1 

e J. +_ 
11 

ex> 

-f3E d0R, 
e dE}. (38) 

Using the sum rules (2) and (10) and the partial-integration technique 

described before we arrive at 

b2 (f3) = 12 A -3 2: (2R, + 1) 
R, 

2 
f3X· n 2 

(e J''''-I-f3X. ) 
J .R, 

(39) 

Comparing with eq. (36) we see that the partial wave form has a better 

8 + 0 behavior, corresponding to the better high-energy behavior of the 

partial wave scattering quantities mentioned before. 

We recognize the first three terms of (36) or (39) as the Planck­

Larkin partition function 

2 
f3X· R- 2 

(e J. - 1 - f3X' n) • 
J,x. 

(40) 

See e.g. [27]. [301. We have presented a rigorous derivation of its 

underlying structure on the basis of higher-order scattering sum rules. 

We remark that for pure Coulomb scattering b;L(8) can be written as 

E 
n 

n=I,2,3 ••• 

(41) 

(42) 

with aB the Bohr radius. We see that the infinite sum (41) is conver­

gent. 
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For low-density hydrogen plasmas where the effective Hamiltonian 

can be replaced by the two-particle Coulomb Hamiltonian, we see in first 

instance from (41) that states with high principal quantum number having 

an energy below the mean thermal energy i.e. (-E S) « 1 are suppressed. n 
In this way the Planck-Larkin form (41) provides a borderline between 

discrete quasi-free states near to the continuum edge, which should be 

treated like the scattering contributions. 

For dense plasmas the Coulomb interaction is dynamically screened. 

This is one of the effects of the collective behavior of the charged 

particles. This effect can be taken into account approximately by con­

sidering static screening realized by replacing the Coulomb potential by 

a Debye (Yukawa) potential 

2 
V{r) = -e /r • exp{-r/rD) , (43) 

where the Debye length rD is a function of the temperature and the den­

sity of the protons, P , viz. 
p 

2 
8n e P S • 

P 
(44) 

The non-modified bound-state sum is now finite, since the potential (43) 

has a finite number of levels. However, since these levels are depen­

dent upon the screening length rD, and hence functions of the temperature 

and density, the following happens. As r D decreases the upper levels 

move into the continuum and the bound-state sum changes discontinously. 

The (-I) subtraction in (40), due to Levinson's theorem, is then neces­

sary to resolve this unphysical difficulty. The second subtraction en­

sures a finite S ~ 0 limit for b~L(S). We also remark that states below 

the mean thermal energy are still suppressed in (40). 

So in any case the Planck-Larkin form (40) (or (41» provides an 

analytical way for limiting the bound-state sum by separating it into a 

part associated with "composites" and a part which is treated as being 

delocalized. For more details and refinements of this method, and for 

its practical use in plasma calculations we refer to other contributions 

in this volume (e.g. [31]-[33]) and to the recent literature (e.g. [34]­

[39]). 
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METALLIC LITHIUM BY QUANTUM MONTE CARLO 

G.Sugiyama, G.Zeraht, and B.J.Alder 

Lawrence Livermore National Laboratory 
Livermore, Ca. 94550 

Lithium was chosen as the simplest known metal for the first application of 
quantum Monte Carlo methods in order to evaluate the accuracy of conventional 
one-electron band theories. Lithium has been extensively studied using such 
techniques. The KKR method [lJ, the linear muffin tin orbital method (LMTO) 
[2], the augmented spherical wave method (ASW) [3] and a linear combinations of 
gaussian type orbitals (LCGTO) method [41 agree in their predictions of the equa­
tion of state. These results are also consistent with experimental data available 
at low compressions [51 [6] and agree with quantum-statistical-models [7J [8J at 
high pressures. 

Band theory calculations have certain limitations in general and specifically 
in their application to lithium. Results depend on such factors as charge shape 
approximations (muffin tins), pseudopotentials (a special problem for lithium 
where the lack of p core states requires a strong pseudopotential), and the form 
and parameters chosen for the exchange potential. The calculations are all one­
electron methods in which the correlation effects are included in an ad hoc 
manner. This approximation may be pal'ticularly poor in the high compression 
regime, where the core states become delocalized. Furthermore, band theory pro­
vides only self-consistent results rather than strict limits on the energies. The 
quantum Monte Carlo method is a totally different technique using a many-body 
rather than a mean field approach which yields an upper bound on the energies. 

QUANTUM MANY-BODY ALGORITHM 

The Schr3dinger equation was solved for a system of M fixed lithium atoms 
and N =3M electrons using the quantum Monte Carlo algorithm previously 
developed for the electron gas [9J [lOJ. This technique does not approximate the 
3N dimensional problem by reducing it to a set of equations of lower dimen­
sionality, but solves it exactly within statistical error bars. The algorithm 

t permanent address: Commissariat l'energie atomique, Centre d'etudes de Limeil­
Valenton, France 
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involves several phases of progressively greater accuracy - the variational, the 
diffusion and the Green's function Monte Carlo methods, which yield upper 
bounds to the ground state energy, and the released node Green's function Monte 
Carlo method, which provides exact answers within statistics. In this preliminary 
study, various trial wavefunctions were explored in order to determine the 
optimum form for a fixed amount of computational time using the variational 
and fixed-node schemes. The choice of the trial wavefunction is a trade off 
between a simple analytic form which is computationally fast and a more accu­
rate but complex form which is difficult to sample efficiently. 

Variational Monte-Carlo [111. Variationally, the total energy of a system of 
Hamiltonian H is given by the minimum with respect to the set of all possible 
trial functions III T of 

!III T HIII T 
E=Min . 

'liT ! 1 lilT 12 
(1) 

In practice, lilT is a parameterized expression for which the integral (1) is com­
puted using the Metropolis Monte Carlo algorithm. The result is an upper bound 
on the energy that is dependent upon the nature of the trial wave function. The 
standard form of \{IT consists of a Slater determinant of one-body states multi­
plied by a pair product Jastrow factor which incorporates two-body correlation 
effects. For lithium, three different forms were used for the elements of the deter­
minant. In the simpler cases, the localized states were taken to be Gaussians with 
a width parameter and the delocalized states were treated as plane waves. In the 
third case, a more complex form was generated from band theory charge densities 
as discussed below. 

Diffusion Monte Carlo. The diffusion Monte Carlo algorithm [12] computes a 
more accurate solution of the Schr5dinger equation using a trial function gen­
erated by the variational Monte Carlo technique. The Schr5dinger equation in 
imaginary time is treated as a diffusion equation with the potential acting as a 
branching birth and death process. The solution converges exponentially to the 
ground state. The wavefunction III satisfies 

". N h,2 
H III(R,t) = [-j~12m 'i7? + V(R) - ET 1 III(R,t) , (2) 

where tl is the 3N dimensional vector of the electronic coordinates, t is the ima­
ginary time and 

N 2 N MZ 2 M Z Z 2 
( .... ) _ ~ e ~ ae ~ a /3e VR -u--u--+u , 

j <i Tii j ,a Tj a a</3 T a/3 
(3) 

is the potential energy of the solid using standard Coulomb interactions. ET is a 
constant trial energy which is subtracted from the potential energy for computa­
tional convenience. The sums run over the electronic coordinates i,j and the 
fixed atomic lattice sites a,/3 with T.b == 1 T. -rb I. A finite simulation cell with 
periodic boundary conditions is used, with the potential energies evaluated by 
Ewald summation. 
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The wavefunction \II can be interpreted as the density of diffusing particles as 
long as it is everywhere of one sign. This is not the the case for fermion statistics 
where the many-body wavefunction changes sign at the nodes. However, this 
difficulty can be overcome by using a trial wavefunction \liT, whose nodes act as 
absorbing barriers to the diffusion process. The probablity density defined by 

/ (R,t)=\IIT(R)\II(R,t)exp[-(ET-Eo)t] , (4) 

obeys the diffusion equation 

ho/(R,t) =-f~'V·['V·! -!'V·1nl\llT 1 2l_[H\IIT -ETl! 
ot i =1 2m J J J \II T 

(5) 

which is derived from the Schr5dinger equation. Eo is the exact ground state 
eigenvalue corresponding to the eigenfunction \II. This equation is solved in each 
of the regions bounded by the trial function nodes as before, however now the 
trial function plays an important role in reducing the branching term - a process 
known as importance sampling. 

The fixed-node approximation imposes the constraint that the wavefunction 
has the approximate nodal surface of \liT leading to a upper bound criterion on 
the energy. In principle, the nodal surfaces could be varied to obtain the best 
upper bound on the energy. In general, however, it is difficult to parameterize 
\liT in a systematic fashion. For the electron gas, the dependency upon the loca­
tion of the nodes of the trial wavefunction was weak [10], however for an accu­
rate upper bound \liT should be chosen as close to the true ground state 
wavefunction as is feasible. 

Green's Function Monte Carlo. The Schr5dinger equation recast into integral 
form can be solved by Monte Carlo sampling of the exact Green's function G 
[13]. This avoids the error incurred in the diffusion Monte Carlo algorithm by 
the use of a short time step expansion approximation of G. Exact evaluation of 
G coupled with nodal release leads to the stochastically exact solution of the 
Schr5dinger equation. 

Trial wavefunction. The general form for the wavefunction that has been 
used successfully in previous studies consists of the product of a Slater deter­
minant of single particle orbitals multipled by a Jastrow factor J : 

\IIT=det I ~ij I det I ~iJ I J , (6) 

where the ~ii are the one particle wavefunctions of the Slater determinant, with 
the superscripts + and - denoting the two possible spin states. The determinantal 
form provides the required fermion antisymmetry. The Jastrow factor 

N N,M 
J = exp(-~uii - ~ Uia) 

i ,i i ,0' 

(7) 

involves a SUll! of the electron-nuclear and the electron-electron pair correlation 
factors. These exactly incorporate the cusp conditions - the singularities of the 
wavefunction for zero pair separation due to the coulombic divergence of the 
potential. The Jastrow factor is computed using the random-phase approxima­
tion [11]. 
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Two forms of Slater determinant trial function were implemented. In the 
first calculation, IJt consisted of Gaussians with parameterized widths centered 
about the lattices sites for localized states and plane waves for the delocalized 
orbitals. At extreme compressions where the Is state was expected to be de local­
ized, all the Slater determinant states were taken to be plane waves - a form 
which should yield a lower energy. Such simple analytical forms ha'le been suc­
cessfully applied to molecules [12] the electron gas [10] and molecular and metal­
lic hydrogen (with emphasis on the metallic transition) [14]. For highly 
compressed lithium, however, it was desirable to introduce a wavefunction which 
provides a continuous transition from a localized to a delocalized form. Conven­
tional band theory techniques provided such a function. Specifically, the single 
particle orbitals in the Slater determinant part of IJt T were taken from an aug­
mented plane wave (APW) calculation. The electron-nuclear Jastrow factor was 
suppressed as this cusp condition is correctly accounted for in the APW func­
tions. 

The APW method uses Bloch's theorem to reduce the description of a cry­
stalline solid to a calculation in the primitive cell. This results in a set of coupled 
one particle Schr5dinger equations which are solved by a discretization in recipro­
cal space. This discretization is introduced by considering only those functions 
which are periodic on the scale of a few unit cells. 

The APW method builds solutions of the Schr5dinger equation by solving 
the radial equation inside the muffin tin sphere and matching them to linear com­
binations of plane waves in the interstitial region. The APW wavefunctions are 
generated according to the formulae: 

rt o'li·Jt 
t/>r(r+1tj) = E E Cj ru(R) e I ~Rr('i") , 

R i ' 
(8) 

where Cj are the standard APW coefficients [15] ,R are the set of rotations leav­
ing the crystal invariant, r ll(r ) are the matrix elements of the invariant group of 
the vector k, k; = f + Kj (Kj a reciprocal lattice vector) and X,. is a lattice site. 
The function 

(9) 

is the muffin tin solution expressed as an expansion in spherical harmonics. Out­
side the muffin tin the solution is expressed as a sum of plane waves 

iRr·,. 
t/>r(r) = E E co' r l1(R) e I , (10) 

R j 

where the Cj are the matching constants from the APW functions of equation (8). 

The APW calculations were performed using the same number of' points (f 
values) in the Brillouin zone as there were lattice sites in the quantum Monte 
Carlo calculation (32 for FCC, 16 for BCC). This provided the correct number of 
single particle orbitals for the quantum Monte Carlo trial function. The max­
imum angular momentum value I was taken to be 13 in the APW calculation 
and restricted to 3 in the subsequent generation of the wavefunction. The I 
values in the wavefunction could be limited to the s,p,d, and f states since thi:'l 
was sufficient to represent the charge density. The APW calculations were per­
formed for a few densities using an increased number of I and K values without 
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significant changes in the energy and pressure. The APW results agreed with the 
detailed band structure at normal and 10-fold compression [4] and with the ener­
gies and pressures [3] obtained from more accurate band theory calculations, to 
within the uncertainty caused by number dependence and exchange potential 
parameters. In particular, the APW results showed that the 2s-2p band is not 
free-electron-like at lO-fold compression, indicating that a plane wave trial func­
tion is a poor choice. At higher compressions, both the Is and 2s-2p bands are 
free-electron-like and energies and pressures approximate Thomas-Fermi model 
results. 

Table 1. Quantum Monte Carlo variational and fixed-node diffusion energies 
for lithium at various densities. Energies are in Rydbergs. Densities 
are given in terms of the Wigner-Seitz radius r. and the compres­
sion. The calculations are for 16 and 32 atoms in the simulation 
box. The trial functions are Gaussian and plane wave (g-pw), all 
plane wave (pw) and APW (apw). Errors in the last digit are given 
in parentheses . 

• 1 ---
Densitv M=16 atoms M-32 atoms --

r_ Comn tf R. g t.f B. E. 
3.500 0.263 g-pw -14.78(1) -14.97(1) 
3.000 0.418 g-pw -14.84(1) -15.01(1) 
2.500 0.722 g-pw -14.90(1) -15.03(1) 
2.260 0.978 g-pw -14.91(1) -15.03(1) g-pw -14.92(1) -15.00(1) 

apw -14.87(1) -15.02(1) 
2.100 1.219 g-pw -14.90(1) -15.03(1) 
2.000 1.412 g-pw -14.86(1) -15.00(1) apw -14.87(1) 
1.800 1.936 g-pw -14.85(1) -14.96(1) apw -14.84(1) 
1.600 2.757 g-pw -14.74(1) -14.88(1) apw -14.77(1) 
1.400 4.115 apw -14.66(2) 
1.250 5.783 g-pw -14.00(1) -14.39(1) apw -14.49(3) 

11.000 11.289 g-pw -13.34(1) -13.43(1) g-pw -13.60(1) -13.78(1) 
pw -11.36(1 ) -12.57(2) apw -13.99(1) 

1
0.800 22.067 g-pw -11.22(1) -11.32(1) g-pw -11.81(1) -11.93(1) 

pw -10.82(1) -11.77(1) apw -13.99(1) 
0.750 26.766 g-pw -10.30(1) -10.38(1) 

pw -10.52(1) -11.33(1) 
0.700 32.940 apw -11.26(1) 
0.650 41.115 g-pw -7.39(1) -7.49(1) 

pw -fJ. /15(1) -10.13(1) 
0.600 52.307 apw -9.46(1 ) 
0.500 90.334 pI\' -5.13(2) -5.64(1 ) pw -3.17(1 ) 

61.70(4) 
apw -5.12(1 ) 

0.226 978.220 DW 61.50(1l 
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RESUL TS AND DISCUSSION 

Quantum Monte Carlo calculations were performed on a supercell with 
periodic boundary conditions, the atoms being located at fixed crystal lattice 
sites. Although fixed atomic sites are not required by the quantum Monte Carlo 
algorithm, in contrast to band theory methods, in practice regular BCC or FCC 
structures were simulated. Present calculations are not sufficiently accurate to 
determine the type of crystal structure. Different structures were used primarily 
to determine the number dependence correction. Simulations were performed on 
cubic supercells consisting of 48 or 162 electrons (16 or 54 atoms) for the BCC 
structure and 96 electrons (32 atoms) for the FCC structure. Experimental data 
as well as band theory calculations indicate a close packing structure (HCP or 
FCC) for the D· K isotherm at low pressures [4] [16] [17] [18]. 

Preliminary calculations of lithium using 16 atoms per simulation box and 
simple trial functions were performed over a compression range from 0.263 to 
1000. Mixed Gaussian and plane wave trial functions were used at low to inter­
mediate densities and planes waves alone at extreme compressions. The results 
are shown in Table 1 and Figure 1. The large energy gap between the variational 
and diffusion energies for the plane wave trial function at intermediate compres­
sions indicates that the trial function is not of an optimal form. It is necessary to 
reintroduce the electron-nuclear Jastrow factor and multiply both Jastrow terms 
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-I&-I---~ ......... ~~.~.~.~. roo -~-~. -r-. ~ • ...,. • ...,..~ • ..-" .,.--...---.--.-..-• .,.. • .,.. • ......,. I 
0 .1 1 10 100 
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Legend 
o yorlatlonol g-e!' 

• dlflu.I~=.I!L 

o Y(Hlalionol pw 

• dlffu.lon pw 

Figure 1. Variational and diffusion energies vs. Compression for quantum Monte 
Carlo calculations of lithium using 16 atoms in the simulation box. 
Trial functions are Gaussian Is, plane wave 2s-2p (g-pw) and plane 
wave Is, 2s-2p (pw) as indicated. Error bars are too small to be seen 
on this scale. 
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by a variationally optimized parameter in order to incorporate more of the pair 
correlation energies. This should reduce the difference in the variational and 
diffusion energies as well as the discontinuity in the energies of the two types of 
trial functions at the crossing of the energy curves. This crossing near 25-fold 
compression indicates the approximate location of the de localization of the Is 
core states. The result is consistent with band theory estimates of delocalization 
in the 30-300Mbar range. 

Figure 2 shows the energies near normal density. The minimum of the curve 
gives an estimate for the equilibrium lattice constant which is consistent with the 
accepted value of 6.48 a.u. For low to intermediate densities, the difference 
between the variational and diffusion energies is on the order of O.IRydbergs (see 
Table 1). Previous quantum Monte Carlo simulations of the electron gas at com­
parable densities yielded a lowering of the energy of O.004Rydbergs [10], indicat­
ing that the electron gas is a much simpler system than lithium. However, calcu­
lations of Li 2 showed a variational-diffusion energy difference of about O.04Ryd­
bergs [12]. Thus the trial functions used here for metallic lithium are of '!ompar­
able quality to those used in the molecular case. The number dependence correc­
tion for metallic lithium is of the same order of magnitude as the variational­
diffusion energy difference (compare the results for 16 and 32 atoms in Table 1). 
At normal compression, the size correction of .IRydbergs is the same as for the 
electron gas of the same density. 

-1< .6 · 

- 1< .1 

-15 · .~ ---e_ e-
-15 . 1 · 1----.---~~-~~~..-.-----.__-~~____. 

0.2 < 
Compression 

Legend 

o :!9.~2H.2n04 V:.P.!' 

• dUhnl~!l.i=~ 

Figure 2. Variational and diffusion energies vs. Compression for quantum Monte 
Carlo calculations of lithium using 16 atoms in the simulation box 
near normal density and Gaussian Is, plane wave 2s-2p (g-pw) trial 
functions. 
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The calculations have been carried out for crystals expanded to 4 times the 
normal density using trial functions with Gaussian 18 and plane wave 28 orbitals. 
Additional simulations are underway using localized states (Hermann-Skillman, 
simple Gaussian, or Wannier) for all the electrons. The density at which the 
energy curves for the two kinds of' trial functions cross will then locate the Mott 
transition - the delocalization of the 28 states. 

In order to study the core delocalization regime and for comparison with 
band theory, a 32 particle crystal was simulated using both simple and APW 
trial functions. The APW trial function was a factor of 4-5 times slower to sam­
ple than the simple Gaussian-plane wave form. This was offset by the significant 
lowering of the variational energies (see the preliminary results shown in Figure 3 
and Table 1) and should also be reflected by a more rapid convergence in the 
diffusion calculations. To compare with band theory, the energies relative to that 
at normal density are plotted in Figure 4. The variational quantum Monte Carlo 
values are in reasonable agreement with both the ASW [3] and the LMTO [21 
results. At extreme compressions, the variational values satisfy the PV5/ 3 equa­
tion of state of Thomas-Fermi-Dirac models. 

More calculations are required before the quantum Monte Carlo algorithm 
can be used to assess the accuracy of band theories. The Jastrow terms for both 
the simple and the APW trial {unctions must be optimized and used in diffusion 
and Green's function runs at selected densities. These simulations are presently 
underway. Dependence of the results on the number of particles must be taken 
into account by extrapolation to the infinite particle number limit using a fit for 
several superceU sizes at several densities [10]. The number dependence may not, 
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Figure 3. Preliminary variational energies vs. Compression for quantum Monte 
Carlo calculations of lithium using 32 atoms in the simulation box and 
Gaussian;. plane wave (g-pw) or APW trial functions. 
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be the same for different trial function forms or for different numbers of delocal­
izated electrons. Particular emphasis will be given to the delocalization regimes 
of the 2s -2p electrons at low density (Mott transition) and the Is electrons at 
high density - regions where the largest correlation effects should occur. 

10 

8 -

6 

.. .c 
.,~.~ 

0-1---' .. ,...-.. · _ .. · ..-·-..... -=- "--------------

-2-~~,--~-~~~,~,·~----~,...-~-~~~~, 
0.5 I 10 lor 

Compression 

Legend 
tJ. ASW Bee 
". Lworec __ 
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Figure 4. Relative Energy vs. Compression for band theory ASW [3] and LMTO 
[2] calculations and variational quantum Monte Carlo calculations 
using APW trial i'unctions. 
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Linear response theory, in liquid metals l and some other plasma 
problems, has been of major importance through the k and w dielectric 
functions to which it leads. Thus, liquid metal Na and K, the former of 
considerable importance as a coolant in nuclear reactors, have such weak 
electron-ion interaction that their conduction electrons are well treated 
by such an approach. Indeed, the uniformity of the conduction electron 
distribution has led to the classical, one-component plasma model being a 
valuable reference liquid for treating the ion-ion pair correlation 
function in these metals, both in the context of liquid structure2 and of 
freezing criteria. 3 

However, there are important problems, in condensed matter and in 
plasma physics, where such a linear response theory is not appropriate. 
Thus, in liquid metallic hydrogen, or in hydrogen-helium mixtures of 
interest in astro-physics, the electron-ion scattering is so strong that 
any linear theory must break down severely. In metals this was already 
clear from the early Hartree-Fi~ld computations on a proton embedded in an 
electron fluid 4 , or indeed from the relative constancy of positron 
lifetimes in metals, in spite of a huge variation of mean conduction 
electron density from metallic A~ (mean inter-electronic spacing rs 2ao 
to Cs (r s ~ 5.5ao)' the density Po = 3/4~rs3 varying by a factor ~20 
between these two metals. 

Therefore, in the present article, we shall consider the application 
of Thomas-Fermi theory, and its generalizations, to a number of problems 
involving strong electron-ion interaction. In three-dimensional problems, 
to which we restrict ourselves throughout, this theory has the consider­
able merit of non-linearity, as evidenced by the density p(i) -potential 
v(i) relationship in an inhomogeneous electron gas: 

8~ (2m) 3/2 [11 _ v(i) ]3/2 
3h3 .. (1.1) 

with II as usual denoting the chemical potential of the electron cloud 4• Of 

tOn leave from the University of Trieste, Italy. 
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course, this merit of immediate non-linearity exposed in Eq. (1.1) is 
purchased at the price of a theory which is useful for predicting the 
density only in classically allowed regions of electronic motion, and 
correspondingly, the energy level spectra predicted by the theory can only 
be fully quantitative in the regime of applicability of Bohr's correspon­
dence principle. 

The outline of our article is then as follows. In Section 2 
immediately below we summarize first our own work on the energy level 
spectra of heavy atoms in a non-relativistic frameworkS using the 
self-consistent potential energy v(r) calculated by combining Eg. (1.1) 
with Poisson's equation of electrostatics. In the second part of Section 
2, we briefly review some recent progress relating to collective oscil­
lations in the charge cloud of heavy atoms, which can be treated by 
dynamical Thomas-Fermi theory and its generalizations. Then, in Section 
3, an approach to liquid metals based on a generalization of Thomas-Fermi 
theory is presented6 , with results of an application to liquid metal Be. 
In Section 4, recent ideas for treating electron-electron exchange and 
correlation interactions will be reviewed with specific reference to the 
degenerate quantum fluid jellium7 , and these will be discussed in relation 
to the work of Cowan and KirkwoodB who used Thomas-Fermi theory to discuss 
the correlation functions in liquid metal and strongly coupled plasmas. 
Finally, Section S constitutes a summary, plus some suggestions for 
possible future studies in the area covered in this paper. 

2. THOMAS-FERMI-THEORY OF ISOLATED ATOMS: STATICS AND COLLECTIVE MODES 

2.1. WKB eigenvalues for heavy atoms in the limit of large quantum numbers 

The Thomas-Fermi theory of heavy atoms was the forerunner of modern 
density functional theory9. Though its prediction must be expected to be 
only of qualitative character, it remains of some interest for first­
principles theory. For instance, its connection with the important l!Z 
expansion of Hylleeras lO was established by March and Whitell • Also, the 
total energy of atoms is usefully approximated by the semiclassical 
Thomas-Fermi method, provided suitable corrections are applied. 12 ,13 
The Thomas-Fermi theory of an isolated atom (ion) is based on the 
combination of the density-potential relation of Eq. (1.1) with the 
Poisson's equation 

supplemented by the appropriate boundary conditions. 
non-linear differential equation4 , 

for the screening function $, defined by 

Ze2 
V(r) - ]J = - -r-.$ (x) , 

with x a dimensionless measure of length, 

x rib 

(2.1) 

This yields a 

(2.2) 

(2.3) 

(2.4) 

The solution of Eg. (2.2) is all what is needed in the Thomas-Fermi theory 
of atoms. In fact, one can express all the atomic properties in terms 
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of~. Thus, for a neutral atom, the total binding energy E(Z) is easily 
related to the slope a2 = ~' (0) by 

(2.5) 

The price paid to the great simplicity of such a description, in which all 
properties of the atom scale with a suitable power of z, is represented by 
the absence of any discrete structure in the resulting electronic 
properties. In fact, Thomas-Fermi theory only provides an "average" 
description of the many-electron system. To overcome such a situation, 
Fermi14 took the next step of regarding the potential VCr) of Eq. (2.3) as 
a non-selfconsistent effective one-body potential that could be used to 
calculate one-electron terms by solving the relative Schrodinger equation. 
Unfortunately, this must be done numericallylO. However, in the limit of Z 
large (strictly Z+~) some progress can be made if one resorts to the 
semiclassical WKB method, as we have recently shown5• This will be briefly 
discussed below. 

The WKB condition determining the one-electron 
potential VCr) of Eq. (2.3) for a neutral atom (II 
written as 

Zl/3 j2dx [2Q~!X) _ (t ~21/2)2 Z-2/3 

xl 

+ e:a2Z-4/3 ]1/2 Zl/3I(Z,t,e:) 

energies in the 
0) can be easily 

(2.6) 

In the above equation, the scaled length x is used, xl' x2 are the turning 
pOints of the classical motion and the energy level e: is in Rydberg. For 
given Z, Eq. (2.6) implicitly gives e: as function of the integers sand t. 
If one restricts to e: and t of order Zo, it can be shown that in the 
limit Z + 00 

I(Z ,t,e:) (2.7) 

with 

K 1.6566 (2.8) 
o 

and 

(2.9) 

The function f appearing above is explicitly given by 

fey) = (1-2t)-l/2[2E(t) - K(t)] /21T , (2.10) 

where . 

(2.11) 

and E(t), K(t) are complete elliptic integrals of first and second kind. 
Substitution of Eq. (2.7) in Eq. (2.5) immediately yields, in leading 
order in Z, the scaled relation 

__ e: --4 = f- l [(Kzl/3 - n) / (H + 1) ] 
(H + 1) 

(2.12) 
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Fig. 2.1 • Comparison of the asymptotic WKB energy 
formula (2.10) for the Thomas-Fermi potential and 
numerical solution of the schrodinger equation by 
Latter 10 for three values of Z in the range of the 
periodic Table. The full curve gives eqn. (2.12) of 
the text while Latter results are given by +, Z=26; 
... ' Z = 65; and 0, Z = 92. 

between E and Z, ~, and the hydrogenic principal quantum number n = s+~+l. 

We should observe that, while Eq. (2.12) gives the WKB one-electron 
energies in the Thomas-Fermi screened potential for Z sufficiently large 
and E and ~ finite, caution is of course needed in that the WKB levels 
only become precise in Bohr's correspondence limit of large quantum 
number s. In Figure 2.1 the scaled relation (2.12) is shown together with 
results of numerical solutions of the Schrodinger's equation due to 
Latter 15 • Though such numerical results are for values of Z in the range 
of the periodic Table and, so, not large, a reasonable agreement is 
found. 

Another simple result, which can be simply obtained from Eq. (2.6) , 
is a necessary condition on Z for the existence of bound states with a 
given ~. This is obtained by requiring the existence of two turning 
points. One finds 

Z > 0.1564l(U + 1) 3 (2.13) 

The above inequality has been previously discussed16 ,17, independently 
from the WKB condition (2.6). Comparison with the periodic table reveals 
that formula (2.13) has an accuracy of few percent. 
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2.2. Collective oscillations of electronic cloud in atoms 
.~~---- -~ 

Here, we shall briefly summarize recent progress on collective modes 
of the inhomogeneous electron gas in heavy atoms. The Thomas-Fermi method 
was generalized by Bloch18 to yield a hydrodynamic theory of the 
collective oscillations of an inhomogeneous electron gas. This theory, 
and its applications, is reviewed by Lundquist19 • The generalization of 
this theory in a fully quantum mechanical framework has been given by 
March and Tosi 201 applications of this latter theory are now forthcoming 
over a wide range of systems2l ,22. Of course, it has been clear to Bloch, 
to Wheeler 23 ,and man other workers, that while the plasmon is a very 
well defined oscillation in extended systems like, say, Ai, or even Si, 
in finite systems the question of the width of the excitation is 
crucial. However, recent experiments at Los Alamos with strong laser field 
(Baldwinl private communication) give strong circumstantial evidence for 
atomic excitations in various species with large atomic number, which seem 
to have no natural explanation to date other than that the atomic 
electrons are participating collectively. The simplest viewpoint to take 
is that one is seeing here collective electronic density oscillations in 
the charge cloud of heavy atoms. 

To give a full theory of such excitations, transcending the work of 
Bloch and other later workers is still difficult, though it has been 
tackled by very different, and highly complex, many-electron theories by 
Ambrosia24 , Fan025 , wendin26 and their co-workers. We want to note here, 
that in the spirit of liquid structure descriptions, used also, of course 
in Section 3 below, if we take the electron pair correlation function 
gee(r) and its Fourier transform See(k), and define the direct correlation 
function for electrons by 

(2.14) 

then by analogy with jellium, where 

cee(r) 
e 2 

+ r (hwp/2) (2.15) 

with wp the electronic plasma frequency, given by 

1/2 
(2.16) ---m 

with no the mean electron density, we must expect in an atom that a 'local 
plasma frequency wp (i) say, defined by replacing no in Eq. (2.16) by the 
local density n(r), will enter the long-range behavior of the direct 
correlation function. Such behavior should be accessible at least for 
heavy closed shell atoms, by electron scattering from such gaseous 
systems. This should enable progress to be made in pinning down the 
theory of the asymptotic form of the direct correlation between electrons 
in finite atomic systems. 

3. INFLUENCE OF ORDER ON ELECTRON STATES IN STRONGLY COUPLED LIQUID 
METALS 

From the problems of section 2, involving electrons coupled strongly 
to one atomic centre, we turn next to multicentre problems. To be 
specific, though the method we present below is of much wider applicabili­
ty, we shall focus on the example of liquid metal Be. This is a strongly 
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coupled liquid metal, with the 2 atomic 2s electrons forming in the 
condensed state a broad s-p conduction band, the Is electrons on each 
atomic nucleus being in bound states, and having therefore atomic-like 
wave functions and discrete energy levels differing little from the Is 
state of an isolated Be atom. 

Below, we shall attempt to construct a description of the strongly 
coupled Be metal, starting again from a 'one-centre' building block. 
Obviously, since the 2s atomic electrons are now in a 'shared' conduction 
band characteristic of the liquid metal Be itself, it would be inappropri­
ate to take the free atom, with configuration (lS)2(2s)2 as the building 
block. Rather, following ideas, though not methods, then fashionable in 
condensed matter, Rousseau, Stoddart and March (RSM) proposed6 to plunge a 
single Be into an originally uniform electron gas with a mean electron 
density appropriate to the conduction electrons in liquid metal Be. This 
'screened ion', with localized Is electrons in atomic states, is then the 
desired building block. We can say that the crucial difference between 
this 'screened ion' building block and the free atom is that in the former 
the Fermi level falls in the continuum, i.e. the chemical potential ~ in 
Eq. (1.1) is positive, if V(r) is defined to tend to zero at infinity, 
whereas in the free atom the highest electronic state is bound, i.e. has a 
negative energy. 

Having decided on the basic building block as a screened ion, the 
question, of course, is how to use it to construct some, or ideally all, 
of the properties of the liquid metal. The argument of RSM went as 
follows. They started, in essence, from the Thomas-Fermi electron density 
in Eq. (1.1), and enquired how to use this in a disordered system such as 
a liquid metal. They then emphasized that two essential steps occur in 
any non-perturbative calculations of electron states: (i) The e~ectr~n 

states must be found for a given fixed configuration of ions, say {Ri}' Ri 
denoting the position of the ith ion (i=l, 2, ••• , N) in this particular 
configuration. (ii) The ensemble average with respect to ionic configura­
tions must be taken. Following RSM, it. will be assumed that the total 
potential v(i) to be inserted in Eq. (1.1) to get the Thomas-Fermi 
approximation p(i) to the electron density in configuration {~i} has the 
form 

(3.1) 

where U evidently characterizes, in a manner to be made precise below, the 
'screened ion' building block discussed above. Of course, the assumption 
in Eq. (3.1) that U is not affected by the local environment in which the 
i-th ion finds itself must involve approximation, but available evidence 
points to it as a reasonable starting point for building a theory of the 
electron states in a liquid metal like Be. 

3.1. Model of independent 'screened ions' 

Of course, it will already be clear to the reader that the 
fundamentally non-linear p-V relation in Eq. (1.1) will not allow one to 
exploit the assumed superposition property (3.1) unless Ivl/~« 1, when 
we can linearize Eq. (1.1). It is a basic tenet of the present work that 
we are dealing with just such strongly coupled plasmas that the lineariza­
tion is not valid. 

RSM therefore 
states in a liquid 
canonical density 
eigenfunctions and 
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utilized as their main tool for handling the electron 
metal pos~e~sing only short-range order the so-called 

matrix C(r,ro'S). This is defined in terms of the 
eigenvalues ei of the one-electron Hamiltonian 



H (3.2) 

+ 
with V(r) as specified by the approximation (3.1), as 

S = l/KsT • (3.3) 
i 

We shall see below that using this tool the superposition property of 
v(i) expressed through Eq. (3.1) can be exploited. The density matrix 
(3.3) is, of course, related to the partition function Z(S) through 

+ + + 
Z(S) = fdr C(r,r,S) I: exp (-Sq) • 

i 
(3.4) 

+ 
Next we note that, when V(r) varies slowly, an approximation 

underlying the Thomas-Fermi theory, the wavefunctions are essentially 
unchanged while the eigenvalues are shifted by an energy increment V, and 

+ + + + + 
C(r,ro'S) = Co(r,ro'S) exp[-SV(r)] , 

Co denoting the free-electron limit ~ V = O. Now one sees from 
that the superposition form of V(r) in Eq. (3.1) leads to 
simplification 

++ ++ ++ 
C(r,r,S) = Co(r,r,S) ~ exp[-SU(r -Ri)] • 

Ri 

(3.5) 

Eq. (3.5) 
the huge 

(3.6) 

Noting the relation between C and Z(S) from Eq. (3.4), we can conclude 
that, loosely, Eq. (3.6) is expressing the fact that the total partition 
function for configuration { ~i } is a product of partition functions for 

+ 
the one-centre building blocks characterized by potential U(r). 

We now generalize (3.6), as proposed by stoddart~ ~ilton and March27 , 
by calculating the 'one-centre~ density matrix, Cl(r,ro,a) say, for the 
single-centre scattering off U(r), in the form 

(3.7) 

-+- -+-
where Ul(r,ro,a) is termed the effective potential matrix. The way to 
calculate this was discussed by Hilton, March and Curtis28 and their 
results for Ul(i,;,a) will be invoked below. It is this quantity Ul(i,i,a) 
= ul(i,a) which constitutes our precise definition of the 'screened ion' 
referred to above. 

Then the model of indipendent 'screened ions' motivated by the form 
(3.6), can be expressed quite explicitely as 

-+--+- ++ + + 
C(r,r,a) = Co(r,r,a) ~ exp[-aUl(r - Ri,a)] • (3.8) 

Ri 

All subsequent results for the electron states in strongly coupled plasmas 
to be discussed in the present paper rest on the model embodied in Eq. 
(3.8). Given the starting point for v(i) in eqn. (3.1), the work of Ref. 
27 shows the model to work well under anyone of the following condition: 
(i) U small, (ii) a small, (iii) Ul slowly varying, (iv) small overlap of 
gUl between different positions ~i' 

We shall discuss at the end of this Section corrections which can be 
applied to Eq. (3.8), should it prove necessary). 
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3.2. Ensemb~~rage 

Following RSM, we can make progress with the ensemble 
Eq. (3.8) by introducing, prompted by analogy with the Mayer 
classical statistical mechanics, the related function 

Then one expands Eq. (3.8) in the form 

-+-+ +-+- -+- -+-
C (r ,r , B) = Co (r ,r , B) [1 + ¥ f (r - Ri' B) 

Ri 

averaging of 
function of 

(3.9) 

(3.10) 

It is this expression that RSM used to perform the ensemble average. 

3.2.1. Random systems 

It will be useful, before tackling the short-range order in a liquid 
metal, to consider random averaging. One readily obtains the result6 for 
the partition function Zr(B): 

(3.11) 

where ar(B) for the random assembly is simply given by 

p 
a 

+ -+-
Jdr f(r,B) (3.12) 

p being the number of ions per unit volume. Formulae (3.9), (3.11) and 
(3.12) relate explicitly the partition function of the random assembly to 
the 'screened ion building block', defined by Ul(r,B) entering Eq. (3.9). 

3.2.2. Liquid metals 

As RSM point out, an attempt to perform the configuration average of 
Eq. (3.10) using the Kirkwood superposition approximation for the 
three-atom correlation function g(3) (il ,i2,t3) , namely 

(3.13) 

where g(r) is the usual ionic pair correlation function of the liquid 
metal, accessible via neutron scattering, leads to a situation in which 
only one class of terms can be summed, which 0.1 exalllination does not prove 
dominant. 

Thus, it has proved necessary, to date, to have recourse to a 
simplified version of the Kirkwood approximation, in which one of the pair 
functions in Eq. (3.13) is replaced by its asymptotic value, and the 
result is symmetrized to yield 

(3.14) 

Such a procedure is related to that of Abe 29 in passing from the 
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Born-Green theory of structure to the hyper netted chain theory. Further­
more, the work of Bratby, Gaskell and March3l has also revealed serious 
shortcomings of the Kirkwood approximation, and again an (unsymmetrized) 
form related to Eq. (3.14) is more useful. 

Generalizing the type of approximation (3.14) to the n-th order 
correlation function, RSM sum all the terms in the average of eqn. (3.10), 
to obtain in place of the random result in Eqs. (3.11) and (3.12): 

+ + + +" 
exp[ 13aliq(l3) 1 = /dq f(rl,l3) [exp{pG(rl)} - 1 l/G(rl) + 1 (3.15) 

where 

(3.16) 

Evidently, Eq. (3.15) reduces to the random 'screened ion' result in Eqs. 
(3.11) and (3.12) when the liquid ion-ion pair function g(r) is replaced 
by unity. 

3.2.3. Summary of the results for liquid metal Be 

To our knowledge, the only calculation based on Eqs • (3.15) +and 
(3.16) that are available so far are for liquid Be. Here, Ul (r, 13) 
defining the screened ion is available in approximate form from the work 
of Ref. 28. Figure 3.1 shows the results of RSM, for a(l3) versus 13 for 
this metal. Curve 1 is the random result, 2 is for the liquid metal and 3 
is for face-centred cubic Be at the same density. In the liquid case, 
because of the toxicity of this metal, we know of no measured pair 
function g(r), and the hard sphere model was employed by RSM. 

In principle, the partition function Z(I3) can be inverted to obtain 
the density n(E) of electronic states. In practice, this problem has not 
been completely solved, as the partition is known only to finite numerical 
accuracy on the real axis. However, limited progress can still be made by 
choosing models for the density of states which can be analytically 
trasformed, and then compared with the calculated partition functions. In 
this way, RSM obtained approximate results for n(E) in liquid Be which 
seem to be quite sensible and testify to the usefulness of the above 
approach in strongly coupled liquid metals. 

3.2.4. Trascending_independent screened ions 

RMS have subsequently pointed out6 a route for trascending the model 
of independent screened ions. The orthonormality of the wave functions in 
the definition of the canonical density matrix leads, quite generally, to 
the result 

(3.17) 

In the special case 131 = 132 = 13, this equation evidently relates C at 13 to 
its value at 213. If one substitutes into the right-hand-side of the above 
equation the approximate C based on independent screened ions, at a 
sufficiently small value of 13 where it is valid, then without further 
approximation we have the Bloch matrix at 213. 

Then RSM show that one obtains the 'liquid' partition function Zl(213) 
as, essentially 

(3.16) 
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Fig. 3.1 • Partition function for method of independent 
pseudoatoms. Curve 1, Random assembly, 2, liquid metal, 
3, crystal. 

where f and G are off-diagonal generalizations of the diagonal quantities 
of Section 3.2.2. It should be stressed that in writing the above formula, 
nothing is changed concerning the higher-order correlation functions from 
the previous treatment of Section 3.2.2, but the quantum mechanics has 
been refined. 

4. ELECTRON-ELECTRON PAIR FUNCTION 

We have been concerned in the condensed matter studies in Section 3 
with treating the electron-ion interaction in a strongly coupled liquid 
metal plasma. 

Under normal condintions, the electronic assembly, in a liquid metal 
constitutes an almost totally degenerate assembly, and for such an 
electron liquid we want to report briefly on some recent progress which 
may lead to simplification of currently available methods for treating 
electron-electron correlations in dense liquid. 

4.1. Simple i~terpretation of Fermi or exchange hole 

We follow Dawson and March? in taking a starting point the calcula­
tion by Wigner and Seitz32 of the exchange hole around an electron in 
noninteracting, or extremely high density jellium. If one chooses to sit 
on an electron at the origin in an electron liquid of mean number density 
no' then relative to this origin the density of electrons, nog(r), is 
determined by 

(4.1) 

jl{X) = {sin x - x cos x)/x2 being the first-order spherical Bessel 
function, while the Fermi wave number kF is determined by no = kF3/3n2• 

utilizing the 
first-order density 
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analysis by March and Murray33 
matrix into its orbital angular 

of the free-Fermion 
momentum components, 



Dawson and March focus on the p-component of the constant density no' 
namely 

n R.=l (r) 
1 

41f7rZ { k + 
sin 2kr cos 

2r + 
2kr - l} , 

kr2 (4.2) 

where the generalization to arbitrary Fermi energy E = h2k2/2m has been 
effected. It is now a straightforward matter to re-express eqn. (4.1) as 

(4.3) 

where 01 = (anl/aE)EFis the local density of states of the component at 
the Fermi leve17• This Eq. (4.3) is another example of the widely 
accepted view that the properties of a Fermi gas are dominated by the 
Fermi level behaviour. 

From eqn. (4.12) of the work of March and Murray33, one can, by 
differentiation with respect to energy E, obtain a differential equation 
from which to determine ol(r,E) in the presence of a potential energy 
V(r), assumed to be central in isotropic jellium. This equation is 
explicitely 

1 a 1 av 2 
- (rol) - - -- r 01 r ar 2 ar 

(4.4) 

To our knowledge, the only available integration of this equation to date 
is to second-order in V, as discussed in Refs. 32 and 7: however in a 
strongly coupled plasma we must expect that one must solve Eq. (4.4) 
non-perturbatively. Some discussion of ways to determine the effective 
potential V(r) is given in Ref. 7, but more work is required on this 
point. 

Our final comment in this section take us back to the pioneering 
work of Gowan and KirkwQod B,34. They applied the Thomas-Fermi theory to 
liquid metals and plasmas. presumably, for totally degenerate and 
completely ionized plasma, one improvement of their work would be to 
build in the Fermi hole around an electron, suitably screened as the 
density is lowered. The simplified re-interpretation of the exchange hole 
given by Dawson and March7 for jellium may subsequently offer a way 
forward in that context. 

5. SUMMARY AND DIRECTIONS FOR FUTURE WORK 

In this article we have been predominantly concerned with Thomas­
Fermi theory and its generalization as applied to (a) isolated atoms and 
(b) liquid metals. As to (a), we have emphasized the utility of the 
Thomas-Fermi neutral atom potential in generating the one-electron energy 
level spectrum in the regime of large quantum numbers, where Bohr's 
correspondence principle applies. Of course, it is just for heavy atoms 
that relativistic theory is needed: our own recent work33 may offer a way 
forward in treating such corrections to atomic energies. Secondly, we have 
noted important recent progress pointing rather strongly to collective 
electron density oscillations in the charged cloud of heavy atoms, and the 
relevance of dynamical Thomas-Fermi theory and its generalizations in this 
context. 
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In (b), a model of screened ions has been summarized, for liquid 
metals under normal conditions. This has so far been worked out only for 
liquid Be, with quite encouraging results. It does have the merit of 
clearly separating the liquid metal problem into two parts: (i) the 
calculation of the electron states for a given frozen ion configuration 
and (ii) the configuration averaging. 

As to direction for future work, we have emphasized in atoms the 
importance of continuing work on the relativistic theory of heavy atoms. 
In our oplnlon, the Thomas-Fermi Theory in a relativistic context is 
important, particularly as regard the analytic structure of the total 
energy E(Z,N,a) of heavy atomic ions with nuclear charge Ze, N electrons 
and fine structure constant a. In relation to collective modes, the 
importance of studying electron-electron pair correlations in finite 
atomic systems is clear: a good treatment of correlations in the 
ground-state should have, via the Ornstein-Zernike correlation function, a 
finger-print of collective (plasmon-like) oscillations impressed on it. 

With regard to liquid metals, the developments of quantal hypernetted 
chain theory by Chihara36 and others needs to be related, for liquid 
metals, to the treatment given in Section 3 of the present article. This 
may help to clarify the nature of the approximation underlying it. It is 
not clear, in particular, to the present writers that the ensemble average 
is performed after calculating the electron states from the Schrodinger's 
equation in this procedure. At least in principle, this seems an important 
matter to be clarified. Finally, the work of Cowan and Kirkwood using 
Thomas-Fermi theory may still have merit for fully ionized plasmas, with 
appropriate generalization. In the completely degenerate limit of their 
work, it would, in particular, be of interest to build in the Fermi hole, 
along lines surveyed in Section 4 of this article. 
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bringing this paper to fruition, is acknowledged from Drs. H. E. De Witt 
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visit to the International Centre for Theoretical Physics, Trieste, Italy 
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THE THOMAS-FERMI AND RELATED MODELS 
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Plasma Physics Department 
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Yavne 70600, Israel 

I. INTRODUCTION 

The Thomas-Fermi model is essentiai1y a statistical ~ode1 for the 
atomic electrons put forward by Thomas (1927) and Fermi (1928). 
Originally, the model was introduced to study a many e1e§tron atom system, 
however, since then, it has found important applications -7 in molecular 
theory, solid state theory and in determining the contribution from the 
electrons to the equation of state of matter at high pressure (P ~ 107 
atmospheres). The last application is of considerable interest in the 
inertial confinement fusion problem. The advantages of the Thomas-Fermi 
model over other models are, its simplicity, clarity and validity over a 
wide range of densities and temperatures. 

The Thomas-Fermi model of the atom is based mainly on the following 
two assumptions: (i) the electrons are considered as a degenerate gas 
placed in a self-consistent electrostatic field described by the 
electrostatic potential V(r) which varies little over a de Broglie 
wavelength of the electron; and (ii) th~ field varies slowly enough so 
that we can consider a volume element dr which contains a large number of 
particles and at the same time the field can be assumed to be approxi­
mately constant in this volume dr. For a rigorous review see Ref. 8. 

The Thomas-Fermi model describes the electronic system (in an atom, in 
a molecule, in a perfect or defect solid,~in ~ compressed gas or liquid, 
etc.) in terms of the electron density n(r), r denoting the position in 
space. In general, this electron density is observable (e.g. n(r) can be 
measured by x-ray scattering). In quantum mechanics the density is 
obtained from solving the Schrodinger equation for the electronic wave 
function ~i(r), 

n(r) * L~' (r) ~.(r) 
iLL 

(1.1) 

where the wave functions are normalized and the sum is over the occupied 
levels. To calculate n(r) in general by using this procedure is a rather 
complex task. Therefore, the Thomas-Fermi model is attractive and very 
useful because it calculates the density n(r) directly from the knowledge 
of the potential V(r), by avoiding Schrodinger equation and without using 
Eq. (1.1). 
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The Thomas Fermi theory is a fluid model of the atom. The total 
energy associated with the electrons, at a zero temperature (T = 0) is 
given by 

J 5/3 ~ 2 J n2 ~ e2 J J n(ri ) n(r) 
E = Ck n d Z d r- e -- r + ~ 14 41 r rl-r 

(1. 2) 

wh~re the first term describes the kinetic energy Ek and Ck = (3/8~)2/3 
3h /(10 m), the second term is the electron-nuclear interaction while the 
last term is contributed by the electron-electron interaction. One requires 
E to be minimum with respect to variations of the electron density n, with 
the constraint that the total number of electrons given by 

Z = J nd~ (1.3) 

remains constant. Thus one has 

S(E - ~Z) = 0 (1.4) 

where ~ is the Lagrange multiplier which turns out to be the chemical 
potential (~ = BE/BN, N = Z). The variation of Eq. (1.4) with 
E given in (1.2) yields, 

n(r) 

8~(2m)3/2 3/2 
[~ -V(r)] ; p. ~ V(r) 

3h3 
(1. 5) 

o ; p. < V(r) 

which is the basic relation between the potential V(r) and the electron 
density n(r). Equation 1.5 together with the Poisson equation, yield the 
TF equation. For the spherical symmetry case the TF equation can be 
written in dimensionless form by 

(1. 6) 

where ~ - V(r) = Ze2 X/r, r = Z-1/3 aOx and aO is the Bohr radius. 

Three types of possible solutions are given in Fig. 1 where solution I 
describes a neutral atom, II describes a positive ion, and III gives the 
solution of an atom in a material at high pressure. X satisfies the 
following boundary condition: (I) X(ro) = 0; (II) X(xO) = 0; (III) 
X(xO) = xo X'(xO) (cell neutrality). The ionization for case II is 
given by Gauss law: Z - z* = Z[-xO X'(sO)] (note: prime denotes 
derivative) . 

In a similar way to TF equation for a nonzero temperature is given 
by9 

.,pit = a x I l / 2[.,p(x)/x] (1. 7) 

where .,p(x) {[~ + eV(r)]/kT} r/rO' x = r/rO and 4~r03/3 = N/V = 

number of atoms/cm3. Ihe constant a in (1.9) is a = (ro/c)2 with c = 
1.6.10- 9 cm/[kT/keV]l/ and In is the Fermi-Dirac function defined by 
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I (x) 
n exp(y - x) + 1 (1. 8) 



Fig. 1 

x 

Types of solutions of the dimensionless TF equation (2 . 22). 
The different solutions describe: I . a neutral atom, II . a 
positive ion, and III . an atom in a material at high 
pressure. 

The boundary condition for the TF equation (1.7) is ~(o) = Ze2/(kTrO) 
and ~'(l) = ~(1) (x = 1 implies r = rO and this condition is 
equivalent to E(rO = ·VV(rO) = 0, i.e., a zero electric field at 
the cell boundary). 

One of the most important feastures of the TF equation are the scaling 
laws. In particul~r~ the atomic volume V scales as Z· : V - Z·l. the 
temperature: T - Z4/J; energy/atom: E - z7/j4 ~ressure: p _ ZlO/~; 
entropy: S - z·l; chemical potential: ~ - z· /. Due to the existence 
of these scaling laws, one has to solve the TF equation only for one atom 
and thus obtain an appropriate solution for any atom (any Z). Therefore, 
the TF model seems to be attractive and very useful. However, there are 
some defects with this model, and in particular it is worthwhile to point 
out the following deficiencies with the TF model: (a) the ion core (K 
shell) is not well described and the density n(r ~ 0) - (Z/r)3/Z ~ 00. 

This divergence causes a systematic error in the potential V(r); (b) the 
outer boundary of the free atom is not well described; (c) molecular 
binding is not possible for molecules; and (d) no electron energy 
quantization. 

In order to try to solve the difficulties of the TF model, various 
corrections have been suggested in the literature. In particular, Dirac 
took into account the effect of antisymmetrization of the wave functions 
of identical particles. jhis effects contributrs an ~xtra term in Eq. 
(1.2) given by .Cex f n4/ dr where Cex = (3/~) /3 3e /4. This extra 
term modifies the TF equation (1.6) to the following equation (TFD)IO,ll 

(1.9) 
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with the boundary condition W(O) - 1, [x W(x)-l~W~d~lx-xo = 1. w(x) 
is 2e1ate~ t~ the ~ensitY2'~x) - l[E + (w(x)/x) / 1 where 1 = 
32Z / (9~ aO ), E - 0.2/Z ,etc. (see e.g. Ref. 3). 

More sophisticated models were suggested in the literature in order to 
take into account density gradient corrections, ion corrections, etc. In 
particular, Ka1itkin ar~ !~rzhnitz suggested to add (to Eq. (1.2) + 
"exchange") the energy , 

E grad 
,,2 J (vn)2 n d~ 
12m n 

while other authorsS suggested the extra terms 

Ze2 1 ---"'=--- n(r)d~ + 2" L 
I~ - it. I ij 

J i"j 

(1.10) 

where Rj is the ion coordinate and the first term describes the ion­
electron energy while the second term gives the ion-ion interaction. 
These more sophisticated models seem to be more accurate with no 
divergence near r ~ 0 and a better fit for pressure and energy/atom. 
However, the simplicity and the scaling laws are lost. 

Section II describes the TF model for materials under high pressure 
and, in particular, the equations of state problems in inertial confine­
ment fusion are discussed. We conclude with a short discussion in Section 
III. 

II. EQUATION OF STATE PROBLEMS IN INERTIAL CONFINEMENT FUSION 

The main idea of inertial confinement fusion is the aim of achieving 
very high compression using laboratory facilities, up to p/PO - 10,OOO! 
This concept can be easily understood by using a "realistic" equation of 
state. Using, for example, the Thomas-Fermi model for the hydrogen 
is~topes, a D-T mixture with initial (liquid) density of Po = 0.2 
cm , one needs an energy of 3.0 keV per atom to increase the temperature 
of the fuel to 1 keV (~ 107 OK) without changing its density. 
However, for an extra energy of 0.2 keV/atom (i.e., an extra energy of 
about 7%!) at 1 keV temperature one gets a compression of p/PO = 

20! Using elementary knowledge of nuclear reaction cross sections it is 
evident that it is necessary to use the driver's energy in order to 
compress the material as much as possible instead of heating it by "brute 
force" Although the idea seems to be self-evident from the equation of 
state data, the way to put it into practice is still unresolved. 

The most effective compression is isentropic and this might be 
achieved approximately if the ablation pressure could be increased 
according to an ideal time profile. Besides the time shaping of the 
driver pulse, structured targets have to be used to vary the time 
evolution of the pressure on the compressed material and to avoid 
preheating of the pellet core in order to achieve the desired isentropic 
compression. These considerations have shown that high compression can be 
achieved by (a) shaping in time the input energy of the dftver, and (b) 
"clever" pellet design. For example, Livermore designers sugg~sted 
for aNd: YAG laser driver, with maximum irradiance of 1014 W/cm , 
"double shell" pellet. 
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The properties of matter at high density and high temperature are 
important to explain and to calculate the compression process. In 
particular, the equation of state data for different materials is 
necessary. to calculate the shock wave propagation into the pellet. For 
inerti~l confinement fusion, a knowledge of the properties of matter is 
needed for temperatures up to 100 keV and for densities up to 104 

times solid density. 

The corresponding pressures are enormous. For example, the pressure 
of the degenerate electrons of hydrogen with 1~4 tim~s liquid density 
(i ~. an electron dens~ty of about ne = 5 x 10 6 cm- is about 
101 atmospheres (= 10 Mbars). This estimate is obtained using 
the expression for the Fermi degenerate electron pressure at zero 
temperature. For comparison~ the thermal pressure of the non-degenerate 
ions P = nekT wi~h ne = 5.10 6 cm- 3 and a temperature of kT -10 keV 
is about 5 x 10 atmospheres. This, it can be summarized that for 
inertial confinement purposes, one needs the data of equations of state for 
many materials in the domain of 

(2.1) 

where Po is the initial liquid or solid density of the material 
under consideration. 

The physics of inertial confinement fusion is based on the 
hydrodynamics of one or more fluids or equivalently on transport (e.g., 
Boltzmann) equations. In order to solve these equations a knowledge of 
the equation of state and transport coefficients (such as thermal 
conductivity, electrical conductivity, radiation opacities, etc.) is 
necessary. 

For example, in a simple model,15 the electron energy equation is 

aE 
~ 

aT 
aE 
~ 
av 

1 
)T ( - "2 

p 

.de. + P dV 
dt e dt 

erg 
2 sec cm g 

(2.2) 
e 

where the quantities with subscript e refer to the electrons. Ee is the 
energy, e.g., E = E(t,V), the specific volume V is related to the "fluid" 
density p = l/V, Pe is the electron pressure and ¢e is the energy source 
term. A similar equation to (2.2) is written for the ions. The source term 
¢e includes: (a) energy absorption from the laser in the domain of 
laser absorption, (b) thermal conduction of energy, (c) electron-ion 
energy exchange, (d) radiation losses, (e) thermonuclear energy 
absorption. These energy sources depend not only on equation of ~tate 
data, but also on ionization average <Z> and its higher moment <Z >. 
For example, the inverse bremsstrahlung laser absorption contribution to 
(a), the thermal conductivity coefficient describing (b) and the 
e~ectron-ion collision frequency for (c) are functions of <Z> and <Z2>. 
In Thomas-Fermi model one can define the number of free electrons in the 
atom by counting those electrons with positive energy.5 Those electrons 
are able to leave the cell according to classical physics (i.e. the 
kinetic energy is larger than the potential energy at the ion-sphere 
boundary). The number of free electrons is given by 

<Z> = 2 II (I + exp [ L 
kT 

2 1 
~ - eV(r) - ~ )]-

(2.3) 
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This equation can be rewritten as 

<z> J eV I~I 3 
GI FI/2 ( kT' kT )d r 

o 
where eV(r) is the electron total potential energy, CI , is a known 
constant, and Fk(x,~) is the incomplete Fermi-Dirac function of 
order k, 

k Y dy 

(2.4) 

(2.5) 

1m a similar way as <Z> is defined we suggest to define <Z2> and higher 
moments <Zk (k = 1, 2, ... Z) by taking the k-th power of the density of 
states in the phase space and integrating by counting those electrons with 
positive energy. Such a calculation yields 

k J (eV I~I )d3r <Z > = Ck Fk/2 kT' kT (2.6) 

with Ck a known constant. 

III. DISCUSSION 

Hydrodynamic codes which perform simulations in inertial confinement 
fusion require the use of equation of state models which describe the 
thermodynamic functions of both electrons and ions. 16 The main values 
of interest are the pressure and internal energy, as well as their 
respective temperature and volume derivatives as a function of amterial 
density and temperature. The electronic equation of state can be taken, 
to a good approximation, from the corrected Thomas-Fermi-Dirac model. The 
ion contribution to the equation of state can be described by the 
Debye-Gruneisen equation of state, with the appropriate density variations 
of the Debye temperature and the Gruneisen coefficient. At sufficiently 
high temperature and/or low densities the ion contribution can be 
described by the ideal gas equation of state. To join these two limiting 
cases a semi-empirical interpolation method can be used. The extent to 
which the inclusion of different models into the computer codes will 
influence the inertial confinement fusion results is a subject mostly of 
examination and research. In general, since the heating mechanisms, the 
energy transport and the effects occurring in the corona are not very 
dependent on the ion parameters, one would expect not much dependence of 
these phenomena on the ion equation of state model. However, for 
processes which may be more sensitive to the ion parameter, such as those 
taking place in the compressed solid, e.g. shock wave phenomena, one may 
expect changes in the calculated results due to the use of different 
models in computing the ion contribution to the equation of state. The 
equation of state also determines the velocity of shock waves and, 
therefore, the time scale of the whole implosion occuring in inertial 
confinement fusion phenomena. 

For a summary and conclusion see Fig. 2 with rather negative aspects 
of the central ignition scheme. 

A proper statistical calculation for two fluids 17 ,18,19 with a 
strong interaction between them does not separate in general into two 
additive contributions. Therefore, one possible approach is to define a 
free energy Fe«(Rj ), Te) for a fluid of electrons at temperature 
Te' where (Rj ) is a set of coordinates describing the position of the 
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electrons. The free energy Fe includes all the electrostatic energies 
(including ion-ion!) and the electronic kinetic energy. This tree energy 
is an effective potential for the ion motion. This approach is reasonable 
in the case where the ions are moving slowly on the collision time s§ale 
of electrons. The partition function in this case can be written as 

where N is the number of ions and Ri , Pi are the canonical coordinates 
and momenta for the ions. The free energy of the electron ion-system is, 

(3.2) 

The entropy is this approach is defined by 

aF 
( aT )V T 

I 'e 
S 

e 
aF 

- (aT )V T 
e 'I 

(3.3) 

where SI and Se are the ion a and electron entropy. The generalized 
thermodynamic consistency condition is 

.@; 
( aV)T T. 

e' 1 

ap) _ p 
aTI T V e' 

(3.4) 

while the thermodynamic basic relation is 

Fig. 2 

(3.5) 

• 
10· 10· 1()' J 10 ~ 10 I 10 lU' 10' 10' 10' 

The difficulties for high gain pellet fusion due to the 
equation of state (EOS). (1) ~e corona: 2 or 3 temperature 
EOS; Ideal gases; Weak Coulomb interation; Non-Local-Thermal 
Equilibrium. (2) Fusion: Strong Coulomb interation; T-F or 
T-F-D model. (3) On the Way to Fusion: Most difficult. (4) 
"Easy Experiments" regions. 
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Although this last approach seems to be on a more fundamental level 
than the phenomenological approach of adding separate electron and ion 
contributions, one has to solve in this case very complicated non-linear 
equations and to check its applicability to the hydrodynamic codes. This 
subject is still being researched and poses profound and conceptual 
difficulties for the thermodynamics of a mixture of two (or more) 
temperature fluids with strong interactions. 
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OCCUPATION mntBERS IN PARTIALLY IONIZED PLASMAS 

INTRODUCTION 

F. J. Rogers 

university of California 
Lawrence Livermore National Laboratory 
Livermore, California 94550 

Discrepancies between calculation and observation of a number of 
astrophysical properties has led to the speculation that opacity data­
bases may be in error. Simon,1 for example, has noted that arbitarily 
increasing the heavy element opacity by a factor of 2-3 leads to Cepheid 
models that reproduce observed period ratios. Although other mechanisms 
could account for these discrepancies, an improved opacity calculation 
will at the least provide infot~ation on the size of the error and its 
impact on the corroboration with observation. In such an endeavor, one 
should first look at the occupation number calculations and a number or 
recent studies have appeared. 2- 5 

For a short-ranged potential the occupation numbers are obtained 
directly from the statistical mechanics. In the case of the Coulomb 
potential there is a divergence in the internal partition function. A 
number of mechanisms are commonly used for removing this divergence, 
such as: 

1) The Coulomb potential is replaced with the Debye (SSCP) 
potential. 

2) States having an orbital radius greater than the ion sphere 
(or other) radius are removed due to interaction with 
neighbors. 

3) Ion microfields broaden lines such that a certain fraction 
tunnel into the continuum effectively reducing the occupation 
probabilities. 

The philosophy adopted here is that the plasma occupation numbers, just 
as for short-ranged potentials, should be obtained directly from statis­
tical mechanics. 

Activity Expansion for the Equation of State 

The equation of state of reacting plasmas presents some difficulties 
not encountered for atomic and molecular gases. There are, nevertheless, 
similarities in the method of treatment. The equation of state and 
occupation numbers for reacting dense atomic and molecular gases can be 
obtained from a renormalized activity expansion. The renormalization is 

261 



required to account for the fact that products of terms itlvolving the 
fundamental parlicle activities multiplied by Boltzmann factors, occur­
ring in the cluster coefficients, act like the activities for dimers, 
timers, etc. Everywhere a product of terms corresponding to specific 
composite particle occurs in tna. It is relabeled and called a 
composite particle activity. Consequently, the expression 

za atna 
Pa = V a;-

a 
(1) 

which relate the fundamental particle activity to its number density can 
be factored into a set of terms that correspond to bound state occupation 
numbers, according to 

* where P = Pa + X p. 
a j J 

z * a Una 
Pa = V az 

a 

is the number dfmsity of unbound particle and 

_ ~i atnli 
Pj - V az. 

J 

is the number density of composite particles in state j. 

(2) 

The treatment for plasmas follows a similar path, but the Coulomb 
potential introduces some troublesome differences. For example, there 
is a potential infinite number of bound states which must be assigned on 
activity and, as a result, the corresponding renormalization transfor­
mations that Eq. (1) into Eq. (2) is complicated. In the case of the 
equation of state, the analytic properties of the cluster coefficients 
make it possible to limit the set of composite particle activities to 
those states lying below -kT (typically n = 3-4). This is refer·red to 
as the Planck-Larkin (PL) compensation and is discussed in detail by 
Bolle. 6 states lying above -kT are treated in a many-body perturbation 
expansion along with true scattering states. The purpose here is to 
indicate how the occupation numbers can be obtained from a follow-on 
calculation to the equation of state. 

Equation of state 

A mUlti-component activity expansion for reacting plasmas, based on 
PL weight factors, has been given by Rogers. 7 Only the leading terms 
given in that work are required for the present discussion. Truncation 
of ~he many body PL activity expansion after squared power terms gives 

(3) 
subject to 

(4) 

where the Pi are effective occupation numbers, optimized for the 
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equation of state. In the particular case of llydrogenic plasmas i and j 
range over Ie, c, HIs, H2s ..... J, and Hnl signifies a hydrogenic ion 
in the state nl. The 'i for electrons and nuclei are real activities 
given by 

e 
1l./kT 

1 (5) 

where lli is the chemical potential. For composite particles the (i 
are effective activities defined by PL weight factors according to 

3/2 3 -3 ,. = z Z (411' X ) g. (2s. + 1) X. 
1 ec ec 11 1 

(6) 

where gi is the statistical weight and Xec is the thet~al 
de Broglie wavelength. 

Oue to the non-exponential form of Eq. (6), introduced through the 
bound-free compensation, the composite particle activities are not the 
actual activities for state nl. The terms in Eq. (3) involving SR 
are related to the Oebye-Huckel correction that arises in a density 
expansion and are given by (for non-degenerate plasmas) 

_ [ kT ]1/2 
XA = 2 2 

411'e 0: Z. (.) 
.11 
1 

where Zi is the charge on spe~ies i and iA is the activily dependent 
screening_ length. In the low density limit (i ~ Pi, the number 
density, XA ~ Xo the effective Oebye length; consequently, SR ~ 
a OebyeHuckel--like result. The Sij in Eq. (3) are closely related to 
the second cluster coefficienls for a screened Coulomb potential having 
a screening length i A. Explicit definitions of the Sij are given in 
Rogers in Ref. 7. It is important to point out that, whereas the Ei 
that enter the fundamental particle activity expansion are screened, the 
Ei that go in the PL activities [Eq. (6)J are the isolated ion values. 
This is a consequence of the renormalization to create activities for 
composite particles described earlier. Oue to the sublraction of the 
leading two terms at high temperature the 'i corresponding to 
-~Ei < 1 effectively do not contribute to P/kT. This is parlicularly 
imporlant at high density where many terms contdbute to the pressure 
[Eq. (3)]. 

It is possible to relale Eqs. (3 and 4) to the more fami liar ft'ee 
energy minimization method. If only terms involving SR are retained 
in Eq. (3) it can be shown lhal lhe free energy is given by 

1':- _ 
kT 

(7) 

where 
2 2 - 112 

Xo = [kT/411'e I Z. p.] , 
• 1 1 
1 

and PLPI!' is the Planck-Larkin partition function. The resulting Saha­
like equation that gives the effective number densilies for equation of 
slate calculations is8 

2 
eZe IkT}"o 

(8) 
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Higher order terms in Eq. (3) can also be included in the ana1ysis. 9 

Activity Expansion for Occupation Numbers 

The previous section gave the low density Saha-1ike equation that 
should be used for equation of state calculations. This does not produce 
actual occupation numbers, i.e. equation of state contributions from high 
lying states have been canceled with the continuum contributions. This 
procedure has effectively redefined the continuum as starting at -kT. 
As a result the Ne in Eq. (8) includes electrons in weak bound states 
as well as electrons in continuum states. This was done for compelling 
procedural reasons, but in principle it is not necessary. It is never­
theless possible to carry along the compensating terms throughout the 
entire analysis. The equation of state calculation gives unique values 
of ze Zc but, the definition of effective composite particle activities 
is somewhat arbitrary, i.e., slightly different definitions for the 
effective composite particle activities will yield identical results for 
P, E, ze' and Zc provided a sufficient number of terms are used in 
the different versions of Eq. (3). 

If instead of using PL weight factors to define composite particle 
activities we use the true continuum, the activities are given directly 
in terms of Boltzmann factors according to 

The zk defined in Eq. (9) are real activities. Now a renorma1ization 
similar to the one leading to Eq. (3) gives 

L 
kT 

2 
aSR(AA) 
az

1
• + ~ ~ zi ZjSij(AA) + .... 

i j 

(9) 

(10) 

subject to 

3(P/kT) 
Pi = zi aZi 

where i ranges over (e, c, {Hnl}), i = k for composites (see 
Eq. 9), 

=_1 __ 
SR 3 

12 1I'AD 

A = [ kT J1/2 
A 2 2 

411'e ~ z. z. 
i 1 1 

(11) 

(12) 

and the Sij are now defined directly in terms of scattering states only, 
i.e., weak bound states are not included. Equation (10) is an expansion 
in Boltzmann activities and can be used to obtain occupation numbers. 
If properly carried out Eqs. (3 and 4) and Eqs. (10 and 11) will give 
exactly the same P, E, ze' and zc. Consequently, the results of a 
self-consistent solution of Eqs. (3 and 4) can be used directly to 
evaluate Eqs. (10 and 11). 

To relate Eqs. (10 and 11) to the free-energy minimization method 
these equations are truncated after tet~s linear in SR. Since most 
particles are in low lying states AA and AA are not very differ-
ent, so that, 

(13) 
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This relation does not hold for states for which higher order ternls are 
import.ant, nevertheless the occupation numbers can be systematically 
calculated from the procedure presented here. In the low density limit 
the occupation number version of Eq. (8) takes the form 

N N 2 },,3 V 2 
eZe /kT~Q 

~ __ H_ 
N },,3 },,3 cp (14) 

H e c 

(15) 

is the usual internal partition function; except Eq. (15) includes only 
a finite number of bound states whose energies are unshifted up to the 
plasma continuum starting at -2Z/}"a' states above this continuum 
are rapidly subject to plasma screening and disappear at specific values 
of }"a depending on nit. In the low densities limit, the occupation 
of individual intflrnal states is given by 

-~E 
k 

gke _ 
cp (16) 

The sole advantage of Eq. (14) is that it estimates actual occupa­
tion numbers. However due to the slower convergence properties of 
Eq. (10), described earlier, percentage errors in the occupation numbers 
given by Eq. (14) are largflr than those for the equation of state obtain­
ed through Eq. (9). This disparity can be reduced by inclusion of higher 
order terms. 

CONCLUSION 

It was shown that the equation of state and occupation numbers for 
dense partially ionized plasmas can be obtained from a complimentary set 
of activity equations, i.e., even though for the equation of state it is 
advantageous to treat bound electrons having energy greater than -kT as 
a pseudo-continuum, the occupation numbers for these states are not lost 
and can be obtained from a follow-on calculation. The resulting occupa·­
tion numbers should be used in the calculation of dense plasma opacity. 
In addition, the energy levels that enter the renormalized activity 
expansion are unscreetled up to near the plasma continuum which is another 
way that the current work is relevant to plasma opacity. 
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THOMAS FERMI CALCULATION OF THE DEGREE OF IONIZATION IN A DENSE PLASMA 

Ruoxian Ying and Gabor Kalman 

Department of Physics 
Boston College 
Chesnut Hill, MA 

I. INTRODUCTION 

The knowledge of the average degree of ionization of a plasma plays a 

significant role both in inertial confinement experiments and in 

astrophysical situations. The Thomas-Fermi statistical model, combining 

relative simplicity, clarity and excellent qualitative descriptive 

capacity, has been proven to be a powerful method to calculate the average 

properties of the atomic system, such as the equation of state and the 

degree of ionization. A number of different versions of Thomas-Fermi 

model have been adopted to calculate the degree of ionization. Kobayashi 

(1959) solved the Thomas-Fermi equation for positive ions and calculated 

the degree of ionization for zero-temperature. For finite temperature, 

I.J. Feng, et ale (Feng, Zakowicz and Pratt, 1981) compiled a detailed 

study of the degree of ionization of a dense plasma in the Thomas-Fermi 

(TF) and the Debye-Huckel-Thomas-Fermi (DHTF) approximation. The results 

of Feng's work are shown in Fig. 1. Note than an anomolous feature, viz., 

that the degree of ionization decreases as temperature increases, appears 

in both curves d and c, based on the DHTF model. In curve d, the bound 

electrons are defined as the electrons with a negative total energy and 

the number of bound electrons was calculated by integration. The dip in 

curve d is very obvious. In curve c, an attempt was made to remedy this 

defect. Here the bound electrons are restricted to be inside the sphere 

with the radius of mean distance between ions. The dip in the curve 

diminishes, but still exists. 

In curve b, a condition that the total energy of bound electrons has 

to be less than -0.1 kT was imposed. Although a reasonable result was 

obtained in this way, the ad-hoc assumption itself lacks physical 

justification. 
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Curve f is based on Rozsnyai's approach (Rozsnyai and Alder, 1977). 

These authors defined a radius of neutrality r' in DHTF model through , 
4nJr per) r 2dr = Z, where Z is the atomic number and per) is the electron 

o 
density in DHTF model. Then the number of free electrons z=4/3 nr,3p(r'). 

A rather satisfactory result is obtained through this model, but the model 

itself still seems to lack sufficient physical justification. 

