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IN MEMORIAM
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Rien de plus commun et de plus aisé que d’ attribuer à la force ce qui procède de la faiblesse.
Paul Valéry
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PREFACE

The International Conference on Strongly Coupled Coulomb Systems was held on the
campus of Boston College in Newton, Massachusetts, August 3–10, 1997.

Although this conference was the first under a new name, it was the continuation of
a series of international meetings on strongly coupled plasmas and other Coulomb systems
that started with the NATO Summer Institute on Strongly Coupled Plasmas, almost exactly
twenty years prior to this conference, in July of 1977 in Orleans la Source, France. Over
the intervening period the field of strongly coupled plasmas has developed vigorously. In
the 1977 meeting the emphasis was on computer (Monte Carlo and molecular dynamics)
simulations which provided, for the first time, insight into the rich and new physics of
strongly coupled fully ionized plasmas. While theorists scrambled to provide a theoretical
underpinning for these results, there was also a dearth of real experimental input to reinforce
the computer simulations. Over the past few years this situation has changed drastically and a
variety of direct experiments on classical, pure, strongly correlated plasma systems (charged
particle traps, dusty plasmas, electrons on the surface of liquid helium, etc.) have become
available. Even more importantly, entire new area of experimental interest in condensed
matter physics have opened up through developments in nano-technology and the fabrication
of low-dimensional systems, where the physical behavior, in many ways, is similar to that in
classical plasmas.

Strongly coupled plasma physics has always been an interdisciplinary activity. In fact
its roots are in the study of simple condensed matter systems, such as solid and liquid metals,
electrolytes, molten salts, etc. The recent burst of activity in the field of dusty plasmas has
reinforced the link with charged colloidal systems. Astrophysics has always been the field
with some of the most important applications of the theory of strongly coupled plasmas. It
is in recognition of this interdisciplinary character of the field that the International Advisory
Board decided to change the name of the conference series from “International Conference
on Strongly Coupled Plasmas” to “International Conference on Strongly Coupled Coulomb
Systems.”

There were 156 participants attending the conference, presenting papers out of which
there were 18 Invited Review Papers and 53 Invited Topical Talks, covering a substantial
number of different areas. Some of the pioneers who were present 20 years ago and were so
instrumental in developing the field into a new discipline were not with us anymore. Eugene
Gross was a pioneer not only in strongly coupled plasmas, but in the entire field of plasma
physics and became a staunch advocate of maintaining the dialogue between the plasma
physics and condensed matter communities. John Malmberg was one of the few visionaries
who realized the feasibility of creating strongly coupled plasmas in the laboratory. Kundan
Singwi’s name is linked with the STLS approximation, that started out as an approach for the
electron gas in metals and has grown into a tremendously successful method in many areas.
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There were three sessions during the conference devoted to these colleagues’ memory. This
volume is dedicated as a further tribute to them and to their work.

This conference would not have been possible without the generous financial support of
a large number of government agencies. Thanks are due to AFGL, AFOSR, DOE, NASA,
NSF, and ONR for recognizing and supporting the many ramifications of the works presented
at the conference. The host institution, Boston College, graciously provided space, facilities,
technical support, and manpower without which the conference could not have taken place.
Special thanks are due to the offices of the Academic Vice President, of the Dean of the
Graduate School, of the Dean of the College of Arts and Sciences, and of the Chair of the
Department of Physics for support, financial and otherwise. Out of the many people who
were exceptionally helpful, the Organizing Committee is especially indebted to Joan Drane,
Shirley Lynch, Giulio Gambarota, and Paul Emery of the Department of Physics and to Ellen
MacDonald of the Bureau of Conferences.

The composition of the newly constituted and expanded International Advisory Board
also reflects the complementary roles of the various disciplines in the field of strongly coupled
Coulomb systems. The roster of the membership of the Board and also of the Organizing
Committee appears on the page vii—these are the individuals who are ultimately responsible
for the success of the conference.