We have established a model based on the TF method in order to 

reexamine the determination of the degree of ionization. We believe that 

this model is a more systematic approach to the problem than those used 

previously, and it also eliminates some of the unphysical features of the 

earlier models. The main features of our model are (i) separation of the 

bound and free electrons; (ii) a physically reasonable definition of the 

bound electrons; (iii) describing the system as a plasma of free electrons 

and TF ions; (iv) describing the source density in the Poisson equation 

through the electron-ion and ion-ion pair correlation function; (v) 

determining the degree of ionization from the minimalization of the total 

free energy. 

II. MODEL 

We write the basic Thomas-Fermi equations as: 

V2~(r) ~e nb(~(r») (la) 

V2~(r) ~e {nb(~(r») +~ (r,~(r») - zni(r,~(r»)} (lb) 

Here we distinguish between the two potentials, ~(r), created by the 

bound electron density nb, and ~(r), created by the combined nb. the free 

electron density nf and the ion density ni. The different roles the two 

potentials play are explained below. 

In contrast to the customary TF models we confine the ion within a 

finite radius r o ' such that the bound electron density vanishes at roo 

Thus the bound electron density nb(~(r» is given by a momentum cut-off 

integral of the Fermi-Dirac distribution function. 

whe~e the cut-off momentum Pm is 

(2) 

(3) 

This definition is based on the following considerations. First, the 

bound electron density should vanish at the ion boundary. Second, the 

maximum energy of the Dound electrons should be the same inside the ion. 
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nf(r,~(r») and ni(r,~(r»), the number densities of the free electrons 

and the neighboring ions, are determined through 

nf(r,~(r») = nf(l+gei(r,~(r») 

ni(r,~(r») = nf(l+gei(r,~(r») 
(4) 

where the gei(r,~(r») and gii(r,~(r») are the pair correlation functions 

for an electron-ion pair and an ion-ion pair, respectively. 

The correlation functions gei(r) and gii(r) are to be determined 

self-consistently in conjunction with the interaction potential ~(r). 

Here we emphasize that in order to avoid double counting of the 

correlation effect, gei(r) and gii(r) are to be treated as functionals of 

~(r) rather than w(r), which plays the role of internal potential for the 

bound electrons only. 

In (lb) z is the number of free electrons per atom. Electrical 

neutrality at infinity requires TIf = zTIi. 

We may adopt, in a first approximation, gei(r) = gii(r) = 0, which 

means that the free electrons and neighboring ions are both assumed to be 

uniformly distributed and provide an electrically neutral background only. 

The potential W{r) surrounding the nucleus with the above model is 

now given by 

41Tep(r) 

with the boundary conditions 

- ~ and w(r) = ~ 
ro r 

r+O 

where a is a parameter to be determined (not identical to the chemical 

potential), Z is the atomic number, (Z-z) is the bound electron number 

inside roo 

(5 ) 

(6) 

In this paper only calculations for this simple model are presented. 

Work with gii(r)*O is in progress and will be reported elsewhere. 

Ultimately the calculation of gei(r) and gii(r) has to be done through a 

more sophisticated self-consistent model. The STLS mean field theory is 

commended by its simplicity, but it is expected that it is the HNC method 

which can provide the more reliable approach. 

III. CALCULATIONS 

For the purpose of numerical calculation, it is convenient to 

introduce Vex) = la+ew(r)]r/kTro with x = r/ro. 

The differential equation is now reduced to 
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V"(X) ( V(X) ) 
axJ1/2 -x-, v(l) 

where 

= xJ-xo yl/2 
Jl/2(x,xo) 0 py-x+l dy, 

a = (4TI e)2
h

;2m)3/2 (kT)I/2ro2 

and the boundary conditions become 

10.+ Ze)2 
\' ro a ze2 

V(1) = kT ' V' (1) = kT and V(O) = -k • Tro 

(7) 

(8) 

(9) 

It is clear that after prescribing the quantities kT, r o ' a and z, 

the differential equation and the boundary conditions at x = 1 are all 

specified. Therefore, an inward integration of the differential equation 

is feasible. The solution at x = 0, i.e. ~(o) would provide the value of 

Z. 

The physical system of interest in this paper is a pure hydrogen 

plasma. Thus the input parameters kT, r o ' a and z must be chosen in such 

a way that one obtains Z = 1. This can be done by prescribing kT, ro and 

a, then adjusting z only. For any given set of kT, ro and a values, a 

computer program was designed to pick up the correct z with the result of 

IZ-ll< 10-6 within 20 trials. 

A physically reasonable and consistent model requires that the 

parameters a and ro be determined by the conditions of thermodynamic 

equilibrium. The equilibrium of the combined bound electron and free 

electron system is characterized by the fact that the total free energy F 

(consisting of the free energy Fl of the bound electrons and the free 

energy F2 of the free electrons) is minimal. 

Among the three adjustable parameters r o ' a and z, only two are 

independent. Choosing a and ro as the two independent parameters, the 

conditions of minimizing the free energy Fare of/Oo.lr =0 and of/oro 10.=0. 

The free energy of the bound electrons Fl is expr~ssed as 

Fl = (Z-z)o. - l _a ___ ZkTln(l+eV(I») Jl [V(x) - V(I)]3/2 x2dx 
3 V(o) 0 x 

a JI (V(X»)[ ] + 3V(0) ZkT 0 .J1/2 -x-, v(l) V(x)-V' (1)x-2V(0) xdx (10) 

The free energy of the free electrons F2 is given by the ideal gas 

formulas: 

when (2TImkT)3/2 1- »1 (nf is the free electron density), the 
h3 nf 
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Table 1. Average degree of ionization for Z 1. The figures in the 
parentheses are from the Saha-equation. 

kT(eV) 
ni (cm-3) 103 102 10 1 

1023 0.999436 0.976439 0.657653 0.51312 
(0.998932) (0.964683) (0.387420) 

1021 1 0.996871 0.86809 0.307123 
(1) (0.999634) (0.962213) (1.933295xl0-3) 

. 
N 

1019 1 
(1) 

10r-----------~~~~ 

08 

....... -. 

Fig. 1. Average degree of 
ionization Z* calculated 
f or a pure hyd-rogen plasma 
of ion density Ni = I023cm-3. 
(a) TF model with integral 
definition; (b) DHTF model 
restricting bound electrons 
to total energy - O.IkT; (c) 
DHTF model restricting bound 
charge to distance less than 
ro; (d) DHTF model with 
integral definition; (e) TF 
model Z* = 4/3n (ro)3ne (ro); 
(f) DHTF model, Rozsnyai's 
approach. 

0.999371 0.961298 0.499431 
(1) (0.999634) (1. 916533xl 0-2) 

(.0 

0·9 

0·8 

{)·7 

()·b 

10 10" IO~ 

kT (~v) 

Fig. 2. Average degree of ionization z, for 
a pure hydrogen plasma of ion density 
ni=I023cm-3, from the present work. 
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Maxwell-Boltzmann distribution applies, which gives 

F2 [ (21fmkT)3/2] 
-zkT In 3 -zkT 

h nf 
(ll) 

Otherwise the Fermi-Dirac distribution has to be used, which gives 

(12) 

The nf is given by the overall charge neutrality condition nf=zni(ni 

is the ion density). In the Fermi-Dirac distribution, 

In(x) = 1 (yn/(ey- x+1»)dy and the chemical potential ~ is determined by 

the nor~lization condition nf = 41f/h3 (2mkT)3/2 11/2 (a/kT). 

The detailed numerical procedure of the calculation is as follows: 

First with a fixed ro ' a run for a variety of different a-s is 

generated. With each a the corresponding z is determined (z is being 

adjusted to give Z=l') • In each set of a and z values, the free energies 

FI' F2 and F = FI + F2 are evaluated. By comparing the F-s for different 

a-s, the minimum value of F is selected. Thus the optimum a and the 

corresponding z are determined. 

In the next step, ro is varied and the above procedure is repeated to 

determine the corresponding a for each specific roo Then the free energy 

F is evaluated as a function of ro with the condition of/3al r =0 now 
o 

already being satisfied. Comparing these resulting F-s, and selecting 

again the minimum in principle, the optimum ro can be determined. 

However, the total free energy F turns out to increase monotonically 

with the decreasing ro; thus choosing the mean distance between ions as ro 

is appropriate. 

The results of the calculated degree of ionization from our new model 

are given in Fig. 2 and Table 1, where comparison with the Saha-equation 

result is also provided. 

It should be noted that in Fig. 2 the anomalous dip of I.J. Feng's 

results is absent. 
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DENSITY FUNCTIONAL METHODS IN HOT DENSE PLASMAS 

Chandre Dharma-wardana 

National Research Council of Canada 
Ottawa, Canada KIA OR6 

1. INTRODUCTION 

A plasma or a liquid metal is simply a mixture of electrons and 
nuclei interacting via the Coulomb potential. Here we further assume 
that the system is in local thermodynamic equilibrium (LTE) at a 
temperature T, taken for simplicity to be the same for ions and for the 
electrons. We further assume that the system as a whole is electrically 
neutral and that there is only one nuclear species of charge Z. This 
does not of course imply that there is only one ionic species since the 
nuclei will support many different bound electron configurations leading 
to a distribution of effective charge states Zc 'Z. The weighted mean 
of these charge states, <Zc> will be called the effective charge C. 
Since the plasma is charge neutral, this somewhat artificial concept of 
"mean i ons" of charge C allows us to write the electro-neutrality 
condition in the form 

ii = C P (1.1) 

where p is the mean density of ions (or equivalently, nuclei) while n is 
the free electron density in the plasma. 

Our objective is to sec up a first principles calculation of plasma 
properties where, at the outset, the only things known are the 
temperature T, the nuclear charge Z, and either the mean matter density p 
or the mean free electron density n. If the thermal energy kST = l/~ is 
used as the energy scale, we have to consider three types of 
interactions, viz., Vee = ~Vq' Vei = -~ZVq' Vii = ~Z2Vq' where Vq = 4n/q2 
is the Coulomb potential. There are also two length scales, viz., the 
electron sphere radius and the ion-sphere radius defined by the relations 

r~ = (3/4nn) 1/3 and r~ = (3/4np)1/3 respectively. We shall sometimes use 

rs for r; and ro for r~. Another parameter, f, useful in the classical 
regime, is given by f = c2~/r~. In many studies of strongly coupled 
plasmas it is assumed that only the ions are "strongly coupled". That 
is, the effect of Vee and Vei are treated by some form of linear 
screening theory while the effect of Vii is treated by machine simulation 
(MS) or by classical statistical mechanics. Such theories are unable to 
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deal with the formation of electronic bound states and have to limp along 
with the tacit assumption that Vei is weak. 

Many body perturbation theory (MBPT) can in principle treat the case 
where all three interactions Vee' Vei and Vii fall into the strong 
coupling regime. But in practice, as is well known, diagrammatic or, 
say, equations of motion methods cannot be pushed very much beyond some 
form of generalized random phase approximation, except in some very 
special model problems. Thus we need a computationally convenient but at 
the same time completely general, rigorous method of tackling the 
many-body problem posed by a system of strongly coupled electrons and 
nuclei at some temperature T. 

Such a method, which is an exact solution to the many-body problem, 
is presented by density functional theory (OFT). This method has 
established itself during the last two decades as probably the most 
important theoretical method for the study of many electron systems. 1 
DFT contains many of the more primitive theories like Thomas-Fermi theory 
or linear screening theory as special cases. The contribution to this 
volume by Professor Walter Kohn states the basic principles of OFT. In 
this paper I will confine myself to a very condensed review of the work 
we have done in applying OFT to a variety of plasma problems. Lack of 
space and time prevents me from touching upon the contributions of other 
workers. 

In summary, density functional theory provides an energy variational 
principle with respect to the density distributions n(t) for the 
electrons and p([) for the ions. This leads to two coupled equations, 
one of which is the Kohn-Sham equation in the external field of the ion 
distribution p(~). The other is an equation for p(~ in the external 
field of the electrons and has the form of a Gibbs-Boltzmann equation. 
The self consistent solution of these equations yields the equilibrium 
distributions n(~) and p(t) in the presence of the external field. These 
density distributions can then be used to calculate thermodynamic 
properties. Also, the Kohn-Sham equation provides us with a complete set 
of one-body eigenfunctions <l>y and lIenergiesll Ey where y = n, ~,m for bound 
states, and y = k,~,m with Ey = k 2/2 for "freell electron states. The 
IIfree ll electron states have phase shifts o~(k). If necessary, we can now 
go beyond standard OFT and do many body theory using the Kohn-Sham basis 
rather than, say, plane waves, as is customary in ordinary linear 
response theory. This extended or IIdressed OFTII can be used to calculate 
many-body objects like self energies E(w) and polarization parts rr(w) to 
yield lifetime effects, transport properties etc., by doing only a simple 
low-order 14BPT calculation. 

We have applied these methods to calculate a variety of interesting 
plasma properties. Thus (i) ion-ion and ion-electron pair distribution 
functions (PDF) in plasmas were calculated; the PDFs can be used to 
calculate thermodynamic properties (ii) Kohn-Sham energy levels of ions 
in plasmas were obtained and many-body perturbation theory was used to 
calculate level widths and shifts via the Dyson equation (iii) the 
ion-ion PDF, viz. gii(r) has been inverted to yield the effective ion-ion 
potential Vii(r) and this has been used to generate S(kw), the dynamic 
ion-ion structure factor for several hydrogen plasmas outside the 
classical regime (iv) the distributions p(r) and n(r) obtained from DFT 
have been used to calculate electric microfields in dense plasmas, thus 
providing a theory which can take account of internal structure of the 
ions and other strong coupling effects (v) the ion-ion pair distributions 
and electron phase shifts obtained from DFT have been used to set up a 
theory of the linear transport coefficients in plasmas, taking into 
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account multiple scattering effects as well (vi) DFT in the time 
dependent local density approximation has been formulated to study light 
absorption by hot dense plasmas. Calculations have been carried out 
showing how channel mlxlng, particle correlations etc., and the 
consequent spectral redistribution effects, can be efficiently included 
in plasma light absorption calculations (vii) the contribution by 
Frangois Perrot in this volume discusses how the Kohn-Sham eigenvalues 
("energies") can be corrected to give reliable predictions of electronic 
transition energies (line positions) for bound states in plasmas, without 
going into MBPT. 

In the following sections a more detailed discussion of the topics 
(i)-(vi) will be given. 

2. DFT-EQUATIONS FOR A PLASMA 

We consider a fixed nucleus of charge Z at the orlgln and studv the 
behaviour of the plasma in the "external potential" of this nucleus. We 
exploit the spherical symmetry of the problem so that the electron and 
ion distributions around the origin can be written as n(r) and p(r) 
respectively, where r is the radial distance. For r sufficiently large, 
say r > R, the densities per) and nCr) would tend to the mean values ~ 
and n respectively. Hence, as far as the central ion is concerned, the 
infinite plasma can be replaced by a "correlation" sphere 2 of radius R 
such that for r > R, all the potentials can be taken to be zero and the 
particle distributions go to their mean values. R is bigger than the 
characteristic distances of the particle correlations in the system. 
Typically, for plasmas R is 5 to 10 times ro but rapidly becomes very 
large if long range order (e.g., crystallization) sets in. Then a unit 
cell type calculation becomes more appropriate than the correlation 
sphere model presented here. 

The thermodynamic potential Q is given in terms of the partition 
function Z, the Helmholz free-energy F, chemical potentials ~e' ~i and 
the particle numbers Ne , Ni by 

(2.1) 

Density functional theory states that Q is a unique functional of 
nCr) and per), viz., Q[n(r),p(r)] such that it is a minimum for the true 
density distributions. Thus we have the functional derivative 
equations3,4 

oQ[n, p] = 0 
on 

oQ [n, p] = 0 
op 

for electrons 

for ions 

(2.2) 

(2.3) 

The variational equations are subject to the condition of 
electro-neutrality which can be written in terms of integrals over the 
correlation sphere of radius R containing the nucleus of charge Z at the 
origin. Thus 

cfp(r)d£ = Z - fn(r)dr (2.4) 
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This is a generalization of Eq. (1.1). Eq. (1.1) holds outside the 
correlation sphere, for r > R. Clearly the mean charge C may be 
considered to play the role of a Lagrange multiplier chosen to satisfy 
Eq. (2.4) for electro-neutrality. This point of view is slightly 
different to that of ref. 3 but is equivalent to the computational 
implementation of the method. The grand potential Q appearing in (2.1) 
can be written as 

Q = T[n,p] + F + F . + F. - ~.fp(r)dr - ~ fn(r)dr 
e e1 1 1 ... e ... 

(2.5) 

where 

T[n,p] = fFO[n(r),p(r)]d£ (2.6) 

F = -f!:" n(r)dr +! f n(r)n(r') dr dr' + f Fe [n]dr (2.7) 
e r... 1£-£' 1 ...... xc ... 

Eq. (2.6) is the kinetic energy functional for a non-interacting 
system, having the exact interacting density distributions nCr), pCr). 
In (2.7) the first term is the "external potential" of the central ion of 
charge Z acting on the electron distribution nCr). The 2nd term in (2.7) 
is the electron-electron interaction. The last term contains F~ [n], the 
exchange-correlation free energy functional of density functionat theory. 
Similarly, Eq. (2.8) and (2.9) contain F~i and F~, viz., the electron-ion 
and ion-ion correlation functionals respectively. These are unique but 
unknown functionals of the density distributions. We shall assume that 
most of F6 i can be incorporated into F~ and neglect the last term of 
(2.8). In view of the functional differentations indicated by Eq. (2.2) 
and (2.3), the exchange-correlation free energy functional gets replaced 
by an exchange-correlation potential defined by 

6Fe [n] 
Ve (r) = xc 

xc 6n 

Similarly, the ion-ion correlation potential is given by 

Finally, equations (2.2) and (2.3) reduce to the form 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

These are equations obeyed by non-interacting particles moving in 
the effective one-body potentials Veer) and Vier) where 
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Veer) = _[I + v (r)] + ve (r) - ve (R) r p xc xc 

(2.14) 

The electrostatic (i.e., Poisson) contribution is 

v (r) = f [I; p (r I) - n ( r 1 )] dr 1 • 

P 1£-£1 1 '" 

The chemical potentials ~e and ~i are essentially the non-interacting 
electron and ion chemical potentials at the densities nand p. 

The exchange-correlation free energy F:c and the 
exchange-correlation potential V:c are modelled from the properties of 

the uniform electron gas at the temperature T (see Perrot and 
Oharma-wardana5 ) using the local density approximation (LOA). Thus the 
essential content of the V~c used in our calculations is the exchange 
graph and the summation of rIng graphs. Similarly, the ion-correlation 
potential V~ is constructed from the sum of hypernetted chain (HNC) 
graphs. 3 These are evaluated with the gii(r) of the plasma problem 

itself rather than with a g't(r) of a model problem (say, the 
one-component plasma, OCP). ThIs has the effect of including some 

contributions from electron-ion correlations in V~ and is a better 
procedure than using an LOA-form based on an OCP model. Hence, if we 
assume trial distributions nCr), per), the potentials given in (2.14) can 
be calculated and introduced into Eqs. (2.12) and (2.13). Eq. (2.12) 
applies to electrons; this reduces to the Kohn-Sham equation or the 
Thomas-F ermi equat ion depending on how the kinetic energy operator is 
treated. The Kohn-Sham analysis leads to a Schrodinger-like equation, 
viz. 

v2 e 
[ - -2 + V (r)]ell (r) = E. 4> (r) v v v (2.15) 

where 4>v(r) are the Kohn-Sham eigenfunctions, with "energies" Ev' These 
are NOT energy levels and $v(r) are NOT single particle orbitals. But 
they give, (if not for the LOA) the exact density distribution nCr), as 
required by OFT. For a given trial ion distribution per), Eq. (2.15) has 
to be solved self-consistently, just as for the Hartree equation, to give 
bound states as well as scattering states, all contributing to nCr). The 
solution has to satisfy the Friedel sum rule and I; has to be fixed by the 
requirement of electroneutrality. The Friedel sum rule ensures that the 
modifications in the continuum density of states produced by the external 
potential is correctly taken into account. 

Once nCr) is obtained for a given per), a new effective 
ion-potential Vier) is obtained from (2.14). Then a new per) is 
calculated via Eq. (2.13). For a classical system Eq. (2.13) reduces to 

(2.16) 

The process is iterated until both nCr) and per) become self-consistent. 
In actual practice, at least for r ~ la, numerical procedures are hardly 
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Table 1. Energy level structure of (i) an Fe atom in vacuum (ii) an 
Fe-ion in an iron-plasma at a temperature of 5 keV and electron 
density of 60.9 electrons per atomic unit of volume. The 
plasma is modeled by (a) jellium, with C = 22.87 (b) using the 
most probable ion distribution of Fig. 1, here C = 24.85. The 
Wigner-Seitz radius ro is 0.424 a.u. 

Level 

Is 
2s 
2p 
3s 
3p 
3d 
4s 

.s 
01 

-Energy (Ry) Occupation 

(i) (a) (b) (1) (a) (b) 

515.81 556.998 478.33 2 0.968 0.860 
60.957 77.301 7.940 2 0.406 0.348 
53.084 72.656 0.428 6 1.200 1.026 
7.2691 9.214 2 0.348 
4.8912 7.070 6 1.044 
0.9625 2.911 6 1.720 
0.5451 2 

1.05~--------~~--------------------------~ 

1.00 

0.95 

, 
I , 
I 
i , 

0 .90 
1.0 

/ \ 
I \ 
I \\e plasma (r- 7.93) 
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I 

1.5 

r -10 

H plasma - 5 

- 2 

2.0 2.5 3.0 3.5 4.0 

Fig. 1. The ion-ion pair distribution function g(r) for three hydrogen 
plasmas (r s = 1, r = 2, 5, 10) and for an iron plasma 

(rs = 0.42, r ~ 8) calculated from, the coupled DFT-equations 
(2.15) and (2.16). 
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more complicated than carrying out a standard Kohn-Sham calculation or a 
calculation using, say, INFERNO (see Liberman6). For details the 
original literature should be consulted. 

The density profiles nCr) and per) may be related to pair 
distribution functions via 

g .. (r) = p(r)/;; , g. (r) = n(r)/ri 
11 Ie 

(2.17) 

thus providing a link with the theory of liquids. In fig. 1 we show 
examples of gii(r) for a fully ionized H+ plasma, with the ion sphere 

radius ro (= r~) = 1.0 (a.u.) and r = 10, 5 and 2. We also give the g(r) 
for an Fe-plasma with ro = 0.424, C = 24.85 and T = 5 keV (r = 7.93). In 
table 1 we show the Kohn-Sham "energy" eigenvalues obtained for an Fe 
nucleus (Z = 26) plus electrons placed in (a) a vacuum at T = 0 Kelvin; 
(b) a plasma modeled by a uniform ion distribution p; (c) a plasma 
modeled by the most probable ion distribution per), shown as the g(r) of 
the Fe plasma in fig. 1; this was obtained by iterating the coupled 
equations (2.15) and (2.16). These calculations ignore relativistic and 
spin-polarization effects. The "energy levels" are seen to shift as we 
go from the vacuum to the plasma environment. But this shift should NOT 
be identified as a "plasma polarization shift" since the Kohn-Sham 
eigenvalues do not correspond to the elementary excitation spectrum (see 
the paper by W. Kohn in this volume). Fran90is Perrot's paper in this 
volume is an attempt to correct the DFT eigenvalues so that they can be 
used for calculating optical transitions. Plasma polarization shifts can 
in principle be calculated by such a method. The rigorous alternative is 
to solve the Dyson equation after calculating the self-energy from 
many-body perturbation theory using the Kohn-Sham basis ~v(r), £v. Some 
typical results from such a calculation are given in table 2. For more 
details the reader should consult reference 4. 

3. EFFECTIVE ION-ION POTENTIALS AND THE DYNAMIC STRUCTURE FACTOR 

From the previous section it is clear that DFT can be used to 
calculate the ion-ion pair distribution function gii(r). This enables us 

Table 2. The excitation energies [Is' and lifetimes Yls obtained by 
solving the Dyson equation for H-plasmas (at temperature T) 
having only one (Is) bound state. The Kohn-Sham Is energy, £ls 
is also given. Atom units (e = h = m = 1) are used throughout. 
EF is the Fermi energy 

rs T/EF £ls(Kohn-Sham) Els Yls xl00 

3 1.0 -0.0528 -0.0045 3.80 
3.0 -0.1545 -0.1066 0.09 

2 1.0 -0.0124 +0.0422 5.23 
3.0 -0.0938 -0.2089 0.16 

1 2.0 -0.0000 -0.4571 0.61 
3.0 -0.0131 -0.6265 0.17 
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to construct an effective one-component classical model of the plasma as 
far as ions are concerned. This is the usual description of simple 
liquid metals where the electron coordinates have been integrated away to 
give a description in terms of effective pair potentials between ions. 
If the electron-ion interaction were weak, then the ion-ion pair 
potential Vii(r) can be written down in linear response theory (LRT). 
The fourier transform of Vii(r) is given by 

(3.1) 

where V = 4n/q2 and X(q) = (l/e:(q)-l)V-l. Here e:(q) is the dielectric 
f~nctionqof the interacting uniform elec~ron gas at a temperature T and 
electron density n. Also, Vie(q) is the ~lectron-ion pseudopotential 
which in the crudest approximation reduces to the bare Coulomb potential 
-CVq • If e:(q) is also taken in the Debye approximation Eq. (3.1) gives 

-kDr 
Vii(r) = C2e /r where kD is the Debya screening momentum. 

Unfortunately, Vie(q) cannot in general be replaced by the bare 
point-ion Coulomb potential -CLVq if linear response theory (LRT) is to 
be 
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fig. 2. The effective proton-proton interaction potential Vii(r) in a 
H-plasma at rs = 1, r = 10 obtained by inventing the DfT-g(r) is 
given as a solid line. The Vii(r) obtained from LRT using 
finite temperature RPA and Tnomas-fermi screening is also 
given. 
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applied. Further, even when LRT is applicable, various formulations of 
the dielectric function e(q) are available and lead to different results 
for Vii(q). Hence the construction of Vii(q) for strongly coupled 
systems using (3.1) runs into difficulties. 

0.15 r------------, O. 2Q ,...----------..., 

k • 0.828 . U. 

0 . 15 
r • 10 

0.10 

0.10 

0.05 

0.05 
k • 0.828.U. 

r • 2.0 

o .00 ~---'------'-----' O. 00 L __ L~~~""OiD;J~ 

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0 . 15 

Fig. 3. The proton-proton potential Vii(r) obtained from the OFT-g(r) 
has been used in molecular dynamics to generate S(kw) for 
H-plasmas (rs = 1, r = 2 and r = 10). The MO-data are shown as 
triangles. The solid line is a fit to a hydrodynamic model. 

A direct approach to Vii(r), which does not suffer from these 
limitations and does not assume that the response is linear is provided 
by the information contained in the gii(r) obtained from OFT. From the 
statistical mechanics of liquids, gii(r) is directly related to Vii(r) 
by7 

where 

= exp[-~V .. (r) + her) - c(r) + B(r)] 
11 

(3.2) 
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and c(r) is such that its Fourier transform is given in terms of the 
Fourier transform of her) by 

c(k) = h(k)![l + ph(k)] (3.3) 

Hence, if gii (r) is known Vii (r) is available if the "bridge function" 

B(r) were known. For fluids with r ~ 10 it is known that the HNC 
approximation of setting B(r) = 0 is an excellent approximation. . Hence 
the effective ion-ion pair potential in a plasma can be determined within 
the HNC-approximation by inverting the gii(r) obtained from DFT.7 Such a 

pair potential for proton-proton interactions in a H-plasma with rs = 1 

and r = 10 is shown in fig. 2, together with Vii(r) obtained if c(q) is 

approximated by the Thomas-Fermi or RPA dielectric functions. (The use 
of a more sophisticated c(q) does not improve matters very much.) 

A description of the plasma as a single component fluid of screened 
ions interacting via an effective potential Vii(r) is valid for processes 
with characteristic frequencies w < ~ viz., the electron plasma 
frequency. Using the V~i(r) obtained from fnversion of the HNC equation, 
machine simulation (MS) can be used to generate the dynamic structure 
factor S(kw) of the ions. The static structure factor S(k)MS obtained 
from MS should agree with the S(k) of the original DFT-g(r). This was 
found to be true (F. Nadin et al. 8) for all the potentials given in 
ref. 7. In fig. 3 we give an example of S (kw) for hydrogen plasmas at 
rs = 1, r = 10 and r = 2. The latter case has been directly simulated as 
a two component fluid by Hansen and MacDonald 9 but the ion-ion dynamic 
structure factor was not obtained and only See(kw) was reported since 
many more time steps are needed to relax the ions. In any case, there is 
reason to believe (from electrical conductivity calcUlations) that 
rs = 1, r = 2 is already beyond the semi-classical regime for which the 
Hansen-MacDonald method is valid. It is clear from fig. 3 that there is 
considerable structure in S(kw) but ref. 8 must be consulted for a fuller 
discussion. 

4. ELECTRIC MICROFIELDS IN PLASMAS 

Ion density fluctuations in the plasma lead to fluctuations in the 
electric field at a "radiating atom" placed at the origin. If some 
configuration of ions, given by the positions £1' t2 .•. tn occur as an 
ion-density fluctuation, the corresponding electric field at the radiator 
is k(t1,t2, ••• t n). Ion density fluctuations are quasi-static as far as 
electrons are concerned and these are called low frequency microfields. 
The microfield distribution W(~) is the probability of occurrence of the 
field f;, and is given by the ensemble average <O(~-k) >. For a plasma 
with spherical symmetry around the radiator W(~) = WeE) and the Fourier 
transform W(k) is usually the object of the theoretical analysis. The 
considerable theoretical sophistication that has gone into the evaluation 
of W(k) is clear from the paper by James Dufty in this volume. However, 
this sophisticated theory has been developed in the context of a very 
simplified model of plasmas in which the plasma is treated as a 
one-component classical fluid of point ions interacting via a Debye-type 
ion-ion pair potential. Density functional theory provides us with a 
more realistic and computationally practical model of the plasma 
necessary to deal with strong electron-ion interactions, high Z species, 
and internal structure due to the presence of bound states. 
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In the DFT approach to microfields Dharma-wardana and Perrot 10 use 
the Baranger-Mozer (BM) cluster expansion for W(k). Thus 

W(k) = eS(k) (4.1) 

(4.2) 

The 2nd order term is of the form 

(4.3) 

(4.4) 

(4.5) 

In (4.4) we have the ion-pair distribution functions g(~1'~2) and 
the one-body functions g(~1)' g(~2) evaluated in the "external field" of 
the radiator atom held at the origin. In (4.5) £1 is the electric field 
at the origin due to the plasma ion at ~1. Thus the calculation of the 
microfield involves 

(i) a method 
functions 
degeneracy 

of calculating the relevant ion-pair distribution 
(PDFs) for plasmas of arbitrary density and electron 

(ii) a method of evaluating the electric charge at the radiator (i.e., 
at the origin) 

(iii) a technique for approximate resummation of the higher order terms 
in (4.2) since explicit evaluation beyond 2nd order is impractical. 

Existing methods have treated (i) and (ii) by assuming weak 
electron-ion coupling and using a classical model of Debye screened point 
ions. Electrons do not appear even in the calculation of the electric 
field since this is taken to be the derivative of the Debye potential. 

In the DFT-model the relevant PDFs (necessary for the 2nd order B-M 
calculation) are obtained by solving the coupled equations (2.15) and 
(2.16), with the appropriate "external potentials". The electric field, 
say kl of Eq. (4.5) is calculated using the electron charge pile up nCr) 
to screen the ion which generates the field. Thus the electron-ion 
interaction is not assumed to be weak; bound states and internal 
structure of perturbers and radiators are correctly taken into account 
automatically. 

The resummation problem, viz., approximating the terms beyond 2nd 
order in BM is solved in the context of the BM-cluster expansion, at 
least for r ~ 10, by the method of Perrot and Dharma-wardana. 11 It 
appears that although the resummation is important for OCP and for weakly 
screened plasmas, it does not seem to be important for strongly screened 
plasmas, if the screening etc. is correctly treated as in DFT. In 
fig. 4(left) we show the DFT-microfields and APEX-microfields for a 
neutral and for a charged point in an aluminum plasma. Contributions to 
the DFT-microfield beyond 2nd order proved to be negligible. In 
fig. 4(right) we show the DFT-microfield at an H-atom (Le., a proton 
carrying an electron in a Is-bound state) in a dense hydrogen plasma 
(rs = 1.0). Although such an H-atom is not stable in a dense plasma the 
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Fig. 4. The left panel shows the DFT-microfields (solid lines) at a 
charged test point and at a neutral test point in an A1-plasma. 
The corresponding APEX-calculations are also given. The right 
panel shows the effect of structure in the test particle, taken 
to be an "H-atom" and a neutral point in an H-plasma. See 
ref. 10 for details. 

high electron density is chosen to ensure validity of the linear 
screening approximations of standard microfield theories. However, these 
theories treat the H-atom as a neutral structureless point and give 
results different to' DFT where the internal structure is taken into 
account in calculating the necessary distribution functions. 

5. ELECTRICAL RESISTIVITY 

We shall use the calculation of the electrical resistivity R of a 
plasma to demonstrate how linear transport coefficients (e.g., thermal 
conductivity, thermopower, diffusion coefficients) can be conveniently 
calculated using the results of DFT. Only a brief summary is given here 
and the reader is referred to Perrot and Dharma-wardana 12 for more 
details. 

The main contribution to the resistivity R is the resistivity due to 
electron-ion scattering viz. Rei' Note that we evaluate the resistivity, 
Le., an inverse transport coefficient, rather than the conductivity cr 
which appears naturally in Kubo type theories. Although the Kubo 
approach is formally attractive, it leads to poor results unless extreme 
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care is used in evaluating the vertex functions which are submerged in 
the integral equations for the correlation functions. On the other hand, 
owing to "built-in" conservation principles, even crude approximations to 
the Bolzmann equation and its generalizations lead to good results. Here 
we use rigorous generalizations to the liman formula which go beyond the 
simple Bolzmann equation and derivable using methods of multiple 
scattering theory.13, 14 DFT becomes relevant because the various 
quantities (e.g., structure factors, scattering cross sections) needed to 
evaluate these liman-type formulae are readily obtainable from density 
functional calculations. 

Let us recall the essential approximations of the density functional 
calculation: (i) local density approximation for the electron exchange 
and correlation potential Vxc in the Kohn-Sham equation (ii) HNC 
approximation for the ion-ion correlations (iii) spherically symmetric, 
average-atom description of the scattering centers in the plasma; this 
neglects the effects of electron-configuration fluctuations and 
ion-distribution fluctuations in the plasma. For instance, the mean 
ionic charge C is an average over many values of the effective charge lc 
of a given short-lived electronic configuration c of the scatterer. 
There is some reason to believe that the neglect of fluctuations is valid 
to lowest order due to compensating effects. 12 

The calculation of the electrical resistivity can be classified into 
three types of regimes. These are (i) plasmas with weak isolated 
scatterers, WIS (ii) plasmas with strong isolated scatterers SIS (iii) 
dense plasmas where the scattering centers can no longer be considered 
isolated. This is the strong multiple scatterer (SMS) regime. Much of 
the existing calculations treat the WIS regime where the electron-ion 
interaction is treated by linear screening. 15 Some calculations have 
treated the SIS regime using a t-matrix formulation of the electron-ion 
interaction. 16 The DFT calculation enables us to treat the SMS regime 
also with no additional difficulty. Here we will not discuss the simple 
WIS regime but consider the more general SIS and SMS regimes. 

For these two regimes we can write the generalized liman formula as 

(i) SIS-model 

ex> 2k 
R :: _~I'i __ f defl (e) f dq q3s (q)t(q) 

}n;2C2e 2p 0 0 

with q :: 2K2(1-cos9), E :: k2/2 

(ii) SMS-model 

ex> 2k 
R :: _-,-,f"i __ J dEf( e) J dq q3 .. (q) 

}n;2e 2ii 2 0 0 

(5.1) 

(5.2) 

In (5.1) t(q) is the "average-atom" scattering cross section for an 
isolated ion of charge C in a uniform neutralizing background. Seq) is 
the structure factor calculated from the DFT ion-ion pair distribution 
function gii(r). Also f'eE) is the energy derivative of the Fermi-Dirac 
distribution at the energy E and plasma temperature T. The scattering 
cross section I(q) is constructed from the DFT phase shifts for an 
"isolated ion in a uniform-background" calculation. Thus 
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(5.3) 

Note that when we go to the multiple scatterer case, Eq. (5.2), the 
structure factor S(q) has dropped out and a scattering cross section ~(q) 
has been introduced. In the isolated scatterer limit the structure 
factor S(q) converts the isolated scattering cross section f(q) into the 
full scattering cross section ~(q) of the fluid. That is, in the 
isolated scatterer limit we have 

~(q) = pS(q)t(q) (5.4) 

In the SMS limit the superposition of isolated scatterers implied by 
(5.4) is invalid and ~(q) has to be evaluated directly. This is done in 
DFT, using the spherical-averaged average-configuration model, via a 
formula analogous to (5.3) but with the phase shifts 0i(k) replaced by 
~i(k). These are the phase shifts for electron scattering calculated 
using DFT with the scatterer ion placed in its plasma environment defined 
by Eq. (2.16), i.e., as given by its gii(r). Also, in (5.2) we have a 
modified distribution t'(£) rather than the simple Fermi-Dirac f'(£) as 
in (5.1). This is because in the SMS regime the electron mean free path 
may become comparable to typical ion-ion correlation lengths and hence 
the electron momentum ~ is no longer a good quantum number. For more 
details of such many body corrections the original paper should be 
consulted. 12 For most practical calculation t(t) may be taken to be the 
simple Fermi function. 

In table 3 we give results for a Xe-plasma, an Fe-plasma, and for 
two hydrogen plasmas. For other examples see ref. 12. The Xe-plasma and 
the Fe-plasma involve scatterers with internal structure. The mean ionic 

Table 3 DFT results for the resistivity (ohm cms) in the SIS and SMS 
models for some plasmas. Rother are results of other 
calculations. 

HeV r;(a.u. ) (;515 (;SMS RSIS RSMS Rother 

Xe 2.12 7.0 0.70 0.75 (0.315 0.271a)xlO- 2 

IFe 5xl03 0.42 22.9 24.9 (0.956 1.44 0.827 b) xlO- 6 
I 
I 
iH 13.6 1.0 1.0 1.0 (0.203 0.233 0.11lC)xlO- 4 

IH 25.1 2.0 0.74 0.78 (0.858 0.903 ) x10- 4 

I 
I 

aRef. 15; bRef . 16; cRef. 9 
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charge C evaluated in the SIS and SMS models differ significantly in the 
case of the Fe-plasma where multiple scattering effects are important. 
The ion-ion pair distribution function of this iron plasma was already 
shown in fig. 1. The hydrogen plasma at rs = 1, r = 2 and T = 13.6 eV 
corresponds to the case studied by molecular dynamics (MO) by Hansen and 
MacDonald. 9 These authors used an effective electron-ion interaction 
wi th cutoffs to prevent classical collapse. The electrons are also 
treated as classical particles in the simulation. The use of such 
effective potentials for transport properties, and the use of a classical 
approximation for the electrons in this regime of plasma parameters are 
somewhat questionable and may be the source of the difference between the 
OFT result and the MO result. 

6. LIGHT ABSORPTION BY PLASMAS 

Light absorption by plasmas involves (a) bound-bound or line 
transitions (b) bound-free or photo-transitions and (c) free-free or 
brehmstrahlung processes. Such a description is possible in a simple 
single particle approximation,17 in terms of a set of one-electron states 
$i = Ii> with energies Ei' In practice these states are not so well 
defined due to the effect of ion-radiator and electron-radiator 
collisions. If we adopt the attitude that the ions may be treated by 
some quasi-static approximation,_ and neglect energy level widths for the 
moment, the light-absorption cross section in the dipole approximation 
can be written as 

cr(w) = 4n2(w/c) L (f.-f .)<i IZ Ij>20(~E._E.) 
. . 1 J 1 J 1,J 

(6.1) 

where the electromagnetic field of frequency w is assumed t~ be polarized 
in the z-direction. The dipole or "length form" <i IZ Ij> contained in 
(6.1) can be rewritten as a matrix element of the velocity operator to 
give the "velocity form" of cr(w). Let us consider the much simpler case 
of an isolated Xe-atom rather than a plasma. The Kahn-Sham LOA orbitals 
Ii>, Ij> give the same value of cr(w) whether we use the length or velocity 
form. The Hartree-Fock orbitals do not have this property and give 
different values of cr(w). In fig. 5 several calculations of the 
photo-absorption cross section of dilute atomic Xe is given. 18 The 
experimental points are given as triangles. It is clear that neither the 
Hartree-fock nor the LOA calculation agrees with experiment. 

Thus, even aside of ion and electron broadening effects which do not 
arise in the case of atomic Xe, the calculation of the light absorption 
cross section requires a many-body treatment beyond the independent 
particle model. A very successful method of incorporating these 
many-body effects for isolated atoms is due to Zangwill and Soven. 18, 19 
This method uses the Kohn-Sham (density functional) eigenstates 
calculated in the LOA but introduces the time dependent relaxation of the 
system whereby the external field is screened by the electrons in the 
sy~tem. This method, called the time dependent local density 
approximation, viz., TO-LOA, constructs the response of the system to the 
external field using the Kohn-Sham basis Ii> rather than, say, a plane 
wave basis and brings in channel mixing and density fluctuation effects 
of the true inhomo eneous (atomic) system. In other words, the dipole 
operator Z appearing in 5.1) is replaced in the TO-LOA by a space and 
time dependent screened, complex dipole operator Z(t,w). 

We have adapted the TO-LOA method (see Grimaldi, Grimadi-Lecourt and 
Dharma-wardana20 ) for plasma calculations and applied it to the case of 
an iron plasma at normal compression and at a temperature of 100 eV. 
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Unlike in an isolated atom, bound-bound, bound-free and free-free 
processes all contribute and also lose their ~d~ntit~ in othe many-body 
picture due to channel mixing. The screened ~rlvln~ flel~ IS found to be 
significantly different to the external fIeld In regl?nS of strong 
channel mixinq. Typical results are shown in fIg. 6. The 
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The photoabsorption cross section of atomic xenon calculated 
using the Hartree-Fock length H-F(L) and velocity formulae 
H-F(V), and using Kohn-Sham LOA. Experimental points are 
triangles. The dotted line close to the experiment is 
TO_LOA.1 B,19 

photoabsorption cross section as calculated using the TO-LOA (solid line) 
and the standard single particle picture (dotted line) are shown in 
fig. 7. The mixing of line processes is clearly evident here. A total 
cross section calculation is given in ref. 20. In these calculations we 
have also included electron-collision broadening effects by including 
self~energies in the construction of the response function. In 
simplified terms, this has the effect of replacing the O(U*Ei-Ej) by a 
lineshape function (for details see ref. 20). Ion broadening effects 
will be included in a future study directly via the response function or 
indirectly via a microfield approach. 
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7. CONCLUSION 

In this paper we have presented a brief survey of the applications 
of density functional theory to a variety of topics in strongly coupled 
plasmas of arbitrary electron degeneracy. It is evident that density 
functional methods, coupled with a modest amount of standard many body 
theory provide a powerful and computationally practical first principles 
method for tackling almost any property of strongly coupled plasmas. In 
this review we have not emphasized "straightforward" thermodynamic 
properties (e.g., equations of state, phase separation etc.) for which 
DFT is expected to be extremely good. Instead we have discussed 
properties which are related to fluctuations and dissipations since these 
are usually thought to be more difficult to formulate using DFT. 
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DESCRIPTION OF ATOMIC SPECIES IN DENSE PLASMAS USING A DENSITY-FUNCTIONAL-

THEORY APPROACH 

1. INTRODUCTION 

Franc;ois Perrot 

Centre d'Etudes de Limeil-Valenton, B.P. 27 
94190 Villeneuve St Georges, France 

A key quantity in plasma physics is <2* >, the average ionization or 
average number of free electrons per atom. Although there is no unique 
definition of this quantity (what is exactly a free electron in a dense 
plasma ?), it is extensively used to characterize the plasma, for instance 
by means of the coupling parameter r. The average ionization may be deri­
ved from standard theories the Saha theory for low densities, or the 

"Average Atom" (M) model for dense plasmas l • 

But situations do exist, where a more detailed description of the 
plasma is needed. For instance, fluctuations may be important r is 
proportional to <Z*2>, which may be different from <Z*>2. The fluctuations 
may playa role in the study of conductivity, bremsstrahlung, and in the 
calculation of electric microfields also. A description of the detailed 
configurations of the plasma ions, which goes beyond the M picture, may be 
crucial for radiative properties, such as photoeEfect threshold, line 
opacities... Finally, non-equilibrium plasmas obviously require the 
knowledge of many atomic data as functions of the "true" (integer) occupa­
tion numbers of the bound electronic levels. These examples show that one 
needs a model for the various atomic species existing in the plasma. 

In a dense plasma, it is impossible to treat one ion independently of 
the surrounding electron cloud. The free electrons pile up around a posi­
tive ion and tend to form a neutral atom. Also, they relax following any 
change in the configuration of the bound spectrum, so that there is a 
self-consistent modification of the whole spectrum. As the number of free 
states is obviously infinite, these states must be treated statistically in 
any practic~l model. In Sec. II, we shall describe such a model, combining 
the detailed study of the hound states and the statistical treatment of the 
free spectrum. The problem of bound-bound transitions will be treated in 
Sec. III. Average atomic species, representative of all the atomic species 
having a given ionization degree Z* will be defined and calculated in Sec. 
IV, leading to the possibility of calculating the average of any quantity 
depending on Z*. 
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II. THE HODEL 

Definition of a species 

An "atomic species", as considered in the present work, is a ficti­
tious atom made of a given number Zb of bound electrons distributed among 
a set of bound levels with integer occupation numbers ni = 0 or 1, and 
neutralized by a cloud of delocalized electrons coming from the continuous 
spectrum. It is assumed that local thermal-equilibrium (LTE) is establi­
shed among these quasi-free electrons. Such a species may be interpreted 
as the result of averaging on the LTE spectrum all the electron charges of 
real atoms having the fixed configuration { ••• n i ••• } in the bound 
spectrum. 

All the models dealing with detailed ionic configurations assume that 
the free electrons are in LTE2-1+. This is not a severe restriction for 
dense plasmas where the free spectrum is dominated by electron collisions, 
the rate of which increases like the square of the electron density. 

Total energy and occupation numbers 

The standard theories of atomic structure, at zero temperature 
(SlaterS, Kohn and Sham O) have shown that the first-order variation of the 
total energy of a system, when its configuration changes, is : 

oE ( ••• n .••• ) =E E· on. 
J j J J 

(1) 

Eq. (1) holds only if exchange-and-correlation effects are approximated by 
means of a local functional Exc(p) of the total electron charge density 
p(r). The E'jS are the eigenvalues of a one-particle effective Schrodinger 
equation. Tbe density per) is obtained using the eigenfunctions of this 
equation : 

(2) 

An important property of this "Density-Functional-Theory" (DFT) is that 
Eq.(l) takes orbital relaxation into account (to first order in O~j)' as a 
consequence of the stationarity of E with respect to the variations of p. 
This is a significant advantage of DFT over Hartree-Fock theory where the 
total energy variation, as deduced from Koopman's theorem 

E( ••• nj = 1 ••• ) - E( ••• u j = 0 ••• ) = Ej 

implies frozen orbitals. A second advantage of DFT is its much greater 
simplicity in practical calculations. For these reasons, we used the PFT 
approach for our description of atomic species. 

The free-spectrum equations 

We simulate an atom in the plasma in the following way. A bare nucleus 
of charge Z is embedded in an electron gas of uniform density p. The 
plasma ions are represented by a uniform charge background which preserves 
electrical neutrality. In this work, we neglect the details of the ionic 
profile around the ion at the center. We choose the most simple shape of 
this profile, a spherical cavity in the uniform ionic background : 
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(3) 

The radius Rc is such that the excluded charge is exactly that of the ion, 
as given in the LTE average atom (AA) model : 

(4) 

Owing to the very different time scales, this ionic profile is considered 
as fixed during times characteristic of the electronic relaxation. 

The configuration of the immersed ion is { ••• ni ••• }, with a total 
bound charge Zb = Li nit The plasma electrons polarize around it to form 
a neutral atom. According to the assumptions of the model, the free-elec­
tron density describes a subsystem in LTE, so that it satisfies the Kohn­
Sham-}1ermin7 equations : 

F l ] F [ ] 1 0 1 * + FT l ] .R. P.R. = 0 - P .R. + P t 0 v t + 2" P t r Pt' xc P t (5 ) 

(6 ) 

F is the total free-energy of the continum electrons, a unique functional 
ot their charge density. It includes the non-interacting free-energy 
F [Pt], the interaction energy with the external field v~, the electron­
efectron Coulomb interaction and the exchange-and-corre1ation (XC) free­
energy FTc [Pt]' Standard notations (0 for the scalar product and * for 
the convo'ution product) have been used. In this model of embedded atom, 
the chemical potential depends on the uniform density p and temperature T 
only. The density Pt is determined by the stationarity condition Eq.(6), 
for fixed T and ~. The exact Eqs.(5,6) cannot be solved without replacing 
the unknown functional F~c [Pt] by an, approKimate one. The common 
a~proximation is the local density approximation (LDA) : F~c [Pt] ~ 
~~c(P.R.)' (the functional becomes a scalar function), frequently applied 
(at T = 0) in solid state physics 8• In our calculations, we used a nume­
rical fit of the results of Rajagopa1 and Gupta 9, and Perrot and Dharma­
Wardana10 for the homogeneous electron gas at finite temperature. 

With this approximate treatment of XC effects, Eq.(6) is equivalent 
to the following system : 

(7) 

(8) 

(9) 

(10) 
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The inter'letlng electron gas is equivalent to an assembly of non-interac­
ting pseudo-particules in an effective potential U ,Eq.(8). This poten­
tial, which includes three contributions (externar potential vf ' Coulomb 
and XC potentials of the free electrons), must be determined self-consis­
tently. The density P.R.' Eq.(9), is built using those eigenfunctions <l>m of 
t~1e effective one-part1cle equation which correspond to positive eigenva­
lues (free spectrum). The occupation numbers of these states lIre average 
occupation numbers gillen by the Fermi-Dirac statistics, Eq.(lO). The 
external field v~ for the plasma electrons is created by the ions: the 
bare central ion and its bound electrons, the ionic background P+ ; it 
includes also a contribution for XC effects between bound and free elec­
trons. A detailed description of the latter is given in an extended ver­
sion of this wod:ll • 

Description of the ionic bound-electrons configuration 

A particular atomic species is defined by a given configuration of 
the ion, i.e. a set of integer occupation numbers for the bound levels. 
For the bound electrons, there is no notion of temperature or of entropy 
since the configuration is frozen. The relevant thermodynamic quantity is 
thus the internal energy E. Let us note Pb(r) the charge density of the 
bound electrons subsystem. This subsyste:ll may be in the ground state of 
the ion, or more generally in an excited state. It feels an external 
potent ial Vb created by the bare nucleus, the background P+, the free­
electrons Pf ; Vb includes also bound-free XC effects. We assume that the 
total energy of the subsystem is : 

K[PbJ is the non-interacting (kinetic) energy. Eq.(ll) is correct for the 
ground state of the ion, as a result of DFT. E~c(Pb) is the XC energy (in 
the LDA approximation) ; the index 0 indicates that the functional used 
here is that one relevant to zero te'nperature. For excited states, 
Eq. (11) has no rigorous justification and !'lust be considered as a conve­
nient extrapolation. The attempts made to extend DFT to excited states 
have shown that E is in fact a functional of a linear combination of the 
densities of all t~e states lower in energy than the state of interest 12 • 
Recent developments also indicate that the LDA in incorrect for excited 
states 13 • NumericlIl rigorous UFT calculations for exited states are not 
available at the present time, so we keep the formulation of Eq.(ll) for 
our study of atomic species. 

The Rtationarity of Eb with respect to the variations of Pb leads to 
the set of equations : 

(1. 2) 

(13) 

(14) 
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Only the bound spectrum of Eq.(12) is used to build the density Ph' Some 
practical aspects of the calculation of the densities Pl and Pb are men­
tioned in the next paragraph. 

Solving the equations 

The calculation of an atomic species consists in solving the two sets 
of equations (7-10) and (12-14) by an iterative procedure. These sets of 
equations are coupled by the electrostatic potential and by XC bound-free 
terms. The numerical technique is derived from that one used to solve the 
"impurity problem". It has been presented in detail elsewhere 14• tet us 
recall some important points. Hhen the self-consistent solution is rea­
ched, the central bare nucleus is totally screened by the charge 
Pl + Ph + P+ 

The Coulomb part of Ul and Ub is thus short-ranged. At large distances, 
Ul and Ub go to constants Ulo and Ubo ' The continuum eigenvalues of 
Eq. (7) are : 

(16) 

and the eigenfunctions : 

(17) 

where the radial parts behave, at large r, like : 

~kL(r) + r- l sin [kr - L t + ~(k)] (18) 

The phase-shifts nL(k) are important quantities which characterize the 
electronic structure of the immersed atom. They determine entirely the 
electronic density of states in the continuum and satisfy the "generalized 
Friedel sum-rule" (a consequence of charge neutrality) : 

with fk the occupation number f(Ek) and ~ the inverse temperature. The 
free-states electron density is : 

where jL is the sperical Bessel function of order L. In numerical calcu­
lations, attention must be paid to the convergence with respect to the 
maximum value of the angular momentum included in the sums over L. For 
the very large values of L, a Thomas-Fermi like approximation can be 
implemented. The integrals over k are truncated at a value ~ which is 
such that the corresponding energy Ekm' Eqs.(16), is of the order of 
fl. + 10 kB T. 

For the calculation of the bound states, Eqs.(12-l4), the standard 
techniques of the self-consistent field problem can be applied with no 
particular difficulty. 
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Total energy of a species 

Once the self-consistent densities P~ and Pb are 
simultaneously the electronic spectrum and potential, the 
an atomic species can be straightforwardly calculated. 
that of embedding the atom in the electron gas : 

~E( ••• ni ... ) = E( ••• ni ... ) - ~ [p] 

determined, and 
total energy of 
This energy is 

(21) 

with E [p] the energy of the homogeneous electron gas (kinetic and XC 
contributions) at temperature T and density p of the free electrons. A 
detailed expression of this energy can be found in Ref.ll. The statisti­
cal weight of a species is related to the entropy of the delocalized elec­
trons in LTE ; this weight is : 

(22) 

The entropy ~S [p~] = S~[p~] - S~[p] (where the homogeneous electron gas 
contribution has been substracted) includes two terms : (i) a non-interac­
ting term S [p~] which depends on the phase-shifts only, and (ii) an XC 
term sic[p~j related to the functional F~c(p~) used in Eq.(5). Both are 
calculated straightforwardly. 

III. BOUND-BOUND ELECTRONIC TRANSITIONS 

Total energy differences 

We now consider the transition of an electron from an initial bound 
state i to a final bound state j. The transition energy is the difference 
of the total energies for the two corresponding atomic species. The ioni­
zation Z* is conserved in the. transition 

The transition energy can obviously be obtained as the difference of two 
total energy calculations. But we shall derive a formula which requires 
only one self-consistent calculation to obtain OEZ*(i+j). One of the 
advantages of nFr is that all the equations maintain their meaning if the 
ni's are considered as continuous variables. Derivatives with respect to 
the occupation numbers can thus be defined. 1"or a zero temperature 
system, it is well-known that the derivative of the total energy with 
respect to ni is Ei' the eigenvalue of the Kohn-Sham equation. If one 
assumes that tne same DFT equations describe an excited state (an electron 
in state j and a hole in state i), the transition energy is : 

(24) 

where a first-order Taylor expansion of the energy difference has been 
made. States different from i and j do not appear in Eq.(24) (to first 
order) although they relax, because their occupation numbers do not chan­
ge. We shall now adapt Eq.(24) to the case of atomic species. The situa­
tion is different because the free-spectrum ocupation numbers obey Fermi­
Dirac statistics, so that they change with any relaxation of the system 
and contribute to the first-order transition energy. Let us consider a 
change oni , on j in occupation numbers (with oni + on j = 0). The corres­
ponding total energy variation is : 
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(25) 

where the last term comes from the relaxation of the continuum sates. For 
these states, the internal energy is related to the free-energy, Eq.(5), 
by : 

Using the stationarity properties of Ft , Eq.(6), and the conservation of 
the number of free electrons, we conclude that the first term of the right 
hand side vanishes. Now, the change of the small XC contribution ST to 
the entropy St is assumed to be small: if the density deviation Pt~f)-p 
is small, the functional derivative of sic may be calculated for Pt = p, 
so it is a constant in space and the integral vanishes because OPt has a 
zero integral (total number of free electrons fixed). Thus, the important 
contribution in Eq.(26) comes from the non-interacting entropy Sp. Using 
the ~ell-known expression of So in terms of the occupation numbers, the 
functional derivative is easily calculated and one is left with : 

where the last term gives the contribution of the free spectrum relaxa­
tion, OEm being the change in the continuum energy levels induced by the 
change of the density of bound electrons. This change is : Pi oni+ Pj onj 
where Pi(Pj) is the charge density in state i(j). To first order in occu­
pation numbers, the change in the potential Ut acting on the continuum 
electrons can be formally written: 

(28) 

Uti is a potential including: (i) the bare Coulomb potential (ii) a po­
tential due to the relaxation of the continuum electrons which screen the 
change of the bound electrons potential j (iii) an XC contribution reflec­
ting the change of the bound-free XC potential included in the external 
potential of Eq.(8). The reader will find a complete analysis of Uti in 
Ref .11. 

Finally, the first-order estimate of oEm 

oEm = Pm • OUt 

leads to the following expression of the total energy change 

E* = Ei - ~ ~ fm(l - fm) ~ Pm • uti * Pi 
i m 

(29) 

(30a) 

(30b) 

Eqs. (30) show that, in the plasma, the change in total energy due to a 
change in the bound states configuration is described, to first order, by 
one-particle modified effective energies E*. These are the eigenvalues of 
the Kohn-Sham equation, corrected to take the continuum relaxat ion into 
account. The E*'~ also include the bound eigenfunctions relaxation (to 
first order). exactly as in standard Slater theory at zero temperature. 
The correction E* - E clearly vanishes for T ~ 0 (because fm(l - fm)~ 0). 
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The accuracy of Eqs. (30) can be improved using the "transition state" 
technique proposed by Slater~. This technique uses the Taylor expansion 
of the total energy with respect to the occupation numbers, considered as 
continuous variables. If the £*'s are calculated in the so called "transi­
tion state", a fictitious state of the ion with confieuration intermediate 
between the initial and final ones : ("'~i - ~, ••• , nj + ~, ••• ), 1he 
quadratic terms a (on2) vanish, so that the transition energy is : 

£* - £* + a (on 3 ) 
j i 

(31) 

The numerical accuracy of Eq.(3l) is examined in the next paragraph. 

Numerical results 

We first test Eq. (31) by comparison with the energy change obtained 
as difference of two self-consistent calculations for the final and ini­
tial species. lye consider an Iron plasma with average electron density 
p= 7.75 10 23 ecm- 3 and free electron temperature T = 100 eV. In Table 1, 
we sho\\1 some transitions between configurations close to the full ETL 
configuration ; the Is and 2p shells are complete in all cases. The esti­
mate of the transition energy with the corrected £* is closer to the 
"exact" result difference of two self-consistent total enereies everywhe­
re. The correction is important when the initial and final one electron 
states have very different localizations in space. If the free-states 
densities Pm are almost uniform, the correction to ~£ goes like'the space 
average <u1j * Pj - u1i * Pi) ; it dominated by the bare term in U1j(u1i) 
and approximately equal to <r2~j- <r 2)1' Thus, the correction is mainly 
governed by the difference of die average values of r2 in the final and 
initial states. This conclusion is in good qualitative agreement with the 
results of Table 1. In the third case, where the correction is negligi­
ble, one has <r2)3s = <r 2)3p = 0.59 a.u. 

An obvious application of Eqs. (30) is the study of trends in optical 
transitions, when the environment changer;. As an example, we show in 
Table 2 the energy of the transition 3pl 4s 0 ~ 3p O 48 1 for Iron, in the 
same conditions p, T than above. The occupation numbers of the states 3s 
and 3d change, leading to important variations of the transition frequen­
cy. All the configurations have a Neon-like core in common. The disper­
sion of ~£* reaches 20 %, but the matrh: element is much less sensitive 
and changes by 4 % only. This example shows that the model of atomic spe­
cies can be useful for estimating data needed in the study of non-equili­
brium situations. 

IV. AVERAGE ATOMIC SPECIES 

Let us consider a plasma in complete LTE and select out of it all the 
atomic species having a given ionization degree Z* = Z - Eini • Let us 
assume that we have calculated :t particular one of these species and use 
it as reference species, with occupation numbers nil)' For any species we 
are interested in, we have : 

o (32) 
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Table ]. Comparison between transltion energies. 6.£: difference of 
non-corrected one-particle eigenvalues £ in the transition state. 6.£*: 
idem for corrected eigenvalues. Last column : difference of two self­
consistent total energies. Rydberg units. 

Configuration /:,£ /:'£* Tot. en. difference 

(3s 1 3d 14p O) 2s 23p1.*2s 13p2 59.780 60.380 60.565 
(3s13p13d 1) 2s 24p O+2s 14p l 71.890 73.967 74.411+ 
(2s23d 14p O) 3s 13p 1+3s 03p 2 2.432 2.431 2.428 
(2s 23p 13d 1) 3s 14p O+3s 04pl 13.977 15.624 15.713 
(2s 23s 13pl) 4p 03d l+4p 13d ° 7.795 9.519 9.649 

Table 2. Transition 3p 14s 0 + 3p 04s1 in an Iron plasma, calculated in the 
transition state, non-corrected (t.£) and corrected (6.£*). Rydberg units. 
The dipolar matrix element is also shown. 

Configuration t.£ 6.£* 1<3p I r I 4s>1 

3so 3d l 11. 710 13.232 0.2031 
3s 1 3d 1 10.736 12.214 0.2061 
3s 2 3d 1 9.962 11.745 0.2096 
3s0 3d 2 10.784 12.399 0.2082 
3s 1 3d 2 9.911 11.678 0.2105 
3s 2 3d 2 9.001 10.975 0.2069 

the sum running over all the bound states. A straightforward generaliza­
tion of Eq.(30a) leads to : 

Eq. (33) gives the total energy (t.E is the total energy of the atom in the 
plasma, Eq.(21)) of the species ~ •• ni") with respect to the energy of the 
reference species, the corrected eigenvalues of which are £!Z*, Eq.(33) 
includes a sum ove.r the bound states only ; it gives the total energy, 
inclusive of the free spectrum contribution ; and any relaxation is taken 
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into account to first order. NOw, the meaning of Eq.(33) is the fol­
lowing: except for the constant term ~EZ*( •• nio")' the energy of a par­
ticular species with ionization Z* can be interpreted as that of a system 
of Z-Z* independent particles distributed among the energy levels e!Z*' 
An average species for the ionization Z* can thus be defined. Its levels 
etz* are populated according to Fermi-Dirac statistics 

. -1 
Iii = [1 + exp {~(e!z* - ~*)}] (34) 

with ~7* an effective chemical potential for the bound states, fixed by 
the condition ~i ni Z - Z*. The statistical weight of the average 
species is given by 

(35) 

where S~[p~] is the entropy of the free-spectrum electrons for the refe­
rence species, and : 

Finally, the probability of the ionization degree Z* is : 

Pz* = A exp (-~ FZ*) 

FZ* = AEZ*( •• ni •• ) - TSZ* - T S~[p~] 

(36) 

(37) 

(38) 

The normalization constant A is such that ~Z* pZ* = 1. For every integer 
value of Z*, one has to perform a self-consistent calculation of the ave­
rage species. lfuen all the PZ* are known, the average value of any func­
tion of Z* can be computed straightforwardly. 

Numerical example 

We applied this model of average atomic species to the case of an 
Alumi.num plasma, at T = 100 eV and p = 4.77 1023 eCIQ-3. The probability 
of the various ionization states is shown in Table 3. The ionization 
states Z* = 0,1,2 do not exist in the present model because the only bound 
levels found in these cases are the Is, 2s and 2p levels which can receive 
at most 10 electrons. The average ionization <Z*> deduced from these 
results is <Z*> = 7.998, in good agreement with the AA value ZlA = 7.720. 
The mean square deviation a = (<2*2> - <2*>2) I <Z*> is a = 0.103. 

V. CONCLUSION 

l~e presented a model, based on DFT concepts, to describe the bound­
levels structure of atoms in dense plasmas. This model goes far beyond 
the well-known average-atom model. Its possible applications are : (i) in 
the case of non-equilibrium plasmas (NLTE), the study of quantities rela­
tive to any "true" ionic configuration, in particular optical transitions. 
(ii) in LTE plasmas, the description of average ions for a given ioniza­
tion degree and the study of fluctuations. As any DFT model, this one 
gives a static picture of the plasma ; future developments could concern 
dynamical effets. 
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Table 3. Probability of the various ionization degrees in Al. 

Z* PZ* 
~------

3 1. 225 10-6 
4 1.892 10-4 
5 0.0047 
6 0.0427 
7 0.2257 
8 0.4452 
9 0.2496 

10 0.0313 
11 6.228 10-4 
12 7.413 10-11 
13 9.456 10-20 
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THE FREEZING OF CHARGED AND UNCHARGED HARD-SPHERE SYSTEMS 

INTRODUCTION 

M. Baus* 

Chimie-Physique 11**, C.P. 231 
Universite'Libre de Bruxelles 
B-lOSO Brussels, Belgium 

The phenomenon of freezing by which a fluid is transformed into a 
solid, when the temperature is lowered or the pressure raised, is a very 
general property of bulk matter. During the past decades a lot of 
information about this phase transition has been obtained from both 
laboratory experiments l and from computer simulations. 2 Many workers 
in this field now think that the freezing transition of realistic and even 
complex systems can be understood in terms of the freezing of a few very 
simple model systems. Two such systems which have been brought to the 
foreground as good reference systems by liquid state theories are the 
hard-sphere (HS) system, whose freezing is monitoring the freezing of 
neutral fluids, and the one-component plasma (OCP) which can be used as a 
reference system in the theoretical study of the freezing of ionic 
liquids. The theoretical study of freezing within the realm of 
equilibrium statistical mechanics has, after decades of stagnation,3 
made considerable progress recently. The main steps of this progress will 
now be summarized. 

A first step forward was realized when the theory of freezing was 
reformulated in terms of the direct correlation function, by Ramakrishnan 
and Yussouff, instead of the ordinary (total) correlation function as 
was done in the pioneering work of Kirkwood and MonroeS. This step, 
which also characterizes the modern trends in liquid state theory, is 
particularly important in connection with freezing because this phase 
transition is to a large extent insensitive to the details of the 
interaction potential ,3 whereas this is in general not the case for the 
results based on approximations of the BGY hierarchy6 which depend 
explicitly on the potential. The second step in the right direction was 
the description of the nonuniform solid phase in terms of the finite 
temperature, classical version7 ~f the density functional theory of 
Hohenberg and KohnS which has been very successful in describing 
nonuniform, zero temperature, quantum systems. Here the main point is 
that this theory gives easy access to the thermodynamic properties (free 

* Chercheur Qualifiedu F.N.R.S. 
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energy, pressure, chemical potential), which are essential ingredients 
of any phase transition theory, while it uses as an independent variable 
the least unknown of all structural properties, namely the local number 
density. This then may explain the recent success ~f the theory of 
freezing after many years of unsuccessful attempts. In retrospect, it 
is clear that the modern theory of freezing is nothing but a reformulation 
of the old theory of Kirkwood and MonroeS into the modern la~guage of 
the density functi~nal theory combined with two decades of progress in the 
theory of liquids. 

THE DENSITY FUNCTIONAL THEORY 

In the density functional theory7 one starts from the Helmholtz free 
energy, F, which is viewed as a functional, F=F[p] , of the one 
particle density, p(~), and written as the sum of three contributions: 
F=Fconf + Fcorr + Fext ' The first term, Fconf' is known explicitly: 

PFconf[p] - J d~ p(~) {In (A3p(~» -I} 

V 

(1) 

and represents the configurational part of the free energy which in the 
appropriate limit reduces to the ideal gas free energy. It contains the 
configurational entropy of a system Of ~articles of mass m and of thermal 
de Broglie wayeI ength, A = h/(2~mkBT) / , enclosed at the inverse tempera­
ture P-(kBT)- in a volume V and whose one-particle configuration is 
described by p(~). The second term, Fcorr ' describes the correlational 
contributions to the free energy and is generally unknown except for its 
relation7 to the direct correlation function, c(~,~';[p]): 

P Sp(~) Sp(~') - c(~,~'; [p]) . (2) 

Integrating Eq. (2) along a linear path in density space running from some 
reference density PR(~)' to the actual density, p(~), one can, 
however, write7: 

x ~p(~) x ~p(~') . 

where ~p(~) = p(~) - PR(~)' This last term, Fext' contains the 
contribution: 

(3) 

(4) 

of the external field, ¢ext(~)' which serves to break some of the 
system's symmetries 0 so as to uniquely locate the crystal phase in 
space and to properly take the thermodynamic limit of an infinite system 
with finite intensive properties, e.g. the average density: 

(5) 
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The remfining thermodynamic properties are then constructed in the usual 
manner: 

p[p) Ucl I d.r. ITW 
- V + V- p(.r.) 6p(.r.) (6) 

which is the Gibbs-Duhem equation 0 = -pV, for a system of pressure p, 
grand potential 0 = F-Vpp and chemical potential p: 

pp[p) I d.r. il1.e.J. 
V- p(.r.) 6p(.r.) 

V 

(7) 

For the true equilibrium state we must also have,7 60[p]/6p(.r.) = 0 or 
p[p) - 6F[p]/6p(.r.) , with p a constant so that the two-phase 
coexistence conditions between, say, a liquid phase of density PL 
and a solid phase of density Ps can be simply expressed as: 

for two phase of equal temperatures, TL=T-TS' 

THEORIES OF FREEZING 

(8) 

(9) 

In order to obtain a theory of freezing (or of any other equilibrium 
phase transition) the preceeding density functional theory has to be im­
plemented with a set of approximations which allow Eqs. (8-9) to be 
evaluated explicitly. Usually one starts from an approximate but fairly 
acaurate theory of one of the phases and uses the density functional 
theory to compute the thermodynamic properties of the other phase. All 
density functional theories of freezing known today are liquid-phase based 
theories which take into account t~e considerable progress realized in the 
past decade by liquid state theory in the theorteica1 study of 
thermodynamic and strucutra1 properties of liquids. All these theories 
coincide in approximating the unknown direct correlation function of the 
solid by the direct correlation function of some uniform reference liquid, 
an idea which goes back to a similar approxima6ion of the total 
correlation function by Kirkwood and Monroe. 5 , These theories differ 
mainly by: 1) the choice of reference state in, and the approximation of, 
Eq. (3); 2) the determination of the local density p(.r.); and 3) the 
10catioy of the phase transition point. For instance, a first group of 
authors 2 has considered the coexisting liquid as the reference state to 
be used in Eq. (3). Since for a strongly first order transition such as 
freezing, where the density change is considerable, this procedure usually 
requires the inclusion of the partly known higher order terms in the 
expansion of the free energy of the solid around the free energy of the 
coexisting liquid. The status of thes!3higher order terms is as yet not 
well known. A second group of authors attempts to avoid the rapid 
density changes characteristic of the solid phase by reformulating the 
theory in terms of a coarse-grained or weighted density with smoother 
variations. It then is a nontrivial task to £ind a physically reasonable 
weighting funtion. A third group of authors1 has attempted to optimize 
the choice of the reference state by scaling the structure factor of the 
reference liquid to the structure of the solid or by minimizing the free 
energy of the solid with respect to the density of the reference liquid. 
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Broadly speaking all these theories have succeeded in describing the 
freezing transition reasonably well. Many questions have, however, been 
left open (e.g. the convergence of the density and the Fourier expansions 
used) and these should be investigated in detail before the respective 
merits of the different theories can be assessed. 

A point which has been completely overlooked until now concerns the 
problem of thermodynamic inconsistency (i.e. the different results which 
are obtained when computing the same quantity via different routes within 
a given theory) which should be worse in the solid phase than in the 
liquid phase where it is already considerable. 

THE FREEZING OF UNCHARGED HARD SPHERES 

To illustrate the results we consider first the freezing of a system 
of (uncharged) hard spheres. This model can only mimic the repulsive 
potential of realistic systems but has the enormous advantage that its 
freezing transition has been thoroughly studied by computer 
simu1ations,2,lS while its fluid phase can be adequately described by 
the Percus-Yevick equations for wh~ch an analytic solution for the direct 
correlation function is available. The hard sphere system is also an 
outstanding reference system for the study of more realistic systems whose 
freezing transition is presumably monitored by some underlying hard sphere 
transition. We will describe here the results of Baus and Colot11 ,14 
based on Eqs. (1,3,6,7). The direct correlation function of the solid is 
approximated by that of some reference Percus-Yevick hard sphere fluid: 
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a being the hard sphere diameter) for the fluid, bcc and 
fcc phases of the hard sphere system. 14 



whose density, PR' is determined in such a manner that for each 
solid of average density P the position of the main peak of the 
structure factor of the reference fluid coincides with the smallest 
nonzero reciprocal lattice vector of the solid of density p. The 
density of the solid is parametrized by a set of Gaussians: 

(11) 

centered around the lattice sites, {~j}' of a given crystal structure. 
Combining Eqs. (10-11) with Eq. (3) tfie free energy of the solid can be 
worked out analytically as a function of the inverse width, Q, of the 
Gaussians of Eq . (11). Minimizing the free energy with respect to Q 

the only variational parameter of the problem, we obtain the results14 
shown in Fig. 1. It is seen there that the bcc hard sphere solid is 
metastable relative to the fluid while the fcc solid is stable at high 
density (up to the density of close packing) and metastable at low density 
(up to a bifurcation point below which the solid becomes mechanically 
unstable). The hard sphere phase diagram in the pressure-density plane 
can be obtained from Eq. (6) and thl tie-line can be constructed from Eqs. 
(8-9) using Eqs. (6-7). The result 4 for the fluid-fcc solid 
coexistence is compared to the simulation results 2 ,15 in Fig. 2. There 
is a systematic overestimation of the densities and of the pressures 
already inherent in the Percus-Yevick approximation. 14 Some of the 
numerical details are given in Table 1. 
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Table 1. Characteristics of the hard sphere freezing transition. 

~ (fluid) ~ (solid) Pp/p (coex) (sF-sS)/kB 

Theory11 0.567 0.520 16.2 1.36 

Simu1ations2 0.545 0.494 12.4 1.16 

s=entropy per particle 

THE FREEZING OF CHARGED HARD SPHERES 

In view of the success obtained for the hard sphere system one is 
tempted to consider also the extremely opposite case of the one-component 
plasma. Unfortunately no analytical expression for the direct correlation 
function of this system is as yet available and one usually considers a 
one-component plasma of charged hard spheres together with an additional 
constraint which fixes the hard sphere diameter and allows the system to 
mimic the one component plasma of point particles (OCP). This correspon­
dence can only be imperfect since some of the intrinsic discontinuities of 
the charged hard sphere system can Qever be completely removed. In the 
fluid phase this method works well1b as far as the computation of the 
thermod~~ic properties (which are continuous) are concerned. We have 
extended the previous freezing theory to the case of a system of 
charged hard spheres embedded in a neutralized background. The fluid 
phases were described within the mean spherical approximation using the 
analytic direct correlation function obtained by Palmer and Weeks. IS 
The remaining steps are the same as for the neutral hard spheres using 
e.g. Eq. (11). The bcc solid was found to be always metastable leading to 
the fluid-fcc melting line shown in Fig. 3. This result is somewhat 
surpr~s~ng since the system remains a hard core system crystallizing into 
a fcc solid even for strong Coulomb coupling parameters. It is also seen 
from Fig. 3 that it may be very difficult to draw conclusions about the 
one component plasma of point charges from the charged hard sphere 
plasma. Two of the routine conditions usually imposed on the charged hard 
sphere system in order for it to mimic the one component plasma (e.g. 
Gillan's condition19 : g(r=a)=O or Singh's condition2U : «r=O)= 
~.33r) are indeed seen from Fig. 3 to lead to very different 
temperature-density relations which make a determination of the phase 
transition point of the one component plasma quite arbitrary. Some of 
these conclusions could, however, also result from the inadequacy of the 
mean spherical approximation in some of the regions of the phase plane 
(e.g. at low densities). Needless to say, it would be extremely useful to 
dispose of a genuine (continuous) one-component plasma direct correlation 
function. Last but not least, some of the approximations underlying the 
freezing theory could also be responsible for the unexpected abs~nce of a 
stable bcc phase but, at present, this remains an ,open question. Z1 
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A closely related calculation has been performed by Barrat22 who 
considered a mixture of oppositely charged hard spheres of equal diameters 
within the mean spherical approximation (i.e. the restricted primitive 
model of a molten salt). As shown in Fig. 4, this time the theory of 

Fig. 3 
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The phases of the charged hard sphere one-component plasma 
in the inverse temperature (1)-density (~) plane. l7 
Also shown (dotted lines) are the ~-1 relation~ following 
from the conditions used by Gillan 9 and Singh 0 to map the 
charge~6hard sph3re system on~o the point chargI/~ystem. As 
usual, ~ = ~ a p and 1 = fie la, while r = 21~ . 

freezing predicts a structural phase transition in the solid phase from a 
disordered fcc structure at high temperatures where the sphere behave as 
uncharged to an ordered cesium chloride structure (a bcc lattice with the 
cations and anions on two sc sublattices) at low temperatures. The 
absence of the expected NaGl structure can presumably again be ascribed to 
the failure of the mean spherical approximation at low temperatures. 
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Fig . 4 

0 .7 

FCC structure 

O.S 

0.5 

0.4 
Liquid 

o 10 20 30 40 

The three stable phases of a system of oppositely charged 
hard spheres of equal diameter in the density (~) 

inverse temperat~2e (~) plane as predicted by the 
freezing theory. (The symbols have the same meaning as 
Fig. 3). 

CONCLUSION 

From the above it is clear that a quantitative description of the 
liquid-solid coexistence is possible within the density functional theory 
of freezing. In its present form the theory seems, however, to favor the 
freezing into compact lattices and the major open question concerns, 
therefore, the correct description of the relative stability of the 
different crystal structures. 
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ATOMIC STRUCTURE OF AN IMPURITY NEON IN LIQUID 

METALLIC HYDROGEN 

INTRODUCTION 

Junzo Chihara 

Department of Physics 
Japan Atomic Energy Research Institute 
Tokai-mura, Ibaraki 319-11, Japan 

The determination of the electronic structure of isolated atoms and 

molecules is easily performed within the framework of the density 

functional formalism. On the other hand, it is a difficult problem to 

calculate the electronic structure of an atom immersed in a liquid metal 

or a high-density plasma, since this contains two problems: combination of 

the 1iquid- and the atomic-structure. The "external problem" is to 

determine e1ectron- and ion-density distributions around the impurity in 

the whole space, while the other "internal problem" is to calculate the 

atomic structure under this circumstance. There have been a number of 

studies on this problem in relevance to the inertial confinement fusion 

and the study of stellar interiors (for example, Skupsky 1980, Davis and 

Blaha 1982, Perrot and Dharma-wardana 1985, Fujima et al. 1985). A 

similar problem occurs in treating core-level shifts and Auger relaxation 

energies of an impurity in a solid metal (Williams and Lang 1978, Lang and 

Williams 1979). These calculations have shown that the excitation 

energies can be successfully obtained from the total energy difference 

between the initial and final states in the density-functional theory. 

Thus, we can expect that the electronic structure of an atom in a plasma 

may be calculated within the framework of the density-functional theory. 

When a liquid metal or a plasma is treated as an electron-ion mixture, 

the ionic charge and the electron-ion interaction must be given 

beforehand. In laser-compressed plasmas, for example, the ionic charge 

and the electron-ion interaction vary over a wide range as the temperature 
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and density change. It is a difficult problem to determine these 

quantities at a given temperature and density. On the other hand, if a 

liquid metal or a plasma is treated more fundamentally as a nucleus­

electron mixture, the ionic charge and the electron-ion interaction ought 

to be determined without any information further than the bare inter­

particle potentials (Chihara 1985). Furthermore, the electronic bound 

energy levels around a nucleus may be calculated from this model. 

FORMULATION 

Here we consider a liquid metal or a plasma to be a mixture of NI 

nuclei with atomic number ZA and Ne electrons: the nuclei behave as 

classical particles and the electrons constitute a quantum liquid. Let us 

single out one nucleus and fix it at an arbitrary position. Note that 

fixing a nucleus in the mixture is equivalent to imposing an external 
2 potential veN(r)=-ZAe /r on the mixture of (NI-l) nuclei and ZANI 

electrons to induce density distributions, nI(rIN) and ne(rIN). In 

order to describe this inhomogeneous system, we take as a reference system 

the mixture composed of noninteracting ions, which have ZB core-electrons 

around each ion with density distribution n'b(r) and Z(NI-l)+ZA free 

electrons, where ZaZA-ZB is the ionic charge of noninteracting 

ion. The values, ZB and n'b(r), should be determined self-consistently 

with the condition mentioned below. Hereafter, this reference system will 

be referred to as the average ion model. 

The intrinsic free energy of this reference system can be written as: 

where fbe[n'b(r)] means the free energy of bound electrons in an ion 

and'~O[ne] means the intrinsic free energy of free electrons with 

A=(hfi/2~m)1/2. On the basis of this average ion model, the 

thermodynamic potential 0 can be expressed as 

(1) 

Here, ~nt is the interaction part of the intrinsic free energy of this 

system, and vII is the ion-ion potential; ~e and ~I denote the chemical 

potentials of electrons and ions, respectively. The density functional 

formalism gives an expression for the effective external potential which 
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determines the electron distribution around the nucleus in terms of the 

interaction part of the intrinsic free energy (Chihara 1984a): 

eff( ) veN r 
+ c5~nt int 

veN(r) c5n (r) - ~e 
e 

(3) 

Therefore, the density distribution around the fixed nucleus is determined 

by solving the wave equation with respect to this potential in the form 

I 0 I eff b I v I n (r N) = n (r v N ) = n (r N) + n (r N) e e e e e (4) 

which consists of bound-electron and valence-electron parts. Here, 

(5) 

(6) 

Equation (4) assumes that the bound-electron distribution n'b(r) of a 

surrounding ion in the average ion model should be identical to the 

bound-electron distribution around the nucleus at the origin: 

, 
~(r) (7) 

since we can choose any nucleus in the liquid metal as the fixed one, 

which should accumulate the same bound-electron distribution. As a 

consequence, the bound-electron number ZB of a surrounding average ion 

is determined from the relation: 

o 
In b dl/(exp[P(€n-~ »)+1) "'€ oun '" e 

With this choice of ZB and n'b(r), the average ion model becomes 

self-consistent with the premise at the beginning, by choosing the 

chemical potential ~Oe to satisfy 

lim n (rIN) = ~ I l/(exp[p(€.-~O»)+l) = n~ 
r~oo e i€valence ~ e 

(8) 

(9) 

which states that the electron-density distribution reduces to the uniform 

electron density at large distances, thus satisfying the neutrality 

condition. This condition leads to the determination of the chemical 

potential ~Oe' 
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At this point, we introduce two approximations: (i) the electron-ion 

interaction part of the chemical potential, Per(rlnrne), is approximated 

by the functional expansion with respect to the density deviations up to 

the second order; that is the hypernetted chain (HNC) approximation: 

(lla) 

(ii) the exchange-correlation potential for electrons in a liquid metal is 

represented by the local-density approximation to the bound electron and 

by the HNC approximation to the valence electrons: 

xc I P (r nIn ) = ee e 
b I e P (n (r N) + nO) xc e 

J C (Ir-r'l) 
( e) ee 6nv(r')dr - P nO + R = -~ e 

(lIb) 

Here cij(r) denotes the direct correlation function (DCF) (Chihara 

1984a). From Eq. (3), with these approximations, the effective potential 

for electrons around a fixed nucleus becomes identical to the effective 

electron-ion potential represented in the form (1985): 

(12)' 

Now, the bare electron-ion interaction is given in a self-consistent 

manner in the form 

veI(r) = veN(r) + Ivee(lr-r' l)n~(r'lr)dr' + pxc(n~(r) + n~) - pxc(n~). 
(13) 

Thus, we find that the treatment of a liquid metal as a nucleus-electron 

mixture in the average ion model is shown to lead to the ion-electron 

mixture model (Chihara 1978, 84b) , where the atomic structure of the ion 

and the electron-ion interaction are determined in a self-consistent way. 

This formulation can be easily extended to treat a liquid metal 

composed by two kinds of nuclei and electrons. This set of integral 

equations turns out to be integral equations to calculate the electronic 

structure of an impurity in liquid metals or plasmas by taking the zero 

limit of impurity density (Chihara 1986b). In this way, we obtain the 

effective electron-impurity potential, which determines the electron 

density distribution and' the electronic structure of the impurity immersed 
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in a liquid metal in the form: 

eff -
velmp(r) = velmp(r) - relmp(r)/P (14) 

r I (r) = Jc (Ir-r' I)Snv(r' I Imp)dr' e mp ee e 

(15) 

Here, it contains the bare electron-impurity potential as 

bOO + ~ (n (rllmp) + n ) - ~ (n) . xc e e xc e (16) 

The ion distribution around the impurity involved in (15) must be 

determined self-consistently in association with the following equations: 

where 

- 2 
eff ZImpZle 

vllmp(r) - r - rllmp(r)/P 

rllmp(r) 5 Jcle(lr-r' I)Sn;(r'IImp)dr' 

+ JCII(lr-r' I)SnI(r' I Imp)dr' 

(17) 

(18) 

(19) 

The ionic charge of the impurity is determined by the bound-electron 

distribution around the impurity 

21 = ZI - Jnb(rllmp)dr . (20) mp mp e 

In Eqs. (15) and (19), the direct correlation functions, Cee' CII and 

CeI' are those of a liquid metal without impurity and are given 

beforehand by solving the QHNC equation at given temperature and density. 

APPLICATION TO IMPURITY NEON IN LIQUID METALLIC HYDROGEN 

Let us apply this formulation derived above to the problem of the 

electronic structure of an impurity Ne atom immersed in liquid metallic 

hydrogen (LMH). Density nO 5 neO = nPO and temperature will be specified 

by the plasma parameter r 5 pe2/a and the Wigner-Seitz radius rs 5 a/aB 

with a = (3/4~nO)1/3. In this calculation, rand rs are taken in such a 
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high density region that the electrons in the system can be treated as 

in a fully degenerate state. In the density-functional formalism, the 

atomic structure of the impurity can be calculated without specifying 

positions of ions around it, provided that the electron- and ion-density 

distributions, geImp and ~Imp' are determined to be self-consistent 

with the core state of the impurity. When an impurity with atomic number 

ZImp in the LMH has ZB bound electrons in the environment, the 

impurity ion with ZImp charge accumulates surrounding electrons, and 

repulses protons and yields a dip around it. Thus, the central impurity 

charge ZImp is neutralized by the dip in the proton distributions and 

the accumulated electrons, satisfying the relation 

ZI = -nPO J[g I (r) - l]dr + nOe J[g I (r)-l]dr mp p mp e mp (21) 

In consequence, the calculation of core levels of the impurity in the LMH 

is reduced to the problem of how we can determine these density 

distributions, geImp(r) and gIImp(r), to be consistent with its core 

state, in addition to the usual problem to construct a conventional 

self-consistent potential for the bound electrons. Our formulation 

provides a method to calculate the atomic structure of an impurity from 

this viewpoint. In the density-functional formalism, the atomic structure 

of an impurity can be calculated without specifying positions of ions 

around it as was necessary for the procedure used by Fujima et al. (1985), 

provided that the electron- and ion-density distributions, neImp(r) and 

nIImp(r), are given. 

For the sake of computational convenience, a set of Eqs. (14) - (19) 

are rewritten in the forms of integral equations for the DCF's, CeImp 
and CpImp 

(22) 

CpImp (r) = exp[-pv I (r) + r I (r)] - 1 - r I (r) . p mp p mp p mp (23) 

Here the Fourier transforms of reImp(r) and rp1mp(r) are obtained in 

terms of DCF's and the density response function of noninteracting system, 

Xo . Q. 
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reImp(Q) = {CeImp(Q)-nO[CeImp(Q)Cpp(Q)-CpImp(Q)Cep(Q)]}/ 

D(Q) - CeImp(Q) 

o 
reImp(Q) = {CpImp(Q)-nOXQ[CpImp(Q)Cee(Q)-CeImp(Q)Cep(Q)]}/ 

D(Q) - CpImp(Q) 

(24) 

(25) 



with 

o 2 0 
D(Q) = [l-nOC (Q)l[l-nOC (Q)xQl - Inoc (Q)I XQ pp ee ep 

(26) 

where Cpp(Q), Cep(Q) and Cee(Q) are given beforehand by solving the 

integral equations for a LMH without impurity (Chihara 1984b, 1986a). 

Thus, we can calculate CeImp(r) and CpImp(r) by following the method 

to solve the quantal HNC equation with the use of the fast Fourier 

transform algorithm (Chihara 1979). The atomic structure of an impurity 

Ne in the LMH is now calculated in the self-consistent potential, 

2 J b -ZI e /r + v (Ir-r' I)n (r'IImp)dr' mp ee e 

(27) 

which takes account of the effect of surrounding ions and electrons 

through reImp(r). With the use of this potential, the wave equation 

is solved by a modified Herman-Skillman program in the iterative process 

to obtain CeImp(r) and CpImp(r). In the present calculation, the 

local-density approximation for the exchange-correlation potential is 

taken to be of the form proposed by Gunnarsson and Lundqvist (1976), 

_2 ___ (1 + 0.0545 r • In(l + 11.4/r ») Ry. 
~ar s s (28) 

s 

Using this approach we determined the equilibrium ionic state of an 

impurity Ne atom in LMH, at r=2 and rs=l. Under this circumstance, 

an impurity Ne is shown to be ionized to Ne6+. Here it is interesting 

to note that there are two sets of proton- and electron-density distribu­

tions, deImp and gpImp' around the Ne ionized to have six valence 

electrons as displayed in Fig. 1. The first set of density distributions 

show that ZImp (the ionic charge of impurity) is screened by attracting 

2.66 electrons and by pushing away 3.34 protons around it, satisfying (21) 

is such a way that 6=-(-2.66) + 3.34 while the other set of charge distri­

butions satisfy the neutrality condition (21) as 6=-(-4.86) + 1.14: the 

former set yields a stronger screening effect than the latter, as shown by 

Fig. 2. Therefore, the bound energy levels of Ne ion screened by protons 

and electrons according to the former set are €ls = -58.34 Ry and 

€2s -0.78 Ry, which are consistent with ZB=4 and yield the stable 

ionic state. On the other hand, the impurity Ne screened by charge 

distributions given by the latter set has three bound levels: the occupied 

€ls = -64.56, €2s = -4.00 and the unoccupied €2p = -2.51 Ry. 

The 2p level becomes shallower as surrounding electrons fall into this level 
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and eventually disappear. That is, the latter set of solutions for the 

integral equations are physically unstable and does not exist as the 

equilibrium state of ionized Ne. 
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I 
I 
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: , , , 

I , 
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1.0 \ ~-~.~==~~ \j ,/,1/--------

--0.0 1.0 3.0 

ria 
Fig. 1 Two sets of the electron- and proton-distributions around ions 

with ZB=4, normalized by the density nO: the full lines 
denote gelmp(r) and gplmp(r) around the stable ion (the 
occupied €ls=-58.34 Ry and €2s=-O.78 Ry) in the 
equilibrium with the environment and the dashed curves represent 
those around the unstable ion with three bound levels (the 
occupied €ls=-64.56, €2s=-4.00 and the unoccupied 
€2p=-2.5l Ry) in LMH with r=2 and rs=l. The former 
yielding a stronger screening to the ion, produces a shallower 
effective potential for electrons as shown in Fig. 2. 

Next, let us calculate the frequency shift of the Lyman a line 

arising from a hydrogen-like Ne (ZB=l) due to the polarization of 

electrons and ions in LMH with r=2 and rs=l: 

~E ~Efree - ~E 
La = ls-2p ls-2p (29) 
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where ~Els-2p denotes the frequency of the Lyman Q line in LMH and 

~Efree = 100-25 Ry is that of a free hydrogen-like Ne. The electron- and 

proton-density distributions around a hydrogen-like Ne are shown in Fig. 

3, which reveals that gpImp(r) and geImp(r) around it are different in 

the cases whether the bound-electron in the hydrogen-like Ne is in the Is 

Fig. 2 

r /0 
1.0 3.0 

Two effective potentials acting on electrons around the ions, 
along with the bound levels: the full curve is that around the 
stable ion, and the dashed line is that around the unstable ion 
in LMH with r=2 and rs=l. The effective bare electron-ion 
potential veImp (dash-dotted line) is compared with the pure 
Coulombic potential (dotted line). 

state (fls = -76.19 Ry) or in the 2p state (f2p = -7.16 Ry), since the 

electron-impurity interaction given by (16) depends upon nbe(rIImp). It 

should be noticed that in the density-functional theory, the frequency of 

Lyman Q line cannot be given by the difference between f2p and 

fl s ' but it must be calculated from the difference between the total 

energies of these two states including the contribution of ions and 

electrons in LMH: the reason is that this theory can provide the exact 

total energy, but cannot yield real energy levels of the system. 
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To this end, Slater (1974) suggested that the difference in two total 

energies between the initial and final states of the transition can be 

approximately calculated from the difference between the corresponding 

one-electron energies in a transition state, which is defined as a state 

in which the occupation numbers are halfway between those of the initial 

and final states. In the present case to calculate the Lyman Q frequency, 

the transition state is realized as a hydrogen-like Ne with the occupation 

density distributions around the hydrogen-like ion with the transition 

state in LMH are calculated and shown in Fig. 3, together with those 

around the hydrogen-like ions with nls=l and with n2p=1. In Fig. 3, 

the curves of these density distributions around the ion in the transition 

state lie between those around the other types of ions: one has an 

electron in the bound state of €ls = -76.19 Ry and another has in the state 

For this transition state of a hydrogen-like Ne in LMH of €2p = -7.16 Ry. 

with r=2 and rs=l, 

energy levels, €ls 

evaluate the Lyman Q 

a set of integral equations, (22) - (26), yield the 

-76.88 Ry and €2p = -5.63 Ry. Therefore, we can 

frequency: ~Els-2p = 76.88-5.63=71.25 Ry, and 

consequently shift of the Lyman Q is ~eLa = 3.75 Ry for Ne in LMH 

with r=2 and rs = 1. Here it should be marked that this value takes 

account of the relaxation effects of the surrounding electrons and ions in 

this transition process by using Slater's transition state. 

Fig. 3 
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The electron- and proton-density distributions around ions with 
nls=l (full lines) and with n2p=1 (dashed lines) and those 
around the ion in the transition state with nls=1.2 and 
n2p=1.2 (full circles) in LMH with r=2 and rs=l. 



A continuum spectrum is formed when free electrons in LMH fall into 

bound states of an impurity Ne, and a difference between zero kinetic 

energy of a conduction electron and €ls provides the edge of the continuum 

spectrum. A polarization of electrons and protons in LMH around Ne causes 

a shift of the edge relative to the edge of continuum spectrum of a 

hydrogen-like Ne in the vacuum. Here we calculate the shift of the edge 

arising from the transition from Ne lO+ to Ne9+ in LMH with the use of 

(22)-(27). The transition state corresponding to this problem is defined 

as the state with the occupation number nls=1.2, which leads to the 

problem of solving (22)-(27) for a Ne ion with ZB=0.5 in LMH. As a 

result, the curves in Fig. 4 display the electron- and proton-density 

distributions around the Ne ions with ZB=O, ZB=l and ZB=0.5 in LMH. 

specified by r=2 and rs=l. Under this circumstance, the Is level of 

Ne in the transition state becomes -80.05 Ry together with two other 

unoccupied levels; €2s=-7.7l Ry and €2p=-7.04 Ry, while the effective 

potential for electrons around a bare Ne nucleus can possess three bound­

energy levels; €ls=-8l.68 Ry, €2s=-8.35 Ry and €2p=-7.95 Ry. 

Fig. 4 
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r /0 

1.0 3.0 

The electron- and proton-density distributions around ion in the 
transition state with nls=1/2 (full circles) in LMH with 
r=2 and rs=l, compared to those around a bare Ne nucleus 
(full lines) and around an ion with nls-l (dashed line). The 
density distributions of the Is electron (dashed lines) and the 
electron in the transition state (full circles) are also plotted 
in the normalized form nbe(r)/nO' 
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Table 1. Edge shifts of continuum spectrum from Ne lO owing to the 
polarization effect of LMH, and the values of bound-energy level 
€ls in units of Ry. At the densities, r s=0.4 and 
r s=0.2, there is no bound state except fl s . 

(e/cm3)T(K) 1.58xl05 3.l6xl05 7.90xl05 1.58xl06 

(rs=0.2) (r=lO) (r=5) (r=2) (r=l) 

fl s -28.09 -28.76 -30.50 -32.61 

2.0lxl026 71.91 71.24 69.50 67.39 

(rs=0.4) (r=5) r=2.5) r=l) 

fl s -54.77 -55.15 -56.19 

2.52xl025 45.23 44.85 43.81 

(rs=1.0) (r=2) 

€ls -80.05 

1. 6lxl024 19.95 

€2p=-7.95 Ry. Now, the edge shift in reference to a free hydrogen­

like Ne is determined as 100-80.05=19.95 Ry for LMH with r=2 and 

rs=l. In the same procedure, the edge shifts of the continuum spectrum 

from Ne due to the polarization effect of the surrounding electrons and 

protons are calculated for LMH at the variety of densities and 

temperatures, and the results are tabulated in Table 1. It should be 

emphasized that in the higher-density region such as r s=0.4 and 0.2, 

there is no bound energy level except Is level. Therefore, it is not 

possible to observe the Lyman a line in the high-density region. In 

addition, the table suggests that the edge shift is sensitive to the 

density variation rather than to the temperature variation of LMH. 

DISCUSSION 

In some atomic structure calculations in plasmas, it is assumed that 

the effective potential acting on the bound electrons around the nucleus 

is different from that acting on the conduction electrons: in the former 

potential, the contribution of the bound electrons to the screening is 

discarded in order to avoid the self-interaction of a bound electron 

(Skupsky 1980, Davis arid Blaha 1982, Cauble et al. 1984). In such a 

326 



treatment, there appear an infinite number of bound levels for a 

hydrogen-like Ne in LMH, for example, at any density and temperature. 

Therefore, these methods might be inappropriate, especially when applied 

to the calculation of the Lyman a line which relates to high 2p 

levels. 

At this point, it should be remembered that in the density-functional 

formalism the effective potential is determined to be common to both bound 

and conduction electrons, and that the self-interaction should be 

cancelled by the exchange-correlation potential to some extent. 

Furthermore, as mentioned before, the density-functional theory states 

that the atomic structure of an impurity in the LMH is determined as a 

functional of electron- and proton-densities around it. That is, only 

with the use of the pair correlations, gep(r) and gpp(r), the total 

energy of the system can be evaluated when they are calculated self­

consistently with the core-electron states. Thus, the frequency of Lyman 

a, for example, can be determined without specifying positions of 

surrounding ions, when only these pair correlations are given in the 

corresponding transition state, which can yield the difference of the 

total energies between ls and 2p states. 

In the present calculation, the HNC approximation plays the 

fundamental role. This approximation, when applied to the LMH, was 

examined and shown to give more accurate results than other approaches 

(Chihara 1986a). Also, it is powerful in the calculation of the atomic 

spectra of impurity in liquid metals as well as in solids to use Slater's 

transition state, which enables us to take account of the relaxation 

effects of the liquid structure for the excited states in core electrons. 

In the density-functional theory, the transition-state method is based on 

the relation: 

where ET is the total energy of the system and ni is the occupation of 

i-th level. This relation has been proved for the system of zero 

temperature (Janak 1978). On the other hand, Callaway and March (1984) 

discussed this relation for the finite-temperature system, which includes 

the case of LMH under present consideration. 

Also, it should be mentioned that the density-functional formalism, 

although being a static approach, can be taken as an appropriate method to 

treat the atomic structure in a liquid metal, where the electron 

temperature is regarded as at zero temperature, because the local order of 

a liquid is quite similar to that of a solid, in which the atomic 

structure can be calculated successfully from the density-functional 

theory (for example, Williams and von Barth 1983). It should be mentioned 
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that our method can be applied to the hydrogen system in the region where 

the electrons are in a partially degenerate state including the classical 

limit, although our calculation has been restricted to the region where 

the electrons in LMH can be approximated as being in the fully degenerate 

state. 
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1. INTRODUCTION 

In the last few years there has been a large amount of exact analytic 

results for classical two-dimensional systems with logarithmic interactions. 

These results concern both bulk and surface equilibrium properties. They 

are quite interesting for conceptual and practical reasons. 

At a conceptual level, the two-dimensional (2D) models with -In(r/L ) 
s 

potential do have some essential properties which are equivalent to those 

of the three-dimensional (3D) charged systems with the usual l/r potential. 

These common properties involve the screening effects and the behavior of 

the correlations at large distances. They are direct consequences of the 

harmonic nature of the -In(r/L ) and l/r potentials, which are the solu-s 
tions of the d-dimensional Poisson equation 

~v (r) + S(d) o(t) c o (1) 

for d = 2 and d = 3 respectively (S(d) is the area of the unit sphere in 

d dimensions). Therefore, the exact solutions obtained for the 2D models, 

play an important role in understanding real 3D Coulomb systems. 

In addition to their conceptual interest, some of these 2D models 

might describe physical systems. For instance, in polyelectrolytes at 

high densities, there are long charged molecules which are all parallel 

and interact via a logarithmic potential. Another example is a system of 
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vortices in the super-fluid liquid Helium, which also interact via a loga­

rithmic potential. 

The main purpose of this short review is to illustrate the conceptual 

interest of the solvable models through the following few selected examples: 

- The inhomogeneous one-component plasma (OCP) in one space-direction 

- A line of adsorption sites in an OCP 

- The two-component plasma (TCP) on a lattice. 

For each example, we briefly describe the model and give the basic outlines 

of the exact calculations. Sum rules and characteristic features of 

Coulomb systems are discussed on the basis of the exact solutions. The 

examples mentioned above are presented in sections 3, 4, and 5. In 

section 2 we briefly recall exact results for the homogeneous infinite OCP. 

Concluding comments are given in section 6. 

2. THE HOMOGENEOUS OCP 

2 • 1 The Model 

The model is nothing but the 2D version of the well-known OCP in 

three dimensions. One has identical point particles with charge e and 

number density p. These particles are embedded in a uniform and rigid 

neutralizing background with charge density -ep. The particles interact 

via the two-dimensional Coulomb potential 

(instead of e2/r in three dimensions); L 
s 

which fixes the zero of vCr). 

2 2 vCr) = -e v (r) = -e In(r/L ) 
c s 

is an irrelevant scale length 

The excess equilibrium properties of the homogeneous infinite system 

only depend on the coupling constant r = Se2 where S is the inverse tempe­

rature S = l/kBT. These properties are quite similar to those of the 3D 

OCP. In particular, the system is in a fluid phase for r < r and in a 
m 

pseudosolid phase for r > r (in two dimensions there is no translational 
m 

lon~-range order); the melting value r is close to 140. 
m 

2.2 Free Energy and Correlations at r = 2 

For the special value of the inverse temperature S = S* = 2/e2 such 

that the coupling constant is r 2, the equilibrium quantities can be 

computed exactly. The starting point of the calculation (and of all the 

exact calculations presented in this review) is the identity 
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exp[-S*v(r .. )] 
1J 

2 2 1 z. - z.1 /L 
1 J s 

(2) 

where z. is the complex number z. = r. exp(ie.) 
J -+ J J J 

and (r., e.) are the polar 
J J 

coordinates of r. in a given frame. The simple 
J 

algebraic expression (2) of 

the two-body Boltzmann factor allows to rewrite the N-body Boltzmann factor 
1 

in terms of a Vandermonde determinant. The free energy and the correla-

tions2 are then computed by using techniques introduced in the theory of 

random matrices3 ,4. 

The computed distribution functions are invariant under translations 

and rotations: this rigorously shows that the phase is fluid at r = 2 in 

agreement with the estimated value of r 5,6 The correlations are found 
m 2 

to decay like Gaussians at large distances Let us point out that this 

behavior was not expected. Indeed one usually believed that the correla­

tions in Coulomb systems decay exponentially. These usual findings are 

mainly based on an analysis of the analytic properties of the structure 
7 factor in the complex plane. The exact solution obtained at r = 2 defi-

nitely shows that this analysis is misleading and can only give some in-

sights about the exact behaviors. 
8 

In fact, as indicated by a recent 

conditional theorem 
9 the correlations in Coulomb systems should decay , 

* faster than any inverse power when they are monotonic. The exact result 

at r = 2 does exhibit this property. 

3. THE INHOMOGENEOUS OCP IN ONE DIRECTION AT r 2 

3. 1 The Model 

We now consider an inhomogeneous OCP where the background density is 
-+ 

no longer uniform and varies in one space-direction only, i.e. PB(r) = 

PB(x). The shape of PB(x) is arbitrary with the only restriction 

PB(±OO) = P1,Z' Furthermore, the particles are subjected to an external 

potential V (x) which also depends on the x-direction only. The system 
ext 

is translationally invariant in the y-direction. 

At r = 2, the one and two-body densities of the particles have been 

computed exactly by Alastuey and Lebowitz 11 In the next subsection the 

main steps of the calculation are briefly described. 

* 10 There are rigorous constructive proofs showing that the correlations 

are bounded by a decreasing exponential in the high-temperature limit 

(Debye-Huckel regime). These proofs do not cover the whole monotonic regime. 
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3.2 The Method of Calculation 

One starts with the finite system described by the Canonical Ensemble. 

The background density PB(r) and the external potential Vext(r) only depend 

on the radial coordinate r. Thus the finite system has the circular sym­

metry. 

At r 2, the N-body Boltzmann factor becomes 

cst x exp {-S* I [VB (r.) + Vext (rJ.) l} 
j=l J 

0 0 
2 

zl zN 

x Det (3) 

N-l N-l 
zl zN 

where the identity (2) and the circular symmetry have been used. VB(r) is 

the one-body potential created by the background. 

(n) + + 
When computing the n-body density PN (rl, ••• ,rn) of the particles, 

one/has to integrate (3) upon the angles 6. with n < j < N. These angular 
J 

integrations are performed uSing the same trick as for the homogeneous 
2 system because the prefactor 

exp {-S* I [VB(r.) + V t(r.)l} 
. 1 J ex J J= 

(4) 

does not depend on the angles. Expanding the Vandermonde determinant in 

(3) with respect to all the permutations of (l, ••• ,N), and using the ortho­

gonality properties of the functions exp(in6.), one finds ll 
J 

n 

exp {-s* I [vB(r.)+v t(r.)]} Detl~(z. z.)1 
j=l J ex J ~ J n 

(5) 

K (z) is a polynomial in Z of order N and 1~_(z.z.)1 is an n by n determin-
-"N -"N ~ J n 
ant (z. is the complex conjugate of z.). 

J J 

The final step of the calculation consists of controlling the thermo­

dynamic limit of (5). This is achieved by introducing a suitable 

"neutrality" radius R~l. The n-body density of the inhomogeneous infinite 

system described in §3.l is obtained through 
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(6) 

A 

(X is the unit vector in the x-direction). The two successive limits in 
A 

(6) are taken by staying at finite distances of ROx and by keeping fixed 

the shapes of the background density and of the external potential in the 

vicinity of RO' 

3.3 Explicit Functional Representations of the One and Two-Body Densities 

Using the method exposed in §3.2, one finds the following integral 
f h bd d .11 representation or t e one- 0 y ens1ty 

00 

x J dx exp (2xsn) / [1j! < (s) + 1j!> (s)] • (7) 
_00 

H(x) is the Heavyside function, H(x) = 0 for x < 0, H(x) = 1 for x > o. 
¢B(x) is the electrostatic potential created by the charged distribution 

-e[PB(x) - P1H(-x) - P2H(x)]. 1j!«s) and 1j!>(s) are themselves defined by 

integral representations, 

o 2 "< (,) = {: dv exp [-2,p, v + 2v';' - S*e¢B (v) - B'Vext (v) [ } 

1j!> (s) J dv exp [-27fP2V 2 + 2vsn - S*e¢B (v) - S*V (v) ] o ext 

(8) 

(2,T) The truncated two-body density, P (xl ,X2 ,y) 

is given by an expression similar to (7) 1, 

The expressions (7, 9) are functional representations of p(x) and 
(2,T) 

P (x1,x2,y) in terms of ¢B(x) and of Vext(x). They can be used for 

studying qualitative features of real charged plane interfaces. By adjust­

ing the shapes of the background density and of the external potential, one 
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can "simulate" a large variety of electrochemical and biological interfaces: 

charged, conducting or insulating walls, permeable or impermeable membranes, 

etc ••• The exact expressions obtained in these cases enable one to check 

sum rules, and to discuss the influence of PB(x) and of Vext(x) on the 

density profile and on the correlations. This exploitation of the general 

exact solution is illustrated in the next subsection where we consider in 

detail the case of a charged hard wall. 

3.4 A Special Case: The Charged Hard Wall 

We study the microscopic. structure of the semi-infinite system near 

a charged wall (located at x = 0) carrying the external surface charge 

The density profile, which has been first computed by Jancovici12 , can 

be obtained from the general expression (7) by taking11 PB(x) = 0 and 
2 

v t(x) ex 
f " d 12 
~n s 

= 00 for x < 0, PB(x) = PB and Vext(x) = -TIe ax for x > O. One 

00 

p(x) P - dt 2 h 
B liT TI 2aaB 

2 exp[-(t-xY2/aB) ] 

[1 + Erf(t)] 
(10) 

where aB is the mean interparticle distance in the bulk phase (far from 
1/2 

the wall), aB = l/(TIPB) ,and Erf(t) is the error function 

2 t 2 
Erf(t) = - J d!l exp(-s ) 

liTo 
(11) 

ea. 
also 

An electrical double layer with charge density e[p(x)-PB] builds in 

the interface near the wall, even when a = O. This is due to the asym­

metric nature of the model. For a = 0 the density profile is quasimono­

tonic with a single oscillation and a contact density p(O) smaller than 

PB (repulsive effect of the wall induced by the correlations). When a 

increases (respectively decreases), p(O) decreases (respectively increases). 

All these qualitative characters are also typical of 3D charged double 

layers. 

The density profile is expected to obey the overall neutrality sum rule, 

00 

a + J dx[p(x) - PB] = 0 , 
o 

13 and the contact theorem 
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p(PB,S) is the thermodynamic pressure of the bulk phase and ~¢ is the 

electrostatic potential drop across the double layer. The equation (IZ) 

states that the surface charge carried by the induced double layer per­

fectly screens the external surface charge. The equation (13) relates the 

thermodynamic pressure to the kinetic and radiative pressures. Both 

equations are well satisfiedlZ by the analytic expression (10). 

As well as the density profile, the correlations are given by simple 

. I .. f h f' 14 U' h ~ntegra representat~ons ~n terms 0 t e error unct~on. s~ng t ese 

integral representations, one explicitely checks the perfect screening sum 

rule, 

(14) 

15 and a particular form of the Carnie and Chan sum rule, 

(15) 

Unlike the correlations of the homogeneous infinite system, the cor­

relations in the direction parallel to the wall are found to have a long 

algebraic tail. More precisely, one obtains from the exact solution14 

(16) 

when y + 00, xl and xt fixed (c(x1,xZ) is some function of xl and xZ). It 

has been shown later 6 that this slow decay is in fact a universal feature 

of Coulomb systems near charged or dielectric hard walls. In the directions 

non-parallel to the wall, the decay of p(Z,T)(x1,XZ'y) is faster than any 
. 14 
~nverse power 

4. LINE OF ABSORPTION SITES IN AN OCP 

4. 1 The Model 

We consider an infinite OCP with a uniform background density p, in 

which adsorption sites are immersed. These adsorption sites are regularly 
+ 

spaced on a line at points R with cartesian coordinates (0, ml) in a given 
m 

(x,y) frame (m is a "relative integer and l is the distance between two 

neighbor sites). Each site m creates an adsorption potential V(a)(;) which 
m 
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acts on the particles. The corresponding Boltzmann factor has Baxter's 

stick form, i.e. 

++ 
1 + Ao(r-R ) 

m 

where A is a positive constant. 

(17) 

At r = 2, the thermodynamic quantities of the system and the distribu­

tion function of the particles have been computed exactly by Rosinberg et 
17 

al. . 

4.2 Excess Surface Free Energy at r = 2 

The excess surface free energy 6f(s) is defined as the difference (per 

unit of length) between the free energy of the present system and the one 

of the homogeneous infinite OCP described in section 2. The method of cal­

culation is based on the resummation of the perturbative expansion of this 

quantity with respect to A. The ingredients of this perturbative expansion 

are the Ursell functions of the homogeneous infinite OCP. The coefficients 

of the expansion are integrals over products of these Ursell functions by 

Mayer's factors (exp[-S*v(a)(;.)] - 1). According to (17), these Mayer's 
m J 

factors are merely proportional to delta-functions. Thus the integrals 

reduce to the 

particles are 

Gaussian form 

Ursell functions corresponding to configurations where the 

located on the sites R. Taking advantage of the simple 
m 

of these Ursell functions at r = 2, the discrete sums upon 

the various configurations are then performed in terms of Jacobi's theta 

function, 

00 

1 + 2 I 2 
exp(-tm )cos(2TIms) (18) 

m=l 

with t = TIPi2/2. Once the coefficient of each term of order An has been 

computed, it appears that the whole series in A can be resumed with the 

result 17 

2 1 
- ~i J ds In(l + A8(s,t» 

o 
(19) 

The other thermodynamic quantities relative to the system of the 

adsorbed particles can be computed from equation (19). In particular, the 

average number of adsorbed particles per site is given by 
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n 
a 

(20) 



A playing the role of the fugacity for the system of adsorbed particles. 

U " (19) "d" 1 b " 17 slng one lmme late y 0 talns 

n 
a 

1 8(t;;,t) 
AP b dt;; [1 + Ap8(t;;,t)] 

4.3 One and Two-Body Densities at r 2 

(21) 

The distribution functions of the particles can be computed exactly 

at r 2, by using a method similar to the one described in §4.2. Because 

of the singular form of the Boltzmann factor (17), the distribution functions 

become singular when one point coincides with a site. In particular, the 
-+ 

one-body density p(r1) can be rewritten as 

00 

[1 + A 

-+ -+ 
where Pc(~~) is a continuous function of r 1 in the whole space. 

one finds 

with zl = xl + 

F(t;;,zl,t) 

2 2 1 F(t;;,zl,t) 
-AP eXP(-IfPlzll ) x f dt;; [1+Ap8(t;;,t)] 

o 

iYl and 

1 [8(t;; 
tZ l tZ l 

=2 + Ifl ' t)8(t;; + Ifl ' t) 

+ 8(1;; 
tZ l 

- Ifl ' t)8(1; 
tZ l 

-Ifl,t)] 

(22) 

At r 2, 

(23) 

(24) 

Similar expressions can be obtained for the continuous part of the two-body 

density17 Let us emphasize that the present system is inhomogeneous both 

in the x,and y-directions (it is periodic in the y-direction with period l). 
Therefore the integral representation (23) cannot be obtained from the ge­

neral expression (7) which is specific to systems invariant under transla­

tions in the y-direction. 

4.4 Discussion 

The exact expressions described in §4.2 and §4.3 are useful for dif­

ferent purposes. First, one can check and illustrate thermodynamic iden­

tities and sum rules relative to the system of adsorbed particles. For 
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instance the thermodynamic expression (21) of n does coincide with the 
a 

microscopic expression 

n 
a 

-+ 
Ap (R ) 

c m 
(25) 

computed from (23), as it should17 • Furthermore the compressibility derived 

from 6f(s) is simply proportional to the integral over the pair correlation 
(2) -+ -+ -+ -+ 

function (p (R ,R ) - P (R ) P (R ) of the adsorbed particles, as for a c m n c m c n 
system with short-range forces l7 • 

The screening rules associated with the Coulomb nature of the system 
, 17 

are also well satisfied by the exact expressions. In particular one has 

o (26) 

which states that the system is overall neutral. 

Finally the influence of the various parameters p, t, A can be studied. 

In particular, it is easy to see from (21) that n -+ 1 when A -+ 00 , which 
a 

is the expected result. Other qualitative aspects of the exact solution 

might be useful in studying real adsorption problems. 

5. THE TCP ON A LATTICE 

5. 1 The Model 

Now, we consider a two-component system of positive and negative point 

charges (with charge e and -e respectively). The system is overall neutral. 

The positions of the positive (respectively negative) charges are restricted 

to the sites of a rectangular sublattice {X} (respectively {Y}). The sub­

lattice {y} is the image of the sublattice {X} by the translation (a/2,b/2), 

wherB a and b are the lengths of the rectangular unit cell common to both 

sublattices. The position of the positive charge j is defined by the comp-

lex number x. = (ma + inb)/2 where m and n are even relative integers 
J 

(x. € {X}). 
J 

Similarly, the position of the negative charge j is defined by 

the complex number y. = 
J 

tegers (y. € {Y}). Two 
J 

(m'a + in ' b)/2 where m'and n ' are odd relative in­

(or more) positive (respectively negative) charges 

cannot lie on the same site. The interaction potential of the system is 

the sum of the two-body logarithmic potentials between the charges. 
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The ratio alb being given, the excess equilibrium properties of the 

model depend on the coupling constant r = Se2 and on the packing fraction 

n = pab/2 where p is the particle number density (0 < n < 1). These pro-

* perties are similar to those of the continuous version of the model. In 

particular the system undergoes a Kosterlitz-Thouless transition18 ,19 when 

the temperature is lowered (at fixedn), between a conducting phase at high 

temperatures and a dielectric phase at low temperatures. In the conducting 

phase there are free charges and the system perfectly screens any static 

external charge. In the dielectric phase there are only dipoles and the 

dielectric constant of the system is finite (partial screening). When 

n + 0 (limit of a very dilute system), the value of r at the transition18 

goes to 4; for n finite, this value is larger than 4. 

The ~quation of state and the correlations for the isotherm r = 2 have 

been computed exactly by Gaudin20 • The techniques involved in these calcul­

ations are very different from those used for the OCP. They are briefly 

described in the next subsection. 

5.2 The Method of Calculation 

One starts from the finite system described by the Grand-Canonical 
20 

Ensemble • The grand-partition function = of the system is 

2N 
z 

(N!)2 
L exp[-S*V2N (x1,···,xN;Y1'···'YN)] 

xS{X} 
ys{y} 

(27) 

where V2N(x1""'~;Y1""'YN) is the total interaction potential of N 

positive charges located at x1""'~ and of N negative charges located at 

Y1""'YN' M2 is the number of sites of each sub lattice and z is the fuga­

city of both species. The sum in (27) is restricted to overall neutral 

states; its upper limit is M2 instead of 00 because two particles cannot stay 
2 on the same site (N = M corresponds to the close-packing). 

* For the continuous model, one has to introduce a short-range repulsive 

potential between the positive and the negative charges in order to prevent 

the collapse for r ~ 2. In the discrete model, one overcomes this problem 

of the collapse between opposite charges by putting the two species on two 

different sublattices; this procedure corresponds to "dressing" the point 

charges with hard rectangles in the continuous model. 
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At r 2, the 2N-body Boltzmann factor takes the form 

IT 1 x. -x. 12 1 y . -y . 12 
i <j 1. J 1. J 

2 
IT Ix.-y.1 
.. 1. J 
1.,J 

(28) 

The numerator of the rational fraction (28) comes from the interactions 

between charges of the same species, whereas the corresponding denominator 

comes from the interactions between opposite charges. Using an identity 

due to Cauchy, this rational fraction is rewritten as a determinant, and 

then the 2N-body Boltzmann factor becomes 

Det 

o 

L 
s 

(x-y) 

L 
s 

(y-x) 

o 

(29) 

2N 

The 2Nx2N matrix (29) is built with four NXN blocks: two zero-blocks and 

the two NXN matrices 

L 
s 

(x-y) N 

L 
s 

(y-x) N 

whose generic elements are L /(x.-y.) and L ~y.-x.) respectively. 
s 1.J S1.J 

Once the 2N-body Boltzmann factor has been replaced by the determinant 

(29), the polynomial representation in z (27) of = turns out to be identical 

to the polynomial obtained by expanding a Toeplitz determinant along its 

main diagona120 • The latter is the determinant of the 2M2x2M2 matrix 

fi+ z~, where ~ is the identity matrix and CK is the Hankel matrix 

o 

L 
s 

(x-y) 

Ls 

(y-x) 

o 

Since the grand-partition function is now expressed as 20 

(30) 

(31) 

the final step of the calculation consists of controlling the spectrum of 

the Hankel matrix ~ when M ~ 00. This analysis can be done using the 
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invariance of the infinite system under any translation (rna, nb) (m and n 

relative integers). The corresponding asymptotic forms of the eigenvectors 

and of the eigenvalues of ~ are computed in terms of trigonometric and 

Jacobi's elliptic functions 20 • This allows to find explicit integral repre­

sentations for the thermodynamic quantities and for the distribution func­

tions. The results obtained for the pressure and the two-body correlations 

are exposed in §S.3 and §S.4. 

5.3 The Equation of State at r 2 

The pressure P of the infinite system is given through 

i3*P L In(1+zK) • (32) 
eigenvalues 
K of IK 

The first line in equation (32) is just the definition of the pressure in 

the Grand-Canonical Ensemble; one obtains the second line by replacing = by 

the Toeplitz determinant (31). Using the asymptotic form (when M + 00) of 

h f IK f · d 20 t e spectrum 0 ,one ln s 

2 2 1T 1T 4z L ay 
i3*P = + f d~ f dZ;; In[ 1 + ab s I ds2 (u) I] 

1T ab 0 0 
(33) 

with u = 2(a~ + iY,)/1T. ds is Jacobi's elliptic function; a and yare 

constants related to the periods of ds which is a doubly-periodic function 

in the complex plane. The particle number density p is given by20 

d 
P(z,i3*) p z - 13* 

dZ 

8Z 2L2ay 1T 1T 
Ids2(u)1 s f d~ f dZ;; (34) 

2 2b2 2 2 
1T a 0 0 4z L ay 

Ids2(u)l] [ 1 + s 
ab 

The set of equations (33, 34) might, in principle, allow to f·ind the 

equation of state, i.e. the pressure as a function of the density, by 

eliminating the fugacity z. In fact, this does not seem to be possibJe 

in terms of known elementary or special functions 20 Nevertheless, one 
20 can show that the pressure is an analytic function of the density in the 

whole range of densities corresponding to 0 < n < 1. Furthermore, in the 

low-density and close-packing limits, the pressure behaves respectively 
20 

as 
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s*p '" p/2 when p -7 ° (35) 

and 

* Pc 1 
IS P '" ""2 In -=(--'P c=---P7'") when 2/ab • (36) 

The asymptotic form (35) suggests that the system becomes a perfect gas of 

non-interacting neutral "molecules" (dipoles) in the zero-density limit. 

Strictly speaking, this picture is valid only for p = 0: for finite den­

sities, there are always free charges and the system is conducting as dis­

cussed in the next subsection. The asymptotic form (36) shows that the 

pressure diverges in the close-packing limit, as it should. 

5.4 The Correlations at r 2 

The distribution functions of the finite system in the Grand-Canonical 

Ensemble are rewritten20 in terms of matrix elements of zlK/(ft+zlK). Using 

again the asymptotic form of the spectrum of IK in the thermodynamic limit, 

one finds 20 integral representations for the two-body correlations h++(O,x) 

and h+_(O,y) (h __ = h++ and h_+ =h+_ for obvious symmetry reasons). These 

integral representations are similar to the one (33) obtained for the pres­

sure; they also involve Jacobi's elliptic function ds. 

The exact expressions obtained for the correlations at r 
the compressibility sum rule 

p( L h++(O,x) + L h+ (O,y»)= z ~~ - p , 
xe{x} ye{y} -

the perfect screening sum rule 

L h++(O,x) - L h+ (O,y) = -1 
xe{x} ye{Y} -

and the second moment (Stillinger-Lovett) sum rule2l 

2 do obey 

(37) 

(38) 

(39) 

The sum rules (37) and (38) are expected to be satisfied for any values of 

r andn. The Stillinger-Lovett sum rule (39) is violated in the dielectric 

phase. Since this sum rule is explicitely satisfied by the exact expres­

sions at r = 2 for any density p, the solvable isotherm r = 2 is in the 

conducting phase in agreement with the expected phase diagram (see §5.1). 
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At large distances the correlations are found to decay like monotonic 
. 1 20 exponentJ.a s , 

h (0 ) ~ cst exp(-2!x!/i) 
++ ,x Ixl when Ixl -+ 00, (40) 

.e. being some correlation length 20 (h + _ behaves like -h ++ at large distan­

ces). This fast monotonic decay is a universal feature of Coulomb systems9 • 

6. CONCLUSION 

Through all this review, we have shown that the 2D solvable models give 

many informations about properties of Coulomb systems. Not only the exact 

results allow to check known sum rules or heuri.stic arguments, but they also 

suggest new sum rules and unexpected qualitative behaviors. We have given 

several examples which illustrate both previous aspects of the usefulness 

of the exact solutions. The latter have also been widely used in the lite­

rature for testing the accuracy of approximate theories. 

The 2D Coulomb systems have specific properties related to the confin­

ing nature of the logarithmic potential. In particular they may exhibit 

Kosterlitz-Thouless transitions. This provides an additional interest to 

some of the exact solutions evocated here. 

Finally let us mention the existence of a large number of one-dimen­

sional solvable models with logarithmic interactions, for instance the one­

component system in a uniform background4,22 or in a periodic inhomogeneous 
23 background These models do not belong to the family of Coulomb systems 

as far as the properties of the correlations are concerned* (the one-dimen­

sional Coulomb potential, solution of equation (1) for d = 1, is -Ix!). 

Some of them23 are quite interesting in the study of phase transitions of 

the Kosterlitz-Thouless type. 

Unlike the review itself which is not exhaustive, the list of referen­

ces is complete and includes all the 2D solvable models of Coulomb systems 

which have not been described in detail here24- 35 • 

* From this point of view, these models are "cousines" of 2D and 3D systems 

with respectively 1/r and 1/r2 potentials. 
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CHARGE CORRELATIONS AND SUM RULES IN COULOMB SYSTEMS I 

INTRODUCTION 

Bernard Jancovici 

Laboratoire de Physique Theorique et Hautes Energies* 
Universite de Paris Sud 
91405 Orsay, France 

We discuss Coulomb fluids (systems of particles interacting through 
Coulomb's law, plus perhaps some short-range interaction) in the frame­
work of classical equilibrium statistical mechanics. Coulomb fluids 
exhibit the fundamental property of screening. Scree~ing means that a 
charge q introduced into the fluid induces a polarization cloud of charge 
-q, and therefore the excess Chdrgc distribution (defined as the sum of 
the external cllarge distribution and the induced one) has zero total charge. 
More generally, all the electrical moments of the excess charge distribution 
vanish 1,2 ~ov~ded the charge correlations in the fluid have good decay 
properties at long distances. We do not attempt here to derive screening 
from first principles, but we take it for granted. 

A consequence of screening is that the charge correlation function 
obeys a variety of sum rules. The purpose of this lecture is to give a 
review of these sum rules, from an as unified as possible point of view, 
in the general case of inhomogeneous fluids, i.e. fluids not invariant by 
translations (for instance because of the presence of walls or of external 
charges). We only discuss statics (dynamics is considered in the lecture 
by Ph. A. Martin with the same title), 

The object of our study, tIle static charge correlation function (or 
structure function) S is defined, in terms of the microscopic charge 
density per) at point r,as 

S(r,r') = < p(r)p(r'» - <p(r» <per'»~ , 

where < > denotes an equilibrium average (this definition includes a 
self part proportional to o(r-r'». 

HOMOGENEOUS FLUIDS : STILLINGER-LOVETT RULES 

In the special case of homogeneous fluids, S dc~ends only on Ir-r'l 
and obeys the well-known Stillinger-Lovett sum rules 

*Laboratoire Associe au CNRS. 
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J dr' S ( I r-r' I) = 0 , 

21TS J dr' Ir-r' 12s(lr-r' I) = 1 
3 

(where S is the inverse temperature). Equivalently, in terms of the 
Fourier transform 

S(k) = f dr'eike(r'-r)S(lr_r' I) , 

one has 

Hm 47TS S (k2) = 1 • 
k+O k 

(la) 

(lb) 

(2) 

The sum rules to be reviewed here can be regarded as generalizations of 
the above to inhomogeneous systems. 

CARNIE AND CHAN'S GENERALIZATION 

The Carnie-Chan sum rule4,5 reads 

s f dr f dr' _1_ S(r,r') 
Ir'l 

1. 

It should be noted that the integral is not absolutely convergent and 
therefore the order of the integrations cannot be changed ; actually 

f dr S(r,r') = 0 

(this is just screening for the charge at r'). 

(3) 

A simple proof of (3) can be based on screening plus a linear res­
ponse argument. It goes as follows. Let us perturb the fluid by intro­
ducing a small test charge q at the origin. The corresponding perturbing 
Hamil tonian is 

H' = f dr' --q-- per'). 
Ir'l 

Static linear response theory states chat the response of the average 
charge density at r is a change 

op(r) - S [< p(r)H' > - < per) > < H' >J = -S f dr' ~ S(r,r'). 
Ir'l 

Screening states that 

f dr op(r) = -q , 

and this leads immediately to (3). 
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FURTHER GENERALIZATION : MULTIPOLE SUM RULE 

By considering the respons~ to a point multipo~e rather than to a 
point charge, one obtains the very general sum rule 

4nS f drlrl£ yn.m(r) f dr' 1£, 1 Y:'m,(f')S(r,r') 
22+ 1 Iv I r' I + Iv 

where r r / Lr 1 and Y £m is a spherical harmonic. 

It should be emphasized that this general sum rule holds only when 
the underlying assumptions are satisfied. In particular, near an insulating 
wall, the rule holds only for the case £=£'=0, because the correlations 
do not decay fast ~nough for a multipole of higher order to be screened. 

SPECIAL CASES (£=£'=0) 

The Carnie-Chan sum rule (3) can be applied to a variety of special 
geometries. We shall show that along insulating boundaries the charge 
correlationb have a slow decay, in contrast with the decay in the bulk or 
near a conducting wall which is believed to be faster than any power law. 

Homogeneous Fluid. 

In this case, the Carnie-Chan sum rule (3) and its generalization (4) 
are simply equivalent to the Stillinger-Lovett sum rule (2), as it can be 
seen7 by rewriting (3) or (4) in terms of the Fourier transfarms of I/Irl 
and S. 

Slab. 

We consider a Coulomb fluid confined in a slab of thickness a. A 
three-dimensional position vector r- will be written as r = (x,y) where x 
is the component in the direction normal to the slab faces (located at 
x = 0 and x = a) and y stands for the other two components (along the 
slab). S is now a function S(x,x', Iy-y' I) for which we define a Fourier 
transform with respect to y-y' : . 

ike (y' y) 
S(x,x' ,k) = f dy' e - S(x,x', Iy-y' I), 

where k is a two-dimensional vector along the slab. In terms of such 
Fourier transforms, the Carnie-Chan sum rule (3) becomes 

a a 
S £im fo dx fo dx' 

k+O 

2n -Iklx' -- e S(x,x' ,k) = I, 
Ikl 

a a 
which means that 2nSfo dxfo dx'S(x,x' ,k) behaves like Ikl for small Ikl. 
This singularity (assumed to be the only one) governs the asymptotic 
behavior along the slab, and by an inverse Fourier transformation one 
finds B 

a a 
J dx f 
o 0 

dx' S(x,x', Iy-y' I) '" 
IY-Y'I~ 

Thus, S has a slow (algebraic) decay along the slab. 

(5) 

351 



Plane Wall 

A limiting case of the previous one is a Coulomb fluid occupying the 
half-space x > 0; the plane x = 0 is assumed to be an insulating wall. In 
that case, after having substracted9 a bulk contribution, and assuming 
there are no subtle cancellations, one finds for S an asymptotic behavior 
along the slab of the form 

S(x,x',ly-y'l) 'V 

IY-Y'I~ 

f (x,x') 
3 ' Iy-y'l 

where f(x,x') is a function which is important only for small x and x' 
and ~hich obeys the sum rule 

00 00 

fo dx fo dx' f(x,x') 

(6a) 

(6b) 

If the wall has a (finite) dielectric constant €W' the right-hand side of 
(6b) must be multiplied by €W. 

Using another scheme of substraction of a bulk contribution, one can 
obtain8 another sum rule 

00 

4TIB f dx f dr' x' S(r,r') 
o x'>O 

-1 • (7) 

If the wall has a (finite) dielectric constant ~J' it does not affect (7). 
The sum rule (7) can also be deriv",d by other methods5 , 10. 

Interface 

Similarly, if the plane x 0 is the interface between two different 
Coulomb fluids, one finds8 

- 4rrB Joodx J dr' x' S(r,r') 
-00 x'>O 

Cylinder 

4TIB Joodx f dr' x' S(r,r') 
-00 x' <0 

1. (8) 

We now consider a Coulomb fluid confined in a cylinder with a cross­
section of arbitrary shape. It is now convenient to write a position vector 
r as r = (R,z), where the z axis is along the cylinder and R stands for 
the two other components of r (thus the two-dimensional vector R is normal 
to the z axis), One now finds 

fdR fdR' S(R,R', Iz-z' I) 'V 

Iz-z' I~ 4B (z-z')[£nlz-z'IJ2 
(9) 

a very slow decay. 

Similarly, one can consider a Coulomb fluid inside a wedge (two half-
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planes intersecting along the z axis); let a be the angle between these 
half-planes. After substractions8 of bulk and plane wall contributions, 
one finds for S an asymptotic behavior along z of the form 

S(R,R',lz-z'l) 'V f(R,R') 2' 
Iz-z' I~ Iz-z' ICtnlz-z' IJ 

(lOa) 

where f(R,R') is a function which is important only near the edge of the 
wedge and obeys the sum rule 

JdR fdR'f(R,R') = ~;~ (lOb) 

SPECIAL CASES (t=t'=I) 

We now use the sum rule (4) for t=t'=I. 

Interface 

Considering again the interface case (the plane x = 0 separates two 
different Coulomb fluids), we now find from (4) 

00 00 

4nS f dx x f dr' S(r,r') - 4nS J dx x J dr' S(r,r') I. (I I) 
-00 x' >0 -00 x'<O 

It should be noted that, at an interface,both (8) and (11) hold. They 
are different, not equivalent, sum rules. 

Ideal Conductor Wall 

In the limiting case of a Coulomb fluid occupying the half-space x>O 
and bounded at x=O by an ideal conductor wall (i.e. a Coulomb fluid of 
vanishing Debye length), we find 

00 

4nS J dx x J dr' SCr,r') 
o x'>O 

I. 

This result can also be derived directly6 by taking into account the 
image forces in the Hamiltonian. 

(12) 

It should be noted that the sum rule (7) which holds for an insulating 
wall and the sum rule (12) which holds for an ideal conductor vall are 
different. 

DIELECTRIC SUSCEPTIBILITY AND CORRELATIONS12 

It is amusing to note that the long-range correlations along an in­
sulating wall are necessary for the consistency between macroscopic 
electrostatics and statistical mechanics. 

Let us consider a V-dimensional material in a box A of some shape, 
for instance spherical. The electrical susceptibility X (defined as such 
as the polarization per unit volume induced by a weak ~xt~nai electric 
field E be XE) and the dielectric constant € are related by the Clausius-
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Mossotti equation 

v-I 
- V 2rrx 

2 
I + (v-I) 

v 

v 2,3. 

For a Coulomb fluid, E = 00, and therefore 

x v 
(V-I )2rr 

A simple linear response argument relates X to the correlation func­
tion SA defined in the finite system 

X - ~--I--! dr ! dr' Ir-r' 12 SA(r,r'). 
2v IAI A A 

When the system is large, one is tempted to forget the surface con­
tributions, to write 

X - fv !dr' Ir-r' 12 S(r,r'), 

and to take for S the infinite system correlation function which obeys the 
Stillinger-Lovett rule (Ib). This approach gives X = 1/(v-I)2rr instead of 
the correct result v/(v-I)2rr. 

The explanation of this apparent paradox is that it is not permissible 
to replace the finite system correlation function SA by the infinite 
system one, before performing the integrals ; whatever lnrge the system may 
be, near the boundaries S has a long-ranged part ~vhich gives to X a 
surface contribution of tAe same order of magnitude as the bulk one. When 
this effect is properly taken into account, one does find, for a solvable 
two-dimensional model, the correct result I/rr, as predicted by electro­
statics. 

Similar considerations apply to other shapes of the box. 

CONCLUSION 

We are making progress towards a better understanding of the interplay 
between electrostatics and statistical mechanics. 
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CHARGE CORRELATIONS AND SUM RULES IN COULOMB SYSTEMS II: DYNAMICS 

Philippe A. Martin 

Institut de Physique Theorique 
Ecole Poly technique Federale de Lausanne 
CH-I01S Lausanna, Switzerland 

I. A SUM RULE FOR THE TIME DEPENDENT STRUCTURE FUNCTION OF THE OCP 

We present in this paper some exact results on the dynamical structure 
function of a class of inhomogeneous one component plasma (OCP). This 
generalizes in a natural way some of the ~tatic sum rules discussed inl 
and summarizes essentially the papers2 ,3, where more detailed proofs 
and additional comments can be found. 

The time dependent structure function of an OCP of particles of charge 
e, mass m and background density Pb(r) is defined by 

S(r,r',t) e2 (<N(r,t) N(r' ,0» - <N(r,t» <N(r' ,0») (1) 

where N(r,t) is the microscopic particle number densiti at time t and 
< ... > is the equilibrium average at temperature kBT=~-. It is 
known that the static structure function S(r,r') = S(r,r' ,t=O) obeys the 
perfect screening condition written in the Carnie and Chan forml,S 

~ Jdr Jdr' Ir;1 S(r,r') = 1 (2) 

We consider here a classical OCP having a background density which is 
asymptotically constant in all directions, i.e. 

lim Pb ( 1 r 1 ,0) = Pb (0) 
1 rl -+ <Xl 

(3) 

with ° the angles of r (precisely we require I:d1r l / 81;1 Pb(lrl ,0)/ < <Xl 

insuring that the limit is obtained without fast oscillations). 

Particular examples treated in Section III are the semi-infinite OCP 
bounded by a plane wall: 

( ) t o,x < ° (4) 
Pb r Pb'x > ° 
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r = (x,y) y the component of r parallel to the wall, and the two 
densities OCP, 

(5) 

Then, the static perfect s§reening condition has the following simple time 
dependent genera1ization2 , 

(6) 

Wp2 being the angular average of the asymptotic plasmon frequencies 

(7) 

The formula (6) deserves the following comments. 

(i) 

(ii) 

(iii) 

The pure coswpt oscillation in (6) is due to the fact that 
in an OCP sat1sfying the property (3), the long wave length mode 
oscillates undamped with a single frequency wp. This 
feature does not extend to the electron gas in the periodic field 
of an (infinite) ionic lattice. In this case, the plasmon mode 
is shifted and damped as a congequence of the coupling of the 
electrons to the ionic 1attic. 

There is no generalization of (6) to mu1ticomponent systems, 
which show dissipation also in the long wave limit because of 
interparticle collisions (for a review on the properties of the 
structure function, see Ref. 7). 

For a quantum mecha~ical OCP satisfying (3), the equivalent of 
formula (6) becomes 

_1_ 
Ir'l S(r,r',t) ---2 P 

liw (exp (- iw t) 

= 2 l-exp(-Phwp) 

which reduces to (6) as Ii ~ o. 

exp(iw t) ) p 

(iv) Contrary to the static case, there does not exist up to now 
solvable models for the time dependent structure function where 
dynamical sum rules could be checked. The assertion that (6) is 
exact is justified by the fact that it can be derived from the 
microscopic equations of motion (the BBGKY hierarchy) without 
approximation, as sketched in Section IV. 

Finally, there are sum rules analogous to (6) when the plasma is submitted 
to an external uniform magnetic fie1d. 8 
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II. MACROSCOPIC ELECTRODYNAMICS AND LINEAR RESPONSE 

A simple derivation of (6) can be given if one assumes that 
macroscopi"c electrodynamics is valid in the long wave length limit. We 
consider electric field amplitude E(w,r) due to an oscillating 
external charge in the plasma eo exp(-iwt) located at the origin: 

v • (e(w,r) E (w,r» = 4~ e 6(r) (9) 
o 

where 

e(w,r) 1 -

2 w (r) 
~ 

2 
w 

2 w (r) 
p 

is the local dielectric functions. 

2 
4~e 

m 

Assuming that the induced charge density decays sufficiently fast at 
large distances, the electric field is asymptotically radial 

" " E(w,r) = r, Irl - 1, Irl -+ "" (10) 

the total net charge induced in the plasma by the where Qind(w) is 
external charge. 
theorem yields 

Then, integrating (9) on a large sphere and using Gauss 

I R2 dO e(w,R,O) (11) 

Irl - R 

Letting R -+ "", we obtain from (11) with (3) 

-2 

Qind(w) 
w 

p e 
2 -2 0 

(12) 
w - w p 

Finally, we obtain from the fluctuation-dissipation theorem and (12) 
(w being understood as having an infinitesimal positive imaginary part 
corresponding to switching on the perturbation adiabatically) 

- ~p ~2 e (6(w - w ) + 6(w + w » o p p 
(13) 

which gives (6) by Fourier transform. The formula (8) follows from the 
quantum mechanical version of the fluctuation dissipation theorem. 
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III. PARTICULAR CASES 

(1) Uniform OCP 

2 
4,re e )1/2 

W is identical to the usual plasmon frequency w = ( ppm 
Since S(r,r' ,t) = S(r-r' ,t) is translation invariant, one can use the 
convolution theorem to transform (6) to Fourier space (with 

~ the Fourier transform of -1- ) giving 
Ikl 2 Irl 

411:,8S(k,t) (14) 

This is the well known long wave length behavior of the structure 
factor (for instance see Ref. 7). 

(2) Impenetrable Wall 

-2 2 w 
Here, from (4) and (7) one has w ~ and w = ~2 is the 

p m p ~2 
surface plasmon mode. The plasma being still homogeneous in the y 
directions (parallel to the wall), one can introduce the 
two-dimensional y-Fourier transform 

Jdyexp (i ko(y-y') S (xy,x'y' ,t) = S(x,x' ,k,t) 

J 2 2 -1/2 211: 1 1 1 1 Since dyexp (-ikoy) (y + x ) = TkT exp (- k x), Eq. (6) is 

equivalent with4 

cosw t, 
P 

(15) 

The non analytic behavior as Ikl ~ 0 is linked to a slow decay of 
S(xy,x'y' ,t) parallel to the wall. This is best exhibited by 
considering its difference with the pure bulk structure function (the 
difference being assumed to be jointly integrable in x and x'). 
Coming back to the space variables and noting that the two-dimensional 

1 1 4 Fourier transform of kl is ----3' 15 implies after some algebra 
21yl 

[ [ bulk 
211:,8 Odx OdX' (S (xy,x'y' ,t) - S (xy,x'y' ,t» 

(16) 

At t = 0 one recovers the spatial decay already obtained in the static 
case. l It is interesting to compare (15) and (16) which involve the 
surface plasmon to another kind of sum 3ule, of dipolar type, which 
also holds for the semi-infinite plasma : 

I:dX JdY I: dx' x, S (xy, x'o,t) 4;,8 cos wpt (17) 
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Here only the bulk plasma frequency occurs: this generalizes the 
classical static dipole sum rule at a wall. l 

(3) Two Densities OCP 

-2 1 (w2 2 2 With (5) and (7), wp 2 + + w ), w± 

the asymptotic behavior4 
m 

and (15) implies 

2n~JOOdx ~dX' (S(xy,x'y' ,t) - ~(x') S+(xy,x'y' ,t) - ~(-x')S_(xy,x'Y' ,t» 
-co -00 

L _---'l=___ ( 
3 cos w t 

2n Iy-y'l p 
12 (cosw t + cosw t), Iy-y'l -+ 00 + -

(18) 

S+ and S_ are the bulk functions corresponding to p+ and p_ and 
0, x < 0 

~(x) = 1, x > 0 . One notices here that the long tail disappears at 

t = 0, in accordance with the fact that the screening cloud of a test 
particle in a metallic interface should remain localized. However, 
this is no more true when t ~ 0, or quantum mechanically even at 
t = 0 where the dynamics cannot be disentangled from the statics. The 
two densities OCP satisfies also dipole sum rules similar to (18) 
involving the individual bulk frequencies w+ (resp. w_) for x > 0 
(resp. x<0).3 

(4) Slab of Thickness a 

Since Pb(r) vanishes in all directions n?t p~rallel to the 
walls, wp = O. One finds that for all t~mes 

2n~JadX JadX' Sexy, x'y' ,t) = - 1 3' Iy-y'l -+ 00 

o 0 27rly-y'l 

The same result holds quantum mechanically. The slab behaves 
essentially as a two-dimensional electron gas where the plasmon 
frequency vanishes as Ikll/2 as Ikl -+ O. This explains why the 
right hand side of (19) is time independent. 

(5) Cylinder of Base ~ 

(19) 

Here again w = O. Calling z (resp. u) the variable parallel 
(resp. perpe~dicular) to the axis of the cylinder and performing the 
Fourier trans from on z, one finds from (6) 

ftJ du J du' S(u,u' ,k,t) 
~ ~ 

1 
2 In Ikl" Ikl -+ 0 

This leads to a spatial decay of the form3 

1 

41 z -z' 1 (In 1 z -z' 1 ) 2 

Iz-z'l-+oo 

(20) 

(21) 
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In this geometry also. the plasmon frequency vanishes as Ikl ~ o. 

Other cases (cone. wedge. dielectric walls) are described in Ref. 3. 

IV. AN EXACT CLOSURE OF. THE BBGKY HIERARCHY 

We show that the dynamical s~ rule (6) is an exact consequence of 
microscopic equations of motion. For simplicity we present here the 
case of the uniform OCP with density p. We introduce higher order 
correction functions of the type 

where v is the velocity and N(r.v.t) is the phase space microscopic 
density. The quantity 

... , - p (22) 

the 

represents the excess charge density in the plasma at r and time t. given 
that n particles were located in ~116 ..• rn at time t - 0 with initial 
velocities vl •... vn . It is known' that in the static case (t = 0 ). 
the excess charge density carries no mUltipoles of any order. i.e. the 
multipoles induced by specifying any arrangement of the system's charge are 
shielded. In the homogeneous OCP, the charge sum rule 

(23) 

at the dipole sum rule 

(24) 

remain valid for all times (suppression of the velocity arguments means 
that they have been integrated out). The interpretation of (24) is that 
the screening cloud evolves without developing a dipole moment (this is 
obvious for n = 1 because of isotropy. but non trivial for n ~ 2). One 
should stress that this property holds only for the OCP where the electric 
current is proportional to the mass current, which is a conserved 
quantity. 

To establish (23) and (24), we consider the first BBGKY equation 

2 
-: Jdr' F(r-r') • Vv (p(rv.r' ,tlv) - p(rvtlv)p) (25) 

where v = (rlvl, ... rnv). The evolution of a general velocity 
independent function f(r) is obtained by integrating out the velocity in 
(25), the Vv-terms giving no contribution 

(26) 
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We have introduced the truncated functions PT(rvtlv) = p(rvtlv) -
p(rv)p(v) ..• defined in the usual way. 

Setting now f(r) = 1, the r.h.s. of (26) vanishes, assuming that the 
truncated functions vanish at large spatial separation. Taking into 

account the static charge sum rule eJdrPT(rt1v)lt=0 = p(v)Jdr;(rt1v)lt=0=0 

gives (23). To derive the dipole sum rule, it is useful to consider the 
second time derivative obtained from (25), (26) and partial integrations 
on velocities 

2 
~ Jdrf(r) PT(rtlv) 
at 

(27) 

(28) 

(29) 

The first term of the r.h.s. results of Poisson equation Vr • F(r) = 4w6(r) 
2 

d ( !:!:ELp )1/2 ';s the 1 f Ch· f( ) h an wp = m ~ p asmon requency. oos~ng now r = r, t e 

terms (28) and (29) vanish, (28) being the integral of a gradient and (29) 
because of the antisymmetry of th~ force. So (27) becomes the ordinary 
differential equation with f(r) - r 

a2 J 2 J ~ dr f(r) PT(r tlv) = "w dr f(r) PT(rtlv) at p 
(30) 

From the static dipole sum rules and (26) the initial conditions are found 
to be 

J dr r PT(rtlv) I = 0 
t=O 

~ Jdr r PT(rt1v)1 
t=O 

and the solution is thus 

n 
(L V. ) p(v) 
j-l J 

n 
1- ( L v.)p(v)sin w t 
wp j=l J P 

(31) 

Averaging (31) on the initial velocities gives the dipole sum rule (24). 

We can now establish the sum rule (6) for the structure function by 
noting that in the homogeneous situation we have the identity 
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Since S(r,r' ,t) = e2 PT(rtlr'), we set fer) = Irl2 and U = (ov) in 
(27), and integrate over v. The key point is that the terms (28) and (29) 
vanish again as a consequence of the relations (23) and (24). This 
provides an exact closure of the BBGKY equation (27), which reduces to the 
simple differential equation (30) with now fer) = Ir12. Supplemented with 

the initial condition (2) and ~t Jdr Irl2 S (r,t)1 ,we find (6). 
t=O 

To show that the contribution of the three point function (29) vanishes, 
we make the change of variables r = rl-r, r' = -r and use the 
translation invariance (exchanging the rl' r integrals) 

(29) 

We also used perl' r2lr,t) = p(rl-tlrl,r2) which follows from the 
stationnarity of the equilibrium state. It is easily checked that 
and (24) imply the same relations for PT(r,tlrl,r2) instead of 
p(r,tlrl,r2)' thus (32) vanishes. The term (28) is treated in the 

(32) 

(23) 

same way. 