Gabor J. Kalman
J. Martin Rommel

Krastan Blagoev
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EQUATION OF STATE FOR BINARY IONIC PLASMAS,
FLUID AND SOLID PHASES

Hugh E. DeWitt1 and Wayne L. Slattery2

1Lawerence Livermore National Laboratory,
Livermore, CA 94551

2Los Alamos National Laboratory,
Los Alamos, NM 87545

This paper gives a summary of the most recent Monte Carlo simulation data for
the internal energy, U/NkT, for the the One Component Plasma (OCP) and Binary Ionic
Mixtures (HIM) for both fluid and solid phases. The Monte Carlo results are compared
with Molecular Dynamics results of nearly the same accuracy. The OCP fluid and solid
data are used to give the most accurate available equation of state for both the fluid and the
crystalline (bcc) phases of the OCP. For the BIM mixture with 5% charge 2. and 95%
charge 1. the deviations from linear mixing are given to the best available accuracy. These
results make it possible to obtain the classical contribution to the screening enhancement
of thermonuclear reaction rates for white dwarf stars. Current results on deviations from
linear mixing are also given for random ionic mixtures for which the two different charges
are placed randomly on bcc lattice sites. It is found that the deviation from linear mixing in
the crystalline solid is roughly an order of magnitude larger than deviations from linear
mixing for BIM fluids. The data supports the conclusion that the phase diagram for a BIM
mixture is spindle shaped for carbon and oxygen mixtures found in white dwarf stars.

INTRODUCTION

Numerical simulations of strongly coupled plasmas during the past 30 years using
Monte Carlo methods (MC) and Molecular Dynamics (MD) methods have given detailed and
accurate results for the equation of state of classical point ions immersed in a rigid uniform
neutralizing background. With only one component this mathematical model, the One
Component Plasma (OCP), has a played a role in strongly coupled plasmas similar to that of
the hard sphere system for understanding neutral liquids and solids. With two different
charged ions, and we will refer to the system as the Binary Ionic Mixture (BIM).
This model has extensive uses in the description of very high density matter
gm/cc) as found in white dwarf stars and at the still higher densities found in neutron stars.
In this extreme situation found in white dwarf interiors the degenerate electrons form the
nearly rigid neutralizing background and give the positive pressure that holds the object to a
finite size. The deep interior of a white dwarf has Coulombic correlations that are so strong
that the ions crystallize in spite of the high temperature, and outside the freezing front there is
a strongly coupled Coulomb fluid of ions. The electron Fermi energy is so much larger than

Strongly Coupled Coulomb Systems
Edited by Kalman et al., Plenum Press, New York, 1998 1



the temperature that the electrons and ions are nearly decoupled. This situation approaches
the model BIM with its assumed rigid background.

MC and MD simulations give basically the Coulombic interaction energy of the ions,
U/NkT and the ion-ion pair distribution function. One also obtains the Helmholtz free
energy, the heat capacity, and the screening function that influences the rate of
thermonuclear reactions. The knowledge of the free energies of the fluid and solid phases
makes possible the determination of the freezing conditions for the OCP and BIM. Also
when the phase diagram of the BIM is sufficiently well known it will be possible to
determine the degree of separation of different elements during the freezing process. These
processes seriously affect the evolution of white dwarfs over a time of several billion years,
and provide motivation for the current work.

The Coulomb crystallization process is also observed in terrestrial laboratories. At
NIST in Boulder, CO a cloud of roughly one quarter million  ions in a Penning trap and
cooled by laser cooling to milli kelvins, have been observed to go into the anticipated bcc
lattice1. This experiment opens up the possibility of laboratory studies of Coulomb
crystallization. At Livermore in the EBIT program and are being trapped
together so that this and other ionic mixtures can be studied.

The computer simulations require access to very fast computers and a lot of time on
them. Both MC and MD use periodic boundary conditions so that the number of particles in
the basic cell is conserved. Because of the long range of the Coulomb potential, 1/r, it is
also necessary to replicate the N charges in a 3D cell in every direction to infinity and
calculate the Ewald potential2,3. Also to obtain sufficient accuracy one must estimate the N
dependence of the simulations, typically O(1/N). With N 1000 it is now possible to
obtain results for U/NkT to an accuracy of at least one part in  and perhaps even
This kind of accuracy is absolutely necessary in order to define the location of the freezing
transition and to obtain the phase diagram of ionic mixtures.