In the case of an 
1 

the choice fer) = r;r 
inhomogeneous OCP with the property (3), we make 

in (27) and show3 again that the BBGKY equation 

reduces to (30). The assumption used here is that at any fixed time the 
correlations of the inhomogeneous OCP with all arguments going to infinity 
in a fixed direction 0 converge sufficiently fast to those of an 
uniform OCP with density Pb(O). 
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THEORY OF THE STRONGLY COUPLED 2-D PLASMA WITH THE l/r POTENTIAL 

INTRODUCTION 

Kenneth I. Golden 

Department of Computer Science and Electrical Engineering 
The University of vermont 
Burlington, VT 05405 

The classical two-dimensional (2-d) Coulomb fluid of electrons 

trapped in surface states above a liquid-helium surface is a fascinating 

one-component-plasma (ocp) configuration which has been of experimental 

and theoretical interest since the early 1970's. In the actual labora-
1 tory setup , extra electrons are deposited in a monolayer just above the 

free surface of liquid helium and are confined there by means of image 

binding. The electrons are accordingly constrained to execute only 

horizontal (parallel-to-the-surface) motions, and they interact via the 

¢(r) = e 2/r potential (r is the horizontal range). A compensating uni­

form positive background is provided by an electrode placed below the 
5 9 liquid surface. At a temperature T - O. 5K and over the range 10 < n < 10 

-2 . lc,ld 
cm of areal densities realized in th~ Grimes-Adams experlments , 

i3 E < .06 and 1. 5 < r= S e 2 Kn < 150; we may therefore consider the electrons 
F 

to be classical strongly correlated particles. 

Numerous computer experimental and theoretical efforts have pro­

vided a great deal of information about the static and dynamical proper­

ties of the 2-d ocp over a wide range of y values (y = 2'ITne 4 ,3 2 = 2r2 is 

the 2-d plasma parameter). On the static level, liquid-solid boundaries 

have been established from molecular dynamics (MD)2 and Monte Carlo (MC)3 

simulations and theories have been proposed about the mechanism which 
4-6 

causes melting of the 2-d Wigner lattice. As to the liquid state 

. 7 1 8 d .. 9a,b h f 1 d theorles, Fetter, Cha upa , an TotSUJl ave ormu ate thermody-

namic functions and equations of state from perturbation expansion (in y) 

schemes. The expansion has been further improved and refined to the 

point where the calculated pair correlation function, static structure 

365 



function and correlation energy density accurately reproduce the experi-
9c 

mental data for values of y up to 0.5. For y>l, reliable values of the 

pair correlation function have been calculated from the hypernetted chain 
, 10 

(HNC) equat~on. 

On the dynamical level, structure function data and curves for the 

f ' l' 11 2-d ocp collective modes have been generated rom MD computer s~mu at~ons. 

Formulas for the dispersion and damping of the collective modes have been 

derived (i) by calculating the frequency spectrum of the lattice vibrations 

of a finite 2-d electron Crystal12 , (ii) in the random-phase approximation 

( ) 7,13 ( , , , ) f 11' h ' , , d' 1 d 14 f' ld RPA ,~~~ by 0 ow~ng t e 8~ngw~-Tos~-Lan -8Jo an er mean- ~e -

theoryapproach15 , (iv) from the Boltzmann equation9b , (v) from modern 

, 1 1 ' 16,17 d 1 (') b f 11 ' th hydrodynam~c ca cu at~ons , an most recent y, v~ y 0 ow~ng e 

18, , t' ( ) I' Golden-Kalman veloc~ty-average-approx~ma ~on VAA non ~near-response-

function approach. 
19 

In this lecture, I shall review the status of the long-wavelength 

plasma mode structure in the 2-d ocp over a range of f values spanning the 

entire fluid regime. The following are of particular interest: 

(a) The plasmon structure at weak coupling (f«l) : (iv) and (vi) predict 

a structure which differs dramatically from (v). 

(b) The critical f value marking the crossover from plasmon (Vlasov)­

like to longitudinal-phonon (crystal)-like dispersion. 

(c), A definitive fluid-state formulation of the longitudinal phonon dis­

persion at very strong coupling (f» 1). 

This lecture is based on the Ref. 19 work by Professor G. Kalman, Pro-

fessor De-xin Lu and myself. 

The long-wavelength plasmon structure in the 2-d ocp with a l/r 

potential exhibits pecularities which make it quite different from the 

corresponding problem in three dimensions. These pecularities can be 

traced to two easily identifiable differences between the two- and 

three-dimensional systems: 

(1) 

(2) 

In three dimensions, the plasma frequency w 
p is a constant; in two 

dimensions, it is k-dependent, viz. , w (k) tXvk. 
p 

Short-range binary collisions profoundly affect the damping of the 

plasma mode in the 2-d ocp -- even in the weak coupling (y«l) limit; 

in three dimensions the corresponding effect is negligible (i.e., O(y» 

in this limit. 

The importance of the binary collisions manifests itself in the y 

dependence of the dielectric response function E(kw). Various independent 
, 9b,16,20 -

calculat~ons indicate the appearanc~ of y-independent terms of 

non-RPA origin. This fact, together with the one that the coefficient of 

the w-6 term in the high-frequency expansion of E(~W) exhibits marked l/y 

366 



and log y divergences21 , indicate that the Vlasov approximation is unphysical 

for the two-dimensional electron fluid in the y = 0 limit. 

There have been three different approaches to the calculation of £(~w) 

beyond the Vlasov approximation. The first approach is based on a 

linearized Vlasov-Boltzmann equation. 9b The second is a systematic formal 

expansion (in y)20 of the first two equations of the BBGKY hierarchy, 

similar to the method22 used some time ago in three-dimensional calculations. 
17 Finally, the third is a hydrodynamic nonlinear-response approach formu-

lated recently by De-xin Lu and myself. 

If we define 

o£ (kw) £(k<.)-O,w; y = 0) - £RPA(~>+O,W), (1) 

the results of the three calculations can be listed as follows: 

Ref.9b: o £ (kw) 

Ref. 20: o£(kW) 

Ref. 17; 0 £ (kw) 

where w (k) 
p 

5 
. 3 

w (k) 

~ p 
~ -8 5 kD W 

. 1 
w5 (k) ;1; ~ - -p-

4 5 kD w 

I;k2 W2 (k) W4 (k) k i -E- + ~ mn 3 4 kD W W 

2 1/2 
(2wne kim) is the plasma frequency, k = 

D 

(2) 

(3) 

(4) 

2wne~ is the 

Debye wavenumber, and I; is the coefficient of viscosity. Each of the above 

expressions leads to the corresponding y-independent frequency shifts 

w (k) {21W ~ -p 256 kD 

w (k) 7w k -
P {128 k 

D 

Ref. 17: 0 w(k+O) 1 k w (k) {- -- -
P 2 kD 

'.2.~ } ~ 16 k 
D 

i~ ~} 8 k 
D 

2 
. I;k } 
~ --

2mn 
(7) 

It is especially interesting to observe the behavior of the k-dependent 

correction to the RPA plasmon dispersion in the various approximation 

schemes. In the model of Ref. 17, the importance of collisions is taken 
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into account and local thermodynamic equilibrium is assumed, producing a 

two-dimensional adiabatic compression with a negative "adiabatic" shift 

of - (k/2k )w (k) from the RPA value. A similar result obtains in the 
D p 

hydrodynamic theory of Baus. 16 The approximation schemes of Refs. 9b and 

20 in contrast, generate a positive "super-adiabatic" shift from the RPA 

plasmon frequency (this shift is calculated in Ref. 20 but is not expli­

citly noted in Ref. 9b). The phy~ical mechanism responsible for this shift 

is not immediately recognizable, but its formal origin is traced to the 

* appearance of the y -independent damping comprising Eqs. (2) and (3). 

Thus, there is a fundamental and certainly not easily reconciliable 

difference in the modification brought about in the plasmon dispersion by 
17 20 

the hydrodynamic model and by its kinetic equation-based counterpart , 

even though both of them can point at the increased importance of binary 

collisions as the origin of the modification. 

Now the phenomenological Navier-Stokes closure condition which allows 

the formulation of the hydrodynamical approximation of Ref. 17 is predicated 

on the observation that in the 2-d ocp with a l/r potential the coupling 

parameter is independent of the k-independent quantity V ~ Wo = ~rrne2kD/m 
quoted in Refs. 16 and 17 as the relevant collision frequency for compari-

-
son with W. If \) were the relevant quantity, then at frequencies 

W = W (k+O)« v, local thermodynamic equilibrium would indeed prevail all 
p 

the way down to the weak coupling (y«l) limit. My colleagues (G. Kalman 

and De-xin Lu) and I now contend, however, that it is the k-dependent 

** quantity 

V (k+o, w) 
1 
4 

W (k) < W 
p -

(8) 

calculated from Eq. (3), which comes closer to being the relevant colli­

sion frequency. Consequently, the 2-d ocp cannot be in a state of local 

* There is some question as to whether the numerical coefficient in Eq. (3) 

is correct to any order in the perturbation expansion of the BBGKY 

hierarchy. In fact, we cannot really know the answer without continuing 
2 the calculation of Ref. 20 through order y. It is not inconceivable 

that such an arduous calculation -- which is beyond the scope of the 

present work -- might possibly introduce additional positive or negative 

o (k3/WS) corrections into (3). 

** 
The collisl0n frequency V is defined through the 2-d phenomenological 

2 2 a.c. conductivity formula (w/2rrk)Im 0 E Re ocr = ne v/(mw ). 
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thermodynamic equilibrium for W"'Wp(k+O)>> V (k-+O,Wp(k).) and y<<l. It then 

follows that the small - k plasma mode behavior is not correctly described 

at weak coupling (y«l) by the current hydrodynamic theories. 16 ,17 

Indeed, we would reach this same conclusion even if Eq. (8) were not quite 

correct: momentum conservation in an ocp requires that the collision 

. fl' lc frequency be k-dependent; the very eXlstence 0 a ong-llved plasma 

mode then ensures that V(k-+O)«w (k-+O). 
p 

In the work of Ref. 19, my colleagues and I formulated anew a 2-d 

ocp dynamical theory without invoking the hypothesis of local thermo­

dynamic equilibrium. We did this by adapting our earlier 3-d ocp 

VAA-nonlinear response formalism18 to the 2-d l/r situtation. The VAA 

formalism avoids the previously discussed flaws -- especially the 

y-independent negative dispersive shift -- which characterize the current 

d . h . 16,17 k 1 . h' 1 h . hydro ynamlc t eorles at wea coup lng, w l e at t e same tlme re-

taining the excellent collective mode features of the Ref. 17 calculation 

at very strong coupling. 

The VAA approximation scheme is developed in three stages. The 

first-stage calculations lead to a formula for the linear polarizability 

in terms of dynamical and static three-point structure functions. The 

second-stage development converts the latter into more accessible quad­

ratic polarizabilities by means of the nonlinear fluctuation-dissipation 
23 

theorem. self consistency is then guaranteed in the third stage by 

approximating the quadratic polarizabilities in terms of linear ones. 

The resulting VAA formula for E(~W), when analyzed at the low frequencies 

W"'W (k-+O) characteristic of the long-wavelength 2-d plasma mode, leads 
p 

to a dispersion formula which expresses Re W(k-+O;y) entirely in terms of 

the (y-dependent) correlation energy density Ec and static structure 

function S(~,t=O). Considering the low-frequency character of the exci­

tations, it is hardly surprising that the dispersive corrections turn out 

to be wholly thermodynamic, a feature that is not shared by the high­

frequency plasma mode in three dimensions. 

STRUCTURE FUNCTIONS AND POLARIZABILITIES 

Structure functions and polarizability response functions are the 

relevant quantities in the VAA a~proximation scheme. The former are 

customarily defined as follows: 

o {S(k,t) + No } 
k-p r (9) 
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1 * * (00 -<n.(t)n (O)n (0) > = 15 k {S(qt;pt) 
N ~ ~ R _ -~-£ - -

+ N [15 k S (~ t = 0) + (15 + 15 ) S (k t) ] + N2 15 15 } 
- q p - ~ R (10) 

~.(t) = E. exp {-i k • x. (t)} is a microscopic density; the angular 
~ ~ -~ 

brackets denote ensemble averaging, and the zero superscript indicates 

that the average is to be taken over the unperturbed (equilibrium) system. 

"External" polarizability response functions are next defined through 

the 2-d ocp constitutive relations 

< nk (~) (w) 

< n (~) (w) 

~ 

- a(kw) n (~w) 

00 

in E (3 2 ~ ~ f d].l 
2A ~ ~ k-q -00 2n 

,., 

,., 
a(q ].l; k-q w-].l) - -

X n(q ].l) n (~-~ w-].l) 

connecting the average density response < nk> (w)*to the weak external 

density perturbation ;;~ = 2ne2/q is the Fourier-transformed Coulomb 
q 

(11) 

(12) 

energy. "Total" -,::olariZabilities connect <nls> (w) to the total density 

perturbation T] = 11 + < n >; they are defined as follows: 

(1) 
<nk > (w) 

(2) 
< nk > (w) 

- a q~w) ,,(1) (~W) 

........ -00 

X 
(1) (1) 

T] (q].l) 11 (k-q W-].l) . - --
Since ,,(1) = n/g, we have from (11) to (14) that 

* 

a(k w) 

g (k w) 1 -
1 

g (k w) 

g(q].l)g(pv)g(q + p,].l + v) 

(13) 

(14) 

(15) 

(16) 

The ensemble averaging notation < >(w) refers to the frequency-domain 

evolution carried by the phase-space distribution function. 
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APPROXIMATION SCHEME 

The three-stage development of the approximation scheme starts from 

the linearized VAA-kinetic equation 

(W-k.V)F(l) (kW;v) +; ~~k n(l) (~W) d F(O) (v) 
dv 

1 .-l F(O) (v) 
m d.l! 

! L q~ < n n > (1) (W) 
N q~k - q k-q q 

(17) 

for the first-order incremental response F(l) (~w;y) [ over and above the 

Maxwellian distribution F (0) (v) = (8 ron/27T) exp (-8mv2/2) ] to the weak 

external density perturbation ~(kW).* 

The right-hand-side nonequilibrium two-point function is next con­

verted into equilibrium three-point functions by means of the linear 

fluctuation-dissipation relation 

< n n (;) (w) I 
k-q q 

kD A 00 iwt 
- --k n (kW){iw f dte S(qt;k-qt) + S(qt=O;k-qt=O)} 

- 0 
(18) 

mentioned in Professor Kalman's lecture. 

The routine calculation of the first-order average density response 

is then carried out by substituting (18) into (17), solving for F(l), 

and integrating over velocity space. Comparison with (11) results in the 

first-stage polarizability formula 

A 

CI.(!sW) ~A (~w) {I + ; (~w)} (19) 

where 
kD 1 ,00 iwt 
k - L X{~w f dte S(qt;k-qt) + S(qt=O;k-qt=O)} 

N ~k 
(20) 

and X = (~·~)/(kq). It is especially illuminating to think of Eq. (19) 

as the first equation in the VAA hierarchy linking dynamical two- and 

three-point structure functions. The VAA expression (19) is exact in the 

* A A 

Eq. (17) is exact when n is a static perturbation, i.e., n(kw) 

27TO (w) ; (~ t=O). This follows from the fact that the perturbed 

phase-space distribution function is still a canonical distribution in 

terms of the perturbed Hamiltonian, and that it factorizes into velocity-

d d ' d d 'b' 24 an coor ~nate- epen ent contr~ ut~ons. 
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static (w = 0) limit24 and at high frequencies (w+oo) it reproduces the exact 
. 17,21 

sum rule expans~on 

(21a) 

nOs) W 4(k) {l + 3 ~ 1 
Z l (q/k) S (k-qt=O) - S(qt=O)] } +-

4 P kD N qI~ 

(k, Y arbitrary) (21b) 

through order 1/w4. At long wavelengths, (21b) further simplifies to 

W 4(k) k 5 k 3 E (y) 
n (k+O) = { 1 + 3 + 

8 
__ c __ } 

(22) 
4 p kD kD n 

E (y) is the correlation energy density. The collective mode analysis of 
c 

Ref. 17 reveals that it is the correlational part of (22) which primarily 

controls the k+O longitudinal phonon dispersion characteristic of the 2-d 

hexagonal lattice25 This important feature is also highlighted by the 

present theory.* 

The second-stage calculation consists in converting the three-point 

structure function in (20) into quadratic polarizabilities by application 
17 23 

of the nonlinear fluctuation-dissipation theorem ' • The resulting 

polarizability formula 

O.(kw) 

v(kw} 

i 
N 

a (kw) {l + v(kW)} 
RPA -

A 

E(kw}v(kw} 

z X 
q 

00 

f 
a(3fl;~-3W-fl) 

dfl O_(fl) { E(qfl)E(k-qw-fl) 

(23) 

a (qW-fl;k-qfl) - --+ -E-;-( q-w---fl-;-) -E-;-(k=---q-fl"7}- } 
(24) 

(see Ref. 18 for the detailed mathematical steps) is the previously men­

tioned first response function equation of the VAA chain. The quadratic 

polarizability a(3fl;~-3W-fl) is defined through the constitutive equation 

(14). The formal operations which transform (19) and (20) into (23) and 

* Generally speaking, dynamical theories which fail to reproduce the 

correct sum-rule coefficient ~4(~) also fail to reproduce the correct 

numerical coefficient for the long-wavelength dispersion of the longitu­

dinal phonon mode at very strong coupling (r»l); the Refs. 14 3-d and 

Ref. 15 2-d mean field theories fall into this category. The Ref. 16 

modern hydrodynamic approach also fails to reproduce the correct disper­

sive coefficient at large r values17 , but the origin of the defect in 

that work may not be sum-rule related. 
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(24) do not entail any approximations or restrictions whatsoever. Conse­

quently, Eqs. (23) and (24) are also valid for arbitrary k,w and y values. 

They are exact at w = 0 and they reproduce the exact sum-rule expansion for 
4 

a(k,~) through order l/w • 

The final stage in the formulation of the approximation scheme consists 

in making Eqs. (23) and (24) self consistent by approximating the quadratic 

polarizability in terms of linear ones. The steps leading to the resulting 

long-wavelength dynamical superposition formulas 

v(k~O,w) 

2 
wp(k) 

2 
w 

v(k-+O,w(k» p 

k { ~ ::: 
kD 8 

BE (y) 
c ---- -n 

- iw o 
32N 

1 1 
16 N 

1 
8N 

E 

~ 

3 

(~)2 E 
k 

D q 

E 
q 

k2 
D 
2 q 

k 2 
D 

2 
q 

00 

~ d~~(~) E(q~)E(qw-~) } (25) 

2 
S (~t=O) 

00 d~ 2 
f 21T S (~~) } (26) 
-00 

are detailed in Refs. 17 and 19. The explicit re-emergence of the 

correlational part of ~ (k~O) guarantees internal consistency between the 
4 

second- and third-stage constructions of the approximation scheme. The 

correlation energy contribution is, of course, exact; it is only the 

(aa/EE) - cluster contribution which is approximate. At weak coupling 

(y«l), the occurrence of a divergence in the q - summations is due to the 
2 fact that the RPA cannot be used at short range r$8e where the electrons 

are strongly correlated. We have accordingly avoided this unphysical di­

vergence by imposing the customary ~ = 1/( Se2 ) cutoff. At strong 
ax 2 

coupling (f=1Y/2 >1), one takes ~x = /7in >1/ (S e ). 

Eqs. (23) and (25) comprise the self-consistent approximation scheme 

in which E (y) is considered to be a given known input. Eq. (26) is 
c 

needed for the collective mode analysis which follows. 

PLASMON STRUCTURE 

The calculation of the long-wavelength plasma mode frequency is 

carried out according to the procedure of Ref. 17. One readily obtains 

1 +-
2 

v(k~O,w (k»}w (k) 
p P 

(27) 
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leading, in turn, to the following mode structure (see Eq. (26): 

k 
Re w(k+O) = (1 + A(Y) 

kD 
w (k) 

p 

1m w(k+O) 

A(Y) 

c5 (Y) 

3 
2 

w o 
32 

- c5 (Y) (~) 3/2w (k) 
kD p 

5 +-
16 

1 
N 

i3 E (y) 
c 
n 

k 2 
l: (-E. ) 
q q 

1 
32 

1 
N 

2 
S (qt=O) 

(28) 

(29) 

(30) 

(31) 

Since the VAA is exact at w =0, it is entirely justifiable to input the 

dispersive coefficient (30) with structure function and correlation energy 

formulas which are constructed from accurate computer experiments or from 

independent theoretical approaches. Inserting Totsuji's cluster expan-
, 9b,26a 26b 

Slon and Monte Carlo correlation energy formulas (quoted in 

Ref. 17) accordingly leads to 

and 

3 -1 
A(Y) = 2 - 0.188y (lny -1) for y« 1 

A(r) = 1.381 - 0.35r + 0.222rl / 4 

A 

~ ( ~ +! In(l-A)) for (1/v:2)<r<50 
64A I-A A 

0.42 
0.405 - ----

r 
0.355 0.044 
2r3/ 4 - 2r7/4 

(32) 

(33) 

As the plasma parameter increases from zero, A decreases from its maximum 

value A( y = 0) = 3/2 to zero and then becomes negative. Eq. (33) predicts 

that this transition from plasmon-like (A > 0) to longitudinal phonon-like 

(A < 0) dispersion occurs at r(2~~ = 4.85, somewhat higher than the pre-
16 17 crl 

vious Baus and Golden-Lu values of 3.55 and 3.76, respectively, but 
(3d) 27 

still well below the 3-d ocp r 't = 8.8 i the Totsuji-Kakeya MD experi­crl 
mentsll predict that r(2~t) > 2.29. This transition from positive to 

crl 
negative dispersion is preceded by the onset of a liquid state short-range 

order signalled by the development of oscillations in the equilibrium pair 
, ,()26b,10 h' 2r correlatlon functlon g r somew ere ln the range 2. < <2.9. The 

substantially lower critical value of r in the two-dimensional, compared 

h d ' , 1 27" , b to t ree- lmenSlona case ,1S lnterestlng to 0 serve: here it comes 

closer to the r-range where g(r) develops oscillatory behavior, while 

this is not the case in the 3-d ocp where w(k)remains finite as k+O. 

374 



In the f~ limit, both A(f) and the sum rule coefficient ~4 (k+O) are 

dominated--similarly to the three-dimensional case--by the correlation 

energy term and go as f Strictly speaking, our theory can reach this 

limit only by employing the fluid HNC formulalO 

S E (f) 
_c ___ = -1.0952f + 0.9851 for f>30 

n 

since both the VAA and HNC approaches are translation-invariant. The 

resulting dispersion then saturates to the value 

Re 
k 

w(k+O) I = (1-0.1711 ~nn ) Wp(k) 

f~ 

HNC 

(34) 

(35) 

We note that the value of the dispersive coefficient changes only slightly 
3 

(to -0.1728) if (30) is instead used with the Gann-Chakravarty-Chester 

solid phase Monte Carlo correlation energy formula quoted in Ref. 17. 

Eq. (35) is identical to its Ref. 17 counterpart; both very nearly repro­

duce the Bonsall-Maradudin longitudinal-phonon-dispersion formula25 

= (1 - 0.173 k ) W (k) 
Inn p 

w(k+O) I (36) 

for the 2-d hexagonal latticeS at long wavelengths. 

The present VAA and previous Ref. 17 hydrodynamic approaches, while 

they are conceptually quite different at weak coupling y« 1, nevertheless, 

lead to structurally similar expressions for the dynamical polarizability 

and dispersive coefficient A(y). The two treatments share one crucially 

important feature: both satisfy the third-frequency-moment sum rule whose 

correlational part dominates the long-wavelength dispersion of the 2-d 

longitudinal phonon excitations at extreme coupling. 

DISCUSSION 

Starting from the VAA kinetic equation, we constructed a self­

consistent approximation scheme for the calculation of the dynamical 

polarizability and long-wavelength plasma mode structure in the 2-d ocp 

with a l/r potential. The nonlinear fluctuation-dissipation theorem and 

dynamical superposition formula were central elements in the approximation 

scheme. 

The principal results in the three-stage development of the theory 

are Eqs. (23) - (26). Eqs. (23) and (24) constitute the first of a chain 

of VAA dynamical polarizability relations; the first relation links linear 

and quadratic polarizabilities. It is valid for arbitrary k,w and y 

values. 

sion for 

It is exact at w = 0 and it reproduces the exact sum rule expan-
4 

a(k,~) through order l/w. Eq. (23) and the k+O dynamical 
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superposition formula (25) comprise the self-consistent approximation 

scheme in which the correlation energy density is considered to be a given 

known input. Eq. (23) is structurally quite similar to its hydrodynamic 

counterpart 

a(kw) ~(~w) (1 + v(kw)) 

w 2(k) 
P -2 

w 4(k) 
P 

4 w 
+ 

3 mnw 

in Ref. 17. The conceptual difference between the Ref. 19 and Ref. 17 

approaches, while it is especially pronounced at weak coupling (y< 1), 
, (2d) 

makes itself manifest at r values greater than unlty--even up to r 't crl 
marking the crossover from plasmon-like to longitudinal-phonon-like dis-

persion; the Ref. 19 predicts r ~~~~ = 4.85 which is to be compared with 

the Ref. 17 value of 3.76. 

The one major question which remains unanswered is whether the 

damping coefficient and super-adiabatic shift in Eq. (6) actually describe 

the y=O, k~O 2-d plasma mode structure. It is, after all, not incon­

ceivable that future higher-order-in-y calculations might further increase 

or decrease or leave unchanged the expression (3) for 8E(k~O,w; y=O); 

or perhaps they might even act to decrease it all the way down to zero 

(but not below zero since the system is stable). This last scenario 

would lead us right back to the RPA which is, at the same time, the y 0 

limit of the VAA. 

Should future calculations re-affirm the dielectric correction (3) 

as a structural feature of 2-d electron plasmas, then the present VAA 

formalism might be improved by phenomenologically replacing aRPA in 

Eq. (23) with the "super-RPA" expression 

, w5(k) ~ 
CXSRPA (~w) = cxRPA (~w) + ~ P 5 ~ 

W D 

The higher critical r value, 5.37, which results then leads us to 

conclude that r (2~ >4.85. 
crlt 
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CHAPTER VIII 

METALLIC FLUIDS 



METALLIC FLUIDS IN THE CRITICAL REGION 

INTRODUCTION 

F. Hensel 

Institute of Physical Chemistry 
Philipps-University of Marburg 
D-3550 Marburg, FRG 

During the last 15 years, considerable effort has been put into in­
vestigating the properties of dense plasmas of metal vapors at relatively 
low temperatures (T<2500 K), but considerably high pressures 
(10 bar~p~104 bar). Much of this effort has been motivated by the fact 
that dense fluid metals, because of their high latent heats of vaporiza­
tion and heat-transfer coefficients, are prominent candidates for high 
temperature working fluids and for heat-transfer media. In addition to 
this technological interest, dense metal vapors offer the valuable oppor­
tunity to investigate the continuous evolution of electrical,magnetic,and 
optical properties with continuously varying density, from the low densi­
ty weakly ionized domain, through the pressure induced ionization transi­
tion (the metal-insulator transition), which becomes significant as the 
average distance between atoms approaches the order of the atomic diame­
ter, and into the degenerated fully ionized plasma (metallic) regime. 
Such continuous variation of the density is only possible, however, if 
the vapor is compressed above the critical temperature Tc which terminates 
the liquid-vapor phase separation. As table I shows, the critical point 
is at low enough temperature and pressure to be studied with conventional 
static high temperature-high pressure techniques for only a few metals 
(Hg, Cs, Rb, and K). The location of the critical point of Mo is well 
above that of the above metals; the values have been determined in a 
transient experiment with exploding wires4 • One of the oldest question, 
that is still unresolved is, what is the relationship between the ioniza­
tion transition (the metal-nonmetal transition) and the liquid-vapor phase 
transition? Is it, for instance, necessary connected with crossing the 
vapor pressure curve or its prolongation into the critical isochore? Or 
does it occur wholly in the liquid or wholly in the vapor phase. Questions 
of this kind were raised as long ago as 1943 by Landau and Zeldovitch5 in 
the context of the liquid-vapor equilibrium in mercury. They suggested the 
possibility of separate first-order electronic and liquid-vapor transitions 
in fluid metals. 
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Table I. Critical data of fluid metals 

metal T (K) p (bar) d (g/cm3) reference c c c 

Hg 1750 1673 5.8 I 
Cs 1924 92.5 0.38 2 
Rb 2017 124.5 0.29 2 
K 2280 161 0.19 3 
Mo 14300 5700 2.9 4 

THE CRITICAL POINT PHASE TRANSITION OF ALKALI METALS 

From the experimental standpoint it is clear that there is no discon­
tinuous conductivity change except across the liquid-vapor phase change. 
This is convincingly demonstrated by a comparison of fig.1 and fig.2 which 
present a selection of the most recent and most accurate density p 6 and 
electrical conductivity a 6 results for fluid cesium in form of isotherms 
as a function of pressure at sub- and supercritical conditions. The con­
ductivities of the coexisting liquid phase are given by the dashed line, 
the arrows indicate the abrupt transition to the vapor phase! 
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Figure I. Equation of state data of fluid cesium near the critical point. 
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Figure 2. Conductivity isotherms of fluid cesium near the critical point. 

It is tempting to speculate that this behavior of G, which is also 
observed for the alkali metals Cs and K, indicates that the phase separa­
tion tends to separate the nonmetallic vapor and the metallic liquid. One 
criterion often invoked for the onset of metallic behavior is the minimum 
metallic conductivity Gmin suggested by Mott7 to characterize the boundary 
between delocalized states and states localized by disorder (the Anderson 
transition8). For liquids, Gmin typically has values between 200 and 300 
ohm- l cm- l which correlates roughly with the value of G at the critical 
density Pc of Cs, Rb and K. 

Another important problem for the understanding of the metal-nonmetal 
transition in expanded monovalent alkali metals is the role of electron­
electron interactions which favor localization to reduce double occupancy 
of individual sites9 , i.e. the Mott-Hubbard transition. The role of the 
short-range intraatomic Coulomb interaction in a metal has been discussed 
by Brinkman and Rice lO • They showed that the metallic state near the me­
tal-nonmetal transition should be highly correlated, having a low instan­
taneous fraction of doubly occupied sites. The correlated metal has an 
enhanced density of states and, consequently, enhanced values for the 
paramagnetic susceptibility. The presence of large correlation effects in 
the alkali metals was first convincingly demonstrated by the observation 
of a strong enhancement of the total mass susceptibility for expanded li­
quid cesiumll • Similar susceptibility enhancements have been observed in 
subsequent works for expanded rubidiuml2 and sodiuml3 • The low-density 
enhancement in Cs has been observed also in nuclear-magnet ie-resonance 
experiments l4 • 
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The experimental observations indicate that both effects, electron­
electron interaction and structural disorder, play important roles for the 
metal-nonmetal transition in alkali metals, and that there exists a clear 
link between the liquid-vapor and the metal-nonmetal transition. The 
occurrence of the latter implies that the nature of the interparticle in­
teraction must change dramatically, from metallic toa van der Waals-type 
interaction. By contrast, for most insulating molecular substances like 
Xe the intermolecular interaction may be considered independent of density 
to a good approximation. This contrast has been discussed by Goldstein and 
Ashcroft l5 who argued that the strong dependence on density, near Pc, of 
the electronic structure may considerably influence the thermodynamic 
features of fluid metals in the critical region. 

Since the available equation of state data for fluid Cs and Rb 2 ap­
proach the critical point close enough we are able to test experimentally 
the validity of this hypothesis. For that purpose we compare in fig.3 2,16 
the reduced densities of gaseous and liquid Xenon (inner curves) and rubi­
dium (outer curves) as a function of T = ITc-TI/Tc. Pure reduced correla­
tion between Rb and Xe is observed. Thus the experimental evidence shows 
that metals and nonmetals cannot be included together in a group obeying a 
principle of corresponding states. The coexistence curve of Rb is remar­
kably asymmetric compared to that of the simple nonmetallic fluid Xe. The 
asymmetry, however, is very similar to that observed for other metallic 
systems in which the interactions vary strongly with state. In particular, 
the metal-ammonia l7 and the electron-hole l8 liquid phase diagrams havp 
asymmetries l9 which have been attributed to the change in the range of the 
screened interactions near the critical points, due to the proximity of 
metal-nonmetal transitions. It is obvious from fig.3 that Rb violates the 
law of rectilinear diameter over a surprisingly large temperature range. 
By contrast, this law is experimentally valid for the coexistence curves 
of nearly all simple nonmetallic one-component fluids to within the capa­
city of present-day experimentation. Thus far the only other one-component 

T 

Figure 3. The reduced densities of gaseous and liquid Xenon (inner curves) 
and rubidium (outer curves). 
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system exhibit an appreciable deviation from rectilinear diameter behavior 
is SF6, as studied by Weiner et al. 20 , 

As mentioned above, it has been suggested l5 that the contrast between 
the diameter data of metals, and the apparent experimental linearity of 
the diameters of essentially all nonmetallic one-component fluids arises 
from many-body effects whose magnitudes distinguish the particle interac­
tions in metallic fluids from those in nonmetallic fluids. In particular, 
it is argued that the strong thermodynamic state dependence of the effec­
tive interactions in a metal, especially as the metal-nonmetal transition 
is traversed, corresponds to the mixing of thermodynamic fields present 
in certain solvable lattice models21 ,22,23,24,25. These models, thermody­
namic arguments26 ,27,28, and renormalization-group studies29 ,30,31 predict 
that the average value of the density, i.e. the diameter, will have the 
asymptotic form 

(I) 

where T = ITc-TI/Tc and the exponent a is the same as that of the diver­
gence of the constant volume specific heat for a pure fluid. Thus the 
densities PL V in the two branches of the coexistence curve are expected 
to behave like 

(2) 

This implies that a single power law analysis results in effective expo­
nents 

Beff = aln(lpL V - Pdl)/aln(T) L,V , (3) 

in the two branches of the coexistence curve which may differ6 because of 
the different relative importance of the A'(T)I-a term in eq.(2) and which 
may strongly deviate from the values calculated with the renormalization­
group approach6. However, the asymptotic exponents 

Basym = lim Beff 
L,V T+O L,V 

(4) 

must be the same. 

It is an empirical fact that the higher order terms in eq.(2) cancel 
to a large extent when the difference PL-PV is formed. For this difference 
a power law with the same exponent B = BL = Bv is found to hold, and the 
asymptotic range of validity is normally quite large in T. The latter fact 
is of great help in the analysis of coexistence curves. In fig.4 we have 
plotted log(PL-PV/2Pc) versus loglTI 2 for Rb. Fitting to the equation 

(5) 

we find B = 2.45 and B = 0.36. A single power law applies over a range 
10-3<ITI<10-1 and the apparent experimentally determined B-value is very 
close to those observed for normal nonmetallic fluids which belong to the 
same static universality class as an uniaxial ferromagnet represented by 
the three-dimensional Ising model or the Landau-Ginzburg-Wilson model 
with an one-component order parameter. The main difference between the co­
existence curves of nonmetallic and metallic fluids seems to be the diffe­
rent magnitude of the AITII-a term in eq.(2) which manifests itself in 
large amplitudes of the singularities in the coexistence curve diarneters 15 • 
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Figure 4. Single power law analysis of the coexisting liquid and vapor 
densities of Rb. 

The predicted singularity in the diameters (see eq.(I» is difficult 
to verify experimentally for several reasons. Firstly, it has been shown32 
that if one particular function, e.g. p, has a ITII-a singularity, then 
any less symmetric function pI, where p I is an analytic function of p (e.g. 
p = V-I), behaves as ITI2S. Thus the sought-for effect will be missed un­
less the correct function is chosen. The mass density has long been known 
empirically to give a more symmetric coexistence curve than volume33 • 
However, this is only a strong, but not a conclusive argument for suppo­
sing that p is the appropriate function for the order parameter. Secondly, 
the size of the asymptotic' range (or, equivalently, the amplitudes of the 
correction terms to eq.(2» depends on the choice of the order parameter. 

Renormalization-group theory has been used to produce series expan­
sions for representing data over a wide range of thermodynamic space. The 
expansions provide the following correction terms to eq.(2) for the dia­
meter 

+ ••• (6) 

Since (I-a) is not very different from unity, the true singularity is dif­
ficult to separate out from the analytic temperature term of eq.(6). The 
coefficient DI does not even have to be much larger than DO for the analy­
tic term to dominate over the entire range accessible to experimentation. 
The latter certainly causes the invisibility of the ITII-a anomaly in 
most nonmetallic fluids. 

Up to now the only convincing experimental evidence for the existence 
of a (I-a) term for one-component systems is the analysis of the diameters 
of Cs and Rb by JUngst et al. 2• A plot for Rb is shown in fig.5. A single 
power law applies over a range 10-3</T/<IO-1 and the apparent experimen­
tally determined (I-a) values are very close to the value 0.89 predicted 
by the renormalization-group theory . This finding strongly supports the 
suggestion l5 that the strong state-dependence of the effective interpar­
ticle interactions, and especially the changes in such forces in course 
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Rb 

Figure 5. Single power law analysis of the diameter of Rb. 

of the metal-nonmetal transition, lead to very large amplitudes of the 
(I-a) anomaly in the diameters of liquid-vapor coexistence curves of me­
tals. 

ELECTRONIC PROPERTIES NEAR THE LIQUID-VAPOR CRITICAL POINT OF MERCURY 

During the last 15 years, considerable effort has been put into in­
vestigating the properties of mercury near its liquid-vapor critical point. 
Much of this effort has focussed on the metal-nonmetal transition which 
occurs at reduced densities of the fluid metal. Experimental measurements 
such as those of the Knight shift34 ,35 and optical reflectivity36,37 show 
that as the density is lowered, a gap in the density of states appears to 
develop at the relatively high density of 9 g/cm3 . The opening of this 
gap means that mercury changes macroscopically to a nonmetallic, effec­
tively "semiconducting" state at the same density, i.e. before the criti­
cal point density Pc = 5.8 g/cm3 is approached. On the other hand, most 
theoretical calculations38 ,39,40 have yielded values for the gap closing 
density that are very close to Pc' It should be noted, however, that these 
calculations did not take into account the situation close to the critical 
point where critical density fluctuations may strongly affect the electro­
nic properties. The importance of density fluctuations for fluid mercury 
densities smaller than 9 g/cm3 and larger than 4 g/cm3 in the temperature 
region around Tc is clearly demonstrated by figure 6 which shows the iso­
thermal compressibility XT = l/p'(3p/3p)T at constant temperatures as a 
function of density. XT begins to rise quite rapidly as the density falls 
below 9 g/cm3• 

Knowledge of the interplay between these critical point fluctuations 
and the electronic properties is especially important for the understan­
ding of the ionization catastrophe and its relationship to the liquid-va­
por phase transition in fluid mercury. The strong interplay between the 
critical point and the electrical transport properties of mercury becomes 
immediately evident when 0 is plotted in the vicinity of the critical 
point as a function of density p at constant temperature T, as shown in 
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Figure 6. 
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Figure 7. Electrical conductivity cr of fluid mercury at constant tempera­
tures close to Tc = 14780 C as a function of density p. 

fig.7 for a number of selected isotherms. At a density of 9 g/cm3 the con­
ductivity is about the "minimum metallic conductivity" (Le. about 200 
ohm- I cm- I ). For densities smaller than 9 g/cm3, cr falls more rapidly and 
approaches a value of about I ohm- I cm- I at the critical density Pc = 5.8 
g/cm3• The more rapid fall of cr for densities smaller than 9 g/cm3 has 
been considered as a strong indication for the onset of the transition to 
a nonmetallic state. It is clear from the results of figures 7 and 8 that 
there is a close correlation between the slope of the cr-p-curves and the 
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Figure 8. The density coefficient (alncr/ap)T of fluid mercury at constant 
temperatures as a function of density (Tc = 1478oC, Pc = 5.8 
g/cm3) . 

critical point. There is no doubt that the steepest fall in the conducti­
vity of Hg is observed at the critical point. 

The pattern of the cr-p-curve is especially interesting for densities 
below the critical density where fluid mercury forms a dense partially 
ionized plasma consisting of neutral species, ionic species and electrons. 
In this case, in addition to screened Coulomb interaction among the 
charges, electron-neutral interaction plays an important role for the 
transport41 ,42. If the density of neutrals is high enough, the electron 
can interact with many atoms at the same time; i.e. it can be captured 
temporarily by density fluctuations or clusters43 ,44. This effect may be 
expected to be large in the region of small degree of ionization, i.e. 
for densities well below the ionization catastrophe, and for low tempera­
tures. Both the minimum in the cr-p-curves at around 4 g/cm3 (Pc = 5.8 
g/cm3) and the strong positive temperature dependence of cr in this range 
are completely consistent with this model. 

As is well known, thermoelectric measurements are especially suited 
to study changes in the nature of the electrical transport process42 ,45. 
Several experiments have suggested that in Hg at pressures and tempera­
tures near and above critical values the thermoelectric power vanishes46 , 
47,48,49,50. From simultaneous measurements of S and density cr Gotzlaff50 
was able to evaluate the density dependence of the thermoelectric power 
at a constant temperature near Tc (fig.9). A remarkably strong increase 
of S up to large positive values is observed in the density region where 
electron-neutral interaction becomes important (cp. also fig.7). The 
energy transport by neutrals induced by the electron current seems to 
give a large contribution (a drag effect) to the thermoelectric power in 
the region of small degree of ionization. For densities above the ioniza­
tion catastrophe density the thermopower tends to small negative values 
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Figure 9. 
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Thermopower S of fluid mercury at a constant temperature as a 
function of density p (Tc = 1478oC, Pc = 5.8 g/cm3). 

(fully ionized degenerate plasma). From the results in fig.9 it is clear 
that the change in the electrical transport behavior of expanded Hg is 
intimately related to the vapor-liquid critical point. 

The interplay between the critical point phase transition and the 
rapid changes in the electronic structure, when the ionization catastrophe 
is traversed, becomes especially evident when the critical point is ap­
proached from the insulating vapor side. This approach has recently been 
extensively studied by measurements of the density- and temperature depen­
dence of the optical properties of the vapor. At very low densities a line­
spectrum is observed with the main absorption lines at 4.89 eVand 6.7 eV 
corresponding to transitions between the 6s ground state and the 6p trip­
let and singlet state of the Hg-atom. As the density is increased the 
sharp lines broaden due to interactions with neighboring atoms resulting 
in a relatively steep absorption edge which moves rapidly to lower ener­
gies with increasing density. Fig.IO gives a few selected data51 for the 
spectral dependence of the extinction coefficient K of mercury at a con­
stant temperature close to Tc = 14780 C and densities p between 2.6 g/cm3 
and 4.5 g/cm3 (p = 5.8 g/cm3). The most striking feature of the data at 
low densities is a very abrupt edge in absorption which moves rapidly to 
lower energies with increasing density. At densities larger than 4 g/cm3, 
the optical absorption qualitatively changes, aquiring a low frequency 
foot, which extends at least to 0.5 eV. 

The closing of the effective gap in the excitation spectrum (fig.IO) 
can also be viewed in terms of a nonlinear enhancement of the real part 
of the dielectric constant 81 52 with increasing density as demonstrated 
in fig.2 which shows results for 81 at the constant photon energy 1.27 eV 
in the form of isotherms plotted versus pressure. As the pressure is in­
creased at a constant temperature T larger than about 0.96 Tc (i.e. 
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Figure 10. Spectral dependence of the extinction coefficient K of fluid 
mercury at a constant temperature close to the critical tempe­
rature of 14780 C as a function of density. 

12 

11 

10 

~oo 1500 

llw =1.27eV 

~ 

~ 

1600 1700 1800 
PlborJ-

, , 

1900 2000 

Figure II. The real part of the dielectric constant £1 at the constant 
photon energy 1.27 eV as a function of pressure p for diffe­
rent sub- and supercritical temperatures p = 1673 bar. 
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)4000 C) E) initially follows the Clausius Mosotti model of the polarisibi­
lity of induced dipoles before it shows a strong upward deviation from 
Clausius-Mosotti behavior. It is obvious from the pattern of the c)-curves 
in fig.11 that the strong dielectric anomaly is inextricably related to 
the critical point phase transition of mercury. 

This becomes especially obvious when E) is studied in the critical 
region as a function of temperature at constant density, as shown in fig. 
12 for a number of selected isochores. The data show close to the critical 
isochore clearly the presence of a large anomalous contribution in the di­
electric constant reaching a magnitude of about 70% of the background at 
~T/Tc=10-3. This is in contrast to the behavior of nonmetallic fluids for 
which a comparatively weak dielectric anomaly (smaller than 0.1% for CO at 
~T/Tc<)0-4 53) occurs54 • We consider the finding of a large amplitude of 
the dielectric constant anomaly for mercury as evidence for a strong in­
terplay between the vapor-liquid critical point phase transition and the 
large changes in the electronic structure as the metal-nonmetal transition 
is approached. 

As mentioned before the enhancement of EI with density p or tempera­
ture T can also be viewed in terms of changes in the shape of the absorp­
tion spectrum. In fact, EI may be obtained from the standard Kramers-Kro­
nig integral over the optical absorption coefficient. Therefore, we 
plotted in fig.13 the extinction coefficient K of fluid mercury at the 
constant photon energy 1.27 eV as a function of temperature. A comparison 
of figures 12 and 13 shows that the temperature anomalies of EI and K 
close to the critical point of Hg are remarkably similar. This similarity 
is strong indication that both features have the same physical origin, 
i.e. they are consequences of the strong interplay between the critical 
point phase transition and the changes in electronic structure as the 
metal-nonmetal transition is approached. 
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Figure 12. The real part of dielectric constant Ej at constant density 
versus temperature (Tc = 1478°C, Pc = 5.8 g/cm3). 
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and at constant density P as a function of temperature (Tc = 
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I. INTRODUCTION 

Fluid metals around normal density can be thought of as low 
temperature non-ideal plasmas. They are plasmas in that the Coulomb 
interactions among the constituent particles are important in determining 
thermodynamic and transport properties. They are low temperature in that 
even up to 1 eV the temperature is less than or comparable to the average 
interionic electrostatic energy. The resulting high f's (r = Z2e 2/<r>kT) 
cause the pair distribution function to look more like that of a normal 
liquid than that of an ideal gas. For the present studies r ~ 10-100 Z2, 
where Z is the effective charge of the ions. The real metallic systems 
have several important differences from idealizations such as the one 
component plasma model. For example, since the mean distance between 
electrons, r s ' varies between 2 and 3 in atomic units with temperatures 
between 0.1 and 1 eV, the electron gas is degenerate, but polarizable. 
Therefore, unless the electron screening is well known, the effective 
Coulomb interaction between ions cannot be specified. Furthermore, 
according to the model of Ashcroft and Lekner,l the packing fraction 
along the liquidus remains roughly constant at 0.46. As a result the 
excluded volume of the ions probably cannot be ignored anywhere over the 
density range from two-fold compressed to four-fold expanded. These com­
plexities make realistic modeling of dense fluid metals very difficult in 
practice. 

Over the past several decades, we have developed techniques for ac­
curate thermodynamic and transport measurements over a wide range of den­
sities and temperatures. The two regions we shall concentrate on here 
are shock compression and heating to 1 eV and two-fold density increases, 
and isobaric expansion to 1 eV and four-fold density decreases. These 
experimental capabilities can now produce metal samples in stable, equi­
librium states, defined to 1-2% in thermodynamic parameters, for times 
long enough to perform other experiments. 
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There are several reasons for choosing the acoustic velocity as a 
parameter to measure for dense fluid metals. First, the acoustic 
velocity is directly related to the adiabatic bulk modulus, a derivative 
of the equation of state surface in P,V,E space. Since the equation of 
state surface may be subtly affected by changes in interparticle 
potential, measurements of the derivative will be much more sensitive to 
these changes. For example, there is growing evidence that at least some 
of the conduction electrons are localized in fluid mercury as the density 
decreases below 9 gm/cc. 2 Since screening by the degenerate electron gas 
is accomplished by electrons near the Fermi surface, changes due to lo­
calization in the density of states at the Fermi Surface will certainly 
change the effective interparticle potential. There is indication that 
this effect can be seen in the acoustic velocity.3 

Another reason for interest in acoustic velocities is that, when 
combined with accurate data along shock compression or isobaric expansion 
paths on the equation of state surface, these measurements allow a purely 
experimental determination of most of the important thermodynamic quanti­
ties. These include the heat capacity at constant volume, Cv ' the 
isothermal bulk modulus, BT, and Gruneisen's gamma, YG' The latter two 
quantities can be thought of roughly as the orthogonal derivatives of the 
P,V,T equation of state surface in that 

and 

-v ap) 
av T 

( 1) 

In the following sections we will outline the methods of making acoustic 
velocity measurements on samples which are destroyed in time scales of 
milliseconds or less, the analytical techniques for calculating the ther­
modynamic quantities of interest, and new results indicating a linear re­
lationship of acoustic velocity with density over a very large density 
range. 

II. SHOCK COMPRESSION 

Shock compression is one way of obtaining fluid metals at high 
temperature and density and in well defined thermodynamic states. The 
irreversible nature of shock compression results in large'entropy or 
temperature increases, so that for sufficiently strong shocks the com­
pressed material will be molten. The thermodynamic state is determined 
by the Hugoniot relations, which are nothing more than statements of con­
servation of mass, momentum, and energy across the shock front. 4 One com­
plexity often encountered for solids is avoided when the shocked material 
is molten. Since the momentum conservation condition gives a Hugoniot 
equation referring to the longitudinal stress (i.e., in the direction of 
shock propagation), the stress tensor in the shocked solid may be unde­
termined. In the solid, longitudinal and transverse stresses may be dif­
ferent. However, if the shock melts the sample, the liquid cannot sup­
port significant deviatoric stresses, so the longitudinal and tangential 
stresses are identical. For this case the pressure is well defined. 
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The question of equilibrium often arises in shock wave physics. How 
does one know that the P,V,E point determined by dynamical measurements 
in a shock wave experiment determines a point on the equilibrium equation 
of state surface? In answer to that, we have a wealth of empirical evi­
dence that dynamic and static high pressure data normally agree to within 
experimental uncertainties. 5 Furthermore, molecular dynamics calcula­
tions for monatomic systems, such as metals, indicate a very rapid equi­
libration of the translational degrees of freedom following an abrupt de­
parture from equilibrium. 6 For these reasons we consider that the ther­
modynamic state behind a shock is both well defined and in equilibrium. 
We have developed techniques for measuring acoustic velocjty in shock 
compressed materials primarily to determine high pressure melting points. 
If the compressed material is solid, this veloci ty is the longi tudinal 
elastic wave velocity, while, if the material is partially molten, the 
highest velocity acoustic disturbance travels with the bulk wave 
velocity.7 Since these velocities typically differ by 20-30%, it is easy 
to determine where the Hugoniot curve crosses the solidus. 8 

The basis for acoustic velocity measurements in shock melted metals 
is the use of a short shock, as illustrated in Fig. 1. When a thin plate 
hi.ts a target, shocks move forward (to the right on Fig. 1) from the 
impact surface into the target and backward in the plate. When the shock 
reaches the free rear surface of the plate, the zero pressure boundary 
condition requires that a rarefaction wave propagates forward in the di­
rection of the shock in the target. This situation corresponds to t = 0 
in Fig. 1. The rarefaction wave is dispersive since the leading edge is 
moving into hot compressed material, in which the acoustic velocity 
normally exceeds the original shock velocity, while the trailing edge of 
the rarefaction is moving into decompressed material. When the 
rarefaction overtakes the shock wave the peak shock pressure decreases, 
as does the shock velocity. Previous attempts to measure the overtake by 
observing the decrease in shock velocity have often beeq ambiguous be­
cause the measured wave velocity scales roughly as p1/2. In this case 
small changes in peak pressure result in even smaller changes in wave 
veloci ty. 

t 

I 

Figure 1. Evolution of a short shock. At t = 0 the 
release from a free surface begins to overtake 
the shock. When overtake occurs the peak 
pressure and shock velocity decrease. 

397 



The improvement we have introduced, which allows us to measure the 
acoustic velocity in hot materials at very high pressure, involves 
measuring the thermal radiation from the shock front in a transparent 
medium. 9 Since the thermal radiation intensity varies as a high power of 
the temperature at the shock front, or equivalently the shock pressure, 
small decreases in peak pressure result in much larger fractional 
decreases in detected light intensity. By choosing a transparent medium, 
the optical analyzer, in which the shock front is opaque, we can assure 
that we are measuring the leading edge of the shock wave structure. By 
varying the metal target thickness through which the shock wave structure 
must pass before entering the optical analyzer we can make measurements 
which allow us to extrapolate to a target thickness for which the 
rarefaction overtakes the shock at the target-optical-analyzer interface. 
This experimental technique eliminates the need of complex hydrodynamic 
calculations to account for perturbations due to waves reflecting from 
the metal-optical-analyzer interface. 

The calculations required to obtain the acoustic velocity from the 
measured time for a release to overtake the shock have been presented in 
detail elsewhere. 10 Since the acoustic velocity in a fluid determines 
the slope of an isentrope centered on the shock state, and the P-V rela­
tion determined by the Hugoniot equations (referred to as the Hugoniot) 
determines the slope of a different, stiffer curve on the equation of 
state surface, by differencing them one can obtain an expression for the 
Grffneisen parameter: 

v ap) 
aE V 

(2) 

where the subscript S refers to the isentropic derivatives, while the 
subscript H refers to derivatives along the Hugoniot. If one also 
measures or calculates the temperature along the Hugoniot, the constant 
volume heat capacity can be calculated fromI1 

(aE/aV)H + P 
(3) 

(aT/aV)H + (py)T 

The isothermal bulk modulus is then derived from 

BT BS - aBTyT 

BS - (py)2(Cv/p)T (4) 

These equations have been used to obtain all the useful thermodynamic 
data for fluid Csl, for example, up to 1.5 Mbar and 10,000 K.12 

Some of the results we have obtained for acoustic velocity in shock 
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compressed metals are shown in Fig. 2. In the case of iron we found evi­
dence of a solid-solid transition at a shock pressure of 2 Mbar and 
melting at 2.5 Mbar. The data along the extension of the bulk sound 
velocity curve (CB) are for the liquid phase. In the case of tantalum we 
observed only the melting transition. In both of these cases the acous­
tic velocity is a linear function of density along the Hugoniot in the 
liquid phase. 
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Figure 2. Rarefaction wave velocity as a function of shock pressure. 
(a) Iron (Ref. 13); (b) tantalum (Ref. 14). CB refers to the 
bulk sound velocity. 
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III. ISOBARIC EXPANSION 

The isobaric expansion experiment has been developed over the past 
decade to provide stable, equilibrium liquid metal samples up to four­
fold expansion and 10,000 K. 15 The experiment consists of a wire elec­
trically heated in an inert gas filled pressure vessel. The roughly 
square electrical pulse, with 5 vsec rise and fall times and 30-100 VS 
duration is chosen so that an approximately 1-mm-diameter wire is heated 
quickly enough to avoid hydrodynamic instabilities, such as the capillary 
instability. On the other hand the heating pulse is slow enough so extra 
heating of the surface through the skin effect is avoided, and the 
pressure throughout the sample is nearly constant during the expansion. 
Enthalpy is calculated as the time integral of the current times the 
voltage, with the current and the voltage measured during the heating 
pulse by a four probe method. Temperature is determined by multicolor 
optical pyrometry of the wire surface, so the inert gas prevents chemical 
reaction giving non-thermal radiation as well as providing the pressure 
medium. By increasing the pressure to supercritical, stable expansions 
can be obtained to roughly the critical density (~4-fold expansion). 

With this capability we have demonstrated that one can obtain good 
pressure, density, enthalpy, and resistivity data along an isobaric ex­
pansion curve. With the addition of pyrometric temperature determina­
tions, the constant pressure heat capacity is also available. 16 For 
dense metals, such as tantalum and lead, the liquid column remains stable 
for tens of microseconds after the current is turned off, even at 
temperatures above 8000 K. 

The basis for acoustic velocity measurements in this thermodynamic 
regime is a laser induced stress wave. After the current pulse has been 
stopped, but before the liquid column falls apart, we irradiate one side 
of the sample with a 0.1-0.5 J, 25 ns, pulsed ruby laser propagating 
radially. With a focal spot of 100 V diameter we can generate a 10 kbar 
stress wave, the velocity of which rapidly decays to the sonic velocity. 
This wave propagates across a diameter of the wire and emerges at the 
opposite side, causing a compression wave in the gas. With Schlieren 
photography, we can photograph this wave in the gas and determine when it 
breaks out of the sample. The sound velocity is then calculated from the 
time interval and the sample diameter. 17 

Data from many experiments on lead and tantalum are shown in Fig. 3. 
We have chosen density as the independent variable to show the linear de­
pendence of sound velocity on density, over a factor of two expansion in 
the lead data. Several pressures are represented in Fig. 3a, and, at 
least in the low density data we can obtain a rough upper limit on the 
intrinsic temperature dependence of the sound velocity. Since at a den­
sity of 5-6 gm/cc the temperature spread between 1 and 3 kbar isobars is 
greater than 500 K and the accuracy of the sound velocity data is better 
than 4%, the independence of sound velocity on pressure gives 

dC ---- < 0.3 km/sec 
dInT 

On the other hand, from Fig. 3a we can determine that 
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Therefore the intrinsic temperature dependence at large expansions 
appears to be much weaker than the density dependence. 
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Figure 3. Acoustic velocity in heated, expanded liquid metals: (a) lead 
(Ref. 18); (b) tantalum (Ref.19). 

The linearity of the present data with density is consistent with 
other measurements of sound velocity in fluid metals over much narrower 
density ranges. 20 Typically C is reported as linear in T at constant 
pressure. 21 However, the apparent temperature dependence is probably im­
plicit through thermal expansion. 
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Given the previously obtained thermodynamic properties and the sound 
velocity, we can use the relations 

with a the thermal expansion coefficient, and 

to determine experimentally both Cv and BT• 
GrUneisen's gamma as 

(5) 

(6) 

Also, we can express 

(7) 

so the isobaric expansion data and sound velocity completely determine 
the derivatives of the equation of state surface. 

IV. BIRCH'S LAW 

With a linear density dependence of sound velocity both in compres­
sion and expansion for fluid metals, it is natural to plot both sets of 
data together. The only' fluid metal for which we have data both in shock 
compression and isobaric expansion is tantalum, and this is shown along 
with other available data in Fig. 4. These data show that for tantalum 
the same linear relation fits both sets of data from 10 to 30 gm/cc. The 
lead data from isobaric expansion is extrapolated to high density by 
using the common assumptions for shocks in condensed media: shock 
velocity linear in material velocity and PYG constant. The reasonable 
linearity of sound velocity vs density is again to be seen. The iron and 
aluminum shQck data are augmented by one-atmosphere data on molten 
liquids. 22 ,2J The one material which appears to fall outside the uniform 
collection of data is lanthanum, for which the slope appears steep. How­
ever, we know that the acoustic velocity of this metal is affected by 
changes in the electronic band structure in the density range shown 
here. 10 The other systematic feature of Fig. 4 is that the slope of the 
linear relations is monotonically decreasing in atomic mass. 

This kind of plot has been presented first by Birch in an attempt to 
derive the average atomic number of materials deep in the earth from 
seismic velocities. Birch started by measuring elastic wave velocities 
in rocks to 10 kbar, representing a density change of less than 10%.24 
He later included shock compression data, froln which isentropic moduli 
were calculated or the shock wave velocity was used directly, to estab­
lish Birch's Law: for isostructura1 materials the wave velocity decreases 
as the square root of the mean atolue mass, while fQr a given material 
the wave velocity increases linearly with density.l5 Since the original 
work, several people have tried to explain this linear relation as an 
approximation to more general solid state models over a limited density 
range. 26 The present data show an apparent linearity over a much wider 
density range than has been previously considered. 
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The first half of Birch's law is that isostructural materials should 
have a wave velocity which scales inversely with the square root of the 
mean atomic weight. In Fig. 5 we show that this scaling works very well 
for ljquid metals at the 1 atmosphere liquidus. According to the work of 
Ashcroft and Lekner, 1 all metals at this point have roughly the same 
packing fraction, so the structures are closely similar. The metals 
group naturally according to column in the periodic table so the offsets 
must be determined by a combination of the valence, or core charge, and 
the core electronic structure. These figures show that we have rediscov­
ered Birch's law for fluid metals. 

v. DISCUSSION 

A starting point for understanding acoustic velocity in fluid metals 
is to consider the disturbance as an ion plasma wave. The unscreened ion 
plasma wave frequency is given by 

411n(Ze) 2 

M 
(8) 

where n is the ion density, Z is the ionic charge and M is the ionic 
mass. Screening by a gas of free electrons introduces a q dependence 
through the dielectric function which results in a dispersion relation 

(9) 

where 

c = (10) 

a~d N(Ep) is the density of states at the Fermi surface. N(Ep) scales as 
n l/3 , so c, although it has the proper dependence on ionic mass and 
temperature, should vary as the cube root of the density in this model, 
and not linear with density. This model, developed by Bohm and Staver, 
also fails to give proper quantitative values to within a factor of two 
except for the alkali metals. 23 

By putting terms which are functions of r in the free energy of the 
system, one gets no closer to the experimental data. If the Helmholz 
free energy is a function of r, as in the one-component plasma model,27 
then 
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Ignoring the distinction between adiabatic and isothermal moduli, this 
expression suggests a stronger temperature than density dependence for 
the sound velocity. 

Two models which do reproduce the experimental results are 
variations on the van der Waals equation o~ state. They are the hard 
sphere van der Waals theory of Young and Alder 8 and a more realistic 
soft sphere version. 29 Both of these models are of the form 

P NkT [1 + A(p,T)] - B(p) 
V 

and (12) 

E Eo + NkT [i + C(P,T)] - D(p) 

where the functions A, B, C, and D are determined by fits to Monte Carlo 
simulations of systems with hard sphere or soft sphere potentials. The 
various parameters, such as hard sphere radius, or the power of the soft 
sphere potential, can be fit consistently to the data for fluid metals, 
including the linear density dependence of the sound velocity. Two dif­
ferences between these models and the Bohm-Staver or one component plasma 
model are that the potentials are stiffer and that the non-zero core size 
is explicitly included. It is not clear which of these differences is 
most important in correcting the point charge models. The van der Waals 
models are semi-empirical, however. The more fundamental theories, such 
as those developed by Ashcroft and Langreth30 have not yet been applied 
to the density dependence of ~he bulk modulus. 

Recent measurements by Shaw and Caldwell on fluid alkali metals up 
to 7 kbar and 450 K have given similar results to ours, although over a 
much more limited thermodynamic range. 21 They find a weak temperature 
dependence and a roughly linear density dependence of acoustic velocity. 
However, their data is presented in terms of "experimentalist variables" 

pressure and temperature - instead of density and temperature. Until 
the inversion is done the accuracy of Birch's law cannot be confirmed. 

We have shown that with current experimental techniques thermodynam­
ic quantities can be measured accurately for fluid metals over a four or 
five-fold density range up to temperatures of 10,000 K. The result we 
have presented here is that the acoustic velocity in these systems is 
apparently relatively insensitive to temperature and linear in density 
over a very wide thermodynamic range. We believe that the ionic core 
properties are important in determining this result both through their 
finite size and jn the stiffness of the potential relative to a point 
change system. However, the question still remains: Why is Birch's law 
so good? 
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STRUCTURE OF THE JOVIAN ENVELOPE AND THE 

EQUATION OF STATE OF DENSE HYDROGEN 

INTRODUCTION 

W. B. Hubbard and M. S. Marley 

Department of Planetary Sciences 
Lunar and Planetary Laboratory 
University of Arizona 
Tucson, Arizona 85721 

The interior composition of the planet Jupiter is deduced by comparing 
models generated from the equation of hydrostatic equilibrium and high­
pressure equations of state with the known mass, equatorial radius, and 
gravitational multipole moments of the planet. The planet is primarily 
composed of liquid metallic hydrogen, but there appears to be a substantial 
admixture of denser elements present as well. Jupiter's hydrogen-rich 
envelope is substantially enriched in material other than hydrogen and 
helium, containing approximately 20 to 60 earth masses of such material, in 
addition to 6 to 4 earth masses of such material in a distinct core. Thus 
Jupiter's bulk composition differs from that of the sun. These conclusions 
are heavily dependent upon accurate pressure-density relations for pure 
metallic hydrogen in the pressure range from about 3 to 40 megabars, and at 
temperatures ranging from about 10000 to 20000 K. Experimental results for 
compression of hydrogen in the nonmetallic pressure range are helpful in 
constraining models, but accurate theoreti~al calculations of the 
thermodynamics of the liquid metallic phase provide the most help in 
constraining models. We discuss the state of the strongly-coupled plasma in 
the Jovian interior, and propose a phase diagram for dense liquid hydrogen. 

Physical conditions in the deep interior of Jupiter provide a laboratory 
of sorts for the study of metallic hydrogen. In this planet there exists the 
largest natural reservoir of this substance in the solar system, comprising 
approximately 230 earth masses, where 

1 earth mass - ME = 5.976 x 1027 g 

out of a total planetary mass of 317.7 ME' 

These numbers are of course model-dependent, and are not actually 
available independently of thermodynamic models of metallic hydrogen. On the 
other hand, they are fairly reasonable in the light of all available 
evidence, and show that currently-available theories for the thermodynamics 
of metallic hydrogen are not grossly in error. The purpose of this 
discussion is to show how theoretical calculations of the thermodynamics of 
metallic calculations are incorporated in Jovian interior models, and to 
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exhibit the most crucial (and uncertain) aspects of these calculations from 
the point of view of such models. 

The temperature-pressure regime of interest in the deep Jovian interior 
is likely to be moderately close to an adiabat of pure metallic hydrogen, 
with a specific entropy close to that of the deep convective atmosphere, a 
region of the planet accessible to direct observation. The entropy of the 
latter region is specified by a starting temperature Tl = 165 K at a pressure 
of 1 bar (105 Pa; Lindal et al., 1981). Taking the thermal conductivity of 
liquid metallic hydrogen to be about 108 ergs/cm/s/K at a mass density of 1 
g/cm3 (Hubbard and Lampe, 1969), the temperature gradient required to 
transport the observed interior heat flow Hi = 5400 ± 400 erg/cm2/sec (Hanel 
et al., 1981) would be substantially superadiabatic and therefore lead to 
convection. Efficient convection results in an interior temperature profile 
which is close to isentropic. Melting temperatures of metallic hydrogen in 
the pressure range of interest (3-40 Mbar; or 3-40 x lOll Pa) are uncertain 
because of their great sensitivity to the effective interproton potential, 
but there is little doubt that with likely values in the range of about 103 
K, they fall well below the temperatures estimated for isentropic Jovian 
interior models (about 104 K). The calculation of interior properties of 
Jovian models therefore requires an accurate liquid-state theory for metallic 
hydrogen. 

THERMODYNAMICS OF DENSE LIQUID HYDROGEN 

Current Jovian interior models are based upon the assumption of a 
"conventional" phase diagram for dense hydrogen (for examples of other phase 
diagrams, see related papers in these proceedings). Fig. 1 shows a phase 
diagram for pure hydrogen (Marley and Hubbard 1986) which is calculated in 
the following manner. The Helmholtz free energy of liquid metallic hydrogen 
(H+) is evaluated using the formula of Hubbard and DeWitt (1986), which is in 
turn adjusted to give the best fit to a large number of Monte Carlo 
evaluations of the pressure P, internal energy E, heat capacity Cv ' and 
generalized Gruneisen parameter, for an effective potential between protons 
which is described by the zero-temperature Lindhard dielectric function. As 
a result of the fitting procedure, the coefficients are obtained for the 
expression 

where 

f = Fr/NkT, 

fa = e 2/(saokT), 

s = (3V /47rN<Z» 1/3 / ao' 

Here FI is the interaction part of the Helmholtz free energy, e is the 
electron charge, V is the volume, N is the number of nuclei, ao is the Bohr 
radius, and <Z> is the average charge of the nuclei (=1 for H+). A complete 
free energy expression is obtained by adding to FI the ideal-gas free 
energies of a fully-degenerate electron gas and a Maxwell-Boltzmann gas of 
nuclei, together with the electron exchange energy and a nonlocal electron 
correlation energy Ec which is represented by the expression 

Eo = -0 0311 ln (1+4.69/s)(1+0.676{S) 
N<Z>e2/ao ' (1+0. 236{S) 

(Salpeter and Zapolsky, 1967). 
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The interaction component of the free energy of liquid molecular 
hydrogen (H2) is similarly fitted to results of Monte Carlo calculations 
which utilize an H2-H2 pair potential derived from shock wave experiments to 
0.76 Mbar (Nellis et al., 1983). We then compute chemical potentials and 
solve for the H2 - H+ boundary between the two liquid phases. We find 
(dT/dP) > 0 along this boundary, hence 

AS(Hz -t H+) < 0 

at the presumed first-order transition between liquid phases. For a Jovian 
adiabat (T1 = 165 K), the H2 model predicts a transition temperature of 7500 
K at a pressure of 5.5 Mbar (5.5 x 1011 Pa). This result is quite sensitive 
to the assumed form of the electron correlation energy, as discussed by Ross 
and Shishkevish (1977). An uncertainty in the predicted transition pressure 
of about a factor of two is not at all unlikely. Moreover, the value of the 
latent heat of transition between the two phases (and even its sign) is 
fairly sensitive to the assumed internal partition functions of the H2 
molecules in the vicinity of the transition. However, it is significant that 
this model predicts substantial temperature-dependence in the transition 
pressure, such that the transition in the deep Jovian and Saturnian interiors 
may take place at substantially higher ~ressures than the corresponding 
transition at zero (or at least T «10 K) temperature. 

As discussed by Stevenson and Sa1peter (1977), the transition from 
molecular to metallic hydrogen in Jupiter and Saturn is likely to occur under 
conditions of constant temperature across the phase boundary, as opposed to 
the case where the temperature follows the phase boundary within a finite 
pressure range until the entropy is equalized and all of the H2 has been 
converted to H+. In this case the specific entropy must decrease from the H2 
envelope to the H+ interior, with the result that the interior temperature 
values predicted for a fully isentropic model are overestimated by a factor 
of about 1.3 in the case of Jupiter. Thus the maximum temperature (in the 
deepest metallic-hydrogen layer in Jupiter) would be about 13000 K at 40 
Mbar, rather than 17000 as predicted by the isentro~ic model. The mass 
density of hydrogen at this level is about 3.6 glcm , corresponding to an 
electron spacing parameter s - 0.9, and a plasma coupling parameter 

re " 21 to 27, 

depending on the precise temperature distribution. At constant specific 
entropy, 

Texp''I, 

where 

p = mass density, 

and in this pressure and density range, 

.., " 0.6. 

Since 

re ex pl/3 IT, 

it follows that re will be slightly larger in the layers close to the 
transition region than in the deeper metallic-hydrogen envelope. 

Corrections for the presence of helium and other dense elements will 
change the preceding numbers to some extent, but not most of the qualitative 
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results. Calculation of the transition of H2 to H+ in the presence of helium 
introduces an additional thermodynamic degree of freedom, and reliable models 
for the phase transition in this case are so far not available. 

Thus, models of hydrogen-rich planets which assume complete adiabaticity 
throughout the interior may overestimate the temperature in the H+ region. 
The temperature and initial pressure of transition for two pure hydrogen 
adiabats are given in Table 1. Also given are the change in entropy and 
density across the transition. The ratio T(ad)/T gives the factor by which 
the assumption of constant specific entropy all the way from a pressure P = 1 
bar to pressures characteristic of the deep Jovian interior, overestimates 
the actual temperature in the H+ region. 

e .o 
Plasma 

----
H 

---
4 . 0 

g 
H+ 

f--

l!l 
0 
-l -- -----, 

3.0 1----? 

2 . 0 

11.0 12.0 13.0 

LOG P (Pal 

Fig. 1. Hydrogen phase diagram and interior temperature profiles in 
Jupiter (upper solid curve) and Saturn (lower solid curve). The 
transition between liquid H2 and liquid H+, presumed first­
order, is shown as a solid, near-vertical line sloping to the 
right. Other possible phase boundaries, whose location is not 
important for Jovian interior models, are shown dashed. The 
dotted curves are extensions of the H2 adiabats, assuming 
constant entropy across the phase boundary. 

410 



Table 1. Parameters for molecular-metallic phase transitions for 
two jovian-planet adiabats (pure hydrogen assumed). 

~(@l bar) 
i 90 
I 165 
I 

T(K) 
5000 
7500 

P(Mbar) 
5.2 
5.5 

M(k/N) 
-0.42 
-0.59 

t,p(g/cm3) 

0.29 
0.27 

T(ad)/T 
1.21 
1. 31 

As experimentally-attained pressures are still well below predicted 
transition pressures, the possibility of a gradual H2 - H+ transformation at 
Jovian temperatures in the pressure range of 1-6 Mbar cannot be excluded. In 
this case the absence of a sharp first-order transition between H2 and H+ 
would eliminate the necessity for a discontinuity in specific entropy in the 
deep Jovian or Saturnian interior, and temperatures in this region would be 
correspondingly higher by the factors given in Table 1. 

INTERIOR MODELS OF JUPITER 

The primary constraints on Jovian interior models are the gravitational 
mass of the planet GM, the equatorial radius at a pressure level of 1 bar aI' 
and the dimensionless gravitational multipole moments of the planet I n . The 
latter represent the response of the planet to the rotational perturbation 
parameter 

where w is the planet's angular rotation rate. 

The modeling procedure is approximately as follows. A proposed 
pressure-density profile (or profiles in the case of a stepwise-continuous 
planet) is substituted into the equation of hydrostatic equilibrium to 
compute the radius al of a nonrotating planet of mass GM. The two­
dimensional structure of rotating planet with a rotation parameter q is then 
calculated, yielding the J n (in practice, only J2 and J4 are known with 
sufficient precision to constrain models; J6 has been determined to about 
±65%; Campbell and Synnott, 1985). An iterative procedure is then imposed on 
the adjustable model parameters until satisfactory agreement with all 
observational parameters is obtained (Hubbard and Horedt, 1983). 

Because of uncertainties in the hydrogen phase diagram discussed above, 
the temperature distribution in the deep Jovian interior is uncertain to 
within approximately ±25%. The temperature-dependent part of the pressure in 
the corresponding pressure and temperature domain comprises about 20%; thus 
the uncertainty in the total pressure due to inadequacies in the thermal 
model is about 5%. This error may seem acceptably small, but one of the 
major goals of constructing models of the Jovian interior is to obtain the 
relative abundance of materials other than hydrogen. 

One may estimate the impact of a given error in the pure-hydrogen 
pressure on the inferred interior abundances, as follows. As shown by 
Hubbard and DeWitt (1985), the equation of state of a mixture of metallic 
hydrogen and helium under jovian interior conditions is given to excellent 
approximation by the so-called additive volume law for a mixture containing 
mass fraction Y of helium: 

where PH' Py are the mass densities of pure H and He at given P. 
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The additive-volume is valid to within < 1% for pressures greater than 
10 Mbar. It can also be used for mixtures of hydrogen with other elements in 
addition to helium, in which case Y would represent the mass fraction of all 
non-hydrogen components. No systematic study of the validity of the 
additive-volume law has been made for this more general case, but it is 
expected to be at least as good an approximation as for the hydrogen-helium 
system alone. 

Letting S be the fractional error in the pure-hydrogen density, and 
letting SY be the error in the inferred Y from the additive volume law, we 
find 

BY PH Y .. -S P / Y .. -SjY 

since PH .. P because of the predominance of hydrogen. 

We conclude that, since Y is on the order of 0.2 to 0.3 in Jupiter's 
hydrogen-rich envelope, uncertainties on the order of 5-10% in the pure­
hydrogen equation of state can lead to uncertainties on the order of 25 to 
50% in the inferred value of Y. 

Studies of the abundances in Jupiter's hydrogen-rich envelope have been 
carried out using the theory of Hubbard and DeWitt (1985), and also using an 
alternative equation of state based on Thomas-Fermi-Dirac (TFD) theory 
(Hubbard and MacFarlane, 1985). The TFD equation of state gLves a higher 
pressure for given composition, temperature, and density, than does the 
equation of state based on the Lindhard dielectric function. For pure 
hydrogen, the TFD pressure is about 10% higher at P = 22 Mbar. Of the two 
equations of state, that of Hubbard and DeWitt (Lindhard) requires a smaller 
admixture of non-hydrogen material in Jupiter, and gives a total hydrogen 
abundance in Jupiter correspondi~g to the result given in the introduction. 
In contrast, the TFD equation of state gives only approximately 180 ME of 
hydrogen in Jupiter, an implausible result. 

CONCLUSIONS 

Neither of the two theories for liquid metallic hydrogen yields a 
Jupiter model of precisely solar composition, and so it seems a safe 
conclusion that Jupiter is enriched in heavy elements with respect to the 
sun. However, there are many remaining uncertainties which must be addressed 
before this result can be made more precise. On the basis of the work 
carried out so far, the liquid-metallic hydrogen equation of state based on 
Monte Carlo runs using an effective potential derived from the Lindhard 
dielectric function, seems to give more reasonable Jupiter models than does a 
TFD-based equation of state. Thus, in this limited sense, one can use 
Jupiter interior models to discriminate between hydrogen equations of state. 
Further work on this topic, incorporating more extensive experimental results 
on hydrogen and helium compression, is in progress. 
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NONLINEAR FLUCTUATION-DISSIPATION THEOREMS AND THEIR APPLICATIONS TO 

DYNAMICAL PROBLEMS IN STRONGLY COUPLED PLASMAS 

G. Kalman 

Department of Physics 
Boston College 
Chestnut Hill, MA 

I. INTRODUCTION 

This paper discusses the methodology and some applications of a 

dynamical mean field theory type approach developed by K.I. Golden and the 

author to the problem of dynamical response functions and collective mode 

dispersion in a strongly coupled plasma. Additional applications are 

discussed by Golden (Golden, this Volume). 

Central to the approximation scheme is the Quadratic Fluctuation­

Dissipation Theorem, which relates quadratic response functions to the 

three-point equilibrium correlations and also "response functions of the 

second kind" (see below) to three-point equilibrium correlations. 

We discuss the Quadratic Fluctuation-Dissipation Theorem in a 

generalized quantum language, recently developed by us (Kalman and Gu, 

1986) and its classical limit, which has been known for some time (Golden. 

Kalman, Silevitch,.1972) in Section II. In Section III, we outline the 

general philosophy of the Dynamical Mean Field Theory, due to Golden and 

Kalman (GK). In Sections IV and V, we review application of the scheme to 

the problem of plasmon dispersion in the classical one-component plasma 

(OCP) and binary ion mixture (BIM), respectively. 

II. QUADRATIC FLUCTUATION-DISSIPATION THEOREM 

The relationships commonly known as "Fluctuation-Dissipation 

Theorems" (FDT), establishing a link between the linear response (a 

non-equilibrium property) of the system and equ~librium correlations of 

fluctuating quantities, have become a powerful tool in modern statistical 

physics and many-body theory. The primitive idea was due to Nyquist 

(1928) who studied the relationship between the resistivity and noise of 

electrical networks. The establishment of the FDT in its modern form is, 
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however, due to Kubo (1957, 1959, 1966). (See also Callen and Welton, 

1951; Martin, 1968; Golden and Kalman, 1969.) While Kubo's formalism 

focuses on the linear response of the system, it is clear that, in 

general, the system's response is not restricted to be linear. Thus, in 

addition to the well-explored linear response functions, one can examine 

the properties of higher order (quadratic, cubic, etc.) response 

functions, which relate the system's response to higher powers of the 

perturbing field. Moreover, once one relaxes the restriction of 

concentrating on the simplest response characteristics of the system, the 

very concept of "response" can be generalized. The conventional response 

functions, to which we will refer as "response functions of the first 

kind", relate the perturbed averages of physical quantities (density, 

current, etc.) at a given space-time point to the perturbing field. The 

effect of the perturbation on the system is, however, further 

characterized by the perturbation of averages of correlated physical 

quantities taken at two, three, etc. space-time points. The relationships 

between these perturbed two-, three-, etc. point functions, which also can 

exhibit both linear and higher order behavior, and the perturbing field 

define (Golden and Kalman, 1982) "response functions of the second kind", 

"response functions of the third kind", etc. That all these higher order 

response functions, and also the response functions of higher kind, would 

satisfy some kind of fluctuation-dissipation-like theorem, i.e., should be 

related to averages of equilibrium correlations, is a rather obvious 

expectation. Even a cursory reflection over the derivation of the linear 

FDT should suggest a correlation, e.g., between the quadratic response 

function or the linear response function of the second kind, on the one 

hand, and the equilibrium three-point function, on the other. 

Over the last fifteen years, a series of quadratic FDT-s have been 

established along these lines. The basic relationship between the 

quadratic conductivity and the three-point current-current correlations 

for a one-component classical plasma was derived by Golden, Kalman and 

Silevitch (1972) and independently by Sitenko (1978). Relationships for 

the current-current response function of the second kind were given by 

Golden and Kalman (1982). 

The generalized quantum mechanical quadratic FDT has recently been 

derived by Kalman and Gu (1986); there have been earlier works by Soviet 

authors on related topics (Efremov, 1968; Bochkov and Kuzovlev, 1977; 

Stratanovich, 1970). The derivation is based on standard perturbation 

expansion of the quantum von Neumann-Liouville equation for the 

statistical operator n 
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(lQ • ('\ 0 - + 1L" '" at 

The Liouville super-operator is related to the Hamiltonian 

L ",,k [H, ... ] 

L '" L(O) + L(1) 

where L(I) is generated through H(I) by the external perturbation $1(t) 

(1) 

(2) 

(3) 

One proceeds to calculate Q(2), from that the second order average current 

j(2), which then determines the quadratic (external) conductivity 0, in 
? 

terms of the three-point dynamical structure functions, defined through 

1 
-2 <nk (wI) nk (w2) n_k(-w» = NOk-k -k o(w-wl-w2) {S(120) 

1f -1 -2 - - -1 -2 

+ N[Ok o(wl) S(k2w2) + ok o(w2) S(klwl) 
-1 - -2 -

(4) 

with 

and 

(6) 

Here nk(w) and jk(w) are the Fourier-transforms of the local density and 

current-density operators. Note that the ordering of these operators is 

of crucial importance and constitutes the major difference between the 

quantum and classical derivations. 
A 

The expression for 0" is 

x {[Q(012)+Q(210)]-[Q(102)+Q(201)]} 

x {[Q(021)+Q(120)]-[Q(102)+Q(201)]} (7) 
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Eq. (7) is the primitive form of the QFDT. It provides a link between the 

two principal objects, the quadratic conductivity a and the three-point 
2 

current correlations. It is still not of the form that could constitute 

the desired formulation of the QFDT. The main reason for this is that the 

r.h.s. of Eq. (7) is an integral relationship which, in fact, generates an 

integral equation for the combination of the Q-functions that appear under 

the integral. 

We proceed to solve the integral equation by first introducing an 

auxiliary quantity 

(8) 

Here S { } represents full symmetrization with respect to the permutation 

of the arguments: 

s1Q(~lWl; ~2W2){= Q(102)+Q(201) _ Q(012)+Q(210) _ Q(021)+Q(120) 
wlw2 \ wlw2 wW2 wWl 

(9) 

The Q-functions are real: thus taking the real part of (5) leads to 

a more explicit form of the integral equation: 

Prime (') and double prime (") represent real and imaginary parts, 

respectively. 
" Noting the fact that the real part of a has odd parity and the 
2 

imaginary part has even parity with respect to the simultaneous sign 

reversals of its frequency arguments, we obtain from (8) 

(10) 

" 1 " 1 " 1jI'(~lwl; ~2w2) = a'(~lwu ~2w2) - '2 a'(~l-wl; -~w) - '2 a'(-~w; ~2-w2) 
(11) 
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1 r d\l A + - P -- a" (-koo1-)l" k2\1) 211 -00 002+\1 ~ ,~ 

Next we rotate the arguments of ~ and form the rotationally 

symmetrized combination 

which now possesses the same "triangle-symmetry" as 8 _ {Q(012)}. 

(12) 

Application of the R operation to the r.h.s. of (12) eliminates the 

Hilbert-transform terms. It has the similar effect on the r.h.s. of (8); 

after considerable algebra it leaves one with the result 

(13) 

Alternative forms of the QFDT can be obtained by trading, on the one 

hand, the conductivity for the polarizability a or for the density 

response function X, (Kalman, 1978) and, on the other hand, the current 

three-point function for the density three-point functions 8(120) etc. 

defined in (5), and by working in terms of the "internal" response 

functions (Kalman, 1978; Golden and Kalman, 1979). Then 

1 (14) 

We now demonstrate that the classical h+O limit (which is manifestly 

equivalent to the high temperature 8+0 limit) of Eq. (4) reproduces the 

classical result, which has been known for some time (Golden, Kalman and 

8ilevitch, 1972; 8itenko, 1978). In order to accomplish this, we need an 

expansion of Eq. (7) to order~2, which then yields 

and thus 

e~8(021) + 8(012) 
wW2 

e~8(012) + 8(021) 
wW1 

82tr2 ] -2- wWlw2 [8(012) + 8(021) (15) 
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R[a"(~lWl;k2W2)J= a"(~lwl;~2W2) 
wlw2 wlw2 WW2 

11S2 e3n 
kklk2 S(~lwl;~2w2) 

This is exactly the classical result given by Golden, Kalman and 

Silevi tch (1972). In tE!r'ms of the density response function X 

S(~1~1;k2~2) 
4 1 - -- Re 

€(~2w2) €*(~w) S2n €(~lwl) 

X' (~lwi ;~2(2) X ' (~2w2; -~-w) X' (-~-w;~l wI) 
x 

wlw2 wW2 wWI 

(16) 

(17) 

Eq. (17) above reproduces the result given by (Kalman, 1978) with the 

exception of the coefficient 4/S2n which is incorrectly given as 2/S2 in 

that reference. 

We now list the second relationship ("FDT of the second kind") 

relating a "response function of the second kind", defined below, to the 

equilibrium three-point functions. The response function of the second 

kind 5 (kIwI; k2( 2) is defineq as the response of the system in terms of ...., ...., 

its perturbed correlations to the external perturbation: 

(18) 

The FDT of the second kind now states 

5"(~IWU .!s2( 2) = - 8;-tr {S(120)-S(OI2)+S(2IO)-S(012)} (19) 

Of particular interest is the classical limit for equal times: 

(20) 

III. FORMALISM 

The philosophy of the approach developed (Golden, Kalman and 

Silevitch, 1974; Kalman, 1978; Golden, 1978; Golden and Kalman, 1979) can 

be best understood by comparing it with the way the most prominent mean 

field theory (MFT), due to Singwi, Tosi, Land and Sjolander (STLS) 

(Singwi, Tosi, Land and Sjolander, 1968; Singwi, Sjolander, Tosi and Land, 
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1969, 1970) can be derived. In this latter case, one starts with the 

linearized first BBGKY equation in the presence of external perturbation 

(21) 

where E is the external electric field, ~(12) the microscopic Coulomb­

field acting between particles 1 and 2, F(I) and G(12) are the one­

particle and two-particle distribution functions and the superscripts (0) 

and (1) refer to unperturbed and to first order perturbed quantities. 

G(I)(12) can be decomposed as 

{ F(o)(l) F(I)(2) + F(I)(I) F(0)(2) } 

x { 1 + gO (2) 

+ r(l)02) 

(22) 

where gO(12) is the pair equilibrium correlation function and r(I)(12) is 

the "irreducible" part of the correlation function. The STLS MFT is 

obtained by neglecting this latter contribution entirely. The truncated 

equation then can be used to calculate E(~W) which obviously becomes a 

functional of g(o)k: E = E {g(o)}. The scheme can be made self­

consistent through the application of the linear Fluctuation-Dissipation 

Theorem. The result is a dielectric function, with an effective static 

potential, which leads to the deficiencies already noted. 

Our theory, deviates from the MFT primarily by retaining r(I)(12) in 

(22). Nevertheless, in order to arrive at a self-consistent scheme, an 

approximation is needed. This is provided by the "velocity average 

approximation" (VAA), which amounts to the replacement 

... 

F(~I~I) F(~2~2) J~Xl' ~X2' G (~lXl'; ~2X2') 
n(~I) n(~2 

F(~l~l) F (!2~2) 

n(~l) n(~2) 

(23) 

The correlation of density fluctuation n(x) in this expression has to be 

calculated, in general, to arbitrary order, i.e. over the perturbed 

distribution function: thus to first order one has to deal with 
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The further reduction of <n(~l) n(~2»(1) takes place with the aid of 

the quadratic or nonlinear Fluctuation Dissipation Theorem (NLFDT) 

discussed in the previous Section. 

Expressing <nn>(l) in Fourier transform language with the aid of (20) 

we find that the density response function can be expressed in the form 

_ X (!sw) 
X(kW) = £(kw) 

Here XO(kW) designates the RPA (Vlasov) value and 

(24) 

(25) 

Further reduction takes place by a repeated application of the NLFDT 

expresses the three-point function in terms of quadratic polarizabilities. 

Considerable algebra leads to 

v (kw) (26) 

Combination of (26) and (24) now provides a link between the linear and 

quadratic polarizabilities. From this a self-consistent relationship for 

the polarizability can be generated, if a closure is provided by 

independently reducing the quadratic polarizability a to a combination of 
2 

linear polarizabilities. This is accomplished by an additional 

approximation, the dynamical superposition approximation (DSA). This 

approximation is based upon the k/w + 0, Y + ° behavior of a(k-q, ].1; q, v) 
2--- --

which allows one to decompose a into clusters of a. This structure then, 
2 

which is exact in the above limit, is adopted as an approximation in the 

k/W + 0, but arbitrary Y situation: this is the DSA, whose resemblance to 

the customary superposition approximation (for the triplet correlation 

function in terms of doublet correlations) in equilibrium statistical 
A 

mechanics can be noted. The resulting expression for v(~w) is 

2 
VA (kw) 1 Wo k2 1 4 

= £(k W) w2 K2 N IS BEcorr (27) 
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(where Ecorr is the correlation energy of the system). (24) and (27) 

together now constitute a self-consistent approximation scheme for a(~w), 

valid for arbitrary coupling in the long wavelength (high frequency) 

limit. It should be noted that the first term in (27) is simply the 

(exact) coefficient of the w-4 term in the high-frequency sum rule 

expansion of £(~w), guaranteeing the satisfaction of this sum rule. 

IV. ONE-COMPONENT PLASMA 

Eq. (24) and (27) constitute a highly complicated integral equation 

for a(~w). Since our main interest is in the behavior of the plasmon 

dispersion, we look for an approximation valid in the vicinity of woo In 

this domain ~(~~) can be represented by a two-pole structure 

Thus the dispersion and damping of plasmons is represented by the 

coefficients A(Y) and B(Y), respectively. 

(28) 

By adopting the above structure for & in the integral equation, it 

reduces to an algebraic equation for the unkonwn functions A(Y) and B(Y). 

We impose the "boundary conditions" 

A(O) 

A(Y) 

3/2 

B(Y) 

B(O) o 

o for p > Pc 

The maximum wavenumber cutoff Pc is required on physical grounds. 

(29) 

Such an assumed behavior for B is closer to the expected, probably 

exponentially, vanishing damping at high frequencies than an unbounded 

increase. The more direct method of introducing a frequency, rather than 

wavenumber dependent cutoff leads to almost insurmountable algebraic 

difficulties in the resulting integral equation. The vanishing of A, for 

p > Pc assures that even for negative dispersion no unphysical negative 

frequencies are generated. 

The resulting coupled algebraic equations for A(Y;pc) and B(Y;pc) 

have been solved numerically (Carini, Golden and Kalman, 1979; Carini and 

Kalman, 1984). Physical considerations dictate Pc to be of the order of 

the inverse Landau length (e 2a)-I, i.e. it is coupling dependent; best 
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agreement with computer data was obtained by choosing Pc = O.77(e 2B)-1. 

The solution obtained exhibits some noteworthy features: (1) The 

dispersion coefficient A(Y) monotonically decreases from its Bohm-Gross 

value 3/2, as Y increases from zero, in agreement with the perturbation 

calculations in the weak coupling limit. (2) A(Y) is in very good 

agreement with MD data up to Y = 52 and in reasonably good agreement for 

larger Y values up to Y = 3258 (f = 152). (3) The critical Y value, at 

which the dispersion becomes negative is found to be Yc = 45 (fc = 8.8). 

(4) For Y ~ ~ the sum rule term dominates, and A(Y) ~ y2/3; this also 

indicates that in the high frequency sum rule expansion for Y ~ ~ the 

coefficient of the w-4 term becomes dominant. (5) The comparison with MD 

data for the damping coefficient B(Y) demonstrates less satisfactory 

agreement, which is partly due to the inherent scatter and inaccuracy of 

the MD data for the half width of the plasmon peak. (6) B(Y) exhibits a 

peak around Y ~ 52, in agreement with a recent suggestion of Hansen 

(1981) • 

All these features can be observed in Figs. 1, 2 and 3. Finally, it 
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Fig. 1. Comparison of our results for the dispersion coefficient A(y) 
with the MD data of RPM for Pc = 0.77. The full lines are plots 
of the real part of the dispersion equation w = 1 + A(y)k2 
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for the values of y indicated. The MD data are represented 
by (exo) for the same y values. The dashed line is the Bohm­
Gross dispersion curve for y = O(A(O» = 3/2 



should be noted that the introduction of the cutoff wavenumber Pc is 

critical to obtain good agreement with MD data; in an earlier version of 

the work with Pc + ~ the agreement was markedly poorer. 

Fig. 2. Conparison of our results for the damping coefficient A(y) with 
the MD data of RPM for Pc = 0.77. The full lines are plots of 
the imaginary part of the dispersion equation B = B(y)k2 for 
the values of y indicated. The MD data are represented by (exo) 
for the same y values. 
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Fig. 3. Plot of the dispersion coefficient, A(y), and damping coefficient, 
B(y), as a function of y when the maximum ~.avenumber, Pc' is 
scaled proportional to the inverse Landau length, (e2S)-1. 
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v. BINARY IONIC MIXTURES 

In a binary ionic mixture two distinct species of positively charged 

particles are immersed in an inert neutralizing background. the system is 

obviously more complex than the simple OCP and requires an appropriate 

generalization of the formalism. As to the NLFDT, this has been done 

recently (Golden and Lu, 1982). Furthermore, the formalism has to be 

generated in terms of partial response functions (XAB) , rather than in 

terms of the physical response functions. These latter represent the 

response of a species (A) to the perturbation exerted by the other species 

(B) (Kalman and Golden, 1984). Now the equivalent of (24) is the matrix 

relationship 

E XOAC(kw) {eCB + ~CB(kw)} 
C 

(30) 

The rest of the formal program can be carried out along this line, but it 

results in an expression of much greater complexity than the equivalent 

OCP relation (27) (Golden, Green and Neilson, 1985a; 1985b). Instead of 

the general r-dependence which has not been evaluated yet, the plasmon 

dispersion has been studied in the y«1 and r»l limits. We now quote the 

principal results of this analysis. 

(1) In general, there is a shift in the plasmon frequency at k = 0 

from its y = 0 value Q = (E 4~ZA2e2nA2/mA)1/2 to Q + 6Q. (2) For y«1 6Q 

has been evaluated for 50%-50% H+-He++ mixture with the result 

6Q = O.OOBrQ = 0.053r3/ 2Q. (31) 

In contrast to the OCP case, where a comnparison with the exact 

perturbative result to O(y) is feasible (Carini, Golden and Kalman, 1982), 

no such standard is available at the present time. However, the result 

can be compared with the value given by Baus (1978): 6Q = O.08r3/ 2&2. (3) 

For r»I, the frequency shift is given solely by the sum-rule contribution 

(cf. Eq. (27). 

6Q ~t- ~+(14 Ql~4Q22 [~~ - ~~y)1/2J 1/2 - I~Q (32) 

For the same H+-He++ mixture, this provides 

6Q = O.0198Q (33) 

in good agreement with molecular dynamics data. Note that in the r+= 

limit 6Q is r-independent. (4) Similarly to the OCP, there is a trend for 

the coefficient A in w = (Q+6Q)(1 + A k2/K2) to change from positive (for 

Y«I) to a negative value (for r»I). However, whether A indeed becomes 

negative, depends also on the ZI/Z2, mI/m2 and nl/n2 ratios. 
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VI. CONCLUSIONS 

The dynamical mean field theory scheme, based on the application of 

NLFDT, on the velocity average approximation, and on the dynamical 

superposition approximation, when applied to a variety of dynamical 

systems has provided (see also Golden, this Volume) reasonably good 

results for the plasmon dispersion over a wide range of y-values. The 

establishment of the quantum NLFDT now opens the way towards the 

application of the scheme to the analysis of the collective motions in 

degenerate systems (3-d and 2-d electrongas, electron-hole liquids). 
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COLLECTIVE MODES AND MODE COUPLING 

FOR A DENSE PLASMA IN A MAGNETIC FIELD 

L.G. Suttorp 

Institute for Theoretical Physics 
University of Amsterdam 
Valckenierstraat 65 
1018 XE Amsterdam, The Netherlands 

1. INTRODUCTION 

Collective modes play an important role in the dynamical response of 
macroscopic systems to external disturbances. In particular, the modes with 
small wavenumber determine the large-scale behaviour of the dynamical 
structure factor. 

To derive collective modes various methods are available. From the 
point of view of kinetic theory the modes follow from the memory kernel of 
the formal kinetic equation for the one-particle time correlation function 
in momentum space. In a recent paper [Suttorp and Cohen, 1985] the complete 
set of modes for a dense plasma in a magnetic field has been derived along 
these lines. An alternative approach to the evaluation of the mode spectrum 
starts from the microscopic balance equations of particle number, momentum 
and energy. After establishing fluctuation formulae for the densities and 
the flows of these quantities the mode frequencies and the associated ampli­
tudes may be derived by using projection operator techniques. This method has 
been employed before to determine the collective modes for a neutral fluid 
[Kadanoff and Swift, 1968; R€sibois, 1972] and for an unmagnetized plasma 
[Marchetti and Kirkpatrick, 1985]. Recently, the collective modes of a mag­
netized plasma have been derived in this way [Suttorp and Schoolderman, 1986]. 

The collective modes of a plasma in a magnetic field depend on the angle 
between the wave vector and the field. Transverse and longitudinal modes can 
no longer be distinguished. As a consequence both the mode amplitudes and 
the mode frequencies are given by expressions that are rather more complica­
ted than those for an unmagnetized plasma. In particular, the viscous modes 
and the plasmon modes of an unmagnetized plasma merge in a set of four mixed 
'gyro-plasmon' modes, if a magnetic field is turned on. 

The amplitudes and the frequencies of the collective modes are essential 
ingredients in the theory of mode-coupling, which may be used to analyse 
the long-time behaviour of time correlation functions like the velocity auto­
correlation function of a tagged particle. For systems of neutral particles 
this method is well-established [Kawasaki, 1970; Ernst e.a., 1971,1976]. 
Furthermore it has been employed to determine the long-time tails of the 
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Green-Kubo integrands of an unmagnetized plasma [Marchetti and Kirkpatrick, 
1985]. In a magnetized plasma the velocity autocorrelation function depends on 
the direction of the velocities owing to the anisotropy of the system; one 
should distinguish therefore a longitudinal and a transverse velocity 
autocorrelation function. Recently [Suttorp and Schoolderman, 1986] mode­
coupling theory has been used to derive expressions for the long-time tails of 
both autocorrelation functions. It has been found that these tails are 
dominated by the coupling with the gyro-plasmon modes. 

In the following a review will be given of the derivation of the col­
lective modes and of the long-time behaviour of the velocity autocorrelation 
functions for a magnetized plasma. As a model we shall adopt the classical 
one-component plasma, consisting of charged particles which are immersed in 
a neutralizing inert background and which interact through a Coulomb poten­
tial. The external magnetic field is assumed to be static and uniform in 
space. 

2. COLLECTIVE MODES 

To obtain the modes for a one-component plasma in a magnetic field one 
may start from the microscopic balance equations of particle number, momentum 
and energy. These give the time derivative of the particle density n(f) , the 
momentum density i(f) and the energy density e(f) in Fourier space. These 
time derivatives are conveniently written in terms of the Liouville operator 
L in phase.space, which determines for an arbitrary function F its time deri­
vative as F = iLF. 

The microscopic momentum balance equation contains, apart from a 
pressure term, with a pressure tensor l(~) , and a consistent field term 
depending on the electric field generated by the charge density fluctuations, 
a Lorentz force term depending on the dir~ction and the strength of the mag­
netic field, as given by the unit vector B and the Larmor frequency 
Ws = eB/mc , with e the charge and m the mass of the particles. The energy 
balance equation contains an energy flow reef) , which is the sum of a 
kinetic and a potential contribution, as is the case for the pressure tensor. 

The collective modes are particular linear combinations of the particle 
density, the momentum density and the energy density. Let ai(K) denote a set 
of five independent linear combinations of these quantities, with adjoints 
ai ([) such that 

1 - * ~ ~ -< a. (k) a.(k) > 
V 1 J 

(2.1) 

Here the brackets denote a canonical ensemble average; V is the volume of 
the system. In the course of time ai([) evolves into ai(f,t) of which the 
Laplace transform 

~ 

a. (k,z) 
1 

f izt ~ 
- i dt e a.(k,t) 

o 1 

satisfies the equation 
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~ 

(z+L)a. (k,z) 
1 

~ 

a. (k) 
1 

Introducing a projection operator P by writing 

(2.2) 

(2.3) 



~ 1 -*~ ~ ~ 
Pf(k) = ~ -V < a. (k)f(k) > a. (k) 

i ~ ~ 
(2.4) 

for an arbitrary function f(k) in phase space, one derives an equation for 
the hydrodynamic propagators: 

(2.5) 

in the form 

(2.6) 

The frequency matrix is given by 

~ (1) ~ (2) ~ 
Qi/k,z) = Qij (k,z) + Qij (k,z) (2.7) 

where the direct and the indirect parts are 

(1) ~ 1 - * ~ ~ 
Qij (k,z) = - V < ai (k)L aj(k) > (2.8) 

(2) ~ 1 - * ~ 1 ~ 
Qij (k,z) = V < ai (k)LQ z+QLQ QL aj(k) > (2.9) 

with Q = 1 - P. 

The collective mode frequencies follow as the ei~enfrequencies of the 
frequency matrix for small values of the wave number K • The modes themselves 
are the corresponding eigenvectors. 

For vanishing wavenumber the five mode frequencies are: 

(0) = 0 
zT 

(0) 
ZAP 

with A = ± 1 , P = ± 1. Here wA is given by: 

(2.10) 

(2.11) 

A ~ ~ 
with k~= KoB/k and wp the plasma frequency. Choosing as a basis set 

k-1n(~), g(~) and E(~) , one finds for the modes up to first order in k : 

(2.13) 

1 ~ ~ ~ ~ 
+ --,1..2 v A (k) og(k) ] 

(mkBT) P 
(2.14) 
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The heat mode (2.13) contains the enthalphy h per particle, which is related 
to the-~pecIfic heat Cv and the isothermal compressibility KT of the plasma: 

(2.15) 

~ 
with n the particle density and T the temperature. The vectors vAp occurring 
in the 8l!2:E!~~~2~_~2~~~ (2.14) are defined as: 

(2.16) 

Here [ is a unit vector in the direction of~the waxe vector with components 
parallel and perpendicular to ~ denoted by K~aqd [1 ' re~ectively. Fur­
thermore kD is the Debye wave vector, while CT(K) and CA(K) are normalization 
constants that should be chosen such that (2.1) is satisfied. 

The corrections to the mode frequencies that are of order k2 follow 
by applying perturbation theory. Up to order k2 one gets: 

1 * ~ 1 ~ 
zT = V < aT (k)LQ z+QLQ QLaT(k) > (2.17) 

2 2 A 2 
2 2 wA - un k/l 

P wA [1 + ~k cs 2 2 2 2 2 A 2] 
wA (wp +un )- 2wp U] k// 

z = 
AP 

(2.18) 

with Cs the sound velocity. The Laplace variable z stands for the zeroth­
order frequency z(O), as given by (2.10) and (2.11). 

The dependence of the mode frequencies (2.17) and (2.18) on the wave 
vector ~ can be analyzed by using the balance equations and the symmetry 
properties of the system. The frequency of the thermal mode is found to 
contain the static thermal conductivities in the longitudinal and tranS-
verse directions: 

"k2 A 2 A 2 
zT = .::.2:- (k A + k// A/I) n~ 1 1 

(2.19) 

These are defined by writing 

A 2 A 2 i lim lim 1 
k1 A1 + k/f A// = k T2 

Vk2 B z ~ iO k ~O 

(2.20) 

The mode frequencies ZAP can be analyzed in a similar way. From (2.14) 
one obtains up to second order in ~ 
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Employing again the symmetry properties one may write up to second 
order in it : 

with 

~ 
Tij(k,z) = f 1(z)Oij + f 2(z)ki kj 

AA A""~~ ........ 

+ f3(z)(ki Bj + kjBi)keB + f4(z) [BiBj + 

A ~ ~ ~ ~ A A ~~ ~~ 

+ f7(z)[Bi (k A B). - (k A B)i B. - Ei . B keB] keB 
J J Jm m 

(2.21) 

(2.22) 

(2.23) 

The coefficients fi depend on z and on the Larmor frequency Ws . Instead 
of fi one may introduce dynamical viscosity coefficients by writing 

1 
f1 = -, + 21lz ' f2 = '3' + TV - 21; , f3 = -, + Tl3 + 31; 

f4 = Tl1 - 2Tlz + ll:3 ' f5 = 2, + 21lz - 4ll:3 ' 

(2.24) 

The coefficients Tll, ••• ,Tl5 are the shear viscosities, rv is the volume vis­
cosity, while 1; describes a cross effect between shear stresses and volume 
strains and vice versa [de Groot and Mazur, 1962]. 

Substituting (2.16) and (2.22), with (2.23) and (2.24), into (2.18) with 
(2.21) we obtain the mode frequencies: 

, (2.25) 
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where the viscosities ni'~'C are to be evaluated at z = P who 