OCP FLUID AND SOLID

The OCP has been extensively studied by MC for three decades and by MD in recent
years. The system is conceptually simple since there is only one dimsionless paramater,

with so that the internal energy is a function of only this
quantity; thus U/NkT = Since this internal energy is the sum of all pairwise Coulomb
interactions of point charges moving in the assumed rigid uniform background, this energy
is always negative. The pressure contribution from the Coulomb interactions is given
exactly by the virial theorem, and thus is In a real physical system this negative
pressure must be balanced by the positive pressure from the kinetic energy of the ions and
the large positive pressure of degenerate electrons as in white dwarf stars. For the
system isweakly coupled and the thermondynamic functions are given by Debye-Huckel
theory. For the range the system is in intermediate coupling, and quantitatively
the thermodynamic functions are given accurately by the Hyper-Netted Chain (HNC)
equation. The strongly coupled region starts at and the strongly coupled Coulomb
fluid is in the range where 172 is the currest estimate of the phase transition
from fluid to the bcc lattice. Although the HNC equation continues to be remarkably good
for much larger than 1, it does fail in accuracy because of the neglect of bridge function4,5.
The earlier MC studies of Hansen and Pollock2,3 used N = 128 and 250 particles and the
energies were obrtained by averaging over a few million configurations. Later work6

increased N up to 686 and energies were obtained by averaging over a few tens of million
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configurations. The most accurate currently available results are obtained with N = 1000 and
averages over a few hundred million configurations7.

so that a,b, c, and s are fitting parameters. The value of a which is often referred to as
the fluid Madelung constant turns out to be close to a = -9/10, and s is close to 1/3. For the
solid phase data for the bcc lattice the basic form is:

where = -0.859929 for the bcc lattice and -0. 895873 for fcc. The first order
anharmonic term has been evaluated exactly using lattice dynamics by Dubin7; he obtained

= 10.84 for bcc and 12.35 for fcc.  can be found only from sufficiently accurate MC
data for the bcc lattice; Dubin’s estimate is about 350.  is the static lattice energy, and

is the thermal energy due to lattice vibrations.
The current 'best' fit to the most accurate available 13 MC data point for the OCP fluid

are:
a = -0.899147
b= 0.604455
c = -0.277175
s = 0.322232

= 0.000488

Note that the value of the fluid Madelung constant, a, less than by
All reasonable fitting functions to the OCP MC data indicate that the value of a

is closer to -9/1 than to Rosenfeld8 has shown that the asymtotic form of from
the HNC equation is The lower power of the exponent in the thermal
energy of the fluid OCP that is found from the MC data is evidently due to the bridge
function. DeWitt and Rosenfeld9 using a variational hard sphere approach and the Percus-
Yevick hard sphere virial entropy obtained s = 1/4. The same approach using the
compressibility PY entropy10 gives s = 2/5. The MC fluid data suggest that the thermal
energy is dominated by a power law with an exponent s somewhere between .3 and .4. It
should be emphasized, however, that there is no fundamental theory yet for the fluids
governed by the 1/r potential or other inverse power potentials, Thus Eq. 1 should be
viewed as only a fitting function.

The MC fluid simulations are done from a random start of the N charges; this
corresponds to correlations of The system equilibrates after a few million
configurations. If one uses a random start for values of in the solid region, then after
equilbration the system will remain in a supercooled fluid state, but will eventually freeze11

usually into an imperfect bcc lattice, but sometimes into a perfect lattice without defects.
Freezing was observed with N = 686 from a random start for values of  ranging from 250
to 700. One may also start the MC process with all the N charges on bcc lattice sites. When

is in the solid region the MC process creates the thermal energy of lattice vibrations as
indicated by Eq. 2. However, if is in the fluid region, then the lattice will be superheated
and eventually melt. The superheated lattice is reasonably stable in the range from = 145

3

The strongly coupled MC data for the fluid has been fitted to a variety of

forms of which the following has proved to be very convenient:



to 170. One does not ever see a coexisting two phase region, namely fluid and solid
together.

To locate the transition value of  the procedure outlined by Pollock and Hansen3 is to
find the value where the fluid and solid Helmholtz free energies cross. The fluid Helmholtz
free energy is the sum of the ideal gas form (for the ions) plus the temperature integration of
Eq. 1 from infinity down to T, which is straightforward with a simple fitting function like
Eq. 1. For the solid Helmholtz free energy one integrates from T = 0 to T, and takes into
account the entropy constant for the OCP obtained by Dubin9. The Helmholtz free energy
lines do cross, but they are so nearly parallell, that a very small change in the constants in
either Eq. 1 or 2 will give a widely different result. Consequently the estimated values of the
crossing point have varied from 173 in 19733 to 178 in the '80's6 as the accuracy of the
fluid data increased. When Dubin9 in 1990 obtained a non-zero value for the coefficient of

for the first anharmonic term in Eq. 2,
the estimate decreased slightly to = 172. It should be noted that the OCP fluid-

lattice transition is not a usual first order phase transtion because the volume change is
decreed by the model to be zero. There is, however, a change of the internal energy and a
change in entropy. A striking feature of phase transition is that the fluid thermal energy at
the transition is about 50% larger than the bcc thermal energy. Also the thermal energies of
the two states of the OCP at the transition are only one to two percent of the Madelung
energy; this fact again shows why great accuracy is required to understand the properties of
the OCP.