The expressions (2.19) and (2.25) for the mode frequencies may be com­
pared to those obtained by alternative methods. A macroscopic magnetohydro­
dynamical treatment leads to expressions for the mode frequencies of a similar 
form. However, they contain phenomenological transport coefficients that are 
static real quantities, defined at frequency zero. On the other hand, in 
~~~;5~p~ynamiCal complex-valued viscosities at the finite frequency P wh 

Another method to derive the mode spectrum is furnished by the kinetic 
theory for time correlation functions. The results obtained in this way con­
tain frequency-dependent transport coefficients that are given in terms of 
matrix elements of a kinetic kernel. A detailed comparison [Suttorp and 
Schoolderman, 1986] shows that these frequency-dependent transport coeffi­
cients do not coincide with those introduced in the present treatment. The 
reason is that the projection operator used in kinetic theory has no simple 
relation to that defined in (2.4). 

In a recent paper [Marchetti, Kirkpatrick and Dorfman, 1984] expressions 
for the frequencies of the oscillating modes of a ~trongly magnetized plasma 
have been presented. However, the terms of order k are not given explicitly 
in terms of the seven anisotropic viscosity coefficients, so that a comparison 
is difficult. Expressions for the modes that might be compared to (2.13) and 
(2.14) are not given either. 

3. MODE COUPLING AND LONG-TIME TAILS OF THE VELOCITY AUTOCORRELATION FUNCTION 

The velocity autocorrelation function-of a tagged particle is defined 
as 

~ 
F(k,t) 

gs* (It) got) 
lim L2 < k • e iLt k • _s __ > 

k+Ok m m 

where the tagged-particle momentum density is given by 

-ik.; 
+ s 
ps e 

(3.1) 

(3.2) 

with ts and Ps the position and momentum of the particle. The autocorrelation 
function (3.1) is anisotropic, as it depends on the angle between the wave 
vector R and the magnetic field t. In fact, one may write: 

(3.3) 

which defines the longitudinal and the transverse velocity autocorrelation 
functions F i (t), with i = II, 1. 

The long-time behaviour of the velocity autocorrelation functions Fi(t) 
can be determined if one assumes it to be adequately described by mode­
coupling theory. According to mode-coupling theory the long-time behaviour of 
the velocity autocorrelation function is dominated by contributions origi­
nating from the coupling of the tagged-particle momentum density to the 
product of a collective mode and of the tagged-particle density: 
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[ + + + ] 
2 -i zi(q) + z (k-q) t 

+ + s 
IAi(k,q)I e (3.4) 

+ 
q 

The sums are extended over the five collective modes (with label i = T,Ap) 
+ and over all values of the wave vector q of these modes. The amplitudes Ai 

are given as:_ 

(3.5) 

. + . + 
The collect~ve modes a.(q) and the correspond~ng frequencies z.(q) have been 
discussed in the first 1 part of this paper. The tagged-particle1 density mode: 

-iq.; 
+ s 

a (q) = e 
s 

is a dissipative mode, with a frequency 

(3.6) 

(3.7) 

that is determined by the longitudinal and the transverse self-diffusion 
constants, D II and D 1 • 

As a consequence of the symmetry of the momentum integration, which 
is implied in the average (3.5), only the gyro-plasmon modes, with i = AP , 
contribute to the mode-coupling expression (3.4). The corresponding ampli­
tudes are easily evaluated with the help of (2.14): 

(3.8) 

+ 
The mode frequencies zAp(q) have the form: 

+ + * 
zA,_1 (q) = - [zA,1 (q) ] (3.9) 

with (complex) damping coefficients DA • Inserting (3.8) and (3.9) in (3.4), 
taking the limit [ + 0 , averaging over the azimuthal angle of q (in a sphe­
rical coordinate system with a polar axis in the direction of t\e magnetic 
field) and integrating over Iql we obtain an expression for Fi(K,t) , or, 
with the help of-(3.3), for Fi(t): 

(3.10) 

Here we introduced the abbreviations: 

(3.11) 
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~ 
q, 1 (q) 

~ with w = wA(q) • 

(3.1Z) 

Let us consider first the contribution Fl+) of the modes with A = +1. 

Choosing the new integration variable w = wA(~ we obtain: 

~T Wz i _ <% Z -iwt 
F i +) ( t) '" 3/Z Re J dw Z Z Z ~ q,i -A-=--=Z-";~;"'Z=------=-3/~Z 

nm(41tt) wI wp~(wp +<% -w ) (ql! D11+ql D1+D1) 

with wI = l'M :: Max(!i]>'w,s) and Wz = lib :: (!i]>Z + w,sZ)~ • In the 
should substitute: 

A w Z Z Z~ 
q 1/ = wp <»:s (wp + <% - w ) 

A A Z ~ 
and q 1 = (1 - rv/) • 

(3.13) 

integrand one 

(3.14) 

The integrand in (3.13) is a regular nonvanishing function for all w in 
the open interval (w1'wZ). At the upper~boundary of the integrat!~n domain 
the integrand is proportional to (wZ-w) for i = H and to (wZ-w) for i = 1 • 
At the lower boundary it is proportional to (w-<%) for i = II and to (w-w ) 
for i = 1 • P 

For large values of t the contribution of the interior of the integra­
tion domain in (3.13) may be disregarded. In fact, as a consequence of the 
phase factor exp(-iwt) destructive interference damps all contributions from 
the interior region. The main contributions to the asymptotic expression for 
the integral originate from the boundaries of the integration domain, since 
there the interference is not complet~ly destructive. One may derive the 
following asymptotic expression for Fi+}(t): 

(+) -vZ i -vI . 
Fi (t) '" A2,i t ' cos(<t>t + 92,i) - A1,i t ,1 cos(~t + 91,i) , 

(3.15) 

valid for large t. The indices 1,Z indicate contributions from the boundaries 
at wl'wZ' respectively. The exponent Vz i equals 3 for i = II and Z for i = 1. 
The other exponent vI i depends on the felative magnitude of wp and ws ; 
for wp > Ws one has vi 1/ = 1 ' VI 1 = i ' while for wp < Ws these values are 
interchanged. ' , 

Likewise one may derive the asymptotic expression for the contribution 
Fl-)(t) that results by taking A = -1 in (3.10). As before the dominant 
contribution to the integral for large t stems from the boundaries of the 
integration domain. From the behaviour of the integrand at these boundaries 
one finds: 

(3.16) 

with a frequency wm = Min(wp'WS) and exponents vi that are related to vI . 
in (3.15) as vl/ = v1,1 and vi = v1 ,1! • ,1 
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Comparing the exponents we conclude that the dominant terms in Fi(t) 
have the form: 

-5/2 
F{/t) ex: t cos(wpt + ~/) (3.17) 

-2 
F l(t) ex: t cos(wot + 91) (3.18) 

A detailed calculation leads to explicit expressions for the proportionality 
factors and for the phase angles. In fact, the result for the longitudinal 
velocity autocorrelation function is: 

2 2 -iw t 
_ kBT(~ -wp ) i e p 
- 3/2 2 5/2 Re {c2 } , (3.19) 

81t nmwp~ t [DI/ + t WS + 2!m(-!Tl1+Tlv+41;) ]3/2 
p 

with the (complex) dynamical viscosities Tlt ' I; at the frequency z = ~ and 
the (real) static self-diffusion coefficient DU' For the transverse velocity 
autocorrelation function one obtains: 

1t 
(3.20) 

exp(i '4 - i<»ot) 
x Re[ 2 i 2] 

{ i Cs Tl4 ~ 1 [2 ~] 3/2 D + - - - -- - - -Tl -2n...-n.+21; + 7.2' (Tl -2Tl) } 
1 2 Wo nm~ 2nm 3 1 "L. V !'\) 1 2 

with the dynamical viscosities Tli,1; at the frequency z 
self-diffusion coefficient D1 • 

Wo and the static 

In the case of resonance, with wp = ws ' the asymptotic expression for 
FU(t) is no longer given by (3.17) or (3.19). Instead, the dominant term 
stems then from the upper boundary of the integral for F~+)(t) • The asymp­
totic expression for FU(t) reads in this case: 

i exp(i * -i 12 w t) 
x Re[ 2 p ] 

{ i Cs i Tl4 1 (7 3/2 
D + - - - -- - - -n.-3 n...-n.+2 1;) } 1 2 ~ 12 nm 2nm 6 '1 "L. V 

(3.21) 

As is well-known [Alder and Wainwright, 1970; Kawasaki, 1970; Ernst e.a., 
1971, 1976] the velocity autocorrelat\on function for a fluid of neutral par­
ticles has a tail proportional to t-d/ 2 with d = 3. For an unmagnetized one­
component plasma the tail of the velocity autocorrelation func~ion is the sum 
of a term proportional to t-3/ 2 and a term proportional to t-3/ 2 cos(wpt + 9) 
[Gould and Mazenko, 1975; Giaquinta e.a., 1976; Varley, 1977; Gaskell, 1982; 
Marchetti and Kirkpatrick, 1985]. For a magnetized one-component plasma we 
have found that the tails behave qualitatively differently. The anisotropy 
of the mode spectrum leads to interference effects in the coupling of the 
modes. As a consequence the tails drop off more rapidly than those of the 
correlation functions for an unmagnetized plasma. Moreover, a second 
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frequency, viz. wo = (wp2+WS2)~ shows up on a par with the plasma frequency. 
In the general off-resonant case this frequency determines the oscillations 
of the tail of the transverse velocity autocorrelation function, whereas the 
tail of the longitudinal function still oscillates at the plasma frequency, 
as in the unmagnetized case. As a consequence one expects a peak at WQ in 
the power spectrum of the transverse autocorrelation function and similarly 
a peak at Wp for the longitudinal function. The latter will be less pro­
nounced, however, since the tail of the longitudinal function drops off more 
rapidly, so that its contribution to the power spectrum is less important. 

In the particular case of resonance the frequency ~ = 12 wp deter­
mines the oscillations of the tails of both the transverse and the 
longitudinal autocorrelation functions. As before it is expected that in 
the power spectrum the peak at ~ is more pronounced for the transverse 
case; in the longitudinal case the tail is damped by an extra factor t-1 
so that its influence is less important. 

In a paper that appeared several years ago [Bernu, 1981] molecular 
dynamics computations for the velocity autocorrelation functions of a one­
component plasma in a magnetic field have been reported on. It was found 
that the power spectrum of the transverse velocity autocorrelation function 
for strongly coupled plasmas (r = 10 or 100) in a magnetic field with a 
resonant Larmor frequency (ws = wp) indeed shows a peak structure at a 
frequency w ~ 1.3 Wp , which is quite near to 12 wp • The plasmon peak, 
which is present for vanishing magnetic fields, turned out to be suppressed 
completely in the resonant case. This result is corroborated by the mode­
coupling calculation of the tails, as presented here. As to the power spec­
trum of the longitudinal velocity autocorrelation function, it turned out 
to be rather flat. Apparently, the influence of the tail, which would have 
led to a peak at 12 w as well, is rather weak, as was anticipated above, 
in view of the strongPdamping (~ t-3) of the tail in this case. 
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I. INTRODUCTION 

In close connection with beam-target interaction problems 
encountered in inertial confinement fusion (ICF) driven by particle beams 
[Deutsch, 1986], we intend to solve exactly the model for the stopping of 
nonrelativistic pointlike and positive ions in a homogeneous, and dense 
electron fluid taken at any temperature. Such a model is usually 
considered as the simplest in providing a coherent theoretical framework 
with reliable estimates for the beam-target interaction parameters. The 
rational underlying this view is based on the observation that many, if 
not most, of the compressed pellet states encountered during a full 
compression lie in the parameter space close to weakly coupled systems 
indexed by a dimensionless quantity 

2 1 Vo ly;£H ars X ---=-=- --=-
- ITqFao mVF IT kBTF IT (1.1) 

with qF' VF' TF denoting Fermi wave number, velocity and temperature 
respectively. a~>.' Vo ' IH refer to Bohr wavelength, velocity and energy 
rs = (4/3 ITn)-1/3 a -1 in terms of the free electron number density n, 
while IX = (9 'IT /4)-173. At high temperature (T» TF), eq. (1.1) becomes 
(Te = T/TF) 

2 
e 

r 
e 

'IT 

in terms of Ree = (4/3 'ITn)-1/3 and of the classical plasma 
At any degeneracy (or temperature), the Random Phase 
(R.P.A.) is valid in a (T,n) domain defined by [Lindhard, 
al., 1974] 

2 
--:-,-,X---=_ « 1 

+ T 
e 

*Associe au CNRS 

(1. 2) 

parameter r e. 
Approximation 
1954; Dar et 

0.3) 
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so that the potential energy content of an electron pair located at the 
screening distance always remains much smaller than the kinetic energy 
per particle. As restricted as it looks at first sight, inequality (1.3) 
allows us to encompass a huge number of different systems ranging from 
high-temperature Tokomaks to dense and moderately hot plasmas envisioned 
in particle beam driven ICF. 

Another fundamental point, stressing the basic importance of a 
simple but efficient modelling for the free electron component of an 
otherwise strongly coupled ionic mixture in the target, lies on the 
observation that although the bound electrons always provide a non­
negligible amount to 'stopping, the free electrons are expected to give 
the largest part within the usual temperature range of interest i.e. 
[Deutsch, 1986; Deutsch, Maynard, Minoo, 1983] • 

50 eV < kBT < 200 eV • 

Therefore, energetic ions impinging on the target are supposed to yield 
most of their energy to free electrons, which display more flexibility in 
exchanging momentum and energy during elastic collisions with 
projectiles. In this respect, the Born approximation is fundamental to 
treat the electron-ion encounter. The projectile is then considered, at 
variance, as pointlike, or as a quantum plane wave-packet. At last, it 
should be mentioned that we are fully entitled to reduce the complex 
beam-target interaction to a single ion-target interaction, in agreement 
with the fact that whatever its intensity (kiloamps up to megaamps/cm2), 
any beam will appear as dilute in dense matter. The inbeam ion-ion 
average distance is likely to remain at least two orders of magnitude 
larger than the Thomas-Fermi screening length in cold matter. Previous 
analyses of this problem were based on the quantum-mechanical dielectric 
theory or the classical binary-collision approximation. The results were 
applied to the medium at zero temperature. Thermal as well as quantum­
mechanical effects were taken into account by Skupsky [1977], who made 
use of the dielectric formalism to derive the energy loss of charged 
particles with velocities lower than those of the electrons in the 
plasma. These results were applied to the slowing down of the 3.5 MeV u 
particles produced in the dominant deuterium-tritium COT) reaction in 
ICF. Current feasibility studies of different inertial confinement fusion 
programs require a complete and accurate description of the energy-loss 
process for a variety of ionic species, over a wide range of 
nonrelativistic ion velocities in very dense and hot plasmas with 
partially ionized species included. 

II. R.P.A. DIELECTRIC FUNCTION 

We start with the usual assumption that the Coulomb interaction 
between a projectile and the stopping free electron is essentially 
elastic, so there are no such things as electron pair creation or other 
inelastic processes. So, we are entitled to consider the given 
interaction within the standard framework of linear response theory 
satisfying the usual relation 

iw 
4n (E(q,W) - 1) E(q,w) 

+ 

and it remains to compute the fully dynamical dielectric function s(q,ro). 
For this goal, we shall follow the exact R.P.A. treatment previously 
worked out by Gouedard and Deutsch [1978]. 
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A. General Results 

They pertain to an homogeneous electron fluid which remains weakly 
coupled for any degeneracy 

kBT/&F 

It is the obvious finite-temperature extension of 
quantity valid at T = 0, for rs < 1. It smoothly 
classical Fried-Conte expressions. Within the 
response theory, it is also introduced as 

with 

&(q,m) = 1 - V(q) XO(q,m), ••• 

47feZ 
V(q) = -2-

q 

and a free electron response 

o X (q,w) - Z 

where n is a small positive quantity, 

o .HZ kZ 
£ =--
k Zm 

e 

~ l/kBT, and ~ is the chemical potential. 

the standard Lindhard 
joins the T -+ 00 and 
framework of linear 

(2.1) 

(2.Z) 

To simplify the discussion, we make use of the dimensionless 
variables 

and 

so that 
a.r 

w 
u=­

qVF 

XO(z,u) = - -:f G(z,u) 
7f 

G(z,u) 

7fT 
1 + 

fZ(z,u) 
e 

= - -8- Log 

1 ... 

(2.3) 

e 2 
v ~ p+) exp( 

e 
e Z (2.4) 

v 
~ p-) exp( 

e 
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The other dimensionless parameters are 

T 
Te = T ' 

F 

p+ = u + Z 

f 1(z,u) is computed through the Kramers-Kronig relation 

fZ(z,u') 
-;----;, d u ' 
(u - u') 

which can be transformed through 

T 
fj(z,u) 

e [F(p+) - F(p_)] - 8z 

into 

F(p) 
j roo h(p')dp' 

- - P.P. P - p' 11 

e Z 
( [ v - z ]) h(z) = Log j + exp T 

e 

(Z.5) 

(2.6) 

With equations (2.4), (2.5), (2.6) one recovers the two well-known 
temperature limits: 

• Te « 1 [Lindhard, 1954] 

F(p) 
Z 

1 I-p p+l 
2p [2 + ~ Log p::! 

• Te » 1 

F(p) 

Z(p) being the usual Fried and Conte function ~ackson, 1975] 

+00 

Z (p) 
Z 

dt exp (- t ) 
(p - t) 

(2.7) 

(2.8) 

(Z.9) 

which can also be easily computed through Pade approximants [Nemet et 
aI., 1981]. 

At arbitrary temperatures, the following technical remarks are 
useful: 

• f1 and f2 are essentially significant on a range in u(or z) measured by 
ao(Te ), with 
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(2.10) 

The thermal velocity reads Vth ~ VFao(Te ) • 

• f1 and f2 have their respective maxima, in u and z, located between 0 
and 1/(1+ Te ), so 

x2f1(U,Z) « ao(Te) • 

f2(U,z) ~ 0 as soon as Jz - uJ > 2 ao(Te) 

• f1(U,Z) < 0 for u > ao(Te) • (2.11) 

Another important parameter is the location of the resonance (e(z,u) = 0) 
given by (X2 = ars/~) 

(2.12) 

III. ENERGY LOSS AT FINITE TEMPERATURES 

A comprehensive treatment of the energy-loss problem, in terms of 
the equilibrium dielectric function e(q,ro), can be formulated by starting 
from the scattering rate [Arista-Brandt,1981] 

-+ 
R(q,w) 

2 2 
(4~Z~ ) 

q 

2~ -+ 2" S(q,w) 
A'I 

0.1) 

-+ -+ -+ -+ -+ 
for energy transfer hro = E(p')-E(p) and momentum transfert hq=p'-p, which 
applies to the scattering of a particle of charge Ze, with initial 
momentum p and energy E(p), to the final state given by p', E(p'). The 
dynamical structure factor S(q,ro) is related to the dielectric function 
e(q,ro) through 

(3.2) 

where N(ro):: [exp(~hro) - 1 r 1 and ~ = l/kT. 

The temperature dependence is contained in the dielectric function 
e(q,ro) and in the Planck function N(ro). The energy-loss rate is given by 

dE f d3p' -+ 
dt - --'-=3..fu.J R(q,w) 

(21Th) (3.3) 

2 
(z~e) f d3q wNiw) 1m (+) 

q dq,w) 
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where 00 ::: oo(p,q) is determined from 

2 2 
-+-+ -+ -+ -+-+ b q 

~w(p,q) ::: E(p') - E(p) = hq.v + 2M (3.4) 

in terms of the incident velocity v=p/M and the mass M of the projectile. 
For heavy particles M » m, recoil effects are small and we can expand 
Eq. (5) in terms of ~oo ~2q2/2M to obtain 

dE 
dt = 

where the 

(~~) 
0 

(dE) 
dt 1 

(~~) . + (dE) + 
0 dt 1 

first two terms are 

= (Ze) 
2 

d3 w N(w) I -1 
J q-2- m -+ 1[ 

e:(q ,w) q 

2 
(z1[e) ~. J d3 q ddW [wN(w) lm 

(3.5) 

(3.6) 
-+-+ 

w = q.v 

-1 
-+ ] 

E (n w) -+ -+ 
'1> W = q.v 

(3.7) 

The integrals range over both negative frequencies (loss processes) and 
positive frequencies (gain processes), but it is here more instructive to 
transform them into integrals over positive frequencies only. 

We can simplify the expression for the main term (dE/dt)o, by 
splitting the integral into the 00 > 0 and 00 < 0 parts, and then making 
use of the relations N(oo) + N(-oo) = - 1 and e(q,-oo) = e*(q,oo); this leads 
to an expression of the form 

(:~) J 3 -+ 
d qN(w)f(q,w) 

0 w>o 

I 3 -+ 
(3.8) 

d q[N(w) + 1] f(q,w) 

w>o 

The two terms in N(oo) cancel exactly, with the result for the stopping 
power S, 

S ::: _ dE '" .::.!. -(dE) 
dx v dt 

2 
= 3. (Ze) 

1[ v 

o 

I"" I"" dq 
q 

o "" 

(3.9) 

dwwlm (:1 ). 
E(q,W) 

The only temperature dependence is now contained in the energy-loss 
function lm -l/e(q,oo) , and arises from a thermal redistribution of the 
oscillator strengths in the medium. One can interpret this result as a 
cancellation between the processes of stimulated absorption and 
stimulated emission of energy hoo by the projectile, since both processes 
are proportional to the Planck distribution N(oo) that characterizes the 
thermal equilibrium of excitation quanta in the medium. Thus, the energy-

446 



loss rate is only determined by spontaneous emission processes, which are 
independent of N(oo). 

A similar analysis can be made for the energy loss straggling n, 

d3-+, 2 (2 2 
-=...!ip~ (-trw) R(q,w) = < dE) ~x- <dE> 
(21Th) 3 L1 

which can be expanded as 

n2 = n 2 + n 2 + 
o 1 

. .. , 
with 

J 
3 2 

d q w2 N(w) 
q 

1m ( :1 ) I 
£(q,w) -+ -+ 

w=q.v 

f 3 d 2 ( =1 )] d q a; [w N(w) 1m ~ J 
£ (q ,w) :+-+ 

W = q.v 

(3.10) 

(3.11 ) 

(3.12) 

For the balance between positive and negative frequencies in the 002 
term, all the contributions from stimulated absorption (00 > 0), 
proportional to N(oo), and those from stimulated and spontaneous emission 
(00 < 0), proportional to~(oo) + 1], are collected, and one obtains 

~l 2z2e~ r~ r 2 ( -1 ) 
0 2 dw w [2N(w)+I] 1m 

-+ (3.13) 
1TV dq,w) 

0 0 

The temperature dependence of ~02 is contained in N(oo) and e(q,oo). 

We discuss now our results for low and high temperatures. When 
kBT «hoo, N(oo) -+ 0, and we retrieve the expression for the energy 
straggling in a degenerate electron gas. 

In the opposite limit kBT » ~oo, we can approximate 
[2N(00) + 1] ~ 2kBTA600. The straggling integral Eq. (3.3) then becomes 
identical to the stopping integral Eq. (3.9) multiplied by 2kBT, Le., 
straggling 0 and stopping power S are related as 

(3.14) 

for all values of v, n, and T such that the condition -lioo « kBT is 
fulfilled. Since the frequencies of interest fall in the integration 
range from zero to OOmax = 2mv (v+ve)~' Eq. (3.14) will apply when 

(3.15) 

In the limit T » 1 one approaches 1/2 mv~ ~ 3/2 kBT, and Eq. (3.15) 
defines the domiin v < 0.15 ve ' corresponding to projectiles much slower 
than the thermal electrons in the plasma. The velocity dependence of 02 
is the same as that of S, viz. 2 0 2 'V v. By contrast, in a degenerate 
electron gas at low velocities, 0 is a quadratic function of v. 
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The applicability of Eq. (3.14) to a hot plasma kBT » EF accords 
with a classical description, in terms of the Fokker-Planck equation, for 
the fluctuations in the energy of a slow particle in a thermalized 
medium. It pertains, moreover, to a general quantum-mechanical relation 
between the generalized resistance and voltage fluctuations in linear 
dissipative systems. 

IV. BORN R.P.A. (B.R.P.A.) STOPPING POWER 

is 

In dimensionless units (z and u) the B.P.R.A. stopping power 

dE 2 2 r ~q S - - - =- (Z;) 
dx IT 

0 

written in the form 

dE 
dx -

4 

6 
Le = --2 

ITX 

6 
=-2 

ITX 

2 
z e 

2 
ITE m 

0 

o 

o 

4 
L 

V2 
n e e 

e 

u du r 
o 

u du r 
o 

r dw w 1m ( 1 . 
dq,w)J 

0 

z dz 1m ~--,­
E:(z,u) 

with Le also dimensionless Le depends on Te through eCz,u) only. 

On the other hand, the energy loss straggling C3.13) writes 

12 VF 2 
L =- l-v-) 

rl IT 

x [ i:U 1 
e -I 

2 2 2 2 2 
[z +X fl(z,u)] +[X f 2(z,u)] 

x 

o o 

At this point, we have to make clear a few obvious assumptions. 

(4.1) 

(4.2) 

C4.3) 

C4.4) 

On most part of their range the projectiles are more energetic than 
target particles. So, their trajectory may be taken as linear, in view of 
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the very small energy exchange at each encounter. The projectile ions are 
supposed to be pointlike with a given charge. 

Eqs. (4.3), (4.4) are free from divergences at z » ao(Te) 
diffraction effects yield fZ = 0, while shielding through leCz,u) 12 
secures the opposite limit z « ao(Te ). With R.P.A., one has 

(T ) 
e 

and one divides the z-domain into two regions: 

• z « ao(Te ), where the test charge yields its energy to the collective 
modes with a resonance at z = zr when u > ao(Te ), and energy exchange 
close to A1wr '" -ti'wp' 
• I z-u 1 < ao(Te ), which pertains to binary collisions. For u > ao(Te ), 
shielding vanishes. The corresponding energy exchange is now ~w = 
1fZqZ/Zm. 

These two domains remain distinct when u > ao(Te); 1..e. for an 
energy exchange larger than the kinetic energy'" kBTF(l + Te ). This basic 
property accounts for the weak coupling character of the R.P.A. 
Collective modes retain less energy than the particle kinetic energy. 

Moreover the usual ZZ-dependence of the stopping formula yields the 
well-known scaling relation 

dE ' (Z',M',E') 
dx 

'2 
Z dE 
22 dx 

( 2 M ~ E') ,., M' 

so we restrict to protons in the sequel. 

It should be appreciated that one of the main outputs of the present 
work is the possibility to compute S for any velocity ratio V/Vth, 
because partial degeneracy is treated exactly. 

For instance, in the large V limit 

V » 1 
a (T ) VF o e 

one may check that, for Te f 0, there are, as 1.n the Te 
equal contributions of S 
• exchange of energy with a plasmon mode around z '" zr 
• exchange of energy through binary encounters around z u. 

° case two 

V. NUMERICAL RESULTS AND APPROXIMATIONS [Maynard-Deutsch, 1985J 

In order to get orders of magnitude for the most relevant 
parameters, we put them into numerical correspondence in Table I. 
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Table 1- Relations between a'e and Te , and n, x2 and TF' a'e is 
given the normalization condition for the Boltzmann statistics. 

fl.' - 5 - 1.5 0 1.5 5. 

T, 23.22 2.361 0.9887 0.4973 0.1934 

fl.' - 5.002 - 1.573 - 0.268 0.763 2.18 • 
n(cm-l) 1022 1023 1024 1025 1026 1027 

xl 0.902 0.419 0.194 0.902 x 10- 1 0.419 X 10- 1 0.194 X 10- 1 

TF(K) 0.196 x 105 0.912 X 105 0.423 X 106 0.196 x IO' 0.912 X 107 0.423 X 108 

The numerical analysis of Eq. (4.3) is mostly performed through 

and 

F (z, u) - Z 1m -..,,-~ 
E: (z, u) 

f dz F(u,z) (ldZ F(z,u) + 
0 0 

+f dz F(z,u) 

0 

with zl z2 = a , 
zl Max (0, zr(u) - e) 
z2 zr(u) + e 
e ~ 0.01 ao(Te) 

(2 dz F(z,u) + 
zl 

(5.1) 

::: II + 12 + 13 

II and 13 are evaluated numerically, while 12 can be given an 
analytic expression. 

s = - dE/n dx is displayed on Fig. 1 for various densities n in the 
target as a function of the projectile (proton) energy, for a given 
degeneracy parameter ae • Basic trends are as follows: 
• Maximum stopping efficiency is achieved for V ~ Vth' 
• dS/dT~ a for V » Vth 
• S ~ n-1 for V « Vth 

A. Low Projectile Velocit~ (x V/Vth « 1) 

Eq. (4.3) then becomes: 

00 

- v3 f dz z 3 
(~ ) 3 ecl,ae) L - 3 2 -e 2 2 VF 0 (z +Z (z» (1 + exp [ ~ - a e ]1 F 

c T ' 

C5.2) 

e 
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where 

when X2/(1 + Te) « 1 we can use the additional assumption: 

Z (z) 
c 

4 

4 

1 
2 2 

qF "TF 

1 
2 2' 

qF "D 

2 v2 
F 

"TF = 3w2 
P 

,,2 
kBT 

2 D 4 TIne 

Eq. (5.3) for Zc2 allows to rewrite Le as 

where 

L 
e 

3 + Z2 
(~) 1 ( c "'2 In 2 
VF Z 

c 

2 x3 1 
= - 3 In 4 oev ;; 

~2 

__ 1 _) 

1 + Z2 
c 

T »1 
e 

0.517 
\I = e a =~ 

D 

Z 
c 

Thomas-Fermi 

Debye T » 1 
e 

T « 1 
e 

T « 1 
e 

(5.3) 

(5.4) 

Approximation (5.4) is excellent for X2/(1 + Te) < 1 and lags within 
15% in a cold solid. 

B. High Projectile Velocity (x » 1) 

Extending the T = 0 Lindhard-Winther procedure to any temperature we 
make use of 

and 
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lim { 
V~ 

4uF(u,z)} 

2 
w 

J dw w Im = ---E. 
c:(q,w) 2 

o 

lim 
V~ 

duF(u,z)} (5.5) 

(5.6) 



to derive 

lim L 
V+m e 

dz 
z 

which, when combined to (4.2) through 

yields (m 

lim L 
e 

V-+oo 

electron mass) 

(S.7) 

+ •.• (S.8) 

The full V-Lexpansions are thus recovered from Le (Vl )-Le (V2) with VI, 2 
» V th so that 

lim L 
V+oo e 

2 
In 2mV 

hw 
p 

2 4 
<V > <V > 

e e ------+ 
V2 2 V4 

(S.9) 

(S.9) already gives a one percent accuracy for V > Vth. The sum rule 
result (S.8) lies remarkably close to this full asymptotic one. 

C. Interpolation Formula (any V) 

To a large extent, the numerical gap between (S.9) and (S.2) (i.e. 
between low V and high V) can be bridged through 

and 

L (V) 
e 

V. 
~nt 

2 
In (~mwv ) 

p 

,; 1. S 
2 

< V > 
e 

3}<w 
+--p 

2m 

V < V. 
~nt 

(S.10) 

with a relative error (any T) smaller than five percent for x2/(1 + Te) < 
0.3. 
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D. Statistical Effects 

At this point, we think it worthwhile to investigate quantitative 
modifications of stopping when one replaces Fermi statistics by Boltzmann 
at an arbitrary temperature. For instance, on Fig. 2 we compare dE/dx 
respectively computed with a Fermi distribution f(E) = (1 + eE/T-(le)-I 
and a Boltzmann distribution fB(E)=e(l'e-E/ T for the same (n,T) data 
through F(p) = 4/3 Te3/ 2 Z (P/Te i / 2) (Z(x) = Fried-Conte expression) and 

2 I 2 
ITT a'-p IT a -p /T 

f () e (e e - e _ e e + e) 2 Z,u = 8"Z (5.11) 

with (lIe plotted on the last line in table I. (le = (lIe at Te » 1. 

Moreover, we recover dE/dx = dEB/dx at high velocity. 

Statistical effects are thus mostly significant in the low velocity 
regime • 
• As expected, discrepancies increase with increasing (le. For instance 
maxima exhibit a 6% discrepancy for Te = 1 and a 12% one for Te = 0.5 
respectively. Also, the maximum and slope of dEB/dx tend to shift 
gradually away from their Fermi homologues • 
• Fermi statistics gradually freezes out the free electron degrees of 
freedom, altogether with the corresponding stopping. all in all, a Fermi 
plasma tends to be more transparent than a Maxwellian one. 

However, it should be noted that for low T and V, the classical 
Debye screening is more efficient thant the Thomas-Fermi screening, which 
reduces dEB/dx. 

VI. LOCAL FIELD CORRECTIONS (LFC) 

Up to now, we retain the weakly coupled jellium with rs ~ 1. To 
consider actual cases with rs > 1, we have to include local field 
corrections G(q)" which correct for exchange and correlation effects at 
short distances. We first restrict to Te = 0 and static corrections [cf. 
Hubbard, see Kugler, 1975]. 

Amongst the various proposals, a recent one due to Ichimaru and 
Utsumi [1981] appears particularly interesting. It also [Nagy et a1., 
1985, Tanaka-Ichimaru (1985)] allows for a more accurate treatment of the 
short-ranged (large q) interactions in 

dq,w) 
v(q)xo (q,w) 

1 - -::----:--,---,--c---:---,-
l+v(q)G(~)X (q,w) 

o 
(6.1) 

We begin by noting the long wavelength behavior [Kugler, 1975] (q « 
qF, the Fermi wave number), 

(6.2) 

where the coefficient Yo is connected to the correlation energy Ec(rs) in 
rydbergs per electron via the compressibility relation 

(6.3) 
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Figs. 2a-b Comparison of Fermi (full line) and Boltzmann (dotted line) 
stopping power for same target density and projectile 
velocity, at various degeneracies. 

Fig • .3 Stopping number L versus vlvF or v/v .. Ll is a TCP calculation 
with DLFC; L6 is an electron OCP calEulat10n in the RPA 
rYan, Tanaka, Mitake and Ichimaru, 1985]. 
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with a :: (4/9rr)1/3. For an electron liquid in the paramagnetic state, 
which we are here concerned with, one has 

dE (r ) 
c s 

rs dr 
s 

(x _ fr) 
s (6.4) 

where bo = 0.0621814, b1 = 9.81379 , b2 = 2.82224, and b3 = 9.736411. 

The short wavelength behavior of G(q) is related to the radial 
distribution function g(r) as 

lim G(q) = 1 - g(O) • 
q-+<x> 

(6.5) 

The short range correlation can be described by the electron-electron 
ladder interactions 

( 1 z 2 
g 0) = - [-- ] 

8 II (z) 
1/2 z :: 4(ar /rr) 

s (6.6) 

where II (z) is a modi.fied Bessel function of the first order. Use of 
(6.6) in (6.5) thus determines the short wavelength behavior of G(q). To 
simulate the numerical results of the microscopic theory as well as to 
accommodate the boundary conditions, (6.2) and (6.5), it is appropriate 
to express 

G(q) 42 4 824 2 
Aq + Bq + [Aq + (B + }A)q - C] :~ - £n (6.7) 

where 

A 0.029 (0 ~ rs ~ 15) , (6.8) 

9 3 16 
B = 16 Yo - 64 [1 - g(O)] - 15 A (6.9) 

C 
3 9 16 

- 4 Yo+ 16 [I - g(O)] - -s A (6.10) 

Eqs. (6.9) and (6.10) derive from (6.2) and (6.5). Eq. (6.8) is adapted 
so that Eq. (6.7) closely simulates the results of the microscopic 
theory. For rs > 15, A begins to decrease gradually from 0.029. 

The one-component and static LFC G(q) may be straightforwardly 
extended to a two-component electron-ion system (TCP) with indexed 
G)lv(q). A further generalization is dynamical (DLFC), so that all the 
microscopic correlaction effects beyond the RPA are thus lumped into 
G)lv(q,oo). Once those LFC's are determined, the strong-coupling theory of 
a dense plasma is completed. 

The G)lV's may be viewed as relating the effective potentiel ~)lv(q,oo) 
on a )l-species particle produced by the density fluctuation op (q,oo) in 

\! the v-species particles, which may be written as 

(6.11) 
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This potential generally differs from the bare Coulomb potential 
Z~ Zvv (q) 0Pv(q,oo) because of the microscopic correlation effects 
involved; the difference is here measured by the dynamic LFC, G~v(q,oo). 

To elucidate the effects of LFC's and the contribution of the ion 
component to the stopping power, we consider with Yan et al. [1985] the 
stopping number L for several different cases of physical settings. 
First, we may regard the plasma either as a TCP or as a one-component 
plasma (OCP) of the electrons. Second, we may take account of the LFC's 
by the dynamic expressions rYan et al., 1985], by the static values 
G~v(k), or by assuming G~v(q,oo) 0; those will be designated, 
respectively, by DLFC, SLFC, or RPA. Combinations of those two sets of 
the prescriptions yield the following six cases: 

L1 TCP and DLFC, 
L2 TCP and SLFC, 
L3 TCP and RPA, 
L4 OCP and DLFC, 
L5 OCP and SLFC, 
L6 OCP and RPA. 

One is inclined to regard L1 as providing the most accurate 
evaluation of L for a given plasma. 

The strength of Coulomb coupling in the classical ion system may be 
measured by a dimensionless parameter [Deutsch, 1982] 

where 

n z5/3 / 
11 11 

n 
11 

Following the schemes shown above we display the values of the 
stopping number for the two parametric combinations of hydrogen plasmas: 
(i) r = 1.0, Te = 0.1; and (ii) r =0.1, Te = 10. The numerical results 
for L1 and L6 are plotted in Figs. 3 as functions of V/VF and V/Vi' where 

V' 1 

(37T2n) 1/3 (h/m) 

(kBT/mi)1/2 

and mi refers to the mass of an ion (i.e., a proton). 

In the low-velocity regime V/VF < 1, the effects of both the LFC's 
and the ion component become significant so as to increase the magnitude 
of L, as Figs. 3 illustrate. 

VII. STOPPING BY BOUND ELECTRONS 

We are now concerned with an accurate determination of the mean 
excitation energy I which figures in the well-known Bethe formula for the 
stopping power 

dE 
- dx = 47Tn 0.1) 

457 



where ZI and vI refer to the atomic number of an incident particle and 
its non-relativistic velocity, respectively. n is the ion density in the 
target. Up to now, most of measurements of the ion stopping have been 
restricted to cold solid or gaseous targets. In order to optimize the 
efficiency of a pellet compression, however, an accurate estimation of 
the stopping parameters in dense and hot plasmas is required. The target 
material is likely to be heated up to temperatures of 50 - 200 eV, before 
fuel ignition starts up. Under these conditions, such tamper elements as 
Pb will be only partially ionized. Consequently, the stopping by bound 
electrons is no longer negligible and thus, we have to anticipate an 
energy range of a given ion beam in a cold matter and in an equivalent 
plasma for the same line density n~. 

We are thus obviously required to extend to nonhydrogenic cold 
targets, the usual knowledge already used for neutral atoms and 
hydrogenic ions. Furthermore, we shall compute the corresponding I in hot 
and dense plasmas of atomic number ZT. 

A. I in Cold Targets 

It has been shown recently that the standard Thomas-Fermi estimate 
I ~ 10.32 ZT eV may be extended to any ionicity through the radial 
electron density distribution [Green, Sellin and Zachor, 1969] 

? N H X 2 Hex 
4n'· p(r) = dX ( e ) (- I + (7.2) 

(HT + I) 2 I + HT 

where T = eX - 1 and X = rId. N is the number of bound electrons is a 
given target atom (ion). The two parameters (ao = Bohr radius). 

0.5 ~ dlao ~ 1.3 

H = 1.05 x d x NO.4 

specify Eq. (7.2) for a given target atom. 

An average <I> may be given under the form 

ZTN (1-6~ (l+.!.)) 
2 T H 

<I> = 6d 
I F(l--) 
H 

with the atomic limit (ZT N) 

2 <I> 9 + ex 
12F (a) 

F(ex) 

In the TF limit (ZT -+ 00) one recovers 
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00 n 

I ex 

(n + I) 2 n=O 
with 0 < ex < I , (7.3) 

(7.4) 



2 
1 F(ex) 

7T 
ex = , =""6 

(7.5) 
<I> I 5 
ZT 6 7T 2d 

which when combined to the most likely estimate d/ao ~ 0.7 provides 

<1>/ZT ~ 9.4462 eV , (7.6) 

in fair agreement with cold IF estimates. The main interest of Eq. (7.3) 
lies in its flexibility. It applies to any ionicity and can be extended 
to partially stripped ions in plasmas. 

Estimates (7.3) are compared in Table II with previous and more 
thorough (variational) calculations. Last column refers to the 
interpolation formula 

(7.7) 

where q is the ionicity. This expression is accurate in both limits q = 0 
(neutral) and q = ZT - -1 (hydrogenic). Results (7.3) fall in pretty good 
agreement with the accurate ones (columns 4 and 2). The variational 
method is detailed elsewhere [Garbet-Deutsch, 1986]. 

Table 11- Log I (au) for isolated ion Aln+. Maximum discrepancy 
for the variational results are given within parenthese. 

--------------------- -------
0 1.51 1.61 1.62 (7.0%) 1.52 
1 1.77 1.91 1.87 (4.5%) 1.65 
2 2.11 2.13 2.16 (4.2%) 1.85 
3 2.44 2.39 2.47 (3.5%) 2.10 
4 2.48 2.53 2.59 (3.0%) 2.15 
5 2.66 2.58 2.72 (2.7%) 2.20 
6 2.82 2.75 2.87 (3.2%) 2.28 
7 2.97 2.88 3.04 (3.2%) 2.37 
8 3.16 3.04 3.24 (3.0%) 2.50 
9 3.40 3.26 3.51 (3.0%) 2.71 

10 3.82 3.68 3.15 
11 4.47 4.10 

B. I in Hot Targets 

With the intention of extending the above results to the plasma 
case, we implement the average atom model. 
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The basic assumption in both cases is that during an elementary 
stopping process, the target ion is nearly instantaneously neutralized by 
plasma fluctuations. This hypothesis is particularly relevant to 
compressed matter by intense ion beams, in view of the relatively long 
pulse time ( 20-30 ns) allowing to consider the target species in local 
thermodynamic equilibrium (L.T.E.) with Te # Ti' 

The numerical procedure is initialized by taking each target ion 
emb~dded in a spherical neutral box of radius Ro =(3/4 nn)I/3. 

Bound electrons are considered independent. They are supposed to 
move in a spherically symmetric are considered independent Veff(r) , the 
same for all electrons. However, exchange and correlation are still 
retained in Veff(r). The total electron density 

p (r) 

o 

2 
drr per) 

fulfils 

with Pb(r) in terms of single-electron eigenquantities (ei' Wi)' 

(7.8) 

The average atom assumption allows us to replace the various 
excitation states in target by those of a fictitious atom with noninteger 
occupation numbers for excited orbitals. 

Veff(r) is taken constant within each subshell. 

The number Z(n,T) of free electrons per nuclei in target may be 
initialized with a Thomas-Fermi approximation. 

In Fig. 4, Iav computed at different temperatures (Te = Ti) for high 
pressure aluminium are compared with several cold (standard atomic 
physics) matter methods: variational (the most accurate), local plasma 
approximation (LPA) 

log I av 

lS 

I 1.5 

1. 1. 

ALUMINIUM ~ =101'0 

s. 6. s. 9. lG. Z 

Figure 4- Mean excitation energy as a function of ionization 
with several approximations: ( • ) Isolated ions; ( 0 ) Local 
plasma approximation (LPA (v = 2»; (0) Variational method; 
(.) Spline interpolation with variational method; in Al at 10 
times the solid density and high temperature. 
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(v 12) 
with 

2 0.9) 
2 

4P b (r)e 
w -----

p m e 

and a Spline interpolation (cubic) based on variational results with (for 
subshell (X) 

0.10) 

in terms of 

where h(X1 g(Xl/d(Xl. g(X' is the number of electrons {(XI}, while d(X1 
refers to level degeneracy. 

f(X(X1 and E(X(XI denote the usual oscillator strength and energy 
difference for transition (X + (XI, respectively. 

All the results agree in showing [Garbet-Deutsch, 1986] 

I (ZT,n,T > 10 eV) < Iav (ZT, Z(n,T» • 0.11) 

Up to a temperature of 10 eV, it is acceptable to deduce Iav from a 
Saha determination of ionization Z in target. However, at a higher 
temperature, occupation of higher subshells has to be taken into account, 
and their contribution to stopping is larger than that arising from more 
tightly bound electrons on lower subshells. The Spline interpolation 
adequately improved with variational inputs seems to provide fair data. 
As stated above the LPA produces the least accurate results. 

At this juncture, it has to be appreciated that the accuracy of the 
variational results is not restricted by the numerical procedure. For 
instance, the mesh used for computing the basis wave functions may be 
taken as dense as required. Convergence criteria are mostly governed by 
convexity inequalities. The variational accuracy is motsly limited by the 
neglect of any electron exchange between neighbouring ions. 
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EXACT ASYMPTOTIC EXPRESSION FOR THE STATIC DIELECTRIC FUNCTION OF A 

UNIFORM ELECTRON LIQUID AT LARGE WAVE VECTORS 

A. Holas 

Institute of Physical Chemistry of the 
Polish Academy of Sciences 
Kasprzaka 44/52 
01-224 Warsaw, Poland 

I. INTRODUCTION 

Although dielectric properties of a uniform electron liquid have been 
studied for more than 30 years, they are still known only approximately. 
Therefore, exact relations connecting various characteristic functions of 
an electron system are very important and useful for checking the accuracy 
and consistency of various approximations. As an example, let us recall 
the frequency-moment sum rules, which express the response function and 
other screening properties of an electron liquid at high frequencies in 
terms of such general characteristics as the plasma frequency, the mean 
kinetic energy and the static structure factor. Section II reviews some 
of these properties. 

In this paper we will show that similar expressions, glvlng the 
response and other functions at large wave vectors and low frequencies, 
can be derived from the already known relations. In Section III we obtain 
such expressions for the response and dielectric functions, while in 
Section IV - for the local-field correction function. In Section V the 
Niklasson's relations are discussed and shown to be in agreement with 
expansions discussed in Sections II-IV. In Section VI numerical values of 
various coefficients, occurring in the mentioned expansions, are 
estimated. Some results obtain in the Appendix are helpful for these 
estimates. Conclusions are given in Section VII. 

II. GENERAL PROPERTIES OF THE RESPONSE FUNCTION 

A. Relation to the Dielectric Function. Units 

A basic function, from which other characteristics may be derived, is 
the density-density response function X(k,w), see e.g. [Pines and 
Nozieres, 1966]. The dielectric function e(k,w) is related to is 
according to 

l/e(k,w) - 1 + vk X(k,w) (2.1) 
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where 

(2.2) 

is the Fourier transform of the Coulomb potential. 

Throughout the paper kr=(aaBrS)-l is used as the unit for wave vectors, 

2EF=~2kF2me-1 for energy and 2EF~-1 for frequency, where a = [4/9~)]1/3 
=0.521, aB is the Bohr radius and rs characterizes the density of electrons 

p = [rSaB)3 4~/3]-1. 

B. Analyticity and High Frequency Expansion 

Analytical properties of the response function, based on the principle 
of causality, allow to write it in the form of the spectral representation, 
see e.g. [Kugler, 1975]. 

X(k,z) = 1 r dw 1m y(k.w) = 2 [ dw w 1m y(k.w) 
~ w-z ~ 0 2 2 

-~ w - z 
(2.3) 

1m z > 0 

In writing the second form of Eq. (2.3) the odd symmetry of 1m X(k,w), 
was used. The physical response function X(k,w), for real frequency 
w, is obtained as a limit 

X(k,w) = lim X(k,W+iq) 
O<q -+ 0, (2.4) 

From the spectral representation, Eq. (2.3), it is easy to obtain the 
asymptotic expansion for high frequencies ( Izl -+ ~ ) 

~ 

X(k,z) = \ I 
z n=O 

XM2n+1(k) 

2n 
z 

Here XM~(k) is the frequency moment, defined for any real ~ 
as 

Note that only integer-odd moments occur in the expansion (2.5). 

For a uniform electron liquid the above integral is convergent, 
however, for limited ~ only 

-2 < ~ < 9/2 

because, for small w [Pines and Nosieres, 1966] 

1m X(k,w) ex: w1 

and for large w [Glick and Long, 1971] 

1m X(k,w) ex: w- ll/ 2 
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Therefore, the series (2.5) for the system under consideration is actually 
limited to two regular terms and a small remainder: 

X(k,z) 
XM1(k) 

2 

XM3 (k) L 
4 + o( 4 (2.10) 

z z z 

C. The l-st and 3-rd Moment Sum Rules 

The values of the l-st and 3-rd moment may be calculated directly from 
the Hamiltonian as equal-time commutators, see e.g. [Kugler, 1975], 
[Pathak and Vashishta, 1973]. 

(2.11) 

(2.12) 

where 

2 W = 4ar /(31T) 
p s (2.13) 

is the squared plasma frequency, <EK> is the exact mean kinetic energy 
per electron, and the function GPV(k) (PV denotes Pathak and Vashishta 
[1973]) is defined in terms of the exact static structure factor S(k) 
according to: 

PV 3[ 2 .2. G (k) = 4 Odq q [l-S(q)] 6 (2.14) 

A finite limit of the function GPV(k) exists 

lim GPV(k) 2. 
3 

[ 1 - g(O) ] (2.15) 
k->co 

where g(r) is the pair correlation function. Note that <EK> , GPV(k), 
S(k), g(r) are implicit functions of the electron gas density (or r s )' 

Equations (2.11) and (2.12) are called the l-st and 3-rd frequency­
moment sum rules. Equation (2.10) together with (2.11) and (2.12) gives 
an expression for the response function in the high frequency range, in 
terms of <EK> and GPV(k) - two characteristics of the electron system. 

D. The O-th Moment Sum Rule 

The dynamic structure factor is expressed in terms of the response 
function, for T=O, [Pines and Nozieres, 1966] as 

o for w<0 
S(k,w) 1 2 2 

(2.16) 
- [vkk /(Wp1T)] 1m X(k,w) for w ~ 0 
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Therefore the static structure factor, defined as 

S(k) = Joodw S(k,w) 
-00 

(2.17) 

is simply related to the O-th moment: 

S(k) (2.18) 

The asymptotic form of the static structure factor for large k is known 
due to Kimball [1973, 1975] 

S(k) (2.19) 

where 

C _ 1L Qgilll = -2 wp
2 g(O) 

37r dr r=O 
(2.20) 

Note that the dynamic structure factor S(K,w) (loss function) must be 
non-negative, therefore, according to Eq. (2.16) Im X(k,w) ~ 0 within 
the limits of integration in Eq. (2.6). So that 

XM.Q(k) < 0 

for any k and any .Q. 

III. THE RESPONSE FUNCTION AT LOW FREQUENCIES 

A. Asymptotic Expansion at Low Frequencies 

From the spectral representation of x(k,z), Eq. (2.3), the 
following asymptotic expansion at low frequencies (izi ~ 0) may be 
obtained 

x(k,z) I xM(_1_2n)(k) 
n=O 

2n 
Z 

in terms of the odd-negative frequency moments. 

(2.21) 

(3.1) 

For a uniform electron liquid, because of the relation (2.7), only one 
such moment exists, XM-l' so in this case expansion (3.1) is reduced 
to 

X(k-z) 
o 

XM_l(k) + o(z ) 

or, equivalently, to 

x(k,O) = XM_l(k) 
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As a result, that static response function may be calculated as the 
(-l)-st frequency moment. 

It must be noted, however, that for different systems or in some 
approximate theories, a few odd-negative moments may exist. In this case 
the expansion (3.1) is more useful, because a larger number of terms may 
be retained in it. In particular, in RPA or in the first order perturbation 
theory (FOPT) of a uniform electron gas [Holas, Aravind, and Singwi, 1979], 

k2 k2 
for k>2, 1m X(k,w) is exactly zero for 0 ~ w < (-- - k) and for w > (--+ k) 2 2 
so all negative and all positive moments do exist. In such cases other 
odd-negative moments may be calculated (for large k) using the same method 
as developed in Section III.D. for XM_l(k). 

B. Reduced-Frequency Moments 

According to Eq. (2.6) the (-l)-st moment is given by 

(k) = 1 [ dw 1m Y(k.w) 
XM_l ~ 0 w (3.4) 

Evaluating this integral for large k, we see that the main contribution 
comes from the fr~quency range close to the peak position of 1m X(k,w), 
namely around w=k /2. The width of t~is peak is of the order of k. In 
this way characteristic frequencies k /2 ± k appear in the denominator 
of the integrand in Eq. (3.4). Owing to the fact that the ratio of the 
peak width to the peak position, -l/k, is small at large k, asymptotic 
expansion of XM_l(k) will be possible. 

As we already mentioned, within the RPA or in the FOPT, 1m X(k,w)=O 

~ ~ outside the frequency range [ z- - k, z- + k]. In the exact theory, weak 

wings are present on both sides of the main peak, due to multi-pair 
scattering processes (contributions higher than the l-st order). 
Therefore, 
expressing 1m x(k,w) in terms of the reduced frequency v, instead of w, 

v = v(k,w) 
k2 

(w - 2 )/k k (1 _ Z- w) 
2 k2 

we make the shape of this function (vs v), weakly dependent on k in 
the region of large k. 

(3.5) 

In order to take advantage of this fact, let us introduce frequency 
moments, connected with this reduced frequency 

2 fro .£ X .(k) = - dw 1m x(k,w) [v(k,w)] (3.6) 
~~ ~ 0 

The above definition of the reduced-frequency moment is similar to the 
previous definition (2.6) of XM.£(k). 
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For non-negative integer i, a moment of one type is a linear 
combination of the finite number of moments of other type, and vice 
versa. Namely, from Eq. (3.6) and (3.5) it follows that 

i 
(k) ( _ k)i ~ (i) (_ 2)n (k) Xlli = 2 ~ ~ XMn ,.. n=O n k 

From Eq. (3.7) and the limitations (2.7), pertaining XMi(k) , 
we conclude that for a uniform electron gas XjJ.i(k) exists for 

Inverting the relation (3.5) 

k2 
w = w(k,v) = z- + k v 

k 2 2 
2 (1 + k v) 

(3.7) 

(3.8) 

(3.9) 

and substituting it into Eq. (2.6), we obtain a relation opposite to (3.7) 

C. Properties of the Reduced-Frequency Moments at Large K 

In order to investigate XjJ.i(k) vs k, let us rewrite Eq. (3.6) 
using v as a variable of integration, Eq. (3.9), 

Here 

k 2 k X(k,v) = k 1m X(k,Z- + kv) B(v + 2) 

and O(x) is a unit step function. 

Comparing definition (3.6) with (2.6) at i=O we see that 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

At large k, using Eq. (2.18) and (2.19), we find that a finite limit 
exists 

2w~k; 
2 

411'e 

On the other hand, from Eq. (3.11) we have for the same limit the 
expression 

lim X O(k) = ; foo dv X(oo,v) 
k -+ 00 jJ. -00 
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This means that X(~.v) must exist as an integrable function. 
other moments. Eq. (3.11). must exist in this limit 

So all 

2 r - 2 lim X 2(k) = ; dv X(~.v) v - X 2(~) 
k ... ~ IL _~ IL 

(3.16) 

From this property we conclude immediately that the leading term in the 
sum (3.10) corresponds to n=O. So 

(3.17) 

i.e. for any 2 the leading term of XM2(k) for large k is expressed in 
terms of one cOjIDon constant - XILO(~)' Eq. (3.14). while its magnitude is of 
the order of k2 . So it will be convenient to introduce the "normalized" 
moments 

2 
h2(k) = xM2 (k) / [ (~ )2 xMO(~) 1 (3.18) 

asymptotic expansion of which must be in the form 

~ a (2) L _n_ 

n=O kn 
(3.19) 

with 

aO(2) - 1 (3.20) 

Frequency moments with 2-0.1.3 are known exactly. Eqs. (2.18). 
(2.11). and (2.12). We may expand them in the series (3.19) and find 
their coefficients ~(2). They are listed in Table I in the columns 
headed 2-0.1.3. 

It is interesting and important that some coefficients an (2) of 
the second and 4-th moments (which. as it will be shown later. are 
necessary for evaluation of the static response) can be determined from 
the already listed coefficients. This possbbility follows from the 
properties of Eq. (3.7)l Its 1.h.s. is O(k ) (because of Eq. (3.16». 
while the r.h.s. is O(k ) (because of Eq. (3.17». In order to 
remove thiS contradiction. we must require that the coefficients at 
k2 • k2- •...• kl. be zero. For example. let us take 
2=3. the coefficient at k2 : 

(3.21) 

So the coefficient of the second moment a2(2) can be determined from the 
coefficients on the O-th. 1-st. and 3-rd one. 

In general. at fixed n. among coefficients ~(2). onlyan(O). 
an (l) •...• ~(n) are independent. For 2>n. an (2) is a linear 
combination of an(m). 0 ~ m $ n. In this way some other coefficients 
for 2=2 and 2=4 are obtained (see corresponding columns in Table 
I). Unfortunately. three of them - a3(2). a4(2) and a4(4) - are 
unknown. 
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D. Asymptotic Expansion of y(k.O) at Lar~e K 

In order to obtain an asymptotic expansion of the static response 
function, Eq. (3.3), we calculate XM_l(k), Eq. (3.4), in which w 
is substituted according to Eq. (3.9) 

2 [ dw 1m y(k.w) X(k,O) = -
If 0 k2 2 

(3.22) 

- (1 + -v) 
2 k 

Since for the system being considered the power index 1 is bounded by 
Eq. (3.8), the series is limited in this case to 

(3.23) 

Note that because of the property (3.16), the order of the magnitude of 
each term of the expansion (3.22) is (l/k)-times smaller than the order of 
the preceeding term. 

By means of simple algebra, expansion of X~1(k) is obtained from 
expansions of XMn(k), 0 ~ n ~ 1,. Eq. (3.7), and finally, expansion of 
X(k,O) from expansions of X~1(k), Eq. (3.23). The result is 

X(k,O) 

where 

4 w2 
---l!. 

4 
vkk 

(3.25) 

(3.26) 

These coefficients are obtained from an (1) , 0<1<4, listed in Table I. 
For systems with different coefficients the general formula is 

n 
a (-1) = L (_1)1 (n+l) an (1) 
n 1=0 1+1 

(3.27) 

Table I. Expansion coefficients an (1) for exact theory. 

~ -1 0 1 2 3 4 

0 1 1 1 1 1 1 

1 0 0 0 0 0 0 

2 8 
'3<EK> 0 0 8 

'3<Er2" 8<Er2" l6<Er2" 

3 4 a3(2) 0 0 a3(2) 0 -6a3(2) 

4 a4 (-1), (3.26) 2 0 a4(2) 4 2 Eq. -2w g(O) '3 wp [1+2g(0)] a4 (4) p 
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Expansion (3.24) is the main result of the present paper. It gives 
explicitly two leading terms of the exact asymptotic expansion of the 
static response function. 

E. Inferring the Parameters a3(-1) and a4~ 

Expansion coefficients of the 2-nd and 4-th moment, a3(2), a4(2) , 
a4(4) , necessary to find the exact a3(-1) and a4(-1), Eqs. (3.25) 
and (3.26), are not available. Therefore, we are going to infer these 
parameters employing arguments of continuity. 

We notice from Table I that for known moments (l=0,1,3) expansion 
coefficients an(l) with odd n, are zero. But, according to the 
definition (2.6), XMl(k) at fixed k is a continuous, smooth 
function of l. Therefore, ~(l) must be also such a function. 
If we disregard such unlikely possibility that a3(l) ~ l oscillates, 
going through zero exactly at l-0,1,3, we should conclude that it is 
identically zero for all l, so 

(3.28) 

In order to infer a4(-1) let us employ arguments based on continuity 
with respect to coupling parameter rs' For a free (non-interacting, 
rs=O) electron gas 1m X(k,w) is very simply and all its moments 
may be easily calculated. Performing the intagrations of Eq. (2.6) we 
obtain the following expansion coefficients a n(l) (there is no 
restriction on l): 

(3.29) 

(3.30) 

(3.31) 

The quantities <EK>o and <E2K>0 are mean values per one electron 
of the kinetic energy and its square, respectively, calculated for 
noninteracting electron system. To facilitate further comparison, we put 
some values of the parameters aOn(l) into Table II. 

Table II. Expansion coefficients aOn(l) for free electrons. 

l 

~ 
-1 0 1 2 3 4 

0 1 1 1 1 1 1 

1 0 0 0 0 0 0 

2 ~<~> 3 0 0 0 ~<E? 3 0 8<E?o 16<E?o 

3 0 0 0 0 0 0 

4 64<E2> 
5 K 0 0 0 0 0 64<E2> 

5 K 0 
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In Table III we list coefficients derived from the results of Ho1as, 
Aravind and Singwi [1979] in the FOPT, for 1=-1,0,1,3. Values for 
1=2 and 4 are determined with the help of Eq. (3.21) and (3.27). Here 
go(r} is the pair correlation function for non-interacting electron gas. 

We see that both in the free-electron and FOPT case, all a3(1) 
are zero, supporting our previous conjecture (3.28). Next, whenever 
<EK>o appears in Table II, it is also present at the same position in 
Table III, and, replaced by <EK> (i.e. the mean value for interacting 
e1~ctrons), in the same position in Table I. The same is true about 
<~ K>o in Tables II and III. Finally, whenever the combination of 
wand w2p go (0) appears in Table III, it enters also Table I 
wi~h go(O) replaced by g(O) - its counterpart for interacting electrons. 
We see also that expressions for ~(1) in Table I contain no other 
terms than ones present in Table III. If we apply the established rule that 
< ... > must be replaced by < ... > and go(O) by g(O), when going from Table 
III to Table I, we obtain for a4(-1): 

(3.32) 

Note that for any other coefficient of Table I no assumption of weak 
interaction was made. In this sense the expression (3.32) for a4(-1) 
should hold also for any r s ' while the use of the FOPT allowed us to 
infer its form only. Because the established rules of extrapolation from 
the FOPT to the exact theory are quite natural and obvious, we consider 
the results (3.32) and (3.28) as "almost exact". 

F. Asymptotic Expansion of e(k.O) 

Using Eq. (2.1) we may calculate from Eq. (3.24) with (3.32) and 
(3.28) the asymptotic expansion of the static dielectric function 
e(k,O) and static proper po1arizabi1ity Q(k,O): 

4i 8 ' 1 e(k,O) - 1 - Q(k,O) = ---R (1 + - <E_~ -- + 
k4 3 K k2 

(3.33) 

Table III. Expansion coefficients aFOn (1) obtained from the FOPT. 

! -1 0 1 2 3 4 

0 1 1 1 1 1 1 

1 0 0 0 0 0 0 

2 ~<Ei> 3 0 
0 0 ~<Ei> 3 0 8<Ei>o 16<Ei>o 

3 0 0 0 0 0 0 

4 ~4<~o-~W;[1+2go(0)1 2 0 a!0(2) ~w2[1+2g (0)] 64<E? + -2w g (0) p 0 p 0 5 0 

2 w 
lOa!O(2) -n [16+62go (0)] -

3 
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IV. THE LOCAL-FIELD CORRECTION FUNCTION 

A. Definition 

All alternations, which must be introduced to the RPA response 
function, in order to include the exchange and correlation effects in the 
exact response function, are usually incorporated in the so called local­
field correction function G(k,w), in terms of which the response 
function is written as 

X(k,w) = Xo(k,w) / { 1 - vk [ 1 - G(k,w) J Xo(k,w) } (4.1) 

where xo(k,w) is the Lindhard's function (the response function 
of free electrons) 

2 
w 

X (k,w) = -R < ( w+iO+ 
o vk 

The average <"'>0 is defined as 

< f(q) >0 = ~ ~ no(lql) f(q) 
q 

(4.2) 

where no(q) is an occupation number fraction for free (non-interacting) 
electrons 

9(1-q) 

Equation (4.1) servers as a definition of G(k,w). We may solve it 
with respect to G(k,w) 

(4.4) 

-1 -1 
G(k,w) = 1 + [vkX(k,w)] - [vkxo(k,w)] (4.5) 

B. Asymptotics of G(k,O) for Large k 

Now we are going to obtain an asymptotic expansion of G(k,O) for large 
k, using Eq. (4.5), Such expansion of X(k,O) is already found, Eq. 
(3.24) with (3.28) and (3.32), while expansion of Xo(k,O) may be 
easily obtained from Eq. (4.2) 

X (k,O) 
o 

[1 4< 2> ~ + l6<q4> ~ + 0(1 ) 
+ 3 q 0 k2 5 0 k4 k6 

(it agrees, of course, with Table II, Column ~ 

(4.5) at w = 0: 
-1), So, from Eq. 

(4.6) 
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G(k,O) = 3~2 [ <Ei> -
p 

~ w2 [l-g(O)] + 654 
3 p 

(4.7) 

The leading terms, _k4 , cancelled out exactly. Note that E(q)=q2/2 is 
the leading kinetic energy of an electron characterized by the wave vector 

2 
q. Therefore, ~2 is the mean kinetic energy of free electrons, while 

4 0 

~o is <~>o' It is easy to calculate from Eq. (4.3) using (4.4) that 

<E~ = L 
K 0 28 (4.8) 

In terms of the relative change, due to interaction, of the mean kinetic 
energy and the mean squared kinetic energy 

6 = K 
(4.9) 

(4.10) 

we obtain finally the following exact result for the static local-field 
correction in the 1arge-k limit (which is equivalent to the result (3.24) 
or (3.33» 

G(k,O) 
6 
-K2 k2 + ~ [l-g(O)] 
5w 

p 

C. Asymptotic Behavior of G(k.w) for Large w 

. (4.11) 

Although the asymptotic behavior is well known (see e.g. [Kugler, 
1975]), we are going to derive it again in order to demonstrate the 
similarities between the two (large-k and 1arge-w) expansions. We 
need the asymptotic expansion of the Lindhard's function. It may be 
immediately obtained from the definition (4.2) by expansion of the 
denominator in powers of l/w. The results may be written as 

where 

xoM1(k) 

x (k) = -oM3 
2 1 

[ 1 + 8 < ~ >02' 
k 

(4.12) 

(4.13) 

(4.14) 

(this agrees, of course, with Table II, columns 1=1,3). Substituting 
(4.12) and (2.10) into Eq. (4.5) we get 
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G(k,w) W2 + 

XM3 (k) 
[ 2 

xoM3 (k) 0 0 
2 ] W + o(w ) 

(XoM1(k» 
(4.15) 

(XM1 (k» 

The terms _w2 cancel out because of 1-st moments are equal, Eq. (2.11) 
and (4.13). Using (2.12) and (4.14) we get 

2 

lim G(k,w) L [ <E_~ - < s.... > ] k2 + GPV (k) 
2 K 2 0 

(4.16) 

W 
P 

Note that terms _k4 cancelled out in XM3 - X M3' Using 
(2.15), (4.9) and (4.8) we may rewrite (4.16~ on the form analogous to 
(4.11) for large k 

G(k,"') 
36K 2 2 0 
-- k + - [l-g(O)] + o(k ) 
5w2 3 

(4.17) 

p 

D. The Leading Term of G(k.O) and G(k."') Expansions. 

By comparing Eqs. (4.11) and (4.17) we see that the leading term in 
each case has essentially the same structure. The latter is obtained from 
the former when multiplied by a numerical factor (-3). In both cases the 
presence of 6K reflects the fact that the mean kinetic energy <EK>, 
occurring in the exact response function X(k,w) (see Eq. (3.24) or 
(2.10) with (2.13» differs from the mean kinetic energy <EK>O in the 
reference system - free electron gas, represented in (3.5) by its response 
function XO(k,w). 

It may be proven that the quantity 6K is always positive (see 
Appendix, Eq. (A.14». Then from (4.11) and (4.17) we see that the local 
field correction function for large k is of the order of k 2 , positive in 
the low-frequency range and negative in the high-frequency range. 

V. NIKLASSON'S RELATIONS 

A. Apparent contradiction with our results and its solution, 

Nik1asson [1974] has derived two relations concerning particular 
limits of the local-field correction, namely at finite k, 

lim GI(k,w) - GPV(k) 
c.cr-+'" 

where the function GPV(k) was already introduced in Eq. (2.14), and 
finite w, 

lim Gr(k,w) 
k-+<o 

~ [l-g(O)) 

(5.1) 

(5.2) 
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The relation (5.1) differs drastically from the result (4.16), and the 
same may be said about relation (5.2) (at w=O) and our resul~ (4.11). 
In both cases the Niklasson expressions lack the leading, -k , term. 

But apparent contradiction may be solved easily, because the 
definition of the local-field correction, used by Niklasson 

(5.3) 

differs from the traditional definition (4.1). Namely, the "reference" 
function Xo(k,w) in Eq. (4.1), which is the Lindhard function, Eq. (4.2), 
is replaced by Niklasson by another function - XIo(k,w) , defined analogically 
as in Eq. (4.2), but with the average <"'>0 replaced by < .. '>1' The 
meaning of this average is the same as in definition (4.3), accept that no(q) 
is to be replaced by nI(q) - the exact occupation number function for 
interacting (I) electrons. Because Eqs. (4.1) and (5.3) define the same 
response X(k,w), the two local-field corrections G and GI must be 
related: 

G(k,w) 

The average < ... >, used in all previous chapters, has exactly the same 
meaning as <"'>1' introduced now. 

B. High-Frequency Case 

Now we are able to calculate G(k,w) in the same limiting cases, as 
given in the Niklasson's relations (5.1) and (5.2). 

The expansion of xo(k,w) for large w is already found, Eq. (4.12). 
The expansion for XIo(k,w) will be the same, except the average <"'>0 
will be replaced by <"'>1 in (4.14). After substituting these expansions 
and the relation (5.1) into (5.4) we get 

lim G(k,w) (5.5) 
w-+ClO 

arose in (5.5) due to [XIoM3 

Eq. (4.16) and (4.17). The term -OK k2 

2 2 2 
XoM3 ] ~ [ ~I - ~o] k . 

which is exactly the same as 

C. Large-k, Low-w Case 

Let us investigate the large-k limit of G(kmO). The expansion of 
Xo(k,w) was found in Eq. (4.6). The expansion for X1o(k,w) needs the 
average <"'>0 to be replaced by <"'>1' Substituting these expansions and 
Nik1asson's relation (5.2) into Eq. (5.4), we obtain after some algebra 

G(k,O) 
OK 2 2 
- k + -3 [l-g(O)] 
5w2 

p 
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+--

35w2 
p 

(5.6) 



Again ~he term -SKk2 aris:i due to £he difference between <q2>I 
and <q >0' present in Xlo and Xo- in Eq. (5.4). 

We see that the expansion (5.6), based on Nik1asson's relation (5.2), 
is exactly the same as our result (4.11). Therefore, the arguments used 
by Nik1asson to derive his relations (5.1) and (5.2) serve also as 
arguments in favor of validity of the expressions (3.28) and (3.32) for 
a3(-1) and a4(-1) - the "almost exact" part of our results. 

VI. NUMERICAL ESTIMATES 

As it was shown in previous chapters, asymptotic expansions of X, 
E, G involve the following characteristics of an electron liquid at 
given density: GPV(k) (or, equivalently, S(k», g(O), <EK> (or SK) and <E2K> 
(or SKK)' Iwamoto, Krotcheck and Pines [1984] calculated SK' g(O) and GPV 
(= I(k) in their notation) quite accurately, "combining the best currently 
available microscopic data on the ground-state properties from the Green's­
function Monte Carlo c~lculations". We used their values below in Table 
IV. For evaluation <E K> the occupation-number function is necessary, 
but it is not known at present with sufficient accuracy. Therefore, we are 
going to use the lower bound of the estimate (A.21) as the representative 
value of c5KK=c54 . 

It will be convenient to have rewritten here the earlier obtained 
expressions for asymptotic expansions of G(k,O), X(k,O), and E(k,O) 
and for corresponding coefficients: 

G(k,O) (6.1) 

b_ 2 
~ 
5r} 

(6.2) 

p 

bO 
ABC 

bO + bO + bO (6.3) 

bA Z [l-g(O)] 
0 3 . (6.4) 

Table IV. Characteristics of an electron liquid and expansion coefficients 
of G(k,O) Eqs. (6.1) - (6.6). 

2 g(O) c5K c5KK b_ 2 bA bB bC bO r w s p 0 0 0 

0 0 .50 0 0 0 .33 0 0 .33 

1 .22 .28 .036 .10 .033 .48 .16 - .05 .59 

2 .44 .17 .091 .26 .041 .55 .20 -.07 .68 

5 1.12 .045 .292 .82 .052 .64 .25 - .10 .79 

10 2.21 -.00 .619 1. 73 .056 .67 .27 - .12 .82 
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bB 
l20K!{ 

° 35 w 
2 

(6.5) 

p 

8 oK 
1 

be 
(1 + '2 oK) 

° 25 w 
2 

(6.6) 

p 

4 w 
2 a2 a4 L X(k,O) ----I!. 1 + - + - + o( ) ] 

4 k2 k4 k4 k vk 

(6.7) 

8 So (1 + oK) a2 3" <EK> = 
5 

(6.8) 

a4 
A B a4 + a4 (6.9) 

A 64 <E2> 48 
a4 5 K 35 (1 + oK!{) (6.10) 

B 4 2 [1 + 2g(0)] a4 - - w 
3 p 

(6.11) 

€(k,O)-l Q(k,O) (6.12) 

Table IV contains expansion coefficients of G(k,O) and their constituents, 
while Table V the same concerning X(k,O) and €(k,O). We see that, in 
general, all expansion coefficients change significantly with increasing r s ' 
although quite smoothly. The full coefficients: b_ 2 , bO' al' a4' 
(a4 _ 4w2p ) , all are positive, increasing functions of r s ' except 
a4' which is decreasing. 

Table V. Expansion coefficients of (k,O) and (k,O), Eqs. (6.7) - (6.12). 

A B 
4w2 2 r a2 a4 a4 a4 a4+4wp s p 

° .80 1. 37 ° 1. 37 ° 1. 37 

1 .83 1. 51 - .46 1.05 .88 1. 93 

2 .87 1. 73 - .79 .94 1. 76 2.70 

5 1.03 2.50 -1. 63 .87 4.48 5.35 

10 1. 30 3.74 -2.95 .79 8.84 9.63 
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VII. CONCLUSIONS 

It was noticed that for a general system in the large k region there 
exists a direct relation between high-frequency and low-frequency 
properties. This is due to analgesic is the response function. 

This idea was applied to the system of a uniform electron gas. The 
large-k asymptotic expansions of the static response, dielectric and 
local-field correlation functions was obtained. These results are exact, 
valid for arbitrary rs. For evaluation of the expansion coefficients 
the information about the l-st and 3-rd frequency moments and the static 
structure factor, all in the large-k region, was used. 

The leading term of the e~pansion of the local-field function was 
found to be proportional to k , with the coefficient being the 
difference between the mean kinetic energy of the interacting and the free 
electron gas. 

But the Niklasson's relation shows that the leading term of the 
mentioned expansion should be a constant. The apparent contradiction is 
immediately removed if the difference in the definition of the local field 
function, adopted by Niklasson and that traditionally used, is taken into 
account. Then his and our results become equivalent. 
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APPENDIX A 

WAVE-NUMBER MOMENTS 

Let us investigate the properties of the wave-number moments of the 
occupation function, defined as (Comp. Eq. (4.3» 

1 2 1-+1 1-+1 1 [2 1 <q > = N ~ n( q) q - 3 dq q n(q) q 
q 0 

(A. 1) 

for non-interacting, <q1>0' and interacting <q1>I' electron gas, with 
n(q)-no(q), Eq. (4.4), or n(q)-nI(q), respectively. 

We introduce the difference of the moments due to the interaction 

A1 
1 1 

= <q >1 - <q >0 

and the relative difference 

S1 
1 

= A1/<q >0 

Introduced earlier SK and SKK are particular cases of S1' namely 
SK=S2 and SKK=S4· 

The moment <q1>I is finite for 1 belonging to the range 

-3 < 1 < 5 

(A.2) 

(A.3) 

(A.4) 

The lower bound in (A.4) is determined by the behavior of the integrand in 
Eq. (A.l) at small q, since 

lim nI(q) = nI(O) > 0 
q-+cx> 

The upper bound is due to the following behavior of the occupation 
function at large q 

w: g(O) L 
2 8 

1 
+ o( 8 ) 

q q 

shown by Yasuhara and Kawazoe [1976]. For the moments <q1>0' the 
parameter 1 is limited from below only, 1 > -3. 

Because the occupation functions are normalized, we have 

1 

AO o 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

Using definition (A.2), (A.l) and the expression (4.4), we may split 
A1 into two parts: 
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(A.9) 

The integrands in both integrals of Eq. (A.9) are obviously positive. Let 
us consider the power index 1 to be a continuous variable from the 
range (A.4). We may calculate the derivatives of Ai with 
respect to 1 

[ 1+2 n 
+ 3 ldq nI(q) q [In(q)]. (A.10) 

We see that for the odd derivative 

because it is a sum of two positive integrals. From (A.10) it is obvious 
that 

d n 
lim + (dl) A}. 

}. -+ 5-0 

lim + 
1 -+ -3+0 

From the fact that AO 

sgn(2) 

{ +CXl , for n=2m+l 
-CXl , for n=2m 

dA}. 
o and ~ > 0, we conclude that 

(A.12) 

(A.13) 

(A.14) 

Now we estimate the 4-th moment, assuming that the O-th and 2-nd ones 
are given. Because A}. is increasing function of }., 
therefore 

Taking into account that 

_3_ 
3 + 1 

(A.1S) 

(A.16) 

we may rewrite (A.15) in terms of relative changes, (A.3), in the form 

(A.17) 

We believe that an estimate stronger than (a.15) holds, namely 

(A.18) 
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It can be obtained from the relation 

(A.19) 

together with the estimate, for 2 < 1 < 4, that 

(A.20) 

where we take into account the proximity of the considered range of to the 
bound 1-5, for which the derivative becomes infinite, Eq. (A.12). 
From (A. IS) it follows that 

Another estimate of 64 is possibly due to the Cauchy-Schwarz 
inequality 

taken for a=O, b=4, from which, using (A.7) and (A.16), we get 

The estimate (A.23) is stronger than the estimate (A.17) for 62 > 
0.30, and stronger than (A.2l) for 62 > 1.46. 
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THE STRONGLY COUPLED OCP PLASMON DISPERSION FOR FINITE WAVENUMBERS 

INTRODUCTION 

M. Minella and G. Kalman 

Department of Physics 
Boston College 
Chestnut Hill, MA 

In a strongly coupled OCP the plasmon dispersion becomes negative 

(dw/dk)k=O < 0 for r > r crit , 2 < rcrit < 10. This has been established 

both by MD simulations and analytic studies (Hansen, Pollock and 

MacDonald, 1974; Hansen, Pollock and MacDonald 1975; Abramo and 

Parrinello, 1975). 

The analytic work, however, has been restricted to the long 

wavelength domain, more precisely to the O(k2) expansion of the 

frequency-wavenumber relationship, w(k). However, the analysis of the 

dispersion relation for finite wavenumbers is certainly of interest: one 

would expect that while for k+o the short range order, induced by the 

strong coupling, determines the character of the dispersion, for finite 

wavenumbers it is the thermal dispersion, being of O(kv), that has the 

decisive influence. It is the former that is responsible for the negative 

dispersion, and the latter causes dw/dk > O. Thus one expects that w(k) 

develops a minimum say w* = w(k*) at some intermediate k = k* value. On 

the other hand, the MD calculations of Hansen, Pollock and McDonald, 

(1975) show a maximum for higher k values before the disappearance of the 

solution of the dispersion relation due to the strong Landau damping. 

In this paper we study the finite k dispersion features of the 

strongly coupled OCP, by adopting a relatively simple approach justified 

on the basis of the physical observations made above. 

We use two models for the calculation of the plasmon dispersion. 

The first model is based on the dynamical mean field theory of Golden 

and Kalman (1979), which provides that the po1arizabi1ity a (e = 1 + a) 

is given by 
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(1) 

where ao(~w) is the Vlasov polarizability valid for y=o and arbitrary k, 

and v(~w) is the dynamical screening function. This latter has been 

calculated by Carini, Golden and Kalman in the "two pole approximation" 

to O(k2) in the vicinity of Wo (the plasmon frequency) for arbitrary y 

(Carini, Golden and Kalman, 1980; Kalman, this volume). The combination 

of the two different approximations is justified in view of the 

observations already noted. 

In the second model we write a(!w) as 

(2) 

where ~4(k) is the exact correlational contribution to the coefficient of 

the w-4 term in the high frequency sum-rule expansion of a~w), which can 

be,calculated for arbitrary k-values from the pair correlation function. 

This model is adopted, because there is strong indication that to 0(k2) 

the sum rule expansion of a(~w) is exhausted as y+oo by the w-2 and w-4 

terms • 

This feature is exhibited by CGK calculation (Carini and Kalman, 

1980) and also by the a(~w) for a 2-d electron liquid as calculated by 

Golden and Lu 1982), (Golden, this Volume) on the basis of the GK scheme. 

Moreover, the dispersion of optical phonons in a 2-d hexagonal lattice, 

as calculated by Bonsall and Maradudin (1977) shows this ,same feature as 

well. 

1. SUM RULE APPROXIMATION 

The high frequency sum rules provide the coefficients of the inverse 

powers of w in the asymptotic expansion of the real part of the dielectric 

function E(~,W) through equations of motions (i.e., conservation laws), 

the Fluctuation-Dissipation Theorem and the Kramers-Kronig relations. 

The result to order w -4 is 

E(~,W) 
wo2 wo4 k2 

1---- - [3 k2 + 64(k,y)] 
w2 w4 0 

where 

=1.. 
(~'12)2 

1I4(k,y) L ---- (gt-.e -g.e) (3) 
V .e k2p2 

with g~ being the FOurier-transformed pair distribution function, which is 

reasonably well-known up to very high y-values (from MD simulations, e.g., 
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Hansen 1973, Ng 1974). In this preliminary study, however, we report on 

the results of a study where gp is chosen as the Debye pair distribution 

function for the calculation of ~4' 

Recalling that y = k 3 /4rrn. Where Ko -1 is the Debye length and 
o 

adopting normalized frequencies and wavevectors w = w/wo , k = k/ko , the 

result for (3) is 

1 5 - ---] 
k2 3 

(4) 

The function within parentheses is a monotonically increasing function of 

k whose asymptotic behaviors are k2 for small k and k for large k. Even 

though the Debye approximation obviously represents a small y expansion, 

for the purpose of the present calculation we adopt (3) for arbitrary y 

values. 
The complete real part of E is given by 

E(kw) 1 y 
E 0 <.l~w) + W"4 7; 

2 1 5 
tg-~ - -2 - - J 

k 3 

We will ignore the imaginary part of E~W) and seek solution of the 

dispersion relation {~w) = 0 only. It is apparent, for a given y there is 

maximum value of k beyond which the curve no longer intersects the w=O 

axis and there is no more solution of the dispersion relation. 

The solution of (k,w) = 0 is then plotted in the usual w versus k 

fashion, with y as a parameter this time, in Figure 1. 

1 . 1=t. 

Fig. 1. Sum rule, Dispersion relation w versus k with y varying from 
o to 70 i.u steps of 10. 

'" All the graphs are obtained numerically. The solution of E(k,w) 0 

on which we concentrate is only the one closest to w = wo0 Figure 3 

deserves some comment: 
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1. The higher the coupling, the shorter the range of k's for which 

in our model we can find a solution of the dispersion relation; such a 

range is finite also for the Vlasov y = 0 case in our approximations. 

This is consistent with the replacement of the full £ by its real part. 

(Fried and Conte, 1961). 

2. Starting from a critical value of y = 25 and up to y = 60 the 

dispersion relation shows a minimum lower than the plasma frequency (w 1 

in the figure). 

As y approaches 60 there are no more solutions of the dispersion 

relation at the point where we expect the minimum. This is an expectable 

failure of our crude model. 

The value of the normalized minimum frequency Q(n) 

plotted in Figure 2 versus the coupling parameter y. 

1.e5E+ee~---------------------'-----------------------' 

9.25E-01~------------------------------~------------------------~---~ 

8.00E-01~-----------------------------~------------------------------~ 

0.00E+00 3.00E+01 6.00E+01 
COUPLING PARAMETER GAMMA 

Fig. 2. Position of the minimum frequency versus the coupling parameter. 
Thick line, Carini-Kalman: shaded line sum rule model. 

We also plot the minimum frequency w*(n) = Q(n) wo(n) versus the 

density, in Figure 3. 

Since y depends on n1/ 2 T-3/2 the density at which the two lines of 

Fig. 5 start splitting (determined by the condition y = 27) will be higher 

at higher temperatures, by a factor of 3 in the logarithmic scale. 
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III. GOLDEN-KALMAN MODEL: APPROXIMATION SCHEME AND RESULTS 

The Golden-Kalman formulation for the ocp dynamical polarizability is 

given in (1). We can assume a simple hydrodynamical structure for the 

external polarizability (Kalman and Carini 1980). 

The dispersion relation derived numerically from the solution of 

{(~w) = 0 is plotted in Fig. 4. Similarly to the previous case the 

dispersion relation exhibits a minimum at some finite k. All observations 

1.S2E+Ol r------------,----------~ 

1 .60E+Olr-----------~~~'---------~ 

l.S8E+Ol L-_......£ ________ --' __________ -' 

2.20E+Ol 2.2SE+Ol 2.29E+Ol 

Fig. 3. Minimum frequency of propagation versus density (logarithmic 
plot). The straight line is the plasma frequency versus the 
density, Wo = 5.6. 104.n 1/2. 

made for the plot of Fig. 1 are valid for Fig. 4 as well. The minimum of 

these dispersion relations is also plotted in Fig. 2 to allow comparison 

with the previous model. 
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0.12E+Ol 

0.11E+Ol 

0.94+00 
0.10E-01 0.18E+00 

'6=10 

... _ - -30 

0.34+00 

Fig. 4. CARINI-KALMAN. Dispersion relation w vers us k with y ranging 
from 0 to 100 in steps of 10. 

v. CONCLUSIONS 

We have found that two independent models for the polarizability of 

the strongly coupled ocp give remarkably similar results for the plasmon 

dispersion relation dependence on the coupling parameter: 

1) As it is well known there is a critical y after which the slope of 

the dispersion curve becomes negative; the critical value of Ycrit is ~ 27 

for the sum rule model and ~ 36 for the GK approximation. 

2) For Ycrit < Y < yXcrit the dispersion curve develops a minimum. 

yXcrit is ~ 60 for the sum rule model and ~ 80 for the GK approximation. 

The sum rule model predicts a stronger dependence of the position of the 

minimum versus the plasma parameter. 

Figure 5 suggests the possible misinterpretation of results of 

experiments such as the ones reported by Fortov et al. (Fortov, this 

volume). 

In their coherent scattering experiments, the frequency of the laser 

beam reflected from the plasma at a certain point is assumed to be the 

plasma frequency at that point. This is true only when the plasma 

frequency is the minimum frequency; but if there is a local minimum, lower 

than the plasma frequency, the identification of the laser frequency with 
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1.25 

1 .02 

"-
"­ , , , 

• 

• 
..... ",.. , . 

..... -.. / ~ 
\ 

• 

0.80 ...... -----------------
0 .00 0 .54 

Fig. 5. Comparison between the maxima in the di£persion relation of 
our models (thick, Carini-Kalman; shaded, sum rule) and the 
MD calculations of HPM (1974). 

the plasma frequency is unjustified: the laser frequency is lower than 

the local plasma frequency and therefore, the local density is actually 

higher than the value inferred without accounting for the effect described 

on this paper. 

Finally, we note that the maxima of the dispersion relation in both 

models agree qualitatively with the molecular dynamics results of Hansen, 

Pollock and McDonald (1975). In particular, all approaches have a maximum 

in the dispersion curve at .465.k~.54. (Fig. 5) 
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ELECTRIC MICROFIELD DISTRIBUTIONS 

James W. Dufty 

Department of Physics 
University of Florida 
Gainesville, FL 32611 

I. INTRODUCTION 

Recent research on controlled fusion by inertial confinement has 
stimulated renewed consideration of atomic phenomena in hot, dense 
plasmas. In many cases the dominant coupling of the atom to its plasma 
environment is through the atomic dipole interaction with the local 
electric microfield. The electric microfield distribution (probability 
density for a given field value) is therefore an important property of 
the plasma for description of such atomic processes as emission and 
absorption of radiation. Prior to laser-produced plasmas, typical 
laboratory experiments involved only weakly coupled plasmas and quite 
accurate theories were availa~le to calculate the microfield distribu­
tions under such conditions1,. These theories fail for strongly-coupled 
plasmas and present research has focused on calculations for more extreme 
plasma §Ollditions. Progress in this direction was initiated by Iglesias, 
et. al. ' who proposed a method for ion fields at charged pOints, which 
gives excellent agreement with computer simulations of strongly coupled 
classical one component plasmas (OCP) in two and three dimensions. Ex­
tension of this method to multi-component plasmas also proved fruitful5. 
Subsequently, others have addressed related aspectg of microfields in 
dense plasmas such as ion fields at neutral points, electron fields 7, 
effects of atomic structure~, and quantum degeneracy9,10. The objective 
here is to review these developments in a general context, to clarify 
some of the approximations used, and to identify some of the remaining 
problems. 

There are two distinct parts to the microfield distribution - its 
definition and its calculation. With regard to the definition, some 
specific microscopic field must be chosen, whose distribution of values 
under given state conditions is desired. For example, in a two component 
plasma it could be the Coulomb field of the ions, or that of the elect­
rons, the total field, or some given screened field. In general the 
choice depends on the particular application for which the microfield 
distribution is to be used. This ambiguity in the definition of micro­
field has not received much attention in the past since applications were 
focused on the specific problem of static ion spectral line broadening by 
weakly coupled plasmas. In that case, simple Debye shielded ion fields 
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are adequate". The current interest in strong coupling and ion dynamical 
effects requires a more careful selection of the appropriate microfield 
distribution to be calculated. 

Another part of the definition is the model used for the plasma and 
"radiator" (atom or ion at which the field distribution is to be calcu­
lated). Most results in the literature have been obtained under very 
restricted conditions (e.g., classical OCP) but the formulations actually 
apply more widely. In typical inertial confinement experiments there are 
many highly charged ionic species, possibly having bound electronic 
structure. The plasma state may be nonequilibrium, or at best local 
equilibrium and, while the ions are typically nondegenerate, electron 
degeneracy may be important. In the third section, the Baranger-Mozer 
formulation' is extended to apply to this general situation. In this 
formulation the problem is transformed into a series whose terms charac­
terize the plasma-radiator interaction through their correlation func­
tions. For weakly coupled plasmas higher order correlation functions are 
negligible, leading to a computationally simple and quite accurate 
expression for the microfield distributions. However, as the thermal de 
Broglie wavelength increases or Debye screening length decreases 
(relative to the average interparticle spacing) higher order correlation 
functions become significant and the plasma is strongly coupled.. Some 
partial resummation, or other rearrangement, of the Baranger-Mozer series 
must then be carried out in general for an adequate approximation. 

The relevant parameter space is indicated qualitatively in the 
density-temperature plane of Figure'. The importance of Coulomb 
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coupling for electrons is estimated b1 the plasma parameter r = average 
Coulomb energy/average kinetic energy 2, and the importance of quantum 
degeneracy is determined by the activity, z. The solid line denotes a 
contour for r = 0.1 and the dashed line refers to z = 0.1. The common 
region to the right of both curves is therefore a weakly coupled electron 
system. Otherwise the electrons are strongly ~ouPled in one or more 
respects. For example the point marked z = 10 on the r = 0.1 curve has 
weak Coulomb coupling but strongly degeneracy coupling. The circles 
represent conditions achieved in typical laser compression experiments13 
(LCP) and the associated box estimates the region accessible in the near 
future. Alr~ shown are corresponding quantities for laser produced shock 
experiments (LPS). In LCP experiments strong coupling of electrons is 
not yet as important as in those of LPS. For ions the most important 
strong coupling effects are due to Coulomb interactions, rather than 
degeneracy. The thermal de Broglie wavelength is reduced almost two 
orders of magnitude by the large mass of the ions relative to electrons, 
so strong coupling from exchange effects on the ions can be neglected. 
In contrast, for Soulomb coupling the plasma parameter for ion-ion 
correlations is Z r so the ions can be strongly coupled even when the 
electrons are not. For example hydrogenic neon and argon plasmas have 
charges Ze with Z = 9 and 17 respectively. The ion-electron coupling 
is zr, and may not be classified clearly in either category. 

The basic ideas of Iglesias, et. al. are described in section V to 
show how the Baranger-Mozer series can be "renormalized" for strong 
Coulomb coupling, while still retaining the computational simplicity of 
the weak coupling approximations. Variations of this procedure and al­
ternative treatments with comparable accuracy are also indicated. In all 
cases the primary feature of these strong coupling approximations is that 
all plasma properties occur only through the pair correlation functions. 
In this context the calculation of microfield distributions is essential­
ly a special application in the theory of plasma correlation functions. 
Correlation functions have been studied extensively for the classical 
OCP, where integral equations provide accurate pair correlation functions 
up to quite large plasma parameters. 15 Accurate results also can be ob­
tained for multi-ion systems in a neutralizing background. 1b Difficulties 
arise when a proper treatment of bound and free electrons is attempted. 
The case of degenerate electrons and small plasma parameter can be 
treated adequately by a modified random phase approximation. For large 
plasma parameters and/or bound electrons, more sophisticated methods are 
required17 and some of those applied recently to the microfield calcula­
tion are described in section VII1/j,19. Finally, some aspects of real 
plasmas encountered in current experiments are noted, and the current 
accomplishments and remaining problems for microfield calculations are 
summarized. 

II HIGH FREQUENCY AND LOW FREQUENCY MICROFIELDS 

The~microfield distribution gives t~* probability densitx*for 
values, e, of a given microscopic field E. The asterisk on E has been 
included to emphasize that the form of this field need not be the Coulomb 
field. The microfield distribution function is then 

(2.1) 

where p is the statistical density operator characterizing the state of 
the plasma (equilibrium or nonequilibrium), and the trace extends over 
all degrees of freedom of the system. ~In subsequent sections attention 
will be restricted to evaluation of Q(e) for a given plasma state and 
given form of E*. Before doing so, some comments on the choice of E* are 

offered to put the calculation of microfield distributions in the context 
of how they are to be used. 
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As a specific important illustration, consider the evaluation of the 
spectral lin~ profile for an atomic or ionic radiator, in an equilibrium 
two component plasma of electrons and ions. The line shape function is20 

-1 foo i wt -+ -+ I(w) = 11 Reo dt e < d(t)'d(o) > (2.2) 

where d is the radiator dipole operator21. Usually, the dipole autocor­
relation function in Eq.(2.2) is evaluated in a two step process, 

-+ -+ f7 -+- 7 ~ < d(t)'d(o) > = dE Q(E) < d(t)'d(o) > 
E 

(2.3) 

-+* -+ 
where < > represents an average constrained to have E E. A final 
average o~er all values of ~ is then performed. There is no approximation 
implied by the representation (2.3) in general (~s shown in reference 
11), but rather only an expectation that both Q(E) and the constrained 
di~ole ~orrelation function can be calculated more accurately than 
< d(t)'d(o) >, directly. The basis for this expectation is the widely 
separated time scales for the electrons and ions, due to their mass 
difference. Over much of the line profile the ions essentially form a 
static background during the relevant radiation time, while the electrons 
make nearly completed collisons with the radiator. Typically, stronger 
approximations are also invoked, i.e., that these two processes are 
statistically independent22 • These latter approximations imply that < > 
is replaced by a charge neutral electron gas average, and that Q(~) is E 
the ion microfield distribution for an OCP. To mitigate this drastic 
decoupling of ions and electrons, it is recognized that the effective ion 
field at the radiator is in fact screened b~*the fast moving electrons. 
To include these ion-electron correlations E is chosen to be a Debye­
screened ion field, and a corresponding screened ion-ion potential is 
used to define the OCP equilibrium density matrix. Such a screened 
microfield distribution is-+sometimes referred to as a "low frequency" 
distribution, while the Q(E) for a Coulomb field and Coulomb OCP is 
called the "high frequency" distribution. 

-+* The use of D~bye screened interactions and field E in the OCP 
calculation of Q(E) is plausible only for weakly coupled plasmas; its 
justification and generalization to complex plasma conditions requires a 
more systemmatic analysis. An outline of how such an analysis can be 
carried out is given in reference 11, where the right side of (2.3) is 
studied without any decoupling of the ion-electron-radiator subsystems. 
The essential conclusions of that study are threefold: 1) The micro­
field formulition in Eq.(2.3) can be accomplis~*d for a wide class of 
choices of E ; however, different choices-+of E-+ imply physically diffe­
rent interpretations and properties for < d(t)'d(o) >; 2) If, as in the 
standard theories, <-+~(t)'d(O) > is to re~~esent ele8tron broadening in 
an ion Stark field, E, then the 8hoice of E should be 

-+ 
Tr pEl Tr p e e 

-+ 
where the partial trace is taken over-+the electron states and E is 
total Coulomb field; 3) Generally, Q(E) is defined with an avera~e 
the two component electron-ion system; however, an equivalent Q(E) 
effective OCP can be introduced with shielded ion-ion interactions 
by 

V~. = V .. + f1dA Tr V 
11 11 0 re P A ie 

(2.4) 

the 
over 
for an 
given 

(2.5) 

where V .. and V are the ion-ion and ion-electron Coulomb potentials, 
11 ie 

and PA denotes the equilibrium density operator with the replacement 
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V. + A V. . The trace in (2.5) extends over both radiator and electron 
st~tes. I~ the limit of a weakly coupled plasma the results (2.4) and 
(2.5) reduce to the Debye shielded field and potential, respectively.11 
Consequently, the standard model for spectral line shapes with low fre­
quency microfield distribution is recovered in this limit. More general­
ly, however, the expressions (2.4) and (2.5) show how the microfield 
choice should be generalized for other plasma conditions. Some observa­
tions can b* made regarding the general case without further calculation: 
The field E is not simply related to the gradient of V~., it is not a 
sum of single particle fields, and it can depend on the1boupling of the 
plasma to the radiator. Such complications may not always be important, 
but it should be clear that the definition of the low frequency micro­
field distribution is a difficult problem in itself. 

The above discussion refers to the method of calculating spectral 
line shapes over the portion of the profile for which ions are static. 
When ion dynamic effects are important alternatives to the formulation 
(2.3) are more relevant. A novel approach to this problem, the model 
microfield method23 , has been applied with considerable success24 • The 
idea is based on the fact that the plasma environment of the radiator is 
entirely characterized by the dynamics of the total field there. Micro­
field distributions also play an important role in the method, but now 
~th electron and ion fields are required. The appropriate choice for 
E might then seem to be the Coulomb fields for all charges. In practice 

a low frequency OCP ion microfield distribution and a high frequency 
electron gas microfield distribution are used. The statistical mechanical 
basis for the model microfield method has been outlinedZ5 , but a detailed 
determination of the fields to be used has not yet been given. 

+* In summary, there is no "correct" definition of the field E whose 
distribution of values is to be computed. Rather, the particular choice 
(shielded, unshielded, ion, electron, total, •.• ) depends on the theory 
in which the microfield distribution is to be used. Some caution should 
be used in discussing or comparing results outside of this context. In 
the following sections it is assumed that an appropriate field has been 
given, and the technical problem of calculating its distribution of 
values is considered. 

III. BARANGER-MOZER FORMULATION 

The original formulation of electric microfield distributions by 
Baranger and Mozer leads to a series representation ordered according to 
the correlation functions for the plasma. The purpose here is to 
introduce this formulation in its most general context. The plasma con­
sists of an identifiable "dominent" set of ions, electrons, and neutrals 
(in general there is the difficult problem of determining relative frequ­
encies of various bound states in the ensemble). It is not necessary to 
assume the plasma is charge neutral or even in equilibrium, so the formu­
lation applies, for example, to physically important states such as local 
equilibrium, two temperature, or even turbulent plasmas. Ultimately, 
attention is focused on the equilibrium state. A specific particle is 
identified as the radiator and its degrees of freedom are denoted by sub­
script o. In general the radia',,)r will have atomic structure so there 
may be many degrees of freedom associated with it. The remaining charged 
particles, electrons and ions, will be referred to as the perturbers. An 
electric field at the radiator due to the perturbers is assumed given, 
(the asterisk on the field will be deleted in the following for 
simplicity) , 

N 
E=I:I:°E(cx) (3.1) 

° cx ° ° 
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where~a denotes a species label and a iSt~he ath perturber of type a 
Also E(a ) is the contribution from tRtha perturber and depends only on 
the centgr of mass coordinate of the a perturber relative to that of 
the radiator. Here N is the number of particles of type a, N = r N ,and 
the trace is defined 8ver suitably symmetrized N-particle states. a T8 
determine the microfield distribution it is convenient to evaluate the 
associated generating function, G, 

~ ~ ~ ~ ~ 

Q(~) = fdt e- iA ' E eG(A) G(t) = ~n < n eiA'E(aa) > (3.2) 
(2n)3 

where the produ~t extends over all particles of the~SYSantdemt'heFOp~oebaqUbli"lll~tb-y 
rium states, Q(E) depends only on the magnitude of E, ' 
density for the magnitude of the field is defined by 

The equilibrium data is reported in terms of peE) rather than Q(~). 
~ ~ 

In coordinate representation the operators exp iA'E(a ) represent 
long-ranged functions approaching a value of unit~ far fro& the radiator. 
For practical purposes it is better to express G(A) in terms of the 
shorter-ranged functions 

~ ~ 

$(t;a ) = eiA'E(aa)_' (3.4) 
a 

that essentially measure the volume around the radiator that contributes 
to the microfield~distribution. Then since all of ~he A-dependence 
occurs through $(A), the problem is to calculate G(A) = G[$J. The 
Baranger-Mozer representation follows directly from a functional Taylor 
series expansion in products of $, 

n 
G [$J = r •• r I a(n+')({n,}, •• {n })n 1 I na $(a )d{n } (3.5) 

n, ns sana" Q a a a 

Here n=r nand {n } denotes the coordinates of a set of n particles for 
a a a (n+' ) a 

each species a. The functional derivatives G ({n,}, ••• ,{ns }) are the 

cluster functions associated with the reduced density matrix, or correla­
tion function, for the n perturbers plus radiator (see references 9 for 
further details). The important property of these cluster functions is 
that they vanish unless there is a correlation among all n+' particles. 
Consequently, for weak correlations this property of the cluster func­
tions leads to rapid convergence of the series, and low order truncation 
can be made for practical calculations. For example, the first order 
terms in $ are, 

G[$J = rId; g(2) (; )$(t;; ) + • 0.6) 
a a a a 

Here g(2) are the 2-particle correlation functions, defined as the diago­
nal matrix elements in coordinate representation of the 2-particle reduc­
ed density matrix. For Debye-Huckle plasmas, the term linear in $ gives 
an excellent approximation to the distribution of ion fields at charged 
radiators, while both linear and quadratic terms are required for similar 
accuracy at neutral radiators. 

The result here differs from the original Baranger-Mozer formulation 
only in its generality: no restrictions on the plasma state have been 
made (e.g., equilibrium or not), all quantum effects are accounted for, 
and the possibility of bound states is implicitly included. Actually, 
the details of such complications are only supressed, and they appear 
more explicitely when the correlation functions must be determined. 
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IV STRONG COUPLING VIA DEGENERACY 

The Baranger-Mozer formulation is obviously useful if the series can 
be truncated at first or second order. In the classical (high tempera­
ture) limit correlations are due to the Coulomb interactions among the 
particles, and the terms of the series are ordered according to powers of 
the plasma parameter, r. However, for values of the degeneracy parameter 
z ~ 1 the effects of quantum statistics are important and a new correla­
tion length, the de Broglie wavelength, appears. As Figure 1 shows, at 
high densities and low temperatures there can be large contributions to 
the correlations arising from quantum statistics, even when r«1. To 
calculate these effects of degeneracy and illustrate a rearrangement of 
the Baranger-Mozer series for strong coupling, the electron microfield 
distributioij at a neutral point for an electron gas with r«1 is 
considered. 

The correlations due to the Fermi statistics for electrons are pre­
sent even in the absence of Coulomb forces. This suggests extracting 
from each term in the series a part whose correlations are due entirely 
to statisti~S. It is then possible to sum all such contributions to' a 
closed form. The remaining terms of the series then have correlations 
that vanish as r~o. This part of the series can be truncated for small 
r. The result obtained in this way is valid for all degrees of degeneracy 
(strong quantum coupling) and r<1, 

G[$J = G(o)[$J + Gc[$J. 

G(o)[$J is the contribution from quantum statistics alone, 

G(o)[$J = T~ {in [1+~(p);(1)J} 

( 4.1) 

(4.2) 

where n and $ are the single particle operators corresponding to the 
Fermi function and (3.4), respecttV,ly. The trace in (4.2) extends over 
single particle states, so that G 0 [$J expresses a reduction of the N­
body statistics to an effective one body form. The second term of (4.1), 
G [$J, represents the effects of quantum Coulomb correlations, c 

f ~ ~ (2) ~ ~ (2) ~ ~ ~ ~ 
Gc[$] = 1/2 dr1dr 2[g (r1,r2)-go (r1,r2)J $Cr1 )$(r 2) (4.3) 

Here g(2) and g(2) are the two particle equilibrium correlation functions 
for the interac€ing and noninteracting electron gas. For small plasma 
parameter these correlation functions can be evaluated (including finite 
temperature q~~ntum effects) in the generalized random phase or chain 
approximation • The detailed results in a form suitable for numerical 
evaluation are given in reference 9. It is found that as the degeneracy 
increases at fixed r, the peak of the microfield distribution shifts 
monotonically to smaller fields. Similar qualitative features have been 
observed from small degeneracy expansions as well10 

V STRONG COUPLING VIA COULOMB INTERACTION 

In the last section, the Baranger-Mozer series required a partial 
resummation because the deBroglie wavelength could be large compared to 
the interparticle distance, although the plasma parameter, r, was chosen 
to be small. Here, the opposite case is considered, large plasma para­
meter but small deBroglie wavelength. These conditions are more approp­
riate for ion microfield distributions since the ions are typically in 
their classical limit but can be strongly coupled by Coulomb interac­
tions. When such lo~g range correlations are important the Baranger­
Mozer series again m~t be rearranged to extract the dominant 
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contribution. Several methods are now available to describe strong 
coupling in this sense, and are briefly described below. 

a) Effective field renormalization 

The first successful calculation of hon microfields at large plasma 
parameters was given by Iglesias, et. al. . Their basic idea was to 
retain the structural simplicity of the low order approximation to the 
Baranger-Mozer series, while incorporating higher order correlations 
(approximately) through an appropriately screened microfield. To moti­
vate this, note that the size of the integral$ in the Baranger-Mozer 
series are controlled by both the functions G\n) and the functions $(a ), 
so truncation is possible when either of these is small. At large plagma 
parameters the correlation functions do not provide a small parameter and 
their contribution can be large. H~wever, it is possible that correla­
tions in higher order terms shield E in such a way that $ becomes small 
outside a sphere of radius roo Then the series would be ordered accord­
ing to powers of (r Ii ), were i is the interparticle spacing, and it 
might be truncated ~y ?irtue of ~he range of $ rather than that of the 
correlation functions. To illustrate how higher order terms in the 
Baranger-Mozer ~eries can le~d to such a screened field, a direct 
expansion of G(A) to order A can be written in the suggestive form 

GO) = E fd~ g(2) (; ) R(r) iX·E, (r )[1 + .lit.E, (; ) 
a a a a a 2 a 

2 
+ order A J (5.1) 

where R is the ratio of field magnitudes, E/E'; and E'(;) is the screened 
field, 

~ ~ ~ ~ f ~ -7 -7 (3) -7 -7 
E'(r ) '" E(r ) + E, dr ,E(r ,leg (r ,r' ,) 

a a a a a a a 
_g(2) (; ) g(2) (~, ) J/g(2) (; ) 

a a' a 

But, to the same order in A, Eq. (5.1) can be written 
-7 ~ 

G(t) = L fd; g(2)(;) R(r ) [e iA ' E '(r o)_l] +. 
a a a a 

(5.2) 

~ 

This is similar to the first te~m of the Baranger-Mozer series, with E 
replaced by the screened field E'. 

To formulate these ideas more precisely6, a new function, ¢ 
is introduced by the_definition, 

-7 ~ 

¢ (t'a ) '" eiA'E(ao) -1 , a 

(t;a ), 
a 

(5.4) 
:;; 

where E (a ) is a new "renormalized" field. The functional relationship 
of ¢ to $ ~s easily found to be 

- R 
1 +$ = (1 +$) , (5.5) 

Consequently, the generating function§l for the microfi~ld d!s~ribution 
can be considered as a functional of $ instead of $, G(A) '" G[$J. A re­
normalized Baranger-Mozer series is ob~ained analogous to Eq~(~~11) by a 
functional Taylor series expansion in $ instead of ~, where G are a 
new set of cluster functions, obtained from the functional derivatives of 
G with respect to ¢. The idea now is to choose E such that this new 
series is rapidly conv~rgent, even when the original Baranger-Mozer 
series is not. Since E is essentially arbitrary at this point there are 
many possible ways to proceed. In principle, it is possible to require 
that all corrections to the leading term of the series vanish. In 
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practice, it is convenient to choose E real and independent of A such 
t~at the leading term of the series describes GO) exactly to order 
A. This leads to the condition, 

f -+ (2) + -+ - -+ 
1: dr g (r )E.(r )E.(r ) = < E.(E.-< E. » > (J (J (Jl(JJ(J IJ J (5.6) 

The right side of Eq. (5.6) is the second moment of the total electric 
microfield. Assuming that this condition provides the desired rapid 
convergence, the first approximation to the renormalized Baranger-Mozer 
series is given by 

-+ f -+ (2) -+ -+ - -+ -+ G(A) ;;; 1: dr g (r )R(r )~(A;r ) (5.7) (J (J (J (J (J 

which justifies the form (5.3). 4This is essentially the result of 
Iglesias, Lebowitz, and MacGowan • 

There are two diff~r~nces between this expr~ssion and the leading 
term of (3~6). First, ~(r ) involves the field E rather than E, and con­
sequently ~ is expected to(Jbe shorter-ranged than~. Also, the ratio of 
fields, R, appears. Iglesias et. al. suggest interpreting (5.7) as the 
generating functional for a system of independent perturbers coupled to 
the radiator. For such a system (in the classical limit) all terms in 
the Baranger-Mozer series vanish except the first. These independent 
nquasiparticles'('2are chosen to have an effective density around the radi-

- ) ,-+ -+ -+ - -+ 
ator given by g (r) = R(r )g(r ) and an effective field E(r) const-
rained by the second(Jmoment 80ndieion, (5.6). The effective cHarge 
density has the property that the average field_pr?~yced bY(2~e quasi­
particles is the same as the true field, i.e., E g = E g • Also, 
the second moment condition is reasonable in the following sense. The 
large field behavior of the distribution function is dominated by con­
figurations with a single perturber close to the radiator, so an indepen­
dent particle model should be a good approximation. Also, small fields 
are associated with many particles at large distances. Asymptotically, 
these large distance many-particle fields are Gaussian distributed, with 
covariance determined by the second moment of the el~ctric microfield. 
The second moment condition on the effective field, E, assures that this 
collective effect is preserved by the independent particle model. In 
this way both large and small field limits are adequately represented, 
and the primary uncertainty is how well the approximation interpolates 
between these two limits. For ion perturbers or highly charged positive 
radiators the strong Coulomb repulsion minimizes the importance of con­
figurations with several particles relati vely close to the radiator. The 
model should work well in this case. The same reasoning suggests that 
the least favorable conditions would be for calculation of microfields at 
a neutral pOint. In the following Eq. (5.7) will be referred to as the 
renormalized independent particle model. 

To illustrate the effectiveness of this approximation, consider the 
special case of the high frequency ion microfield distribution for the 
equilibrium classical OCP. The form of the field E is still arbitrary 
beyond the constraint (5.6). The effect of correlations is expected to 
make E more short ranged so Iglesias et. al. introduce a screened field 
of the form, 

.; + + -+ -a,r 
E(r) = E(r)(l+a,r)e (5.8) 

where Ct is a parameter adjusted to fit the condition, (5.6). For reasons 
to be made clear below, this is called the adjustable parameter exponen­
tial approximation, or APEX. This model now has the same simplicity as 
the weak coupling approximations: only the pair correlation function is 
required. For the DCP, accurate correlation functions are obtained from 
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the hypernetted chain integral equation even for quite large plasma para­
meters. The agreement of APEX with computer simulation results is excel­
lent over a wide range of plasma parameters, r,and charge ratios, Z/Zo' 
even for the6extreme case of r = 100. Next, consider the case of a neut­
ral radiator. Figure 2 shows the results for r = 10. There is now a 
significant difference between the APEX calculation and the computer 
simulation results, although APEX is a considerable improvement over the 
first two terms of the usual Baranger-Mozer series. Also shown are the 
first two terms of the renormalized series (corrected APEX), which is 
again in reasonable agreement with the computer simulation data. These 
results support the above suggestion that renormalized independent par­
ticle models are expected to be least accurate for the neutral case, but 
still the leading term in a rapidly convergent series. 

b) Direct evaluation of G(t) 

An alternative approach is the direct evaluation of G(t) from a 
closed form rather than a series representation. Such a form is easily 
obtained as follows, 

where, 

~ ~ ~ 

g(2)(!.; ) = 6G[pJ ei~.E(ra) 
, a ~ ~ 

6<P(~;ra) 
(5.10) 

This form of the generating functional was first noted by Igelsias 3 who 
suggested that integral equation methods from the theory of liquids15 

w 
a. 

o 04 08 12 16 20 24 28 32 36 40 

E 

Figure 2: P(e) for neutral point at r=10, Baranger-Mozer (-0-0-), APEX 
(- - -), and renomalized Baranger-Mozer (-6-6-). 
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might be applicable to the evaluation of g(2~~t~~~). The reason for this 
suggestion is that in the classical limit g( (~;r) is indeed a pair 
correlation function for a system of particles interacting via the 
complex potential, vet) = V - il·E/a. An ap~oication of integral t~ya-
ti2n~methods has been given recently by Lado. He first expands g 
(i;r) in Legendre polynomials and then determines the coefficients by 

an extension of the mean spherical approximation. 31 The resulting micro­
field distribution is a Gaussian characterized by the correct second 
moment for the OCP, a relatively poor approximation. Subsequently, how­
ever, Lado has employed improved integral equation approximations based 
on the generalized bridge function for the mean spherical approximation 
leading to excellent results of comparable accuracy to APEX. 

An approach similar in spirit to the effect!ve~r~normalized 
expansion is obtained in terms of a new "field" E (~;r ) defined 

~ .; a 
(2)(t ~) i~·E (2)(~) 

g ;r a "e g r a 

field 
by 

(5.11) 
.; ~ 

Direct expansion to order ~ gives the result (5.2), E = E', as might have 
been anticipated. Use of Eqs. (5.11) in (5.9) again leads to the renor­
mali zed independent particle mo~el+ In the limit of classical mechanics 
and for the special case where E'(r ) is derivable from the interparticle 
potential, Z eEl is the average or ~ean force field,32 

o 
+ + ;t; (2) + 

Z eE' (r ) = kBT v ~n g (r) o a 0 a (5.12) 

More generally, the form (5.2) must be used in order to satisfy the 
second moment condition when quantum effects are important and/or when 
the microfield is not determined from the interparticle potential (e.g., 
Eqs. (2.4) and (2.5». As expected, with the second moment condition 
satisfied the mean force field g~ves results similar to APEXS Corrections 
obtained by expanding to order ~ have also been determined2 • 

VI A MODEL FOR MICROFIELD DISTRIBUTIONS 

In the last two sections, two limiting cases of strong coupling have 
been treated successfully, but by different methods. Large plasma para­
meter effects in classical OCP's are well-described by the models of 
section V, while exchange correlations associated with large deBroglie 
wavelengths can be described by a partial resummation of the ideal Fermi 
gas contributions. It appears that a single model for microfield distri­
butions that can describe both degenerate electrons and strongly coupled 
ions would have to combine both of the above methods. Instead, it is 
interesting to inquire if the renormalized independent particle models, 
designed for Coulomb correlations, also adequately account for quantum 
correlations. If so, a model for microfield distributions is obtained 
with unusual generality and simplicity. 

To investigate this possibility, the renormalized independent 
particle model can be applied to calculate the ideal Fermi gas microfield 
distribution. All correlations are then due to quantum statistics, inc­
luding those responsible for screening the field E. At high temperatures 
these correlations vanish and (5.7) approaches the correct Holtzmark 
limit. The relevant test is therefore at low temperatures, or extreme 
degeneracy. This calculation has been performed recently by Boercker 32 
using the APEX choice for E, and by POIIOCk3j using a quantum Monte 
Carlo simulation. Figure 3 ShoWS the results for a neutral point with 
degeneracy parameter, z - 10 (representative of T - 0). Also shown are 
results using the first two terms of the quantum Baranger-Mozer series 
and the high temperature Holtzmark limit. Alt,hough this exploration is 
still incomplete, the relative agreement of APEX and the Monte Carlo data 
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Figure 3: peE) for Fermi gas, Monte Carlo ( ••• ), APEX (---), Baranger­
Mozer (-0-0-), and Holtzmark (---). 

in this "worst case" situation is striking and indicates that the model 
accounts for degeneracy as well as Coulomb correlations. 

It appears reasonable to adopt the renormalized independent particle 
model for calculating microfield distributions under current experimental 
conditions and those ~f the near future, for both classical and quantum 
effects. The field, E, in these definitions is constrained by the second 
moment condition, but is otherwise free to be chosen on additional mathe­
matical, physical, or practical grounds. The only input required is the 
pair correlation functions and second moments of the given microfields. 
The domain of applicability is expected to include electron and ion 
microfields, weakly and strongly coupled plasmas, classical and quantum 
effects, and (as discussed below) even some nonequilibrium states. 

VII QUANTUM ELECTRON EFFECTS 

The primary difficulties in application are associated with the 
quantum effects of electrons. The simplest conditions are those of high 
temperature and low density, since both electrons and ions are 
essentially classical according to Figure 1. The relavant pair 
cQrrelation functions can then be computed from a multicomponent 
hypernetted chain set of integral equations. Even here, however, there 
is a classical short range divergence from electron-ion attraction. The 
resolution of this problem is through a proper quantum mechanical 
analysis, but then the advantage of the hyper netted chain equations for 
strong coupling of the ions is lost. A compromise is possible if 
sui table effecti ve pair potentials, representing the short range quantum 
effects, are used in the classical integral equations. These effective 
pair potentials are obtained t29m the quantum pair correlation function 
for two isolated particles, go ' 

~ (2) ~ 
VCr) " -kBT.Q.n go (r) (7.1) 

In the classical limit this reduces to the usual Coulomb potential, but 
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more generally V(;) includes quantum effects necessary for finite poten­
tial energy of oppositely charged particles at short distances. The ef­
fects of spin, bound and free states, and two particle exchange symmetry 
are conveniently included in this way. Detailed calculations of such 
effective potentials have been given recently by Gombert, Minoo, and 
Deutsch35 • The Coulomb potential is modified only at distances less than 
the de Broglie wavelength so that Coulomb correlations are still 
essentially classical in the nondegenerate domain. 

For weakly coupled plasmas quantum effects of electrons on interpar­
ticle correlations are adequately described b6 the random phase approxi­
mation (RPA) extended to finite temperatures2 • For the electron gas 
considered i~ section IV, the RPA approximation to the density response 
function, X(k,w), is 

-+ (0) -+ (0) -+ 
XRPA(k,w) = X (k,w)/[l- V(k) X (k,w)], (7.2) 

where x(o)(k,w) is the ideal gas response function and V(k) is the 
Fo~ier transformed Coulomb p~tential. The pair correlation f~ction, 
g(r), can be obtained from X(k,w) by suitable integration over k and w. 
It is straight forward to extend (7.2) to a multicomponent plasma so that 
a proper quantum mechanical description of all correlation functions can 
be given. However, this description breaks down for the ions since they 
can be strongly coupled even when the RPA applies for the electrons. The 
quantum aspe{t) ~f (7.2) are entirely contained in the ideal gas response 
functions, X 0 (k,w). Consequently, it is desireable to wed this struc­
ture with the classical strong coupling hypernetted chain approximation 
in a form that accounts for both strong ion coupling and quantum electron 
effects. One such synthesis has been given recently by Ichimaru and 
coworkers18• They modify the random phase approximation with local field 
corrections to account for strgng Coulomb coupling. For the electron 
gas, Eq. (7.2) is replaced by3 

In the t~1s~ical limit, G(k) is simply related to the correlation func­
tion, g (r). An approximation that includes both quantum and strong 
c~~~ling effects is now obtained as follows: Calculate the classical 
g (r) using the hypernetted chain approximation to ~etermine G(k). Use 
this classical G(~~)i~ (7.3) to get ~n approximate X(k,w). Finally 
determine a new g (r) from this X(k,w), with quantum and classical 
strong coupling thereby included. 

The procedure is considerably more complex in the multi component 
case of interest. The simplest realistic plasma would require three 
components: electrons, ions, and radiator. Although the spirit of 
imbedding the classical strong coupling results in the quantum density 
response formualism is the same as above, additional assumptions 
regarding the electron-ion coupling are imposed. These assumptions 
require that the electron-ion subsystems be weakly coupled so that a 
linear response approximation ( similar to that used for liquid metals) 
can be employed. The local field corrections for the interference of 
these two subsystems then vanishes, and the dielectric response function 
for the plasma has the RPA form with additive polarizabilities for the 
electrons and the ions. As noted in the introduction, the ion-electron 
plasma parameter is proportional to the charge number for the ions and 
this weak coupling approximation can fail for high Z plasmas. 

The limitations of weak electron-ion correlations are most severe 
when bound states must be accounted for in detail. This could be accom­
plished by using the effective potentials of Gombert et. al. in conjunc-
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tion with the method of Ichimaru et. al. A more sophisticated approach 
capable of describing effects of such atomic structure is density func­
tional theory (DFT), and has8been explored in the present context by 
Dharma-wardana and Perrot19 , . Schrodinger equations for the local 
electron and ion charge densities around the radiator are obtained for­
mally in terms of effective one-particle potentials. To describe strong 
ion-ion coupling, the effective ion potential is determined from the 
classical hypernetted chain approximation with a screened potential de­
fined in terms of the electron charge density. The latter is determined 
from the Schrodinger equation with an approximate effective potential. 
Local density approximations for the latter typically parallel the RPA 
for a uniform electron gas and neglect direct electron-ion interactions. 
Self-consistent solution to the Schrodinger equations provides both free 
and bound charge densities near the ion. For example, in a hydrogen 
plasma at rs = 2, and T/Fermi temperature = 5.08 they find a reduction of 
the effective ionic charge by almost 10%, due to formation of weak bound 
states. Dharma-wardana and Perrot have also compared microfield distri­
butions calculated from a second order Baranger-Mozer model using DFT 
correlation functions, with APEX using the hypernetted chain approxi­
mation and Debye screened potentials. However, for reasons stressed in 
section II it is difficult to interpret their comparison since the micro­
fields chosen are different in each case, and the method of calculation 
(APEX or Baranger-Mozer) is different. Discrepancies of 10-20% for the 
charged point case mayor may not be attributable to improvements of DFT 
over the hypernetted chain approximation for the correlation functions. 
A more meaningful comparison would be the application of both sets of 
correlation functions to a single model with the same definition for the 
microfield. 

In summary, it appears that reasonable methods are now available to 
include qualitatively (and often quantitatively) the most important 
effects in the parameter space of Figure 1, for calculation of pair 
correlation functions, and hence, microfield distributions. 

VIII REAL PLASMAS 

Although the formalism developed here is quite general, all specific 
applications have been for equilibrium states. The experiments for which 
strong coupling effects would be most important entail a variety of non­
equilibrium conditions as well. These include different electron and ion 
temperatures, indefinite or changing compositions (e.g., populations of 
bound states), radiative transfer, and related failures of local thermo­
dynamic equilibrium. In some cases, numerical hydrodynamic codes can be 
used to track the plasma under implosion or shock formation for better 
estimates of the state conditions. Generally, however, the theoretical 
objects of interest (like microfield distributions) are used in part as 
diagnostics to deduce state conditions such as temperature and density. 
In this context the theory and experiment rely on mutual feedback, rather 
than a comparison of two determinations under precisely specified condi­
tions. It is important to have a theory that includes the effects of 
interest, but which does not depend too sensitively on the details of 
their calculation. After all, the microfield distribution is a simple 
structureless curve characterized largely by its peak field value, and by 
the high and low field asymptotes. For complex plasmas, a means to 
calculate how these characteristic features change with state conditions 
is sufficient. 

To illustrate this spirit, consider a radiator in a multi component 
plasma of indefinite charges {zoe} and composition {n In}. Without more 
precise information, a detailed theoretical treatmentOof this complex 
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plasma would be fruitless. However, it is possible that the radiator is 
sensi ti ve only to some average interaction from all differen~ species 
that could be characterized by an overall effective charge, Ze. The 
microfield distribution could then be characterized by this single para­
meter (perhaps determined experimentally) rather than a large number of 
theoretical parameters. This possibility has been tested in some detail 
by Iglesias and Lebowitz for a classical plasma consisting of a radiator, 
two species of ions, and a uniform neutralizing background5• The multi­
component version of APEX was compared to a corresponding DCP calculation 
with 2 = r Z n In. The results are shown in Figure 4, where the open 
circles reprgsgnt the effective DCP results. Clearly, the detailed form 
of the microfield is well- described by the OCP. This example illustrates 
the need to understand exactly what minimum set of parameters (e.g. 
r,z,z ,2 ... ) is required to "tune" the microfield distribution. 

?he "quasi-equilibrium" condition of different electron and ion tem­
peratures has been considered for microfield distributions by Tighe and 
Hooper 37 . They calculate low frequency microfield distributions for 
wea~ly coupled ions, using a Debye shielded OCP. Since the shielding is 
due to electrons, the temperature difference of ions and electrons can be 
introduced by A =A,IITR where A is the Debye length and TR is the ratio 
of ion to elect~onltemperature. As TR increases (at constant density) 
the effective screening length decreases, representing a more strongly 
coupled plasma. For strongly coupled plasmas or two component plasmas 
this approach breaks down, and a more complete description of the non­
equilibrium state is required' 8 Progress in this direction has been made 
recently by Boercker and More3 , who propose a model for the complete 
density matrix of a two temperature plasma. Explicit expressions for the 
pair correlation functions are given for the limit of weak ion-electron 
coupling, but including strong ion-ion coupling. These results allow 
Tighe and Hooper's calculations to be extended to the conditions of 
interest here. 
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Figure 4: peE) for binary mixture (Z1=2,Z2=1) at r=4.88, Monte Carlo 
( ... ), APEX binary (-), APEX effecti ve DCP (000). 
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Other complications such as micro-instabilities, turbulence, and 
coupling to the radiation field may be important in a given experiment. 
The ability to handle such factors emphasizes the desirability of a rela­
tively general and simple formulation for the microfield distribution. 

IX SUMMARY 

The renormalized independent particle models discussed here provide 
a practical and accurate method to calculate microfield distribution 
functions in both the weak and strong coupling limits. Futhermore, this 
accuracy is maintained for a variety of physical effects that may be of 
interest such as quantum degeneracy, multicomponent plasmas, and bound 
electronic states. The primary input for the model is the pair 
correlation functions for perturbers and the radiation, and an 
appropriate choice for the microfield. This relative simplicity provides 
the potential to analyze microfield distribution functions for quite 
complex conditions. Clearly, significant progress has been made in 
recent years. Remaining problems, beyond improved accuracy of the 
correlation functions, include calculation of the second moment 
condition, Eq.(5.6), for quantum systems (since three particle 
correlations are then required) and a better determination of the low 
frequency microfield. As indicated in Section II, the latter problem 
requires a more extensive theoretical investigation of the specific 
application of microfield distributions intended. 
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OPTICAL PROPERTIES OF NON-JDRAL PLASMAS 

INTRODUCTION 
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Optical properties are of considerable interest for the physics of 
dense plasmas. As the density grows, the optical consequences of 
non-ideality begin to be displayed prior to corresponding changes in 
thet1nodynamic and transport properties and manifest themselves in the shift 
and broadening of spectral lines, as well as in the shift of the thresholds 
of photoionization continuums. With the further growth of non-ideality, the 
energy state (pri~arily weakly bound states) is markedly restructured 
leading to experimentally observed "relative brightening" of dense plasma, 
the emergence of "transparency windows" near the photoionization thresholds, 
eff~ctive reduction of the photodetachment continuums for weakly bound 
negative ion~. 

Today there is no consistent theoretical explanation of the effects 
observed in the experiment. The description is based on qualitative 
physical models. As a rule, the aforementioned effects are not taken into 
account in mass opacity calculat.ions. 

This paper deals witll some p.xpprimental manifestations of the effects 
of non-ideality on the optical properties of dense plasma and discusses the 
technique of their theoretical description. 

WEAK NON- IDRALIn APPROXIMA'UON (WNA) IN PI.ASMA OPACI n CALCUI.A'J'LONS 

Absorption Coefficient. Plasma Composition Calculation. 

The spectral absorption coefficient (with the frequency exceeding that 
of plasma) in a plasma of moderate density (collisional, but not dense, 
Le., weakly non-ideal) is detet1nined as the sum of the products of 
cross-sections &ij(v) for the photoabsorption of light by the atomic 
species of the !th sort in the jth state by the population Nij of these 
states: 

K (T) 
v ~ 

ij 
& •• (v) N •• (T) 
lJ lJ 

(2.1) 
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The total cross-section &i(v,T) is also introduced for the photo­
absorption in the field of the ion 

N •• 
'I.' --ll 6.(v,T) = t. 6 .. (v) N 

1 j 1J i 
_1_ '1.'. () -E . . /T 
'I.' t. Q •• V g •. e 1J 
t.i (T) j 1J 1J 

(2.2) 

where ~i(T) is the internal partition function of the ith ion; gij and 
Eij are the statistical weight and the excitation energy respectively, of, 
the ith state of the ith ion. The summation in Eq. (2.2) is performed with 
the Boltzmann distribution for the given ion states. With due account of 
Eq. (2.2) one has 

k (T) 
v 

~ 6. (v,T) N. (T) 
1 1 

j 
(2.3) 

where Ni (T) is the total concentration of the ith ions. 

Thus, the calculation of the absorption coefficient kv in the case 
of dilute gas reduces to calculating the atomic cross-section and the 
composition of the gas mixture in appropriate approximation. Consideration 
of the effect of non-ideality, (i.e., interparticle interaction) on the 
optical properties amounts, in this case, to corrections to be made when 
calculating the composition. 

Extensive literature is devoted to studying the thermodynamics of 
strongly coupled plasma. In recent years the research into these problems 
has been discussed in detail, e.g .. in Ref. 1-4. Therefore, we will not 
consider the problem of thermodynamic properties and the composition of 
plasma in detail in this paper, rather we will discuss very briefly the case 
of weak non-.ideal plasma. The degree of plasma non-ideality is character­
ized by plasma coupling parameters y = (e2/kT)/<~> or r = (e2/kT)/~D' where 
<~> = (2Ne)-1/3 is the mean interparticle distance for charged particles, 
~D is Debye shielding length ~D = (kT/8~Nee2)1/2. 

The low temperature plasma under consideration is non-degenerate and 
is described by Boltzmann statistics. In the language of criteria this 
means that the relation between DeBroglie thermal electron wavelength 
~e = K/(2~kT)1/2 and mean interparticle distance is less than one, 
i.e., - ~e/<~> < 1. 

In addition, quantum effects do not play any noticeable role in the 
interaction of particles in the plasma under study. 

To obtain data on the ionization composition of the plasma a quasi­
chemical method of description is usually used in case of weak non-ideal 
"gas systems". According to this method the plasma is regarded as a mixture 
of particles of different sorts. The relation between concentrations of 
particles is described by the equations of ionization equilibrium. Inter­
particle interaction is taken into account as corrections to ideal-gas 
fot~ulas. In this case the free energy F of the system can be written as 

N >"3 
F(v,T) = kT {Neln ( e2: ) 

N ~~ 
(_k_l<) 
e~ 

} + t\F (2.4) 

where Ok is partition function of the ~th atomic or ionic component, F is 
a correction for non-ideality. 

I!'or example, Debye-1ike corrections were taken into account in Ref. 5 
in the formula of t\F to calculate the composition of an air plasma at T up 
to 3 106 K. The first twelve energy levels were taken into account to 
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calculate the internal atomic partition functions Qk' The contribution of 
a large number of levels at low temperatures (compared with the ionization 
energy of the ion under study) is not essential, and at higher temperature 
it is necessary to cut off the partition function according to the 
Planck-Larkin method which corresponds to rejecting the excited levels with 
ionization energies lower than temperature. 

Experiments in dense cesium plasma with r < 1 corroborated a 
sufficient accuracy of these approximations. 4 At higher Coulombic 
non-idealities one has to use the idea of the deformation of atomic bound 
states to describe the experimental data on thermal and caloric equations of 
state of heavy inert gases. 

~!ementary Radiative Processes. Free-Free Transitions in Fields of Ions and 
~eutra1s 

Included as co-factors in the sum total in Eqs. (2.1 or 2.3) describing 
the absorption coefficient are the cross-sections of photoabsorption which 
correspond to different elementary radiative processes. In atomic and ionic 
plasmas, several processes are responsible for the absorption of radiation: 
bound-boulld transitions in atoms and ions which spectral lines correspond to 
in spectrograms: bound-free transitions with the involvement of atoms or 
ions, i.e., the photodecomposition of negative ions and photoionization of 
atoms and ions, which absorption continuums having long-wave thresholds for 
each discrete slate correspond to in the observed spectra; and free-free 
transitions in the fields of atoms and p6sitive ions - inverse 
bremsslrahlung. Extensive literature is devoted to methods of calculating 
the cross-sections of elementary radiative processes, therefore, we have 
restricted ourselves only to the remarks concerning bremsstrahlung. 

Traditionally, bremsstrahlung is calculated on the basis of quasi­
classical Kramers' fot-mu1a with the Gaunt correction factor taking into 
account quantum-mechanical effects. 6 In the case of collisions with 
non-hydrogenic ions, as the radiation frequency grows, the radiation cross­
section is described by the Kramers' formula with an effective charge 
varying from the ion charge to nucleus charge. For x-ray radiation there 
are discussed the effects of screening with bound electrons. 7 At the same 
time, unfairly forgotten is the method proposed by Biberman and Norman 
taking into account the non-hydrogenic character of atomic energy spectra in 
calculating the recombination and bremsstrahlung radiation with the aid of 
so-called (-function. The latter markedly differs from one and has 
non-monotonic dependence on frequency not only for atoms, but also for 
many-charged ions. For ions with charge Z 2:. 10 "soft" photons already 
belong to the x-ray spectrum. 

The reliability of series expansions with parameter w/Z2 (w is 
the frequency of radiation in rydbergs) and extrapolations of quantum 
defecls to energy continuum which are used in Ref. 8 proves to be 
sufficiently high. The method allows using analytic formulas and calculated 
phases of elastic scattering on the ionic core to calculate the 
(-functions. 9 

The second remark on elementary processes is not associated with the 
effects of 110n-ideality either. In low temperature plasma (T = 104 K), 
as pressure goes up, the processes il1volving negative ions play an 
increasingly greater role in forming continuous spectra. 10 In the past, 
the radiation of unstable negative ions manifesting themselves in 
e1ectron--scattering as resonances was not studied properly. In Refs. 11 and 
12 it was shown that the contribution of low-energy resonance to the 
radiation continuum is described in tet-ms of the resonance bremsstrahlung 
theory. When the resonance's effect on bremsstrahlung is substantial, the 
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principal tel"m of the radiation cross-section can be presented as: 

r/21f liI.> 3 
(E -E) &E 

a 0 a'nl. 
(2.5) 

o 

where &Ea' nl.o has the f~rm of the cross-section of photoattacbment to a 
normal discrete level 

41f2d(E-E )3 [ ~. )2 & = 0 I. Rn .. o 
E,nl. 3 2E 0 1 

o mc E I. 
, 0 

+ (I. + l)~nl.o )2] 
o E,I. +1 

o 

(2.6) 

Here, the bremsstrahlung cross-section d&EaEo/dw is expressed through 
the square of matrix element 

E I. 
R a 0 
E I. a a 

Q) 

I PE I. PE I. rdr 
o a a b b 

Where PEl. is the radial wave function of the electron with the energy E and 
the orbital moment I., normalized by the condition of IPEI.PE'l.,dr = & (e-E') 
where w = (Ea - Eb)/* is the radiation frequency. To isolate the 
radiation fraction associated with resonance, and to follow the Fano method, 
PEl.o is presented as a superposition of the localized state wave function 
Pnl.o and functions PEl.o corresponding to the potential scattering 
disregarding resonance: 

(2.7) 

Therefore, the resonance in electron-atom scattering plays almost the 
same part in forming plasma radiation spectra as the weakly bound state of 
a negative ion. This statement is important for the interpretation of 
experiments in the radiation of nitrogen and air plasma. These experiments 
were conducted in a wide range of temperature and pressures. Measurements 
performed under a pressure of from one to a thousand atmospheres and a 
temperature of 9,000 to 15,000 K (cf., e.g., Refs. 13 and 14) give the 
intensity of continuous radiation of nitrogen or air plasma in the visible 
and ultraviolet spectrum which exceed considerably the theoretically 
calculated total intensity of radiation. The excess of experimentally 
measured radiation over theory was associated with the process of electron 
photoattachment to nitrogen atom. An analogous situation is observed in the 
case of oxygen plasma radiation where the photoattacbment involving the 
fOl~tion of negative ion 0- makes a marked contribution to the spectral 
radiation density. Unlike oxygen, the energy spectrum of a negative 
nitrogen ion has no bound state, but according to the theory of resonance 
bremsstrahlung from the standpoint of calculation of the total intensity of 
electron radiation in the field of the nitrogen atom it does not matter 
whp.ther the bound state of the electron (negative ion) occurs or not. 

Line Merging. Destruction of Weakly Bound Atomic States by Plasma 
Hicrofields. Spectroscopic Stability Principle (SSP) 

In a plasma of moderate density (even Debye-like) non-ideality effects, 
besides their influence through thermodynamics, manifest themselves directly 
in optical spectra. At low charge densities the effect on total cross-
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sections of photoabsorption is insignificant and it affects separate small 
spectral intervals and practically it does not exert any influencp. on an 
intpgral radiative energy flux. It is weakly bound atomic states that are 
most affected by perturbing plasma microfields. In principle, in a plasma 
of any density there are such high atomic states for which the perturbation 
effects of the surroundings is more intense than the binding with the parent 
core (ion of charge Zr>' and it is not correct to regard these states as 
one-particle. The size of the perturbed spectral region of the radiating 
atom or ion with the charge Zr - 1 in a plasma of the electron dp.nsity 
Ne which is connected with ion densities by the quasineutr:ality relation 

N 
e 

can be estimated by one of the formulas: 

AE = (Z Z )1/2 N 1/3 7.64 • 10- 7eV 
I.' p P 

(2.8) 

(2.9) 

obtained from the estimation of the potential barrier lowering in a uniform 
electdc microfield with the Holtsmark distribution function, or 

(2.10) 

corresponding to the consideration of the splitting of stark sublevels of a 
hydrogenic ion in the Hol tsmark microfield, i. e., to thp. lng 1 is- Tp. J leI.' 
effect ,IS or a similar relation obtained also on the basi.s of th~~ high 
levels merging criterion with due account of eleclr'on bl'oad~mi.ng. 

Fig. 1 
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Figure 1 shows the dependencies of n6u - principal quantum level 
llumber corresponding to Eq. (2.10 and nAE' corresponding to Eq. (2.9) for 
the atom (signed by It·ig. 1) and ions of different charge (II, .... ) 
according to Ref. 16. As charge density increases at Ni ~ Nl = 9.14 • 1016 
(Zr Zp)3/2 the values of nAu and nAE are equal and at Ni Nl the effect of 
line nonrealization17 prevaileds in a sufficiently dense plasma. The 
considered (Eq. 2.10) effect of merging the highest levels broadened by the 
interaction with the surrounding particles is a predominant one, as shown in 
l'·ig. 1, at Ni N~, and is the only considered manifestation of the effect 
of non-ideality OIl optical properties (ENOP-referred to herein below) in the 
weak non-ideality approximation (WNA). This approximation is used tradition­
ally in opacity calculations. The calculation of thet~lodynamic functions 
and plasma composition is performed in Oebye or in slightly more 
sophisticated approximations, and the Inglis-Teller shifl of photoionization 
threshold is taken into account in the photoionization cross-section. 
Bremsstrahlung cross-section, as a rule, is assumed to be invariable. The 
ar.ising problem of extending the photoionization cross sections for 
individual energy levels is solved by using the spectroscopic stability 
principle (SSP)18 for photo ionization cross-sections. 

According to the SSP the total oscil lator strength is ccmserved for the 
tt'ansition between two states under the perturbation satisfying the 
unitarity condition. In the theory of line broadening, this thesis is kllOwn 
as a conservation of the integral over the spectrum for an individual 
spectt'al line. Successful application of generalized SSP for determining 
the photoionization cross-sections on the basis of measured oscillator 
strengths of respective spectral series and the solution of the inverse 
problem19 for gas and Oebye plasma have facilitated the further application 
of WNA in opacity calculations. In the conditions of weakly nonideal plasma 
there occurs the displacement of the apparent photoionization thresllold 
towards a long-wavelength side, which is stipulated by an interparticle 
interaction in the plasma. The higher members of spectral series are 
assumed to be broadened to such an extent that they are superposed and 
merged to form a continuous spectrum. This explanation is not quite 
correct, therefore, what in in question is the transfonuation of the lines 
into a continuous spectrum rather than the met'ging of these 1 i nes. 

1"01' an approximate consideration of the photoionization threshold 
displacement, it is assumed that the influence of interparticle interaction 
on the continuous spectra is reduced only to the fact that the higher 
members of spectral series are transformed into continuum in keeping with an 
unperturbed osci llator strength density. Thus, the photo] onization cross­
section ft'om an individual !1Jth level turns out to be continued to a long 
wavelength side beyond the ideal threshold frequency u~ to a certain 
quantity of Au. The photoionization cross-section is considered to be 
invariable for frequencies greater than ug. In Ref. 19 the available 
experimental data on individual cross-sections are analyzed. It is 
necessary to compare the density of oscillator strengths and the photo­
ionization cross-section measured in the conditions of a small shifl, and 
photoionization cross-sections measured with different values of the shift 
Au (Fig. 2). 

The sum total of data enables one to conclude that the theoretical 
curve serves as the real photoionization and photoexcitation cross--sections 
of an isolated atom. Besides, the data of Fig, 2 support the idea that the 
assumption of the spectroscopic stability of high members of the spectral 
series, as these are transformed into continuum, is reasonable. 
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ArI4s,s' OI3p5p19; 1 - experimental points for 
photoexcitation cross-section; 2 - threshold values of 
photoionization cross-sections measured in Ref. 20; 3 -
calculation according to quantum defect method; 4 - limit 
of isolated atom series. 

There are many publications on so-called "optical" lowering of the 
ionization potential AEopt (this tel"m itself is not adequate). It 
was suggested that IIEopt be found by one of the two methods. First, 
on the basis of the last observed line of the series that makes this 
finding indefinitive. Second, on the basis of the comparison of 
measured continuum in the field of the spectrum determined mostly by 
the photo ionization of high excit~~d levels and electt'on-ion 
bremsstrahlung with the calculation according to the Unzold-Biberman­
NOl'll1an formula. The quotient of their division was defined as exp 
(IIE6 t/Kt). Evidently, in the second case I'.Eopt is an effective 
quantity markedly dependent on the specific featuL'es of the spectrum and 
calculation accuracy. In Debye plasma the value of exp (I'.E~pt/kT) does 
not differ from one noticeably, however, its consideration improves agree· 
ment between theory and ~~xperiment. The value I'.Eopt is found in these 
eonditions close to the estimation according to Eq. (7. .10). 

Until recently, the abovc--mentioned WNA has had no strict proof, its 
application was based on common sense and non- contt'adictions of the 
comparison of calculation and experiment. In the literature there are known 
attempts to constL'uct the "fi rst principle" theory of bremsstrahlung and 
photorecombination continuum of non-ideal plasma and to obtain corrections 
to certain formulas, or as in the minimum, the criteria of applicability of 
the approximation of the WNA type. 

The major portion of the first-principle theories deals with studying 
the bound-bound transitions, i.e., with the problem of line shift and 
broadening in a plasma. The theory of electron-ion photo-continuum of 
weakly-nonideal plasma was evolved ion Refs. 21 and 22. In Ref. 21 the 
theory of bremsslt'ahlung was constructed. In Ref. 22 the general 
quantum-mechanical expression for spectral radiation power is used for 
obtaining the expression for the intensity of recombination radiation of 
Debye plasma on the basis of the modified Kroll resolvent technique with 
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those used in WNAj at the same time, some estimations made of the values of 
the effects out, of consideration, namely, broadening and the shift of energy 
levels, alteratlon of the continuum density of slates, dynamic screening of 
the fields of particles in a plasma. At the same time, within the framework 
of approximations used in Ref. 22, one failed to analyze the effects of 
rebuilding the higher energy levels which are characteristic of non-Debye 
plasma. 

EFFECTS O~' NON-IDEALl1'Y UPON OPTICAL PROpgR1'lr:S OJ!' PLASMA 

Although a great number of experiments on the optics of plasma has been 
satisfactorily explained in WNA, however, there are several experimental 
results bearing on the optics of plasma which are not explained within the 
WNA framework. It is clear that the WNA-calculation yields an increase in 
the total photoabsorption cross-section at constant temperature as Ne 
increases owing to an additional contdbution of quasicontinuums, because of 
the merging of high members of spectral series, to the continuous spectrum. 
In Ref. 23 as Ne increases up to 1019 cm- 3 , there is observed a decrease 
in the photoabsorption cross-section in carbon-hydrogen and xenon plasma. 
In the experiments of Ref. 24, other than Inglis-Teller behavior of high 
members of spectral series was observed. It looks as though lines do not 
"disappear" from the spectrum as density' grows, in other words, the 
continuum background does not form in their place. 

~j:Jl~sis of Non-Realization of High Atomic Levell? 

A llypothesis of proposed in Ref. 17 which explains the totality of 
experimental data in a unified manner on the basis of the idea about 
"non-realization" of part of high energy levels in a plasma as a result of 
the modification of the Coulomb potential of interaction of an optical 
electron with a parenl ion to a short-range potential or as a results of the 
influence of the electric microfield of surrounding particles. The 
supposition of "non-realization" of part of high levels in a plasma was 
discussed earlier in literature in connection with the problem of cutting­
off of the atomic partition function and briefly in connection with the 
optics of a plasma. 

Two competing effects of non-ideality are dealt with in Ref. 17, 
namely, merging of the lines adjoined to the threshold resulting in an 
apparent shift of the photoionization threshold (let us denote the effective 
principal quantum number of the last observed line by tntl\/) , and the non­
realization of atomic energy leVf~ls (ilAE is the principal quantum number 
of the last realizing level) under the action of strong microfields or due 
to reconstructing the effective potential of interaction of cllarged 
particles in a plasma from the Coulombic potential to a short-range one. 

One can est imate nAE by equating the energy of the level to the 
lowering of an atomic potential barrier in a uniform electric field [see Eq. 
(2.10»). The selection ofllAv andllAE contains some uncertainty. Crossing 
of curves llAv and nAE takes place at densities between 1017 and 1018 cm-3 
(for atoms). At greater densities of charge Ni one may observe peculiari­
ties in the spectra near photoionization thresholds which are caused by the 
non-realization of atomic levels under the influence of plasma microfields. 

In case of an effective cut-off Coulombic potential the value of 
nAE is detel~ined by the limitation of the number of bound states in the 
short-range potential and is found by solving the Schredinger equation for 
an appropriate potential. The origin of short-range interaction may be 
associated with a screening action of both charged and neutral surrounding 
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particles. Generally speaking, the concrete type of an effective short­
range potential can be found by solving the many-body problem. Some 
published estimates of ~E are obtained for simplified model potentials 
- Debye:and cut-off Coulomb, but their use in the problem of ENOP is not 
strictly substantiated. 

According to Ref. 17 strongly perturbed levels belonging to the energy 
range determined from the fOl~ula (for a fixed value of microfield F): 

liE = 2e VeF (3.1) 

and from Eq. (2.10) (after Holtsmark averaging) and (2.9) (estimate 
according to the merging of levels) are assumed to be non-realizable and 
therefore not involved both in photon absorption and radiation. This 
picture features a vanishingly low density of states in the range of liE 
near the zero energy point. The two observable consequences are discussed 
in Ref. 17: "relative brightening" of dense plasma, i.e., a decrease in 
the total photoabsorption cross-section in those spectral regions where 
the energy levels belonging to liE interval must mostly contribute to 
the cross-section; and the appearance of frequency intervals of l'lE 
size free from spectral lines, i.e., "transparency windows" in the 
regions of the spectrum adjoining the photoionization thresholds from 
the long wave side. 

Relative Brightening of Dense Plasma 

One can readily estimate the relative brightening of hydrogen 
recombination continuum in such purposely simplified approach. Changing 
the upper limit of integration in so-called Unzold-Biberman-Norman 
integral fOl~ula for bound-free transitions from zero to -liE brings about 
the following estimate of a brightening degree (hv > liE): 

k /k '" (ehv/ kT _.ellE/kT)/(ehv/kT - 1) 
e 0 

(3.2) 

A more sophisticated approach within the framework of the same model 
presupposes the calculation of an absorption coefficient for a fixed value 
of the electric field F and subsequent averaging. In Ref. 17 the totality 
of experimental data on Xenon plasma radiation for frequency v '" 22000 cm-1 
with the charge density changing from 1016 up to 1019 cm- 3 were 
obtained and the behavior of the argon plasma absorption coefficient for the 
same frequency at high densities was predicted. 

F'igure 3 gives the results of experiments handling in the fot~ of 
dependence ~ versus Ni' At low Ni ' according to WNA, the calculated value 
is in good agreement with the experimental one. The curves in Fig. 3 are 
calculated with the assumption that the levels are not realized in the 
range of energies liE, where liE was detel~lined by Eq. (3.1) or by as twice 
as much value. 

The subsequent experiments 25-28 have corroborated with observations in 
Ref. 17, their results are generally in good agreement with predictions of 
relative brightening according to Ref. 17, It is noteworthy that the 
perfOt~led estimates of relative brightening are based on averaging the 
realization probabi lity of a particular atomic level in a plasma with 
microfield distribution function, and on a respective decrease in the 
contribution of this level to the total absorption coefficient, In Ref. 29 
the authors explained experimental results on relative brightening of argon 
plasma on the basis of "confined atom" approximation. The energy levels of 
AI' atom in the atomic cell were calculated by means of a self-consistent 
field metllod. The cell size was dependent on plasma density. Photoionization 
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Relationship between ~-factor and charge density in a plasma: 17 
a - AR; \I ::: 222000 em-I; b - Xe, \I - 22000--23000 em-I, ~e = ke/ko' 
where ke is an experimental value of absorption coefficient, ko 
is a calculated value with ~ = 1. 1-13 are experimental data. 

cross--sections of atomic levels were assumed to b~~ independent of plasma 
parameters. Afterwards, more consistent calculation30 was carried out of 
the total photoionization cross-section of the argon atom for experiTIlfmtal 
conditions of Ref. 25 on the basis of the modified Hartree- Fock-Slater model. 

In Refs. 27 and 31, optical properties of air plasma were investigated 
at pr~~ssut'es from 40 to 150 atm and in a temperature range from 17000 to 
20000 K with charge densities as high as 1019 cm- 3 . 

At high pressures the measured spectral absorption coefficients were 
found to be lower than those calculated in WNA within a wide spectral 
interval. The calculation performed in Ref. 31 in accordance with the 
approach in Ref. 17 with due account of a relative brightening of dense 
plasma yielded the results which coincided with the experiment. It turned 
out that in the conditions of the experiment of Refs. 27 and 31 a group of 
3d levels of oxygen and nitrogen atoms whose unperturbed ioni.7.ation energy 
of about 1.5 eV, is slt'ongly affected by plasma microfields. 

It should be noted that within the limits of microfield description of 
non- ideality effects upon optical properties of plasma bremsstrahlung is 
usually calculated on the basis of the Kramers formula with the BibeT~an­
Norman correction factor ~ff' which takes into account a non-hydrogenic 
nature of the absorption of radiation in the field of a complex ion. 
~ff-factor is assumed to be independent of density, nor is an increase 
in the number of electrons taken into account which are involved in 
bremsstrahlung at the expense of those which in an ideal-gas approximat.ion 
would belong t.o bound states in the range of energies from 0 to -bE. For 
a high frequency part of the spectrum, these assumptions look natural 
because , generally speaking, only a small portion of such radiation can be 
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p~oduced by loW-etle~gy elect~ons. Refe~ences 21, 32-35 a~e devoted to 
studying the elect~on-ion b~emsst~ahlung of non-ideal plasma. Refe~enees 

21 and 32 show that in Oebye plasma the co~~ections to ideal-gas 
bremsstt"ahlung a~e p~oportional to deg~ees of factor ao/rO and can be 
neglected. Theoretical elaboration of b~emsst~ahlung of non-Oebye plasma 
featu~e a considerable inconsistency in estimates (see e.g., Ref. 33) and 
is aimed at taking into aceount not so much non-ideality, but rathe~ non­
hydrogenic nature of the spectr'um. 

The reconstruction of a low-energy elect~on spectrum in a dense plasma, 
the violation of a pair nature of electron-ion scattering, an increase in 
the share of curvilinear sections of trajectories should inevitably change 
the low-frequency part of the b~emsst~ahlung spectrum. However, experi­
mental data on bremsstrahlung of dense plasma are not available today. It 
would be useful to see the results of molecular dynamics and Monte--Carlo 
calculations for realistic plasma models. 

In Ref. 36 on the basis of hypothesis of "non-realization" the 
estimates were carried out of the effect of relative b~ightening on one of 
the integral optical properties - Rosseland mean radiation length 1R for 
non-ideal caesium plasma. The basic contribution to lR at l' z 104 K is 
conditioned by photoionization of Cs atoms. At high pressu('es and tempera­
tures, Cs atoms are found to be strongly influenced by plasma microfi P.lds 
leading to a decrease in the absorption coefficient for photon energies of 
the order of hv z (3-5) kT and, correspondingly, to an increase in 1R. 
The estimates obtained show that density effects in the examined case bring 
about a relative brightening of caesium plasma noticeable even i.n an 
integral optical property. This conclusion qualitatively agrees with the 
results of experimental determination of radiative heat conductivity of 
dense caes i um plasma. 3 7 The ranges of va lues of lR must marked ly inc T'p-ase 
as pressure grows within above Umits. The effect of brightening on the 
coefficient of radiative heat conductivity of non- ideal plasma of alkali 
metals Li, Na, K and Cs was experi.mentally observed later in Ref. 38. 

The effect of brightening of dense plasma is defined by non-reali­
zation of initial states. By contrast, near threshold "transparency 
windows" are defined by non-realization of final states with unperturbed 
initial states and correspond to the disappearance of the high m~}mbers of 
spectral series (without merging because of broadening) with an inerease 
in plasma density. In so doing, in the value averaged along the spectrum -
spech'al density of osci llator strengths dUdE there must be observed a 
devication a deviation from law for the isolated atom dependence for the 
region lIE/kT "" c • y, where y is non- ideality (strong coupling) parameter, 
and C '" 3-4 is numeri.cal coefficient weakly dependent on y. 

In the region of LIE the conditions of applicability of spectroscopic 
stability principle (SSP) are violated. In actual fact, SSP is applicable, 
if the p~)rtu~bat ion of the final and initial state of a radiating sysh)m 
is insignificant,18 and this perturbation can be d~)scribed by unita~ity 
teansformation. In the case und~~r consideration the upper state is 
shifted to the continuum under the action of a microfield and this transition 
cannot be described by unitarity teansformation. The rlistribution of dUdE 
in the near- threshold region must differ [('om the unperturbed one. 

The above considerations bearing on the appearance of near-threshold 
"transparency windows" in dense plasma are experimentally corrolwaled. 

~~thig~ Analyzed in Ref. 36 are Yaakobi's data39 on the radiation 
of dense lithium plasma with charge density of 1.71017 - 3.1018 em- 3 
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formed during an electrical explosion of wire. The time radiation spectrum 
measured integral in time contains lines of principal series in absorption 
on an intense continuum background. As the spectral lines approach the 
photoionization threshold, they merge and disappear, and a peak of 
intensity is observed in the near-threshold, they merge and disappear, and 
a peak of intensity is observed in the near-threshold region of the spectrum 
which goes beyond the framework of measuring error. This peak may be due 
to a dramatic decrease in the optical depth caused by a near-threshold 
transparency window. 

Argo~~ Experimental results on continuous radiation of argon plasma24 
allow an interpretation on the basis of ideas about the non-realization of 
high atomic levels in a plasma. Shown by pointers in Fig. 2 is an 
unperturbed postion of thresholds of 4 s,s' and 4 p,p' states. The absolute 
values of the peaks of intensity in these regions correspond to the photo­
ionization cross-sections of these states. Adjoining spectral lines are 
not observed in the experiment. 

~~rcury. In Ref. 40 the radiation of dense mercury plasma is measured. 
Spectral attention is paid to the spectra near photorecombination thresholds 
of 6plp~ lld 6p3p~ levels. Series of spectral lines are traced with a view 
to determine the last line still discernible over continuum. In a less 
dense case (Ni = 5.1015 cm-3), the merging of spectral lines is observed in 
the near-threshold regiolls of the spectrum leading to an apparent shift of 
the photorecombination thresholds toward low=frequency side. With greater 
densities of charges (Ni : 4.1017 cm- 3) a qualitatively new effect is 
confirmed ,namely, the spectral lines disappear in the near-threshold region 
without overlapping, and the thresholds are found to be actually unshifted. 
As a result, a gap of radiation intensity develops near the photorecombi­
nation threshold compared with the WNA calculation. 

~ir. In Refs. 27 and 31 jth line spectrum of atoms and first ions of 
nitrogen and oxygen is investigated in addition to measurements of the total 
radiation continuum of air plasma. At maximum density (Ni = 1.2 • 1019 
cm- 3) the only lines observed in spectral series np-s 3p-3s and 3d-3p 
tr'ansitions. In the Balmer series of hydrogen which is presented as a 
small admixture, it is only the H (3d-2P)-line that is observed. 

Hydrogen. Hydrogen is the most attractive chemical element from the 
viewpoint of verification of theory because its atomic parameters are known 
as accurate and the near-threshold spectral regions are free from over­
lapping of the lines belonging to the spectral series different from the 
lines under consideration. There is Known a number of papers, where 
measurements are carried out near the Balmer threshold. However, because 
of experimental difficulties, the values of charge densities achieved in 
experiments do not exceed, as a rule, Ni ~ 1017 cm- 3. The authors of most 
well-blOwn papers41 ,42 of this kind assume that they are in good agreement 
with the WNA calculation. Systematic studies of the radiation of hydrogen 
plasma at Ni > 1017 cm-3 have only begun. Individual results are given in 
Refs. 43-46. In Ref. 43 there are not observed any anomalies in a relative 
distribution of spectral absorption coefficients near the Balmer series 
limit. 

Ingures 4 and 5 show the examples of experimental data from Refs. 45 
and 46, displaying an anomalous behavior of an absorption coefficient near 
the series limit. They can be regarded as experimental confirmation of 
near-threshold "transparency windows." 

It should be noted that the observation of disappearance of the high 
members of spectral series in the measured spectrum, as the plasma density 
grows, is still not enough to attest to the presence of a near-threshold 
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"tt'ansparency window." It will be recalled that in Ref. 17 in order to 
single out the subject of discussion the case was considered where a 
"transparency window" appears in the absence of line merging. A similar 
situation - a decrease in intensity and the disappearance of non-merged 
lines - was observed in mercury and air dense plasmas24 ,27,31 as well as 
in the spectt'um of helium-like ions of si licon in laser plasma produced in 
the "Janus" facility.47 The merging of lines to quasicontinuum seems to 
be more characteristic for hydrogen. This merging is accompanied by the 
suppression of this quasicontinuum. This case is obviously realized in 
Figs. 4 and 5. As distinct [['om this, a decrease in the line intensity due 

Fig., 4 

!"ig. 5 

Absorption coeff icient of hydrogen- argon plasma. Solid 
thick line - experiment, Ref. 45. Solid thin line -
calculation without Balmer series lines. Dotted line shows 
Inglis-Teller shift. 

Absorption coefficient of hydrogen-argon plasma near Balmer 
limit. Points - experiment, Ref. 46. Calculations - same 
as in Fig. 4. 
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to ionization (non--realization) of part of levels in the plasma microfield 
under the condition of applicability of the principle of spectroscopic 
stability should be compensated by a respective increase in the photo­
recombination background (continuation of the photoionization cross-section 
toward a long-wave side). In keeping with Refs. 17 and 36, such compensati on 
does not occur in dense plasma due to non-fulfillment of SSP. To calculate 
this effect in the approximation of Ref. 17 any addition to conti IIUOUS 

spectL'um is complet.ely neglected. This appL'oach, however, does not cont.ain 
the "key principle" enabling one to define more precisely this description 
of the "window." 

Qn MQdels Deseribing the F.NOP 

The published attempts of the F.NOP-estimation for dense plasma are 
based on a microfield approach, on the simulation of the Ji;NOP by means of 
simple central--symmetric potentials of the Debye-type and some modifica­
tions of the cut-off Coulomb one, on numerical calculation of simplified 
equations of a self-consistent field of HartL'ee-Fock or Hartree-Slater for 
an "average atom" in a cell whose dimensions are found by way of variation 
to obtain the minimum free energy or use is made of a different relationship 
between the cell size and plasma paramet.ers. 

It is the reaction of the atom on a uniform electric field that is 
usually considered in a microfield approach. Then, this reaction if 
averaged in view of the distL'ibution of the plasma electric microfields. 
Solved in a similar manneL' are many problems of the optics of weakly non­
ideal plasma, primarily those which are associated with line bL'oadfming. 
F'or recombination continuum such approach was used, for example, in Ref. 
48. An analysis of merits and demerits of concrete papers is not our task, 
A disadvantage common to all thf~se papers is a failure to take into ac(;ount 
the reconstl"uction of high energy levels and the adjoining continuum as wnll 
as a change in the appropriate tt'ansition probabilities which may intl"oduce 
a pronounced error int he results when this approach is made in the case of 
dense plasma, where the region of energy spectrum affected by a strong 
perturbing action of microfields is markedly expanded. 

Difff~rent model approaches making use of effect cutoff of the Coulombic 
potential tail, Le., effective short-range interaction, bring about sueh a 
reconstl"uction of the uppnr part of the energy spectt'um when the number of 
levels in the perturbed region becomes limited. As the energy size of t.his 
region increases, which in one way or another is associated with a grown in 
the density of particles - neutral or charged, t.he number of levels drops as 
low as zero, and the "gap" appears between the last realizing level and the 
continuum. A consistent calculation of transition probabilities in models 
of this kind faces difficu lti es in constructing the wave function of the 
continuum. The exception is models of the "confined atom of hydrogen" type, 
for which accurate numerical and analytical quasiclassical solutions have 
been obtained. RefeL'ence 49 shows t.hat for a wide class of centL'al­
synm1etric Coulomb potentials wit.h an effective short-range interaction the 
specteal density of oscillator strength, averaged on the energy h~vel 
splitting or resonances in the photoionization cross-section, is a smooth 
energy function. The sophistication of the model through intL'oduction of a 
collisional or microfield broadening of the spectral lines results in the 
emergence of a near-threshold window in the "observable" spectrum with a 
size close to fiE (see Eq. 2.9) when there is less than one level in 
interval AE. Models with an effectively cutoff Coulomb tail are suit.ahle 
for the description of a relative brightening, and the "window" effect 
manifests itself at densities higher than in experilnents. lt seems that 
centralsymmetric models with the cutoff Coulomb potential fail to des(~I'ibe 
an important property of slates strongly perturbed by plasma mcirofields. 
The electron that belongs to these states is in the field of two or more 
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ions. It is necessary to find more realistic models in order to describe 
the influence of llon-ideality on the optical properties of non-ideal plasma. 
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SIMULATION STUDIES OF ION DYNAMIC EFFECTS 

ON DENSE PLASMA LINE SHAPES 

INTRODUCTION 

E. L. Pollock 

Lawrence Livermore National Laboratory 
University of California 
Livermore, CA 94550 

Computer simulations have been widely used in studying dense plasma 

properties1 including the local field properties important in spectral 

line broadening calculations. 2 We will review here a more recent use 

of simulation, possibly less familiar to this audience, where the time 

dependent ionic microfield generated by computer simulation of a plasma 

is used directly as a time dependent external potential for the 

evolution of the electronic structure of an ion. This pet1Uits 

calculation of the dipole correlation function and thus line shapes with 

the inclusion of ion dynamic effects. 

Some of the first line shape results calculated this way, by Stanun 
3 and co-workers, were questioned on: the usual concerns of numerical 

and statistical accuracy since this depends on how long an ion 

microfield time series is used for computing the dipole correlation 

function; the importance of omitted effects such as fine structure 

splitting, natural lifetimes, and Doppler broadening; the significance 

of the results to density diagnostics which depend on the line wings 

where dynamic effects are least important. 4 Some of these questions 

have been settled. Subsequent calculations have established the 

statistical accuracy of the original work. 5 The method has been 

extended to include effects such as natural lifetimes and fine structure 

splitting which dominates some lines. 6 Questions on the importance of 

ion dynamics to specific line widths or radiation redistribution 

problems are still being decided. The correct inclusion of ion dynamic 
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effects is, nonetheless, crucial in many instances and the method 

discussed here, although more time consuming than the usual line shape 

calculation, is the best available way of doing this. Results obtained 

this way are already being used to benchmark quicker, more analytic 

methods. 7 

We begin by repeating the formulae used in line shape calculations 

and from these give a discussion of when ion d~lamic effects should be 

important. As an illustration, some now classic experimental results 

(although not for a dense plasma) are presented. We then use simulation 

results as a further illustration. Although done for realistic plasma 

conditions these are intended for demonstration rather than experimental 

comparison since in order to isolate ion dynamic effects complicating, 

but theoretically straightforward effects such as fine structure 

splitting and Doppler broadening are not included. Finally we discuss 

Stark-Doppler coupling. 

LINE SHAPE FORMALISM 

The starting point in most line shape studies is the expression for 

the. power spectrum of dipolar radiation 

P{t.ol) 

where the line shape function 

S{t.ol) 
o 

In the following ~ refers to the dipole operator for a single 

radiator as coherence effects are not considered. The <> denotes an 

ensemble average over plasma conditions and the Doppler term, 
ikor(t). . e , w1ll be cons1dered only in the last section when we 

discuss its correlation with the electronic dipole terms. 

(1) 

(2) 

Although more general cases can be treated with somewhat more 

effort, for radiative transitions to the ground state the expression for 

the dipole correlation function may be simplified to 

... 
C(t) _ <d(t) 

... 
d(O» ~ ~ 

u u' 

where u and u' denote upper states for the particular line and 1 the 

ground state and the dUl etc. are dipole matrix elements. The time 
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development operator for the emitter U(t) satisfies 

i au(t) = [d • (E. (t) + E 1 (t»] U(t) 
at 10n e ec 

(4) 

assuming only dipolar coupling between the emitter electronic states and 

the total microfield of the plasma due to both electrons and other 

ions. Presently available time dependent plasma simulations give no 

information about the electronic component of the microfield. The main 

approximation in these calculations is to treat this electronic 

microfield component separately using the impact approximation which 

leads to 

i au 
at 

~ 
(d 

~ 

E. (t) + $) U(t). 
10n 

For hydrogenic emitters evaluations of the electron collision operator 

$ are available. S 

(5) 

It remains to average the time development operator U(t) by solving 

the above equation for a representative ensemble of ion microfields. 

This is then used in equations 2 and 3 to give the line shapes. For the 

results we show below these were produced by standard molecular dynamics 

computations using systems of a hundred or so particles and periodic 

boundary conditions. other methods have been used for weakly coupled 

plasmas where the use of periodic boundary conditions would require very 

large systems. 

QUALITATIVE DISCUSSION OF DYNAMIC EFFECTS 

Perhaps the fullest discussion of the effects of fluctuations on 

line shapes appears in the NMR literature. 9 l{ere we only want to 

indicate the time scales involved by considering a simplified model for 

equation 5 

i .Q.QiU 
at 

~ ~ 

II • F(t) U(t) 

where II is a scalar rather than an operator. The averaged solution to 

this equation 

<U(t» 
I t ~ ~ ... F(s) ds 

<e 0 > 

(6) 

(7) 

~ 

simplifies when F(s) is almost constant during the times t where U(t) is 

non-negligible. The averaging then reduces to an average over initial 

field values. In this quasi-static limit 

529 



.-+ -+ 
I p(F)e-111 • Ft <U(t»Q.s. = dF 

A rough upper limit for the time scale over which the field is 

constant is the field autocorrelation time. If the quasi--static 

<U(t» is negligible for times larger than this then dynamic effects 

are not important. Applying this to a dense plasma we may use the 

inverse of the ion plasma frequency as an estimate for the field 

autocorrelation time. Using a Gaussian as an approximation to the 

distribution of the field along ~ equation 8 gives 

<U(t 
-1 w.» '" e 10n Q.s. 

If the exponent in this equation is large then <U(t» is small for 

(8) 

(9) 

times such that the ion microfield changes significantly and the line in 

question is not strongly affected by ion dynamics. 

The dipole moment 11 for a hydrogenic emitter increases as the 

square of the upper level principal quantum number (n) and decreases 
2 with the nuclear charge Z. <F > may be estimated as 

Z2 Ir~ where r. is the ion sphere radius for the 
perturber 10n 10n 

perturbing plasma. Combining these with the expression for the plasma 

frequency shows that this exponent (R) scales as 

R~ 
113 

Pion' (10) 

Ion dynamic effects are thus reduced for the higher members of the Lyman 

series, because the dipole matrix elements increase. They also drop 

with ion density since the increase in the field strength magnitude more 

than compensates for the increasing plasma frequency. Although there is 

no explicit temperature dependence in this expression R will decrease 

with temperature since the ionization state Z increases. Not 

surprisingly, ion d~lamic effects are predicted to be largest for the 

Lyman-a or ~ lines of highly ionized emitters in low mass perturbers. 

The above formula provides only a qualitative estimate. Before 

turnins to simulation results we show an early experimental indication 

of the importance of ion dynamic effects. This experiment is not 

strictly relevant to the above discussion, since the time dependence of 

the field is produced by the motion of the emitter rather than by the 
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motion of the perturbers as we assumed above for a dense plasma, but the 

results are still instructive. 

EXPERIMENTAL OBSERVATION OF ION DYNAMIC EFFECTS 

One of the earliest observations of ion dynamic effects were for 

the Lyman spectra of hydrogen or deuterium impurities in an arc plasma 
10 11 of singly ionized argon . ' The measured line spectra (crosses in 

fig. 1) differed considerably from theoretical predictions which assumed 

static ions (solid line in fig. 1). For example the Lyman-~ width was 

over twice theoretical estimates and the central dip in Lyn\an-~ markedly 

lSO 

200 I I I 

I 103 . 

f\ 
" ", 100 

100 

so 

Lo L6 Ll 

0 0 I ~ j 0 
-0.02 0 0.02 -0.1 0 0.1 -0.2 0 0.2 

nm 

200 

100 

500 

0.2nm 
oL~==~_-.l 

Fig. 1. The top graph shows the experimental (xxx) 
and theoretically predicted (- --), for static 
ions, L~, L~, Ly lines shapes for hydrogen 
in singly ionized Ar at T = 15,500 oK and 
ne = 2 x 1017 cm-3 . The lower graph 
shows the decreased emitter motion effect 
when deuterium (.) is substituted for 
hydrogen (-). This figure is reproduced 
from references 10 and 11. 
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reduced. It was convincingly shown that these differences were due to 

ion motion when deuterium was substituted for hydrogen. As mentioned 

these effects are due to the fluctuating field caused by emitter motion 

and relate more to the Stark-Doppler coupling discussed in the last 

section than to the effects of perturber motion discussed above. These 

effects could have been anticipated. The measured half-width for the 

1· h . f' l' 2 1012 -1 d' t t' Lyman-c ~ne s own ~n ~g. ~s ~ x sec correspon ~ng 0 ~mes 

for the dipole correlation function of ~ .5 x 10-12 sec-1 From the 

plasma conditions of a temperature of 15,000 OK and an ion density of 
17 -3 

9.3 x 10 cm the hydrogen emitter at mean thermal velocity traverses 

an ion sphere radius in ~ 10-12 sec so the ion field can not be treated 

as constant for the relevant dipole correlation times. Recent 

calculations,12 some of them using computer simulation, now agree well 

with the spectra in fig. 1. 

COMPARISON OF STATIC AND DYNAMIC LYMAN SPECTRA 

The central object to be obtained from simulation for use in 

spectral studies is the time history of the local field (other things 

such as field gradients could also be obtained for studying quadrupolar 

effects) and the emitter trajectory, for use in Doppler broadening. 

Figure 2 shows a short section of the microfield time history for a 

moderately coupled plasma of hydrogenic argon ions. The three field 

components and the magnitude are displayed as functions of w. t 
~on 

along with the distributions and field correlation obtained from much 

longer time histories. A noticeable feature here is the strong 

collision near the start of the time series, w. t ~ .6. An 
~on 

ensemble of such time histories is then used in equation 5 to compute 

the averaged time evolution matrix. 

In terms of the dipole correlation function the main effect of ion 

microfield fluctuations is to reduce correlations for times beyond an 

inverse ion plasma frequency. As a simple example, for a Lyman-c line 

the correlation, in the quasi-static approximation, at a given field 

strength (also assuming the electron broadening is the same for all 

components) is 

C(F,t) 

where D (200 I d I 210). If this is averaged with an assumed c z 
Gaussian distribution for the field component distribution it becomes 
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Fig. 2. Typical ion microfield time series from a 
simulated Ar+17 plasma at T = 107 oK 
and ne = 1.5 x 1023m- 3 . All field 
values are in units of Z/r~on' The 
distributions for a field component, 
P(F'x)' and the field magnitude, P(F), 
are shown to the side and the field 
autocorrelation function below. The time 
scales are wit. 

4't 
L-. {2 + [1 

3 

where w :: D /<F2)/3. If the elect['on broadening is 
s Ot 

weak the effect of ion dynamics on the unshifted component can be 

dramatic as shown in fig. 3 where this simplified quasi- static result is 

compared to a typical case including ion dynamics. The effect for 

Lyman-~, fig. 3b, is similar but smaller. 
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Turning now to some numerical results, fig. 4 shows the correlation 

functions and line shapes for a plasma of hydrogenic argon in hydrogen 

ion perturbers and for pure hydrogenic argon at the same temperatures 

(107 OK) and electronic density (1.5 x 1023 cm3). The difference 

between the static approximation (dashed line) and the results including 

dynamics (solid line) is similar to the qualitative comparison in fig. 

3. The difference is larger for the hydrogen ion perturbers since the 

ion microfield due to these light mass perturber fluctuates more 

rapidly. The same trend is shown in fig. 5 for the Lyman-~ line 

shapes. We caution again that the omitted fine structure splitting is 

important for these lines. (This is included in ref. 6.) 

The effect of temperature, perturber mass, electron density and 

other variations on dynamic effects has also been studied. s 

8 r-------,-------~--------._------,_------_. 

5 

4 

3 

2 

,,, Ar+ll' _ 99% H+ 

T ' 101 

P, ' 1.6 X 1023 

5 .-------,-------~--------r_------_,------_. 

4 ....... - ..... 

3 

/ "-
I ..... :... 

6r-------,--------,--------.-------,_------_. 

4 

Iv..> ( •••• ) 

Fig. 5. Comparison of static (- - -) and dynamic 
(_) L~ line sha~es at T = 107 OK 
and ne = 1.5 x 10 3 cm-3 . 
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STARK DOPPLER COUPLING 

-+ -+ 
So far we have only considered the dipole correlation <d(t) ° d(O» 

rather than <eikor(t)d(t) ° d(O» which includes Doppler effect. 

It is usually assumed that the Doppler term is independent of the dipole 

correlation and the final line shape comes from convoluting the two 

together. For this the free particle limit of 

{ _k2t 2/2I3m 
e 

_3k2 Dt 
e 

free particle limit 

diffusion limit 

is used. The diffusion limit is valid only for times two - 10 
~on 

(11) 

and is probably never relevant for dense plasma spectral line broadening. 

F'igure 6 shows these two limits for an Al +12 plasma at T 2.7 x 
6 21 -3 

10 oK and electron density of 4 x 20 cm so the coupling 

parameter r - 1. The time limit beyond,which the Lyman-~ dipole 

correlation function is negligible, t , is seen to be in the free 
~ 

particle (dashed line) regime. 

This does not mean that Stark-Doppler coupling is negligible. The 

experiments discussed in section 4 being a dramatic counterexample! For 

times sufficiently small that the initial velocity is unchanged we can 

write 

ikov t -+ -+ 
leo <d(t) ° d(O) v > P(v )dv 

o 0 0 
(12) 

where a dipole correlation function conditional on the (presumed 

constant) initial velocity of the emitter has been introduced which is 

integrated over the (Maxwellian) distribution of initial velocities. 

Intuitively, faster moving emitters will see more rapidly fluctuating 

fields and thus have a more rapidly decaying dipole correlation. Figure 

7 shows this effect for the same plasma as in fig. 6. For this case the 

more rapidly moving ions (dashed line) do show a faster decay of the 

dipole correlation than the slower moving ones (solid line) but the 

~effect is slight since most of the field variation is due to the motion 

of the perturbing ions as can be seen by comparing with the static ion 

case (dot dashed line). For the arc plasma case discussed in section 4 

most of the field variation is due to the motion of the light emitter in 

the heavy perturbers and a plot similar to fig. 7 would show much larger 

variation presumably. 
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We hope this review has given some indication of the types of 

plasma spectra questions which can be addressed with this method. Most 

of the specific results used as illustrations here are from research 

done in collaboration with Roland stamm and Carlos Iglesias. 
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ELECTRIC MICROFIELD DISTRIBUTIONS IN STRONGLY COUPLED PLASMAS FROM 

INTEGRAL EQUATION SOLUTIONS 

F. Lado 

Department of Physics 
North Carolina State University 
Raleigh, NC 27695-8202, U.S.A. 

Ions radiating from a dense plasma reveal important information about 
plasma conditions through the detailed structure of their spectral lineshapes 
(Griem, 1974). This coupling of lineshape and plasma conditions is brought 
about by the local electric microfield distribution at the radiating ion due 
to all other charges in the plasma, a quantity first studied by Holtsmark 
(1919) by neglecting all correlations between plasma particles. More recent­
ly, Iglesias (1983) has shown that the calculation of the electric micro field 
distribution in a plasma is equivalent to the determination of the structure 
of a fictitious "fluid" whose intermolecular potential has both real and ima­
ginary parts. This new formulation of the problem is the point of departure 
for the work presented below, which is based on the application of a 
straightforward generalization of the standard methods of liquid state theory 
coupled with a novel representation of the generalized bridge function. 

The model to be studied is the one-component-plasma (OCP), conSisting of 
N+l ions, labeled 0 through N. each of charge e and all contained in a volume 
V at temperature T; a uniform background of opposite charge serves to neu­
tralize the collection. The goal is to determine the distribution of electric 
field magnitudes at ion 0 due to the other N charges and the background. For 
a particular configuration, the field at rO is 

N 
L ~ r· O - ep f d~ 

j =l r J 
jO 

(1) 

where p = N/V and the integral term is the backgro~nd contribution. The 
probability density for finding the value t for E(rN+l ) is then 

W(e) = (2n2e)-1 foo dK KT(K)sin(Ke), (2) 
o 

where 

'* * -+N+l T(K) = <exp[iK.t;(r )]> (3) 

is the characteristic function corresponding to e. The angular brackets 
denote a canonical ensemble average with the OCP potential. 

Iglesias (1983) has shown Eq. (3) to be formally equivalent to 
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K + ++ ,.". 2 
~n T(K) = iep f dA f dr [g(r,A)-l]K·r/r , 

o (4) 
+ + 

where g(rOl,A) is the generalized pair distribution function (PDF) for a 
fluid with "potential energy" given by 

U(;N+1,t) = UOCp (;N+1) - it.E(;N+1)/S. (5) 

Here, S = (kBT)-l and ; ~nd K are unit vectors in the direction of ; and K 
respectively, with X = AK. This reformulation of the problem has already been 
used to motivate an empirical but remarkably successful approximation dubbed 
APEX (Iglesias, Lebowitz, and MacGowan, 1983). 

As noted by Iglesias (1983), the generalized PDF can be studied with the 
appropiate generalizations of the standard equations of liquid state theory: 
a generalized Ornstein-Zernike (OZ) equation 

(6) 

and a generalized closure relation 

++ ++ ++ ±" 2 ++ 
C(r,K) = h(r,K) - ~n{g(r,K)exp[S~(r)-ieK·r/r ]} + B(r,K). (7) 

++ 
In these equations, h = g-l, ~(r) is the Coulomb potential, and B(r,K) is 
the generalized bridge function for the "fluid", for which an approximation 
must be supplied. This is discussed below. 

It is first necessary to simp1if1y Equations (6) and (7) before they can 
be numerically manip~l~ted. In extracting the angular dependence of complex 
functions such as g(r,K), we first note from its d~finition that it satisfies 

+ + + + 
g*(r,K) = g(r,-K), (8) 

so that expansion in Legendre polynomials P~(x) automatically produces a 
separation of real and imaginary parts, 

+ + '\ '\ g(r,K) = g(r,K,cose) = L g~(r,K)P~(cose) + i L g~(r,K)P~(cose) 
~ even ~ odd 

00 

I icrg~(r,K)P~(cose), 
~=O 

(9) 

where for brevity in Eq. (9) and below we are using cr = 0 for ~ even and 
cr = 1 for ~ odd. Other generalized functions of rand K have similar expan­
sions. 

As for simple fluids, it is convenient to deconvo1ute Eq. (6) uSi¥g+ 
Fourier transforms. The transform of a generalized function such as C(r,K), 

++ 
- + + f + + + ikor C(k,K) = dr C(r,K)e , (10) 

can be+readi1y performed+b~ orienting the z axis of the coordinate frame 
along K, representing C(r,K) as in Eq. (9), and using the Rayleigh expansion 
(Gray and Gubbins, 1984) 

iko; ~ 
e = 4~ I i j~(kr)Y~m(e'~)Y~m(e~,~~), 

~,m 

(11) 

where the primed and unprimed angles specify the orientations of k and ; 
respectively. Inserting (11) into (10), we then find 

540 



00 

C(k,K) = I C~(k,K)p~(cose'), 
~=O 

with the transform coefficients given by 

(12) 

(l3) 

where ji(x) is the spherical Bessel function of order ~. Note that the C~ 
are real for all ~. 

These ingredients suffice to define an iterative al~o~ithm f~r~the ~o~u­
tion of the coupled equations (6) and (7) in terms of S(r,K) = h(r,K)-C(r,K) 
as the unknown: 

i. Using the current (finite) set of coefficients S~(r,K), form 

-+ ~ \ cr 
S(r,K) = L i S~(r,K)P~(cose) 

~ 

(14) 

~~ 

and similarly for B(r,K). (See below.) Then numerically 
Legendre inversion integral of the closure equation (7) 

evaluate the 
for 

-+ " 
cr 1 II K' r -+ ~ -+ -+ i h~(r,K) = (~+2) -1 d(cose){exp[~S¢(r)+ie-:2+S(r,K)+B(r,K)]-l}P~(cose) 

r (15) 
to get the DCF coefficients 

C~(r,K) = h~(r,K) - S~(r,K). (16) 

ii. Fourier transform these using Eq. (13) to yield the transform coeffi­
cients C~(k,K). 

iii. Use the transform of the OZ equation to get 

(17) 

iv. Invert these to find the new set of coefficients 

2 ~ -1 Joo 2~ 
S~(r,K) = (27T i) 0 dk k S~(k,K)j~(kr). (18) 

This completes an iteration. Here a test is made for self consistency of the 
input and output S~ and the cycle is repeated until convergence is reached, 
whereupon Eq. (4) for T(K) is evaluated as 

4 JK Joo ~n T(K) = - ~pe 0 dA 0 dr hI (r,A), (19) 

-+-+ 
the orthogonality of the Legendre polynomials having reduced h(r,A) in Eq. 
(4) to just the ~ = 1 coefficient. 

Finally, we turn to the question of representing the generalized bridge 
function B(t,K), about which essentially nothing is known. Trial calculations 
show that its omission, as in the Hypernetted-Chain equation, or approxima­
tion with no K dependence, leads to mediocre results. Guided by the exact 
solution of the Mean Spherical Model (MSM) for this problem (Lado, 1986), we 

-+-+ -+~ -+-+ 
have adopted for B(r,K) the MSM analytic form of g(r,K) and C(r,K) and have 
thus used in this calculation the two-term expansion 

(20) 
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where the prime denotes differentiation and the OCP bridge function is itself 
approximated by that of hard spheres (Rosenfeld and Ashcroft, 1979; Lado, 
Foiles, and Ashcroft, 1983). 

Correlation functions of imaginary fluids having some novelty interest, 
it seems worthwhile to comment briefly on their behavior before presenting 
the final results for the microfie1d distributions, though space here ~l!ows 
display of only one key feature. The leading real coefficient gO of g(r,K) 
is similar to the PDF of simple fluids, with some additional oscillatory 
structure between the core region and the usual first peak. Higher coeffi­
cients are all oscillatory in the same range, going asymptotically to zero 
as go goes to one. Imaginary terms show the same latter behavior. Both the 
magnitudes and frequencies of these oscillations increase rapidly with K, so 
that it becomes apparent that a sum of any practical number of terms would 
poorly reproduce the full g(t,K). Note however that such a sum is not needed 
in the solution algorithm. 

++ 
What is summed is the function S(r,K) and here the story is quite dif-

ferent. We-Show in Fig. 1 the first three coefficients of both the real and 
imaginary parts of S(r,K) for r = Se2/a = 10 and KEO = 10, where EO = e/a2 
and a is the usual ion sphere radius. It is clear from these figures that 
both So and Sl are overwhelmingly the dominant terms of their respective 
sets; the expansion of Eq. (14) is very rapidly convergent. Further, halving 
K does not change this qualitative picture: So decreases modestly only for 
small r while, significantly, Sl roughly diminishes by half its magnitude. 
If we further note that Sl has the form of+t~e slope of SO, we find in these 
features solid internal support for the B(r,K) ansatz of Eq. (20). 

The ultimate test of Eq. (20), which is the sole approximation in this 
calculation, must lie however in the final computed forms of the microfie1d 
distributions. These are shown for r = 10 and 100 in Fig. 2, along with the 
corresponding APEX results (Iglesias et a1., 1983) and normative computer 

15 .---.---.---,---, 

10 

5 

o~====~----~ 

-5 L---L---~--~--~ 

o 

++ 
Figure 10 Coefficients of the real and imaginary parts of S(r,K) for 

r = 10 and KEO = 10 0 
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Figure 2. Electric microfield distributions peE) 4TIE 2W(E) at an ion for 
r = 10 and 100 obtained from the present work (I.E.), APEX, and 
computer simulation (stars). 

simulation data (DeWitt, unpublished). It seems clear from these figures 
that the integral equation method initiated by Iglesias (1983), coupled with 
a realistic form for the generalized bridge function, is a fruitful approach 
to the calculation of the electric microfield distribution in a plasma. 

This work was supported by the National Science Foundation under Grant 
No. CHE-84-02l44. 
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EFFECTS OF DIELECTRONIC SATELLITE BROADENING ON THE EMISSION SPECTRA 

FROM HOT PLASMAS 

Abraham Goldberg and Balazs F. Rozsnyai 

Lawrence Livermore National Laboratory 
University of California 
P. O. Box 808 
Livermore, California 94550 

OUTLINE OF THEORY 

We recently presentedl a model for the computation of spectral lines 
in hot plasmas based on the intermediate coupling scheme. In order to 
obtain meaningful photoabsorption cross-sections from which emission 
spectra can be calculated, the spectral lines must be endowed with 
realistic line-shape functions. In our present model we include the 
Doppler, electron impact and quasi-static ion-Stark broadening mechanisms 
in the computation of the line profiles. Assuming statistical 
ind~pendence for the above broadening processes, the resulting profiles 
are 'computed by convolution of the individual line-shape functions. In 
addition, we investigate the modification of the spectral profiles by the 
presence or absence of shifts caused by spectator electrons occupying high 
Rydberg levels. When a spectator electron is close to the radiating 
electron, the dielectronic satellite line is well separated from the 
principal line. On the other hand, a spectator electron in a high n level 
causes only a minor shift, and a distribution of spectator electrons over 
the high n levels causes an additional broadening of the lines that we 
call "dielectronic satellite broadening" (DSB). If the plasma is in local 
thermodynamic equilibrium (LTE) , we assume that the average population 
Pi of a single- electron level ci is given by the Fermi statistics 

(1) 

where wi' ~ and kT stand for the statistical weight of the level ci' 
the Fermi level and the temperature of the plasma, respectively. Simple 
statistical argument shows that an absorption line associated with a 
one-electron transition cl-ck will be broadened due to the 
statistical fluctuations in the occupancies of the spectator electrons by 

2 
!J. lk = ~j (2) 
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where VI· and Vkj stand for the interaction energy between a 
spectatof electron in level j and the active electron in the initial and 
final states designated by 1 and k, respectively. In Eqn. 2 ~ stands 
for the second moment of the level shifts due to the spectator electrons, 
and presently we approximate the distribution of shifts with a Gaussian 
profile. The summation in Eqn. (2) goes over to those sparsely populated 
states which are not included explicitly in the many-electron configura­
tions contributing to the spectral lines. In the present case the latter 
include all the Rydberg levels with average occupancy of .1 electron or 
less. 

RESULTS OF CALCULATIONS 

The experimental spectra and theoretical computations are summarized 
in Fig. 1. Fig. l.a shows the measured ~mission spectrum of a laser 
produced bromine plasma of Bailey et al. The free-electron density and 
temperature were estimated as 5xl02l cm- 3 and 480 eV, respectively, 
and the plasma was mainly neon- and fluorine-like and optically thin. 
Figs. lb and lc show our calculated emission spectra without and with the 
effect of dielectronic satellite broadening, respectively. The emission 
spectrum was obtained from a simple solution of the radiative transfer 
equation 

I(v) =B(v){l-exp[-a(v)pL]l (3) 

where I(v) is the intensity of the emerging radiation, B(v) is the 
Planck function, a(v) is the frequency-dependent photoabsorption 
cross section, p is the matter density and L is the average distance 
inside of the plasma material through which the photons must pass before 
emerging and reaching the detector. The photoabsorption cross section 
from which Fig. lb was obtained using Eqn.(3) is shown in Fig. ld. We 
should mention that in order to mimic non-LTE conditions with our 
essentially LTE "average atom" (AA) model, as described in Ref. 1 and in 
references given there, we reduced our LTE temperature from 480 eV to 270 
eV so as to obtain the neon- and fluorine-like configurations with the 
highest probabilities. The matter density corresponding to the 
experimental conditions was 2.6xlO- 2 glcc and the plasma thickness L was 
estimated as 2.5xlO- 3 cm. The computation of the photoabsorption cross 
section was done by considering one-electron dipole excitations from a 
number of "parent", absorbing states with definite J values and parity, 
into a set of permissible J' "daughter" states of opposite parity. The 
list of parent configurations and their probabilities together with the 
number of parent J states is given in Table I. From the 54 parent states 
we computed explicitly all the possible 2-3, 2-4 and 2-5 transitions, 
where the numbers stand for the principal quantum numbers, and obtained 
10632 spectral lines, which were then supplied with the line-shape 
functions obtained from Doppler, Lorentz and Stark broadenings. The 
inclusion of the dielectronic satellite broadening entailed adding the 
variance square given by Eqn. (2) to the square of the Doppler width. The 
remaining lines together with the bound-free (photo ionization) and 
free-free (inverse bremsstrahlung) were computed as described in Ref. 1 
and in references given there. 
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Experimental measurement of emission intensity from a laser 
produced bromine plasma (a), theoretical prediction for the 
emission spectrum without the effect of dielectronic 
satellite broadening (b), with the inclusion of the effect 
dielectronic satellite broadening (c), and the frequency 
photoabsorption cross section from which Fig. lb was 
produced (d). 
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Table I. Parent configurations, number of J states and probabi~ities 
for bromine plasma at kT=270 eV and at p=2.6[-2] g/cm . 
The numbers in square brackets are exponents of 10. 

Configuration No. of J States ~j P(J,a:) 

[Na] 1 8.504[-3] 

[He]2s22p53sl 4 9.011[ -3] 

[Ne] 1 3.095[-1] 

[He]2s l 2p6 1 6.086[ -2] 

[He]2s 22p43sl 8 3.951[-3] 

[F] 2 3.269[-1] 

[He]2s l 2p5 4 6.427[-2] 

I 

[0] 5 1.438 [-1] 

[He]2s l 2p4 8 2.828[-2] 

[N] 5 3.375[-2] 

[He]2s l 2p3 10 6.635[-3] 

[C] 5 4.455[-3] 

CONCLUSION 

The point of this report is shown in the results of two calculations, 
identical apart from the omission or inclusion of the dielectronic 
satellite broadening, illustrated in Figs. lb and lc. Since under LTE 
conditions the upper Rydberg states are populated according to the Fermi 
or Boltzmann statistics, the effect of dielectronic satellite broadening 
must be present. As is evident from the figures, the omission of the 
dielectronic satellite broadeneing mimics the experimental conditions, 
Fig. la, much better, as is expected since the experimental plasma 
conditions were likely to be far from LTE. We wish to point out that the 
detectibility of the dielectronic satellite broadening is an additional 
way to obtain information about plasma conditions. 
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1. INTRODUCTION 

The low frequency electric microfield distribution, at a test 
particle (radiator) immersed in a plasma, has been extensively studied in 
view of its application to the theory of spectral line, due to 
ion-radiator collisions, in plasma spectroscopy1. 

Such a distribution can be calculated on the basis of an adiabatic 
approximation : the total field, acting on the radiator, is considered to 
be the sum of contributions due to the ions statically screened by the 
electrons. This amounts to reducing the original multicomponent 
ion-electron system to a purely ionic system characterized by effective 
interionic potentials. 

For high temperatures and sufficiently low electron densities, this 
reduction is implicitly carried out by replacing the bare Coulomb 
potential between ions by the screened Debye Ruckel (DR) potentia12 : 

(1 ) 

where Za is the valen?e of ionic species a, ~ = k-D = (~npee2/kBT)-1/2 
is the electron screenIng length and Pe the electron densIty. 

t~Unite aSSOClee au C.N.R.S. 
Association Euratom-Etat Be1ge 
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At lower temperatures and higher densities, electron correlations 
and degeneracy effects come into play. These have recently been 
explicitly included in a calculation of electric microfield distribution 
of partially degenerate plasmas wi thin a linear screening 
approximation 3 , ... whereby the Fourier transform of the effective ion-ion 
potentials is taken of the form 

4n:Za Zpe 2 

k2 e:e (k) 
(2 ) 

where e:e(k) is the static dielectric functjon of the interacting electron 
gas. 

The procedure described in this work is not limited to the linear 
screening approximation embodied in Eq.(2) and we show bow the reduction 
from an ion-electron plasma to an effective ion plasma can be carried out 
systematically for strongly coupled but weakly degenerate plasmas. The 
resulting effective ion-ion potentials are then compared to the DH 
form (1) and used to calculate the second moment of the microfield 
distribution function which is a basic ingredient in any calculation of 
the latter quantitys. Other effective proton-proton potentials recently 
published in the literature 6 also indicate strong deviations from Debye 
like behaviour. 

In section 2 a semi classical model for a multicomponent plasma is 
described. The reduction procedure is presented in section 3 with the 
closure approximations to extract the effective ion-ion potential. We 
assume, in section 4, the exponential approximation suggested by 
Iglesiass , and we apply the simple APEX procedures ,2 to work out the 
microfield distribution and discuss the results. 

2. A SEMI CLASSICAL MODEL 

Let us consider a fully ionized multicomponent plasma, confined in a 
volume a, consisting of point like ions and electrons having masses ma , 
charges Zae and number densities Pu = Na/Q respectively ; e denotes the 
elementary charge. The system is globally neutral and assumed to be in 
thermal equilibrium at. the temperature T. 

,A thermodynamic state of the plasma may be characterized by the two 
dimensionless quantities the coupling parameter r = e2/kBTa e , where 
ae = (3/4npe)1/3 is the electron sphere radius, and the density parameter 
rs = ae/aO' aO = K2/(mee2) being the Bohr radius. 

A strongly coupled state is characterized by r ,( 1. 

In order to ensure full 
ourselves to temperatures of the 
temperature Tj ; we also assume 
to make the electron de Broglie 
than ae • 

ionization of the plasma, we restrict 
order of (or higher than) the ionization 
the temperature sufficiently high enough 
wave-length Ae = ~/(2n mekBT) 1/2 shorter 

Whpn the temperat.ure is lowered and becomes of tbe order of the 
electron Fermi temperature T symmetry effects, due to the Pauli 
exclusion principle, can be incfuded in the (effective) electron-electron 
interaction. 
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As has already been suggested7 , such a weakly degenerate plasma may 
be described by classical statistical mechanics provided that electrons 
and ions interact via the following effective pair potentials deduced 
from the two body Slater sum8 : 

v(d) (r) 
aj3 + is is vis) (r) 

ae f.\e ee 

(r/>" )2 
v(s)(r) = k T ln2 exp(- ee) 

ee B nln2 

(3a) 

(3b) 

(3c) 

where >..2B is the sum of the squares of the partial de Broglie thermal 
wave-lengths. The last term is an average over the spin states. The range 
of validity of this model is sketched in Fig. 1. 

For the special case of an impurity imbedded in a hydrogen plasma 
which shall be considered in the following, we reserve the indices 0 for 
the impurity of charge Zoe (Zo > OJ, 1 for the protons and 2 for the 
electrons ; we have then 21 = - 22 = 1 which implies Pi = P2' 

r 

2. 

Fig. 1. Validity domain of the model (shaded area), delimited by the 
two curves: r = nrs and r = 2/rswhich correspond to 
weak degeneracy and total ionization conditions respectively. 
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3. EFFECTIVE INTERIONTe PAIR POTENTIALS 

3.1. The reduction procedure 

For the take of clarity, we first restrict our 
two-component case where the radiator is of the same species 
the plasma ions. The generalization to radiating impurities 
charge is straightforward and shall be considered later. 

study to the 
(Zo = ZI) as 
of different 

The set of potentials (3) can be used in conjunction with the 
methods of classical statistical mechanics to compute the three pair 
distribution functions gaf\(r). The associated correlation functions 
hap(r) = gu6(r)-1 and direct correlation functions caf\(r) are related via 
the set of three Ornstein-Zernike relations (02) which read in Fourier 
space9 

(4 ) 

The electron component can be formally eliminated by expressing the 
ion-ion correlation function hll in terms of an effective direct 
correlation function via the 02 relation for an underlying one-component 
ion plasma, characterized by identical static ion-ion correlations : 

( 5 ) 

A similar procedure has been used by Adelman10 to eliminate the solvent 
in a microscopic description of electrolyte solutions. Comparison between 
Eqs. (4) and (5) yields the following expression for ~eff(k) : 

A 2 
P 2 [C I2 (k) 1 

[1-P2 ~22(k)1 
(6 ) 

Now, in a one-component description, a knowledge of h or ceff uniquely 
determines an effective interionic pair potential11 • 

Let us now consider the hydrogen plasma with an impurity as an 
infinite dilution limit of the three-component fluid made up of Po 
impurities, PI protons and P2 electrons per unit volume. 

As in the two-component case, one can write a set of 02 relations 
which can be summarized by the following matrix relation : 

( 7 ) 

Here I and P denote respectively the unit matrix and numerical density 
matrix= the eiements of which are P = P o~. When we eliminate the =af.! a a p 
electron component, we are left with a two by two effective direct 

1 t ' t ' e(2) d 'b' , 1 corre a Ion ma rlx : = eff escrl lng an equlva ent two-component 
system (without electrons). The elements of e(2) ff are functions of the 
A 1 (3) , = e, . 
Cap e ements of ~ only. The correspondIng 02 matrIx relatlon takes now 
the form : 

- C(2) (I _ P e (2»)_1 
- = eff = = = eff (8 ) 
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In the limit Po ~ 0, H(2) reads ... 

1 
(9) 

On the other hand h01 and h11 are related to the three-component direct 
correlation functions via (7) ; by identification, one finally gets: 

P1 ~21(k) ~02(k) 

L 1 - P2 c22 (k)J 
(10) 

relation which evidently reduceshto ¥?(6) wh~n Zff= 1. Once the effective 
direct correlation functions COte and Ctte are calculated, an 
appropriate closure relation allows to define effective potentials for 
impurity-proton and proton-proton pairs. 

3.2. The weak coupling limit (r « 1) 

The simplest closure one can use is of mean field (MF) or Debye 
Huckel (DH) type : 

(11 ) 

This leads to an analytic expression for the effective potential, e.g. 
for a proton-impurity pair : 

(12) 

In the special case of purely coulombic interactions 
v01 (r) = 20 Z1/r, the resulting effective potential is precisely the DH 
potential given by Eq.(l). 

3.3. The case of intermediate and strong coupling (f > 0.1) 

In the framework of the HNC approximation, which is known to be a 
successful I method for treating coulombic systems9 , we use the following 
closure relations, to supplement the OZ relations 

(13) 

Expressing once more that ionic correlations must be the same in the 
effective ionic fluid and in the initial ion-electron fluid, we arrive at 
the following relation for the effective pair potentials : 
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(14 ) 

Eq.(14) is closely related to a similar result recently obtained by 
Chihara l2 . 

Here, the calculation of va l eff (r) requires a numerical solution of 
the coupled HNe equations i.e. the 02 relations and Eq.(13) ; then we 
finaLly have in Fourier space 

A A 

P2C 12 C a2 kET 

[1 - P2 C22 J 
, a- 0,1 ( 15) 

As a comparison between the two types of closure we recall that the 
difference between the corresponding effective lon-ion potentials is 
never very large; in the case 20 - 1 fpd when the f¥ll potential given 
by Eq. (3) is used, the difference vMF e (r) - vHNC e (r) is well fitted 
by a single decreasing exponential l3 . 

~ On the other hand, in the strong coupUng limit, we found that 
vl1eff(k) differs considerably from the DH form (1) at small and 
intermediate wavenumbers ; this is essentially due to the contribution of 
the electron symmetry term (3c) which will signj ficantly affect the 
microfield distribution. 

In the following section we shall use the HNC approximation (for the 
closure and the calculation of the pair correlation functions) to carry 
out the microfield calculations over an extensive range of Coulomb 
coupling (0.01 ~ r < 2.). 

4. HNe CALCULATION OF THE MICROFIELD DISTRIBUTION 

4.1. Low frequency component 

The total potential energy of the system V is assumed to be a sum of 
effective pairwise interactions 

N N 

V = 2 2 veff(i,j) 
j-I i-O 

j>i 

( 16) 

veff(i,j) means one of the effective potential derived in the last 
section. 

Since the low frequency component is usually defined as the sum of 
the static electric fields due to the ions, at the radiator (located at 
~ 
r o)' we have the following superposition of screened ion electric 
fields : 

N 

2 veff(rio) 
i;oO 

(17) 

The mean square electric microfield is easily expressed is terms of 
the impurity-ion pair correlation function calculated in the HNe 
approximation : 
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(18) 

At this point, we follow Iglesias et al. 2 , assume that the 
expon~ntial approximation can b~ applied and use th~ APEX procedur~ to 
approximate T(k) which is the Fourier transform of the probability 
density W(~) of finding an electric field ~ equal to E at to' The 
distribution function for the modulus of the electric field is then given 
by : 

2£ r kT(k) P(e:) sin ke: dk (19 ) 
11: 

0 

T(k) < exp (iit.~) > is ~pproxjmated by 

exp { r dr 
HNG r sill k e;*(l",Clj 1 e.(r) 

} 4n:p t r2 gOt (r) - 1 (20) L k e:*(r,a) J e:*(r,a) 0 

where ~(r) is th~ electron-screened ion fi~ld at to and ~*(r,a) is the 
~ffective electric field, proper to the exponential approximation ; the 
parametrized form of th~ latter field is a DR one 

a is an inverse scre~ning length to be determined from the sum rule 
~quation (18) as suggested by APEX. The numerical results are limited to 
cases were Zo is s~t equal to one. 

4.2. Numerical results 

We have calculated the m~an square mi~rofield from th~ effective 
ion-ion potential obtained via Eq.(15) and from the DR form (1), using 
th~ r~spectiv~ RNC results for the ion-ion corr~lation functions. 
Re~resentati H' results, relative t 0 th~ one-component plasma value 
< 1'.2>0= -In;Pt kBT, are given in table 1. The ~ffe~ti\"e potential (15) and 
th~ DH form (1) lead to significantly differ~nt mean square microfields 
foi strong coupling (f > I) and at high densIty. For a fixed value of I, 
th~ results obtained with the potential (15) approach the DH results when 
th~ d!:'nsity is lower~d, i.e. when degeneracy effects d~creas~. 

At this point we can conclude that the DH model, which ignores 
quantum effects and is restrict~d to the linear screening regime, tends 
to underestimate the mean square microfield when the coupling is strong, 
while for weak~r coupling (f ( 0.1) the deviations from the un screened 
one-component plasma results are at any rate negligible. 

This situation is also r~flected, as we shall see in the following, 
in the microfield distribution functions when calculated with the more 
realistic effective potential deriven from Eq.(15). 

The low frequency electric microfipld distribution functions have 
bpen evaluated for the three values of the coupling parameter f = 0.1, 
r = 1. and r = 2. which is the strongest ('oupl ing we can study within our 
mod~l (see Fig.1). We introduc~ the reduced field strength E = E/EO' 
where EO = e/a2, and systemaUcally compar~ the DH one-component rpsults 
wi1h those of die reduced two-component plasma (RTCP) using Eq.(]5). 
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Table 1. Mean square microfield, divided by its one-component plasma 
value (E2>O = 4np,kBT, as calculated from the effective potential (15) 
and from the DH potential (1), for various values of rand r . The 
necessary pan distribution functions· are calculated in th~ HNC 
approximation for potentials ; the results obtained with the DH potential 
are independente of rs' 

DH HNC Effective Potential 
r Potential 

r s=4.0 2.0 1.0 0.8 0.4 0.2 0.1 

2.0 0.56 0.82 
1.5 0.64 0.75 0.83 0.85 
1.0 0.74 0.79 0.86 0.87 
0.5 0.86 0.83 0.87 0.90 0.91 0.94 
0.1 1.00 0.98 0.98 0. 98 0.98 0.98 0.96 0. 93 
0.05 1.00 1.00 1.00 0.99 0.99 0.97 0.94 0.88 

Figure 2 displays the low frequency distributions at r = 0.1 ; we 
see that we have, as expected, good agreement between the two models at 
any value of rs' 

The differences, between the two model~, begin to show up at r ~. 1. 
(see Fig. 3). We find that the DH curve overestimates the probability 
density, with a peak shifted towards small fields. 

When r is further increased to the value r = 2. the maximum height 
of the DH curves increases by a factor 2 (see Fig. 4) while the variation 
is only of the order of 20% in the RTCP case. Hence, we conclude that, in 
the strong coupling limit, the DR model yields a much too narrow 
distribution shifted towards low field values and this may be related to 
the fact that correlations between ions are neglected by this model . 
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CONCLUSION 

In this comparative study, based on the estimation of the second 
moment of the low frequency microfield distribution, we have shown that 
effective ion-ion potentials obtained from HNC approximation (Eq.(15)) 
yield to very different microfield distribution functions for strongly 
coupled systems when compared with the predictions of the DH model. The 
differenceR between the respective distributions illustrate the effect of 
el~ctronic screening and reflect the fact that the second moment is 
underestimated by the DH model in the case Zo = Zi' 

We are presently investigating the importance of the symmetry 
effects, between electrons, on the probability density P(~) and also 
considering the more complicated case of a higher charge impurity still 
along the lines of the work of Iglesias et al. 2 to approximate the 
function T(k). 
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The plasmas produced in flashtubes are convenient to study an eventual 
effect of the non-ideality as they may reach an interaction parameter of the 
order of 0.2 where such effects are soon visible/1/. In the following, we 
will describe briefly the experimental set-up, giving some insight on the 
way used to solve some technical difficulties. Then we describe the density 
and the temperature measurements, using independent methods. As a matter of 
confirmation, we report results on H broadening and shift. Finally, we give 
the FWHM of some lines of ArII, KrII and XeII. This allows us to conclude 
on the Stark effect in dense correlated plasmas. 

EXPERIMENTAL SET-UP 

The plasma source is a cylindrical quartz flash tube designed by the 
Verre et Quartz Company. These flastubes are filled with a noble gas at 
initial pressures between 50 and 600Torrs. In the case of the Hi studies, an 
argon-hydrogen mixture in the proportion 97%-3% is used under lOOTorrs. The 
electrical discharge is triggered by means of an auxiliary electrode, placed 
outside the tube, along a bulb generatrix. A simmer supply maintains a low 
current of about 600mA through the lamp during lOOms, before the main dis­
charge is triggered. The effect of this thin channel of plasma is to decrease 
the lamp resistance and to place the start of the main discharge on the tube 
axis; then, the arc grows symmetrically from the axis. The simmer method 
allows the damping and even the vanishing of hydrodynamic perturbations which 
were previously described/2/. The pulse shaping network of the main discharge 
involves 5 LC cells forming a delay line where C=400~F and the inductance L 
is continuously adjustable between 10~H and 380~H. The impedance of the line 
and that of the discharge are well matched. The current pulse duration is 
about 2.5ms, with a constant plateau of 1.2ms, defined with a precision 
better than 2%; then the intensity is about 1kA. 

Measurements of the plasma radiation. The spectrum is analyzed by means 
of an optical multichannel analyzer (OMA II) with an intensified silicon 
photodiode array detector placed in the focal plane of a spectrograph. The 
gated intensifier allows the record of the whole spectrum during Ius at the 
time corresponding to the best filling of the tube by the plasma. The optical 
magnification is 4. Two spectrographs are used in this study. The first one 
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is of the Czerny-Turner type with a 250mm focal length and a 1200g/mm grating. 
It allows a record of a 41nm spectral range with a 0.06nm resolution in the 
first order. The second one is of the Ebert-Fastie type with a 1150mm focal 
length and a 1200g/mm grating. It may record a line profile over a Ilnm 
spectral range with a 0.015nm resolution in the first order. 

DETERMINATION OF THE ELECTRON DENSITY PROFILES 

The continuum radiation varies as ne2/ff. Then, the electron density is 
mainly determined from the continuum emitted by the plasma during the quasi­
stationary phase of the main discharge. The continuum is calibrated in abso­
lute value against a standard tungsten ribbon lamp and a carbon arc in the 
visible and in the near IR, and against a standard argon arc in the spectral 
range 200nm-350nm. The electron density profiles ne(r) are calculated from 
the radial distribution of the emission coefficient, obtained through an Abel 
inversion in a spectral range where the plasma is optically thin, near 380nm. 
The spatial resolution is about 40um. 

The ne(r) profiles are also determined from laser interferometry of the 
Ashby-Jephcott type/3/ at two wavelengths, 632.8nm and 3.39~m, at the output 
of an He-Ne laser. The plasma is placed inside the laser cavity; it modulates 
the laser output depending on the plasma refractive index. The number of 
fringes is found to be the same during the creation phase and the extinction 
phase of the plasma. Using the relative density distribution previously 
determined, it is now possible to calculate the electron density along the 
axis ne(O). 

We have displayed on table 1 the electron densities on the tube axis 
ne(O) obtained by the two methods for different electrical energies in argon 
tubes. The agreement appears to be good. That means that the ~-factor, which 
was taken independent of the electron density as in /4/, has a correct value. 
No plasma effect can be seen on the continuum at our electron densities. 

DETERMINATION OF THE TEMPERATURE PROFILES 

The radial electron temperature profiles Te(r) are obtained indepen­
dently from the neutral lines, optically thick at their center, and by 
applying the thermodynamic equilibrium equations. The error on Te(r) is 
estimated to be less than 3%, mainly due to the absolute calibration of the 
neutral lines intensities. This method may be affected by the self-absorption 
of the neutral lines, which would lead to an underestimate of Te(O). In order 
to check the validity of our method, we have used special L-shaped flashtubes 
having the same inner diameter, the same interelectrode distance and which 

Table 1. Electron densities obtained by two different methods, absolute 
value of the continuum and interferometry, for various values 
of the discharge energy 

Initial pressure 100 200 200 200 200 200 400 400 400 400 
(in Torrs) 
Energy 0.8 1.0 1.2 1.4 1.7 1.96 1.0 1.2 1.4 1.7 
(in kJoules) 
ne(O) continuum 5.9 9.6 11 12 13.6 15.1 10.1 11.5 13.1 14.6 
(in 1017cm-3) 
ne(O) interferom. 6.2 8.8 10 10.9 12.7 14.1 9.7 11.1 12.1 13.6 
(in 1017cm-3) 
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Fig. 1. Typical electron density and temperature 
profiles: argon 100Torrs, 1000Joules 

enable end-on measurements at any point of the tube diameter, through a good 
quality quartz window. Using this device, the light emission is observed 
through a long optical path. The optical thickness becomes very high for 
wavelengths above 700nm and the plasma radiates like a blackbody at the local 
temperature. The different temperature profiles Te(r) obtained under various 
electrical conditions are in good agreement with those obtained by means of 
the side-on measurements of the neutral lines, mentioned above. We report on 
figure 1 typical ne(r/a) and Te(r/a) profiles obtained in our flashtubes of 
inner radius a. The main characteristic of these recorded profiles is that 
they are practically constant over the two thirds of the flashtube radius. 

STUDY OF THE H« LINE PROFILE 

In this experiment, the H~ profiles are measured over the range of 
electron densities 6xlO l7cm-3 to 101Bcm-3 and over temperatures between 
16000K and 19000K. In these conditions, the linear Stark broadening is the 
most important. As the temperature and density profiles, Te(r) and ne(r), 
are nearly flat over the two thirds of the radius, we make the simplifying 
assumption that the broadening and the shift of H are mainly due to the 
constant part of the profiles. We report on table 2 the width (FWHM) 
obtained for different discharge conditions in a tube at an initial pressure 
of 100Torrs. We estimate the relative error on the FWHM less than 15% due to 
the simplifying assumption. The experimental profile lays between the two 
theoretical ones /5,6/. This was also observed at lower electron densities 
(near l017 cm-3) by Wiese et al./7,8/. A computer simulation /9/ of the Stark 
broadening gives a good agreement with experimental FWHM within 1016_1017cm-~ 

Table 2. Comparison of measured H~ FWHM with calculated values 
of ne(O) and Te(O) 

Discharge energy 80·j 1000 1200 144D 1700 1960 
(in Joules) 

3.2 3.5 3.7 3.9 4.1 4.4 
(in nm) 
neeD) 6.1 6.2 7.4 B.2 9.4 10 
(in 1017 cm-3) 
Te(D) 1.65 1. 74 1.77 1.8 1.85 1.B7 
(in 1Q4K) 
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We have reported on table 3 the theoretical values of /::, A 1/2 extra­
polated from Seidel's work/9/ and our experimental results for increasing 
electron density along the axis ne(O). The agreement is very good between 
them. The high resolution spectrograph is used to measure lineshifts. No 
asymmetry in the H~ profile is observed within the 0.02nm accuracy. The 
measured red-shifts are displayed on figure 2 vs. the electron density n~(O). 
They are found almost linear in density as expected from theories /10,11/. 
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Table 3. Calculated H~ FWHM from /9/ compared with our experimental 
results for various values of the axis electron density 

ne(O) 6.1 6.2 7.4 8.2 9.4 10 
(in 1017 cm-3) 

l\i) 1/2 theory 3.1 3.2 3.6 3.8 4.2 4.3 
(in nm) 
b,,).. 1/2 experim. 
(in nm) 

3.2 3.5 3.7 3.9 4.1 4.4 



DENSE PLASMA EFFECT ON THE IONIC LINES 

The spectral lines are recorded in one shot, over 5nm, using an O.M.A. 
with a gate duration of Ius and a high resolution spectrograph. The linewidth 
and shift of some ArII, KrII and XeII lines are measured on the fitted 
Lorentzian profiles, using the measured values of ne and Te' Assuming flat 
ne(r) profiles over the diameter of the tube does not increase the error level 
higher than 5%. We have displayed on figure 3 the variation of the measured 
FWHM versus the electron density for the lines ArII 480.6nm and ArII 484.78nm. 
We have also drawn the calculated FWHM for 15000K and 18000K. A measurement 
using a ballistic compressor /12/ is also given in agreement with our results. 
The experimental values at a density of 1.5xl018cm-3 are about 50% lower than 
the theoretical ones. The same features are seen with the KrII 473.9nm line 
on figure 4, and with the XeII 529.22nm line on figure 5. These results, 
showing a saturation of the Stark broadening, seem to confirm the relative 
importance of the elastic long-range collisions in the broadening mechanism 
along with more efficient screening due to the non-ideality of the plasma. 

CONCLUSION 

The electron density and the temperature profiles in plasmas produced by 
flashtubes are carefully measured. A good check of these measurements is 
provided by the agreement between the continuum absolute values and the 
Hofsaess ~-factor. On the other hand, the measurements of the linear Stark 
effect on Hd profiles, which is mainly due to the ionic part, are in 
agreement with theories and experiments of other authors. Then, the strong 
departure of the profile measurements (found Lorentzian) and the corresponding 
FWHM of some ionic noble gas lines from the theory shows an evidence of the 
non-ideal effect in coupled plasmas. Indeed, these lines are specially 
sensitive to the electron part of the Stark effect. 
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RESONANT ABSORPTION IN DENSE CESIUM PLASMA 

INTRODUCTION 

Jean Larour, Jean Rous and Maurice Skowronek 

Laboratoire des Plasmas denses, Tour 12 E5 
Universite P. et M. Curie, 4 place Jussieu 
F-75252 PARIS CEDEX 05 France 

Alkali metal vapours are well known to be easily ionizable and many 
applications of this property have been developed. Numerous theoretical and 
experimental works are also available, for example on the PVT data or on the 
transport properties /1/. Recent results /2/ have shown the peculiar behavior 
of cesium in the alkali metals family. Despite its high chemical reactivity 
which generates serious experimental troubles, the cesium is an ideal medium 
to study dense plasma effects. Its ionization is enhanced by a very low 
potential E(Cs)=3.8geV, and by a high atomic Rolarizability d=65A3 /3/, 
i.e. 13 times the corresponding value for a mercury atom. A high atomic 
density can be reached quite easily considering the low critical coordinates 
Tc=1924K, Pc=92bars and Nc=0.38g.cm-3 /2/. A great effort has been undertaken 
to describe the cesium vapour, especially its anomalous electrical conducti­
vity approaching the metallic regime /4/. The vapour composition, taking 
into account the positive cluster ions, plays a significant role in the 
electron transport /4,5/. So we have developed an experimental procedure 
sensitive to the species present in the vapour. After a description of the 
experimental set-up, we present absorption profiles recorded around the 
first resonance doublet lines. Difficulties arise to connect these data with 
a vapour composition. Mainly, the broadening mechanisms (Stark, Van der Waals 
and resonance) seem to be weakened by a density effect. 

EXPERIMENTAL SET-UP 

We have used a classical transmission method to measure the absorption 
coefficient and the broadening and shift of the two resonance lines: 

852.1nm ( 62S1/2 - 62P3/2) and 894.3nm ( 62S1/2 - 62P1/2 ). 

The optical cell and the high pressure vessel have been described 
elsewhere /6/. They are designed to maintain a very thin slab of homogeneous 
cesium vapour ( 1=10pm ) under a static argon overpressure and at a well 
defined temperature. The fluid is always in its vapour phase, along the 
coexistence curve, from T=900°C, Ptotal=9 bars up to T=1500°C and 
Ptotal=110 bars. We took a great care to degassing and purification in 
order to obtain reproducible results. 
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Fig. 1. Scheme of the experimental set-up 

The incoming light 10 at the output of a 150Watt xenon arc lamp is 
modulated at 110 Hz and then passes through the sapphire-cesium cell. The 
outgoing light I is analyzed by a motorized monochromator and recorded on 
a precision lock-in amplifier. This procedure is necessary to discriminate 
the transmitted light from the bright continuum blackbody radiation from 
the central part of the furnace. 

As we deal with optically thick lines, we perform a complete numerical 
treatment of the profiles, or we consider quantities unsensitive to the 
instrument function, for example the total fractional absorption A: 

A = J+~ 1 - 10 / I ) d), 
-0() 

We follow the pioneering work of Chen and Phelps /7/ and we assume a 
theoretical Lorentzian profile for the spectral absorption coefficient k( A ). 
After a convolution by the instrument function G(A ), which is typically 
a Gaussian function with FWHM=1.2nm, we adjust the calculated profile to 
the experimental one: 

k I ( A) = ( 1 / 1 ) ln ( 10 / I ). 

The half-width 0 ( HWHM ) and the shift are taken on the calculated 
profile. The precision of these results can be estimated on the order of 
10% to 20%. 
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RESULTS 

We present now selected results on spectral absorption. The more 
precise ones are obtained around the strongest resonance line of the 
doublet. Records are not noisy and reproducible. Our discussion is based 
on these data. On the other hand, the second resonance line of the doublet 
can give mainly qualitative results, fairly agreeing with the previous ones. 

Fig. 2. 
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Experimental (~) and best Lorentzian (-----) profiles near the 
Ao= 852.1nm resonance line for various temperatures and total 

pressures Ptotal = PCs + PAr' The slab thickness is 1=10~m. 

Typical experimental absorption profiles are displayed on figure 2, 
in the case of the strongest Cs 852.1nm line. Apart from the center of the 
line, affected by the resonance radiation transfer, and the extreme blue wing 
which is perturbated by a probable molecular band, the fit to a Lorentzian 
profile is satisfactory. No lineshift is noticeable on the records. 
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Similar results are obtained around the other resonance line (figure 3) 
but a greater noise on the signal makes it difficult to ensure a good fit. 
The spectral absorbance is quite the same as the previous one but a slight 
red-shift can be detected at high densities. 
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Fig. 3. Experimental absorption profiles near the 
various temperatures and total pressures. 
(D) 1373K, 20bars C*) 1573K, 45bars 

A,=894.3nm line for 
(.) 1173K, 13.5bars 
C~) 1773K, 110bars 

The table 1 summarizes the experimental conditions, temperature, pres­
sure, total density, electrical density deduced from conductivity data /8/ 
assuming a non metallic state and a mobility regime transport. Absorption 
data, linewidth 0 ' extinction coefficient k(~o) and total fractional 
absorption are also indicated. 
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Table 1. Main experimental conditions and data for the Ao=852.1nm line 

~ K 1173 1273 l373 1473 1573 1673 1773 
iPtotal bars 9 13.5 20 29 45 60 110 
NCs g.cm-3 .009 .013 .021 .033 .049 .075 0.10 
(j (.t2..cm)-l 2.2 2.8 5.6 10 20 50 110 
ne 1019cm-3 0.04 0.09 0.4 1.4 3 9.1 20 

"0 nm 0.8 1. 25 1.4 2.1 3.6 6.4 4.8 
k( Ao) ).lm-1 0.5 0.55 0.67 0.58 0.42 0.47 0.28 
A nm 4.2 6.7 8.1 11.4 17.3 32.0 19.0 

DISCUSSION 

The main feature of these results is a very low value of the line 
broadening, by more than one order of magnitude, compared with an extra­
polation of low density data /7/. Considering the data of the table 1, it 
is also impossible to match the linewidth with the sum of the three contri­
butions, resonance by Cs atoms in the fundamental state, Van der Waals by 
Ar atoms and non-resonant Cs, Stark by the electrons. It seems necessary to 
consider a reduction of the number of Cs atoms in the fundamental state /9/ 
and a weakening of electrostatic interactions /10/. This hypothesis may be 
coherent with the formation of clusters and positive cluster ions /4,5/, 
favoured by a resonant excitation /11/, and with a continuous enhancement 
of the dielectric constant /12/. 
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ONSAGER-THOMAS-FERMI "ATOMS" AND "MOLECULES": 

"CHEMISTRY" OF CORRELATIONS IN DENSE PLASMAS 

Yaakov Rosenfeld 

Nuclear Research Center-Negev 
P. O. Box 9001 
Beer-Sheva, Israel 

Following Widom,l the m-body correlation function g(m) (rl,r2 .... r m) 

of a fluid can be expressed through the free energy change upon fixing the 

positions of m fluid particles in the appropriate configuration to form an 

m-interaction-site molecule. As a special case, the zero-separation 

theorem2 relates the r=O value of the plasma pair-screening potential, H(r) 

= in(g(r)exp(p~(r», to the thermodynamics of plasma mixtures. 3 This rela­

tion is the starting point for calculating enhancement factors of nuclear 

reaction rates. 4 It played a key role in the study of the short range 

behavior of the bridge function, notably their universal characteristics. 5 

The application of Widom's relation for calculating the complete pair 

correlation function g(r), not to mention higher order correlation functions, 

has been out of reach for existing theories6 for the thermodynamics of 

molecular fluids. A new theory for the statistical thermodynamics of 

interacting charged particles7-10 is, however, of the required accuracy and 

simplicity to enable such a calculation. This physically transparent theory 

is applied here to a molecular fluid composed of clusters of positive ions 

in a uniform neutralizing background charge density. We calculate the 

m-particle screening potentials in classical plasmas. The results reported 

below represent the first accurate calculation of fluid many body correla­

tion functions from a theory for the thermodynamics of molecular fluids. 

To simplify the presentation we consider specifically the 3-D one 

component plasma (OCP),4,ll,12 containing N positive point ions of charge 

Qe, at temperature kBT=p-l, in a uniform neutralizing background of volume 

v (eventually N,v ~ 00, n=N/v), characterized by the coupling parameter 

r = p(Qe)2/a . The Wigner-Seitz radius, a = (3/4~m)1/3, serves as the 

unit of length in this paper: p~(r)=r/r. 
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For pair correlations, the OCP potential of mean-force, w(r) 

is given by13 

w(r) 

-1n g(r), 

(1) 

FexO(No) is the excess free energy of the OCP containing point ions. 

Fex1 is the excess free energy of an OCP in which one pair of ions is kept 

at fixed separation r. That is, Fex1 corresponds to an infinitely dilute 

solution of the 2-site-point-charge molecule (~) in a fluid of 1-site 
r 

point charge ions, together in a uniform background. Fex1 contains 

the electrostatic interaction between different point charges in the 

molecule, i.e., (Qe)2/r , so that the screening potential, H(r) = -w(r) + 

r/r, is finite for r=O. 

From the exact diagrammatic expression one obtains4 ,S H(r) = 

h(r)-c(r)-B(r), where h(r) = g(r)-l. c(r), the direct correlation 

function is related to h(r) by the Ornstein-Zernike (OZ) equation, which 

(in k-space) takes the form c(k)-h(k)/(l+nc(k». B(r), the bridge 

function, is expressed in terms of graphs with h(r)-bonds and at least 

triply connected field points. B(r)=O defines the hypernetted-chain (HNC) 

approximation. The modified-HNC theory corrects it by employing (e.g.) 

the hard sphere bridge functions and the ansatz of universality. The HNC 

integral equation,4,S,11,14 obtained from the HNC-c10sure H(r)=h(r)-c(r) 

and the OZ relation, can be also derived variationally from a free energy 

functional. This HNC free energy is of about 1% accuracy for one- and 

multi-component plasmas in 2 and 3 dimensions, and it is much more 

accurate than the (short range) HNC-g(r). 

Our approach is to iterate on the HNC approximation by using it not 

via its closure relations, but rather via its prediction for the free 

energies FexO' Fex1 , which is relatively more accurate. Yet exact 

solutions for the HNC equation for complex charge clusters, associated 

with high order correlations, is not within our reach. We need more 

insight in order to perform the calculations. 

Our theory imp1ements7-10 the Onsager charge smearing optimiza­

tion1S ,16 into the variational free energy functional of the HNC theory 

or the closely re1ated14 mean spherical approximation (MSA). This leads 

to an approximate physically intuitive solution of the HNC integral 

equation for the structure. It yields, however, very accurate results for 

the HNC free energy for all 0 < r <~. Moreover, the leading r ~ ~ 

HNC results for c(r) and free energy in our theory, are the exact r ~ ~ HNC 

results. These are calculated as interactions between smeared charges at 

distance r, and as self energies of the Onsager "atoms" and "molecules" 
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respectively. These self energies give an exact lower bound to the true 

potential energy of the system, which is a very tight bound when r » 1. 

In strong coupling (r » 1) the free energies FexO' Fexl are dominated 

by the corresponding Madelung potential energy terms, for which the HNC­

Onsager results arelO ,17: 

Fex (N .) HNC) Nu ( G) ) ° r -+ co 
(2) 

(3) 

u (0) denotes the self energy of an "Onsager atom" (the ion-sphere 

Thomas-Fermi "atom") consisting of a point charge at the center of a 

neutralizing sphere (of radius a, for the OCP) having the background 

charge density ~ u (~) = - O.9r provides a tight bound to the 

bcc lattice energy -089S929r. u~ denotes the self energy of the 

"Onsager-molecule" composed of the pair of ions at distance r and a 

uniform neutralizing charge cloud of the background charge density. The 

shape of the molecule is determined by the ("isolation"-) condition: the 

electric potential and field vanish on its surface, i.e, there are no 

induced surface charges on the molecule if placed in an infinite neutral 

conductor. From (1)-(3) we obtain: 

HNC_Fex 
w(r) > r -+ co 

(4) 

The "Onsager molecule" concept is readily extended for higher order 

correlation functions. For e.g. the triplet correlations, w(3) 

(El,E2,E3) = - in g(3) (El,E2,E3). we get 

(Sa) 

The triplet screening potentials 

(Sb) 

are finite for r12 and/or r13 and/or r23 = O. 

A most important property of the Onsager-molecules as defined above is 

their "dissociation" whenever any molecular point charge is of distance 

larger than 2a for all others: e.g. 

u (~: r 13 ,r23 2: 2a) = u (~ + u (0) (6) 

In order to calculate the self energies for complex geometries we seek 

a simple and accurate approximation that has the dissociation property 
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(6). It is given via the "convolution-ball-smearing,,8 by which every 

molecular point charge is uniformly smeared within a sphere of some radius 

di . The number of independent such parameters di depends on the symmetry 

of the molecule, e.g. we need only one parameter for a symmetric poly top. 

Note, however, that with this "ball smearing" the resulting Onsager lower 

bound for the energy approximates well the self energy of the Onsager 

molecule, but is is not the self energy of the resulting dumbbell config­

uration. ud «J[) ) remains, however, a useful symbol for this energy 

bound. For the "diatomic" 2-charge molecule we obtain18 : 

(7) 

subject to 8ud/8d = ° which gives d(r). wd(r) = d-lwl(r/d) is the 

electrostatic interaction between two uniformly charged spheres of radius 

d, unit total charge, and separation r, given for d=l bylO: 

-1 
r 

_1_ 5 
160 r , r ~ 2 

r ~ 2 

- lim cHNC(r)/r 
r-+co 

(8) 

Using the optimized d(r) from (7), the defining z=r2d. f(z ~ 1) 0, 

f(z ~ 1) = l-5z2 + 5z3 - z5, we obtain the following parametric 

expression for the screening potential representing the HNC result for the 

free energy difference: 

lim 
r-+oo 

HNC_Fex 

~ {[l + ~f(z) + ~1(2z)1 / (1 + f(z»1/3_ l } 
(9a) 

r = 2z(1 + f(z»1/3 (9b) 

Without optimization, namely using d(r)=l, we obtain the HNC-closure 

result: 

Hd=l(r)/f = wq(r) = lim H(r)/r = lim (hHNC(r)-cHNC(r»/r (10) 
r-+co r-+co 

HNC-closure 

Hd(r) (r) is in excellent agreement with both the simulations and 

modified-HNC5 calculations for the strongly coupled fluid OCP (see Fig. 

1). Comparison of (9) and (10) shows clearly that the physical meaning of 

the bridge diagrams contributions (i.e. those missing the the HNC closure) 

is provided by the Onsager-molecule concept. Note that Hd(r)(r) = 

Hd=l(r) = fir for r ~ 2 (the "dissociation" property), and that both 

functions are continuous with 3 continuous derivatives. That is why both 

functions are nearly the same already for r ~ 1. These features explain 

why the available simulation date, unguided by a suitable theory, led to 
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different interpretations of the scaling properties of the screening 

potentials for multicomponent plasmas, and of their "linear" behavior for 
19 2. 5/3 r 2 

0.5 < r < 1.5. Note also that for small r, Hd(r) = r 10(2 -2) 4 r 

+ ... , in agreement with the well known ion-sphere result. 

The "dissociation" property plays a key role for all values of r. 

The convolution-balI-smearing that lead to (7) and (9), when incorporated 

into the Debye-Huckel (DH) or MSA free energy functional, provides an 

effective interpolation between the weak (r « 1) and strong (r « 1) 

coupling regions which are well represented by the DH (dl - 1) and 

Onsager (dl - 1) lower bounds,7,8 respectively. The OCP excess free 

energy is thus characterized by one smearing parameter, dO(r), which 

varies from dO=l for r=oo to dO=O for r=o, and represents the size of the 

effective hard core radius. The molecular smearing radius, dl(r,dO,(r» is 

obtained by optimizing the free energy functional approximating Fexl . 

Fig. 1 

1.3 . - CHNC(r)/r, r = 800 

1.2 . - HMHNC(r)/r , r = 80 

1.1 
- 0. 39 r 

1.0 
-lim CHNC(r)/r 

0.9 r_ 
~ ..... 
... 
:I: 0.8 

r 

Pair-screening potential, H(r), of the strongly coupled 
OCP. The line, 1.2S-0.39r, fits well the simulation results 

!~.th;h:a:~~a~~; ;e;r~s!~~ ;~: ~~~ ~ ~ ~06F!!~u~t!~oRef. 
for c(r)/r. The circles represent the r = 80 
results for H(r)/r as obtained by the Modified-HNC 
equation. S The theoretical predictions wl(r) and 
Hd(r)(r) are described in the text. 
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Using (as above) a as our unit of length" na3 = 3/4~, we thus 

write 

f3Fex 
3 2 3-1 _0 __ 

$(dO,r) -r ( N - 10dO + '5do 

(2~}-3 J d~ in [ 
3 -

+ 
2(3/4~) 1 + 4~ NdO (k) 

which should be optimized, > $/ > dO I = 0 , to obtain 
r 

where 

r\ (k) 

the Fourier - transform (FT) of wd (r), is given 
o 

where ~l(k) is the FT of w1(r), given by 

3(sin k - k cos k) 

k3 

Using the fact that 

lim 
r ... ", 

= JJ.r -1/2 
6 

(11) 

(12) 

(13) 

(14) 

We find that $(dO(r),r) = -0.9r + ¥r1/2 + ... and the HNC excess free 
ex 111/2. energy (f3FO /N)HNC ~ - 0.9r + 2 6 r + ... , t1ght1y bracket the simula-

tion OCP data for r » 1. 

Similarly, the free energy difference in (1) is given by the 

fo11owing18 generalization of (7): 

3 2 3 1 3 2 3 -1 
Hd d (r) = 2 [ 10 d1 + 5 d~ 1 + wd1 (r) - 2 [10 dO + '5 dO 1 

0' 1 

1 - wd (k) 
o 

in which we use the above dO(r) , and optimize, >Hd d / >d1lr = 0, 
0' 1 

to obtain d1(r,r). We find that for large r, 
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1/2 
HEq . (9)(r) + a(r)r + (16) 

;here51~(r)1 «HEq . (9)(r)/r, and in particular, HEq . (9)(r=0) = 
10 (2 / - 2) ~ 1.06, a(r=O) ~ 0.06, explaining why the simulation results 

line in Fig. 1 is so weakly dependent on r. It should be noted that for 

r ~ dO (r) the "molecule n dissociates, i. e. the approximation dl (r) 

= dO(r) is valid. 

Recalling (8) we denote C(~)HNC = -r~l(r), and using the Ornstein­

Zernike (OZ) equation 

3 -h(k) = c(k)/[l - 4~c(k)] (17) 

we define 

(18) 

to obtain the following leading r ~ ~ expression 

i.e. as a generalization of (10) we now get an HNC closure form. Indeed, 

replacing (in the above steps) -r~l(r) by CHNC(r), which is a good 

approximation, we obtain the full HNC closure: 

(20) 

Comparison with (8) and (10) shows that hHNC(r) should be an entropic 

contribution for Fexl at large r. As also revealed by numerical 

solutions20 of the HNC equation for the OCP, 

hHNC(r) - excess entropy - r l / 2 

Fuller analysis leads to the following general result for the 

screening potentials: 

H(m) (r ,r 
HNCFex -1 -2 

m 
L [~NC(rij) - cHNC(riJ )] 

j=l 
i>j 

(21) 

This is the Kirkwood superposition approximation2l (KSA) combined with 

the HNC closure for the OCP. The short range behavior of the bridge 
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functions and the cross-over to KSA-HNC are natural consequences of the 

Onsager-mo1ecu1es and their dissociation property. 

It should be emphasized that the crucial term sin kr/kr in (15) and 

(19), leading to the HNC closure, is not "forced" into the expression. It 

resu1ts18 from the orientation average of the one-pair-string form-

factor (with E = E1 - E2) 

2 (1 + sin kr) 
kr 

and is a natural consequence of the theory18 for Fex1 (~, N-2.) 

when the separation vector r can have any orientation in space with equal 

probability. 

Our result Eq. (19) demands special attention. Define: 

H(r) - CO(r) + 8H(r) 

C(r) cO(r) + ~C(r) 

and consider the HNC equation for ~H and ~C in the following form: 

~H(k) 

- 3 - - -CO(k) + 4; [CO(k) + ~C(k)~ ~C(k) 

1 - 1- [CO(k) + ~C(k) 
411: 

(22a) 

h(r) r 
- exp [ - ( ; + CO(r» + 8H(r») - 1 (22b) 

~C(r) = h (r) - 8H(r) (22c) 

r For example, with the choice of CO(r) = - ;erf(1.08r), these equations 

constitute the elementary cycle in the iterative solution of Ng in Ref. 

20. Recal122 that such an iterative solution of Eqs. (22) correspond to 

graphs-summation to all orders. Indeed, for weak coupling (r « 1) 

one starts with CO(r) = -r/r = -fJtPc(r) , which is the Coulomb-"bond" and 

(~C)O = 0, then the first iteration builds the Debye-bond, 8Hi (r) = 

r -xr 
fJtPD(r) = -;e ,from (22a), and the Meeron-bond, 

r -xr r -xr 
~Cl(r) - + fJtPm(r) = exp [ -; e ) +;e -1, x= (22d) 

from (22b) - (22c). Continuing with this iteration loop for all non­

elementary prototype graphs in the diagrammation expansion of H(r) are 

formally constructed. 22 For strong coupling (r» 1), however, the 

natural starting point for the iterations is the Onsager-Cou1omb (OC) 

bond, CO(r) = c(oo)HNc(r) 5 -fJtPOC(r). If the solution of the HNC 

equation (22a-22d) indeed represents the sum of the appropriate infinite 
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number of diagrams, then it is independent of CO(r) which is just a 

formal device chosen to speed up the convergence of the iteration 

procedure. The choice CO(r) = c(oo)HNc(r) is, however, crucial 

for obtaining a solution in the limit r ~ 00, and for understanding 

the solution in general for r »1. Starting with the OC-"bond", 

CO(r) = -rwl(r), and (~C)O=O, then the first iteration builds the 

Onsager-Debye (OD) "bond" 

(23) 

from Eq. (22a), and the Onsager-Meeron (OM) "bond" (from 22c-22d), 

Note that (23) is nothing but our expression (19), which is the strong 

coupling analog of the Debye-Ruckel (DR) total pair correlation function, 

exp [- r + h (00) (r) _ C (co) (r) 1 -1 
r -~NC RNC 

Both hl(r) = hOnsager(r) and the second iteration result h2(r), 

along with the complete r = 1000, 7000 solution of the RNC equation by 

Ng,20 are featured in Fig. 2. Note that hOnsager(r) already contains 

the split second peak (for r 7000) which is associated with the 

formation of a glassy state. Note also in Fig. 3 that both SO(k) 
3 -1 3-1 

[1 - 4~CO(k)1 and S1(k) = [1 - 4~C1(k)1 feature correct peak 

positions and qualitative trends of the structure factor S(k). As r 

increases more peaks, starting from the first and in consecutive order, 

are identified with location near the corresponding zeroes of Pl(k), 

i.e., kl = 4.49 ... , k2 = 7.725 ... , k3 = 10.90 ... , etc. This trend, 

appearing already in SO(k) and sl(k) for the OCP, is not limited to 

the Coulomb potential and exists also in the simulation data for simple 

(e.g. inverse power) potentials. A comprehensive discussion of these 

features will be given elsewhere. 

In conclusion we mention that our results provide the rational for 

solving23 the Thomas-Fermi confined molecule problem in order to 

calculate enhancement factors for nuclear reaction rates, and other short 

range correlation effects in dense matter. Our method, concepts and 

qualitative results are valid for a general D-dimensional multicomponent 
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Fig. 2 OCP pair correlation function h(r) "" g(r)-l, for r ... 
100,7000. Crosses, dotte~ line, and full line, represent 
the complete HNC results, 0 its first ~teration, h1(r), 
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line) iterations of the HNC-Onsager scheme (see text). 
Vertical lines denote the positions of the zeroes of 
Pl(k). 

583 



plasma, in which the charges may be associated with any Green's function 

potentials, the Coulomb and screened-Coulomb (Yukawa) being the most 

important cases. 
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QUANTAL HYPERNETTED CHAIN EQUATION 

APPLIED TO LIQUID METALLIC HYDROGEN 

INTRonUCTION 

Jun:l:o Chihara 
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Tokai-mura, Ibaraki 319-11, Japan 

In classical liquids, integral equation methods have been shown to give 
successful results in many cases. However, there is no standard integral 
equation for quantum liquids at finite temperature. Therefore, when a liquid 
metal is taken as a mixture of ions and electronS, it is ne~essary to set up 
an integral equation which can be applied to quantum and classical liquids in 
a unified manner, since the electrons constitute a quantum liquid and the 
ions behave as classical particles. In this situation, it is important to 
notice that the density functional theory can treat a quantum liquid at 
arbitrary temperature including a classical liquid. 

QUANTAL HYPERNETTED CHAIN EQUAtION 

Let us consider a liquid metil (or a plasma) as a mixture of electrons 
and ions with densities, n~ and no ' respectively: the ions can be regarded 
as forming a classical fluld and the electrons are assumed to constitute a 
quantum fluid. When external potentials U.(r), acting on ions (i=I) and 
electrons (i=e), are imposed on this syst~m, the density distributions 
n.(rluI,U ) of this inhomogeneous system can be determined by the functional 
d~rivativ~ of the thermodynamic potential n with respect to y.(r)=U.-U.(r) at 
fixed temperature T and volume V (for example, Chihara 1978b)l 1 1 

(1) 

Here, U. denotes the chemical potential of i species. The natural variables 
of the thermodynamic potential n for this inh6mogeneous system are T, V and 
Yi(r). The independent variable y.(r) is replaced by n.(r) with the use of 
tne Legendre transformation of n tCa1len 1960), which introduces the 
intrinsic Helmholtz free energy: 

n -l.fo o~ )y.(r)dr = n + l.fn.(r)y.(r)dr 
J Yj r J J J J 

(2) 

Then, y.(r) is obtained from ~[n ,nIl 
1 e 
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O:![nI,ne 1 

On. (r) 
1 

= ].1.- U. (r) = y. (r) • 
1 1 1 

(3) 

In order to describe the inhomogeneous mixture, we take the noninteracting 
ion-electron mixture as a reference system, and introduce such effective 

potentials u~ff(r), that induce the density distributions n?(rlu~ff) in the 
noninteractikg system so as to become exactly equal to the aensiEy 
distributions n. (rlu ,U ) in the real system: 

1 I e 

n. (r lUI' U ) 
1 e 

(4) 

Here, 

(5) 

and 

(6) 

with 
o -1 

f(E) = [exp{S(E -].1 )}+ll 
e 

which is calculated by solving the wave equation for an electron 

fi2 2 
{ - 2m II + U(r) }cPQ, (r) = EQ,cPQ, (r) (7) 

with ].10, the chemical potential of a noninteracting electron gas. Simt!arly 
to (3); for the noninteracting system under the external potential U~ (r), 
there follows 1 

0.1-0 [nI,ne 1 

On. (r) 
1 

o 0 
0Jtj[nI,nel 

On?(r) 
(8) 

1 

since u~ff(r) are defined so as to induce the same density distributions of 
the int~racting system. Here,~is the intrinsic Helmholtz free energy of the 
noninteracting system, and can be written in the explicit form 

where 

T [n 1 
s e 

11112 
- L.f(E.)<cP.1 =-2 IcP.> 

1 11m 1 

(9) 

(10) 

(11) 

\- S 1/2 with A=(h 1m) • From (3) and (8), the effective external potential defined 
by (4) can be expressed in terms of the interaction part of the intrinsic 
Helmholtz free energy 

(12) 

where 

~. :: J'-~ 
lnt 0 (13) 

with ].1~nt, the interaction part of the chemical potential of i species. 
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At t~is stage, we notice the fact that the density distributions 
n.(rII)/n around a fixed ion in the liquid metal become identical with the 
ridial di~tribution functions (RDF1s) g.!(r) concerning an ion, if the ions 
can be treated as classical particles. Slnce a fixed ion in the liquid metal 
causes external potentials U. (r )=v . I (r) [with v .. (r): the interparticle 
interactions] acting on ions1 and electrons, Eqs:f5), (6) and (12) turn out to 
give exact expressions for the RDFls g .. (r) in the forms. 

I eff1J 
gn(r) nI(rl I)/nO exp{ -Svn (r) } (14) 

e 0 1 eff e 
geI(r) = ne(rII)/no ne(r Vel )/nO • (15) 

eff Therefore, the effective interactions v .. (r) involved in (14) and (15) are 
1J 

given by (12) as 

eff 6~nt 
v .. (r) =v .. (r) + 1: (I') 
1J 1J uni r J 

int 
- ].li (16) 

It is important to note that we can define the direct correlation functions 
(DCF1s) in quantum mixtures on the basis of ~ t (Chihara 1984b): 

1n 

6~int I 
- -Son. (r)on. (r') u=o 

1 J 

J J 

eff 
6[(3U.(r) - (3U. (r)] I 

(17) 

(18) 

Then, the effective interaction given by (12) can be rewritten 

with 

eff 
v .. (r) 

1J 
v. (r) 

1J 

v .. (r) - r .. (r) 1(3 - B .. (r) 1(3 
1J 1J 1J 

B .. (r)I(3 
1J 

(19) 

(20) 

in terms of the bridge functions B .. (r) and the DCFl s • The Fourier transforms 
of (17) can be written in the matrIt form 

yr,iC(Q)1)i = (X~) -1_ (XQ ) -1, (21) 

in terms of the density response functions, Xd=llx~jll and x~::llx~i6ijll, of 

the interacting and noninteracting systems, respectively, and 7? :: II n~6 .. , • 
Note that this relation can be derived from (18) and the linear respo~ae 
formula. 

Inversely, Eq.(21) leads to expressions of the partial structure factors 
ee 

SII(Q), SeI(Q) and the density response function of electrons XQ by the 

DCF's Ci .(Q) and the density response function XQo =XQoe of the non-interacting 
system 1rl the forms: 

(22) 

589 



(23) 

ee 
XQ = 

2 
W£.2l S (Q) + 

2; II (24) 

with 

p(Q) -
e 0 0 

nOCeI(Q)XQ/[1-nOCee(Q)XQ) (24a) 

D(Q) -
I e 0 

{1-nOCII (Q)}{ 1-nOCee (Q)XQ} (24b) 

f h d · f· iI Here, we have used the act t at the ens1ty response unct10ns Xo 01 
concerning ions become identical with the structure factors SII(Q7 and X =1, 
since the ions in a liquid metal can be treated as classical particles. ~he 
Ornstein-Zernike (OZ) relations for the mixture are obtained by the inverse 
Fourier transforms of the above equations as 

(25) 

B.C (r) + B.r (r) 
eI eI (26) 

e "- "-
n (rle)/n - 1 = B.C (r) + B.r (r) e 0 ee ee· (27) 

where B denotes an operator defined by 

~Q[ ~Ct.f(r) ):: (X~)Ct.J6[f(r») = (x~)Ct.feiQ.rf(r)dr 

for an arbitrary real number Ct. Here, it should be remarked that the OZ 
relation for the electron density distribution n (rle) around a "fixed" 
electron in the mixture, is derived on the basiseof the relation: 

e ee 0 
~Q[ne(rle) - nO ) = XQ /XQ - 1 , (28) 

which has been derived from a certain ansatz (Chihara 1978a, 79, 83). In the 
conventional approach, a liquid metal is considerf~ as a quasi-one component 
fluid interacting via an effective interaction ve (r), in which the presence 
of electrons in a liquid metal is taken into account only. We can prove that 
this effective potential can be exactly represented as 

(29) 

in terms of the DCF's of the two component model, if the bridge function of 
the quasi-one component system is chosen to be equal with the bridge function 
B11(r) of the two component model (Chihara 1986b). In the above, it should be 
noted that Eqs. (14)~(26) are formal, but exact expressions, provided that 
the ions constitute a classical fluid. 

At this point, we introduce the hypernetted chain (HNC) approximation, 
which means the bridge functions in (19) are neglected. This approximation 
together with (28) leads to the quantal HNC (QHNC) equation, which can be 
written with the aid of the OZ relations (25)~(27) as follows: 

(30) 

(31) 
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"-1 0 I e C (r) = B O[n (r v -r /S)/nO - 1) - r (r) • 
ee e ee ee ee 

(32) 

In the HNC approximation, the DCF's C. ,(r) are all determined self­
consistently from (30) to (32). Here,lit should be emphasized that the QHNC 
equation can be applied to an electron-ion mixture from the low-temperature 
region where the electrons are in a degenerate state to the high-temperature 
region where the electrons become a classical fluid. Also, it is interesting 
to note that we can derive many kinds of integral equations for the RDF's in 
a liquid metal by introducing further approximations to (30)~(32) (Chihara 
1986a). For example, if the electron-electron local-field correction G (Q) 
is approximated as that of the jellium model where the ions in a liquiaemetal 
are replaced by the background of uniform positive charge: 

C (Q) = -Sv (Q){l-G (Q)} ~ -Sv (Q){1_G jell (Q)} 
ee ee ee ee 

(33) 

then, we need not to use (32). With the use of several approximations in 
addition to (33), the QHNC equation is shown to lead to the integral 
equations of Dharma-wardana and Perrot (DWP) (1982) and of Ichimaru et al 
(1985). 

APPLICATION TO THE ELECTRON-PROTON SYSTEM 

We have applied the QHNC equation to the electron-proton system: that 
is, liquid metallic hydr~gens ~L~H)Ior per:ectly ionized hydrog~n,plasmas. 
The temperature and denSIty nO=nO=nO of thIS system can be sP:clfIed br/3he 
plasma parameter r and the Wigner-Seitz radius r =a/aB with a=(3/4TInO) and 
the Bohr radius aBo Features of the prot~n-elect~on system cqn be represented 
by Fig. 1. In the region between two lines: T=EF and T=E~ (EF and EP are the 
Fermi temperatures of the electrons and protons, respectlvely.), th~ protons 
constitute a classical liquid and the electrons are taken as in a degenerate 
state. In the calculation, the electrons are assumed either to be at absolute 
zero temperature in the liquid metallic region (Chihara 1984a), or to form a 
classical fluid in the plasma region (Chihara 1978c). 

26 

~ 24 . c: 

-2 0 

log T (eV) 

10 

2.0 

JO 

Fig. 1 Features of the proton­
electron system. In the region right 
to the line AB, hydrogens can be 
treated as a proton-electron 
mixture; a metallic liquid and a 
perfectly ionized plasma. The curve 
C denotes 99% ionization calculated 
by the Saha equation. Near the line 
D, the first-order phase transition 
occurs in LMH. 
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In the conventional pseudopotential theory, to which the approach of 
Ichimaru et al (l985)is equivalent, the effective ion-ion interaction in a 
liquid metal modeled as the one-component system is dependent only on the 
electron density r , and independent of the temperature of the system. In LMH 
such as r =1, due £0 the strong electron-proton interaction, this standard 
approach Ereaks down as shown by Fig. 2, which indicates that the effective 
proton-proton interactions calculated by QHNC equation exhiQit strong 
dependence on r. Three effective potentials obtained from the QHNC and the 
DWP equations and the screened Coulomb (used by Ichimaru et all yield quite 
different RDF's with each other, as shown for the case of r=10 and r =1 in 
Fig. 3. Therefore, we cannot applied the conventional pseudopotential theory 
(the screened Coulomb) to LMH, generally. 
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Fig. 3 The radial distribution functions between protons 
calculated with the use of QHNC, screened Coulomb and 
DWP interactions, which are denoted by the full and 
broken curves and full circles, respectively. 



In the treatment of Ichimaru et al (which is identical to the conventional 
pseudopotential theory) and DWP, the exchange-correlation effect is 
approximated as that of the jellium model where the influence of the protons 
on the electrons is neglected. Furthermore, Ichimaru et al used the linear 
response formula to evaluate the RDF g , and DWP neglected some terms which 
represent the electron-proton correlatign effect in (19) (Chihara 1986a). 
These approximations bring about the differences from the QHNC results in 
Figs. 2 and 3. 

Figure 4 shows the RDF's obtained from the QHNC equation for LMH varying 
r at fixed r=20. At high density region such as r =0.1, there is no 
sIgnificant difference in g between LMH and the ~ne-component plasma model. 
Naturally, with increasing FP, the proton-proton correlation becomes week, 
because the screening reduce~ the proton-proton interaction. Contrary to g , 
the RDF g grows up with the increase of r • In varying parameter r acro~~ 
r =0.3 atePixed r=20, the RDF's change abru~tly. Also, it should be ~oticed 
tEat the QHNC equation has two sets of solutions at r =0.3 and r=20 as shown 
in Fig. 5: the one shown by broken curves is continuo~s to the solution in 
the high temperature region (with smaller r ) and the other drawn by full 
curves continues to the solution in the lows temperature region. This fact 
indicates that some kind of the first order phase transition takes place 
across r =0.3 in LMH at r=20. This figure shows that this phase transition 
causes n~t so great variation to g and g in contrast with n (riel, which 
exhibits strong correlations and r~Plects ERe structure of g In the low 
temperature phase. Therefore, this phase transition may be r~~arded as a 
result of change in the electronic structure in LMH. A similar phase 
transition is observed across the line D in Fig. 1: the phase on the right­
hand side region of this line will be called the high-temperature phase and 
the phase on the other side, the low-temperature phase. 

Fig. 4 The RDF's, g and g , 
at r=20 varying r PProm o.rPto 
20. The full circles are g 
of the one-component plasm~P 
model. 

2.0 { r = 20 
rs = 0.3 

gPP 

ria 

3.0 

Fig. 5 Two sets of solutions for the QHNC 
equation at r=20 and r =0.3. The full curves 
denote solutions belon~ing to the low 
temperature phase, the broken curves, the 
high temperature phase. 
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This transition is clearly seen by tracing the change in the local-field 
correction G (Q) for electrons in the two component model by varying r from 
unity to twe~Ey at r =0.5 as displayed in Fig. 6. As r increases from unity, 
the local-field corr~ction deviates a lot from that of the jellium model, 
grows up and changes abruptly to have a negative part near origin, when r 
varies from 11 to 12, where some kind of phase transition occurs. 

Next, we proceed to the plasma region, where the electrons behave as 
classical particles (for details, see Chihara 1978c). When the temperature is 
reduced at fixed density p=6xl02o electrons/cm3 , the proton-proton RDF grows 
up near the origin as shown in Fig. 7, and the numerical solution can not be 
obtained due to the divergence in the iterative process near line B in Fig. 
1. The peak in g , which appears when the temperature decreases to 5.4xl04 

K, may be regardgg as indicating the tendency to form a hydrogen molecule. 
Also, a similar divergence is found in the liquid metallic region along the 
line A. The QHNC equation can provide us the bound energy levels of hydrogen 
in the plasma state. At low density region such as 1018 electrons/cm3 , there 
is no significant change from a free atom. A higher density, the bound energy 
levels become shallow and rise up as the temperature increases as shown in 
Fig. 8. As the temperature approaches 5.4xl04 K, where the molecular 
formation begins at p=6xl020 /cm3 , the levels rise up with larger variations. 
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Fig. 6 The dependence of the local-field correction G (Q) 
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Fig. 7 The radial distribution functions, g and g , 
calculated by the QHNC (full curves) in aPBerfectI~ 
ionized hydrogen plasma varying the temperature at a fixed 
density 6xl020/cm3. The broken curves denote the RDF's 
calculated by the nonlinear Debye-Huckel theory with the 
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Fig. 8 The bound electronic energy levels in a hydrogen 
plasma, calculated by QHNC and Debye-Huckel potentials, 
which are denoted by full lines and broken lines, 
respectively. The levels of a free hydrogen atom are shown 
for the comparison. The bound levels rise up with larger 
variations, when the temperature is reduced to 5.4 K where 
hydrogen molecules begin to form. 
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CONCLUSION 

The QHNC equation is superior to the integral equations of DWP and 
Ichimaru et al in that the influence of ions on the exchange-correlation 
effect can be taken account by treating the ions and electrons in the system 
on equal footing, besides the effect of electron-proton correlation (Chihara 
1986a). Furthermore, their equations cannot be applied to a plasma state 
where the electrons become a classical fluid, since g must be identical 
with g there. On the other hand, the QHNC equation 6~n be applied both to 
the li~gid metallic state and to the plasma state in a unified manner. 
Results, when applied to LMH, are summarized in Fig. 1. On the right-hand 
side of the line B in Fig. 1, the electron-proton system forms a plasma state 
where hydrogens are perfectly ionized. The line f=160 in Fig. 1 gives a rough 
criterion that the hydrogen system becomes a solid phase. Therefore, 
hydrogens may be considered to become a liquid metallic state where electrons 
have no bound level around a proton, in the region above the line A 
surrounded by the lines, f=160 and T=E • In addition, there is two phases in 
liquid metallic state: the low temperature phase and the high temperature 
phase. A set of integral equations, (30) and (31) with (33) based on the 
jellium model, can yield almost the same results as the QHNC equation in the 
high-temperature phase region, but shows no phase transition, because of the 
exchange-correlation effect being fixed as that of the jellium model. Here, 
it should be noticed that the high temperature phase contains the plasma 
state, because there is no abrupt change in RDF's between the plasma and 
liquid metallic region. 

Moreover, the QHNC equation has been extended to treat liquid metals or 
plasmas with core electrons: the average ionic charge, electronic bound 
energy levels, and the electron-ion interaction can be determined self­
consistently by this equation (Chihara 1985). 
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INTRODUCTION 

There have been recently many attempts to derive a "universal" self­
consistent approximate integral equation for the correlation function h(r), 
which would be reliable for an extensive range of fluid systems and physical 
conditions 1• Various closures have been proposed. They give results that are 
generally in good agreement with numerical experiments, for a wide variety 
of systems. It seems that, up to now, the closure of Zerah and Hansen,l that 
interpolates beween HNC and soft-core MSA, has the widest range of applica­
bility. 

All these approximate integral equations are very useful, because they 
give a simple and fast way to compute approximations of thermodynamic and 
structural properties of dense systems. However, the approximations involved 
are not very clear, and the only means to choose the best one for a given 
system, is to compare the results with numerical experiments. Insofar as all 
the closures can be considered as derived from particular approximations of 
the bridge function B(r), it seems interesting to study the properties of 
this function from first principles, and to compute universal approximations 
to it. 

In this article, we make a first step in this direction. We first recall 
the explicit development of B(r) as a sum of 2-graphs (i.e. graphs with 2 
root-points) with lines h(r). Then, we propose a new resummation method for 
n-graphs. We describe it on the simple case of the fourth virial coefficient 
B4, and we apply it to BS and to the first few terms of B(r). Finally, we 
compute simple and accurate approximations for these coefficients, from their 
exact resummations. 
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DEVELOPMENT OF B(r) AS A SUM OF 2-GRAPHS 

An exact integral e~uation 
given by several authors : 

for the correlation function her) has been 

- SW12 = - SU12 + B12 + P f h13 (1) 

u(r) is the interaction potential, w(r) the potential of mean force defined 
by 1 + her) = exp -[Sw(r)], and B(r) is the bridge function. Wij stands for 
w(rij ). 

B(r) has the explicit development2 
00 

B(r) L ::: S~+2(r) (2) 
m=2 

where ~+2(r) is the sum of basic2 2-graphs with m field-points and lines 
her). One has: 

134 (r) 

Ss(r) 

f + + 
0s(r) = h13 h32 h14 h42 h34 dr3 dr4 

6£7c(r) + 6£7d(r) + 3£8a(r) + 6£8b(r) + £9(r) 

(3) 

(4) 

where the usual 
lopment for two 
insufficient to 
terns. Secondly, 

notation of 2-graphs is used3• We include SS£r) in the deve­
reasons. First, from results on PY2 equation ,S4(r) might be 
obtain accurate results at liquid densities, for certain sys3 
all the 2-graphs of S'(r) are computable by known techniques. 

5 

DESCRIPTION OF OUR RESUMMATION METHOD 

At low densities, it is possible to compute SS(r) with a reasonable 
accuracy by computing independently the five 2-graphs of the development3• 
At high densities, this is no longer possible because her) has several oscil­
lations. It is necessary to resum S5(r) before computing it, to eleminate 
extensive cancellations among contr~buting 2-graphs and get sufficient accu­
racy with reasonable computer time. 

Let C be any given linear combination of n-graphs with k field-points 
and identical lines h : 

p 
C = L a. y. 

i=1 ~ ~ 
(S) 

The principle of 
of n-graphs with 

q 

the method is to identify C to another linear combination 
lines ~ + h : 

C = L a.. 
~ i=1 

(6) 

The real numbers a.i and ~ are solutions of a set of non linear (polynomial) 
equations. 

RESUMMATION OF B4 

We haveS 

- 8 B4 = 3 D4 + 6 DS + D6 

By identifying this development to the 2-graph 
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(8) 

we find that a, Xl and X2 satisfy the set of equations 

a Xl X2 = 3 

a(Xl + X2) 6 

The solution is 

a = 1, X1 = 3 + 16, X2 = 3 - 16 (9) 

From the exact resummation (8)-(9), we construct an approximation of 
B4 by noticing that Xl + h ~ X1 in the fluid region. This gives : 

We find that it approaches exact values to less than 20 % for hard spheres, 
L~nnard-Jones and square-well potential, with any width of well. 

RESUMMATION OF BS 

BS is a sum of ten 1-graphsS• We have to solve a system of 10 equations 
with 11 unknowns. We find an infinite set of resummations with two 1-graphs, 
depending on a parameter t : 

We reduce it to 1 equation with 2 unknowns by using computer algebraic lan­
guages Macsyma and Reduce. 

We find two manifolds of real resummations, for 1 < t < 1.182 and 3.88 
< t < + 00, and two simple approximations 

- 30 BS ~ 1S.2 ~ 
- 30 BS ~ 322.2 ~ 

that are a~curate respectively for short range and long-range systems. Full 
and dotted lines represent respectively the Mayer and Boltzmann functionsS 

RESUMMATION OF S5(r) 

We have to solve a system of 4 equations with S unknowns. 

We find an infinite set of resummations with two 2-graphs, depending on 
a parameter t. They are real for any t : 

(11) 

with 
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<l1 = 1/t, <l2 

X1,2 = 1 + 2t 

3t/(t-1), 
• 

1 - 1 It 
( 12) 

( 13) 

2 

In (13), aline 
XL + h .. , and no 

~J 

X 
~ between points i and j represents the function 
line represents the function h ... 

~J 

+133 An interesting resummation is obtained for t = ---------

4 
X1 X3 (9 + 133)/2 "u 7.37 

X2 (-3+133)/2 "u 1. 37 

X4 2 

<l1 (133- n 18 "u 0.59 

<l2 (7 - 133)/8 "u 0.41 

• We find 

( 14) 

This resummation is exact. In the cases of gaussian gas and hard cubes at 
low density, where all the 2-graphs of BS(r) are known analytically5,6, we 
find that <l1 f1 and <l2 f2 have the same sign for all r. This means that can­
cellations oetween 2-graphs of opposite sign in (4) are completely removed. 

Further, we find that the simple approximation obtained from the exact 
resummation (11)-(14) by taking X1 + h "u X1 and X3 + h "u X3 approaches the 
exact values of BS(r) to less than 10% for all r. 

CONCLUSION 

We have found an exact resummation of BS(r) that is a good candidate 
for computing accurate values of this coefficient, and a simplified appro­
ximation to it. The approximate integral equations obtained by keeping only 
B4(r) and BS(r) or its approximation in B(r) are universal because the 
resummation is independent of the potential, and the approximation 7.4 + h(r) 
"u 7.4 is valid for realistic systems. 

These equations seem to be soluble by conjugate use of the Barker et 
al. method7 of computing 2-graphs, and the Gillan-Zerah method8 of solving 
equations of type (1). They are nevertheless much more difficult to solve 
than other approximate equations 1. To simplify them, one would need accurate 
approximations for the basic 2-graphs with 4 and 5 points. We are trying to 
do this by combining the asymptotic developments of 2-graphs we found for 
large values of r9, to the upper-bounds obtained at intermediate distances 10 
and to transformation of small r values of these 2-graphs as small r values 
of simpler ones with lines [h(r)]k, k integer. 
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Diffusion (continued) 
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Disconnected approximation, 129 
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Fokker-Plank equation, 72 
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Hartree-Fock, 7, 91, 187, 208, 
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modified, 35, 568 
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Line broadening, 200 

Doppler width, 546 
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Liquid 
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metals, 239, 247, 250, 316 
supercooled, 20, 31 

Local field correction, 454, 546 
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(LTE), 275, 295 
Luminosities, 164 
Lyman series, 322-323, 530-536, 561 

Mass action law, 199, 209 
Memory function, 127 
Mean spherical approximation, 311, 

5n 
Metal-nonmetal transition, 383 
Metal salt solution, 45 
Metallic fluids, 381-406 
Metallic lithium, 229-239 
Microfields, electric, 276, 284, 

293, 493-509, 514, 527-535, 
539-542 

high-frequency, 495-497 
low-frequency, 495-497, 549-558 

Miscibility, 9, 45 
Molecular hydrogen, 173 
Mott transition, 200, 211, 236 

Neutrino emission processes, 151, 
165 

Neutron star,S, 16, 151 
Non-neutral ion plasma, 53, 58 
Nucleation, 12 



Occupation numbers, 179, 259-264, 
294, 295-296 

One-body density, 335 
One-component plasma (OCP), 3, 19, 

38, 56, 163, 332, 365, 418, 
425, 483, 496, 539, 574 

polarized, 41 
Onsager molecules, 575 
Opacity, 161, 164, 289 
Optical properties, 191, 511-526 
Orbital relaxation, 294 
Ornstein-Zernicke relation, 45, 

552, 580, 590 

Pair distribution function, 21, 33, 
43, 117, 484 

Partition function, 41, 90, 177, 
245, 247, 278, 504 

[rand-canonical, 221 
Planck-Larkin, 179-180, 209, 

215, 221, 225, 245, 262-
264 

Penning trap, 5, 19, 30, 53, 54 
Percus-Yevick equation, 9, 308-309 
Phase diagram, 88 
Phase separation, 10, 381 
Phase shift, 297 
Phase transition, 185-186, 189, 381 
Plasma brightening, 519 
Plasma frequency, 243 

Vlasov, 124 
Plasma parameter, 374, 504 
Plasma polarization shift, 281 
Plasmon 

dispersion, 483 
frequency, 115-116, 361 

Polarizability 
atomic, 579 
dynamic, 375 
linear, 483-484 
quadratic, 369, 372 

Polyelectrolyte, 331 
Pressure measurements, 105 
Pressure tensor, 432 
Pseudopotentials, 6, 92, 112, 592 

electron-anion, 46 
Pulsed arc, 101 
Pyco-nuclear reaction, 145 

Quantum diffraction, 133 
Quantum Monte-Carlo, 229-246 
Quantum Plasmas, 6 

Radiation transport, 78 
Radiative processes 

bound-free, 546 
free-free, 513, 546 

Radiative transfer equation, 546 
Random phase approximation, 498 
Reaction rate, two body, 145 

Renormalization group, 385-386 
Resistivity, electrical, 286 
Resonance absorption, 565 
Response function 

dielectric, 505 
density, 320, 422, 589 
nonlinear, 326 

S-matrix, 215, 221 
Scaling Jaws, 193 
Second moment, 512, 550 
Self-diffusion coefficient, 103 
Self-energy, 202 
Shear viscosity, 26 
Shock wave compression, 88 
Slater determinant, 231 
Slater sum, 561 
Solar neutrino, 10 
Solar oscillations, 179 
Specific heat, 140, 398 
Spectral 

dielectric satellite broadening, 
545, 546 

electron broadening, 289, 515 
line intensities, 68 
lineshape, 82, 84, 290, 527-529, 

545 
line shifts, 191, 506, 563-568 
linewidth, 57, 68 

Stark effect, 515, 536, 559-563 
quadratic, 80 

Stopping power, 206, 441-462 
Structure factor 

concentration, 126 
dynamic, 12, 24, 284 
static, 62, 129, 153, 589 

Structure function, 357, 363, 369 
Sum rules 

compressibility, 344 
multipole, 351 
neutrality, 336 
perfect screening, 337, 344 
scattering theory, 216 
static dipole, 363 
Stillinger-Lovett, 349, 351 

Temperature, measurement, 100 
Thermal diffusion, 141, 145, 170 
Thermodynamic functions, 205, 207 
Thermodynamic potential, 277 
Thomas-Fermi theory, 233, 239-250, 

253-260, 267, 297, 573, 582 
Toeplitz determinant, 342 
Transparency window, 514 
Transport coefficients, 3, 133, 200 

Vandermonde determinant, 333-334 
Van der Waals interaction, 189, 

384, 405 
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V~l~city autocorrelation function, 
23 

Vl~sov equation, 66, 361 
Voigt profile, 60 

White dwarf; 3, 16, 139, 140, 
161"'172 

Wigrter~Seitz radius, 56, 319 
WKB approximatiort, 146-141. 172, 

224, 240"'241 
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