Farouki and Hamaguchi12 have done MD simulations of the OCP, also with N =
1000, and have essentially reproduced the MC results. In the MD process both the kinetic
and the potential energy are computed at the same time by integrating Newton's equations of
motion for the N particles. The temperature is defined by the sum of the kinetic energies of
the particles and consequently it fluctuates a bit as the equations of motion are time stepped
forward. The temperature is rescaled periodically to give a desired value of In spite of
this slight difficulty the MD results are remarkably close. Thus at MD gives

and MC gives MC may be slightly more
accurate when the computer is run longer, but for practical purposes the two simulation
methods give the same results for the OCP in both fluid and solid phases.

Likos and Ashcroft13 have applied a modified form of density functional theory to the
freezing of the OCP taking into account the special feature that They obtain the
transition at for the bcc lattice in good agreement with the result obtained by
crossing of free energies. Quantum effects (uncertainty principle) become important even
for the C and O ions in a white dwarf star14 when the thermal deBroglie wavelength is a
significant fraction of the interparticle spacing. In the most massive white dwarf stars the
freezing temperature is lowered by about 10% which increases the freezing gamma to over
200. Quantum effects also significatnly change the form of the thermal energy for the solid
and the fluid phase as well. Jones and Ceperley15 using a quantum path integral Monte
Carlo simulation have obtained an approximant phase diagram for the quantum OCP and
results for the quantum fluid thermal energies.

BIM FLUID AND SOLID

For the binary ionic mixture MC simulations with ions of charge
and we need a few extra quantities to specify the system. The neutralizing background is
rigid as witth the OCP, but the equivalent number of electrons is The
chemical compositions are indicated by:
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and the appropriate coupling parameters are:

The mixture internal energy is:

where Eq. 4 indicates the linear mixing approximation with the characteristic weighting of
ion charges to the 5/3 power. A similar expression gives the linear mixing form for the

Particularly for the BIM fluid the values of are so small, typically as low as 0.003, that
they nearly disappear into the noise of the MC simulations. Thus to obtain dependable
values of  it is essential to do three MC runs for each mixture, one for the mixture itself
and one OCP run for each value of and Ogata, lyetomi, Ichimaru, Van Horn16

(OIIVH) did a very thorough study the BIM for both fluid and solid states with MC runs of
1000 charges and averages over a few tens of million configurations. Their solid results are
sufficiently accurate, but their fluid BIM estimates of were spuriously negative for small
values of the second species of charge, i.e. as a consequence of using a slightly
inaccurate fit for the OCP. DeWitt, Slattery, Chabrier17 (DSC) did simulations 20 to 50
times longer than the fluid runs of OIIVH in order to reduce the MC error by roughly another
order of magnitude. These runs were several hundred million configurations. The
general conclusions from DSC are:
i) Linear mixing models the BIM fluids extremely well, and mainly because the fluid
Madelung term is confirmed to behave as and
ii) is always positive, but small, namely in the range of +0.001 to +0.020
iii) is nearly constant for  less than about 10, and shows only a slight decrease
for larger values of      The       behaviour suggested by OIIVH is not indicated in the more
accurate fluid data of DSC.

The following Table gives MC BIM fluid results for the mixture

5
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It should be clear from the size of the values for and the associated error estimates
that the determination of deviations from linear mixing is a difficult job. The fitting functions
in OIIVH for (their Eq. 12) and       (their Eq. 16) do not reproduce the more accuarate
data for these two quantitities given in DSC. Particularly OIIVH have negative values of
and hence also for  for which are due to their slightly inaccurate fitting function for the
OCP energy data. The size and sign of has a significant effect on the phase diagram for
BIM. Thus OIIVH have a tiny azeotropic section in their phase diagrams (their Fig. 7). The
density functional estimates of the BIM phase diagrams obtained by Segretain and
Chabrier18 are probably more reliable. They that the phase diagram for a BIM in the range

is spindle shaped, for charged ratios up to 1.72, and greatr than 1.72 it is
a eutectic.

A BIM with and equal number of charges may have the lowest energy configuration
as the CsCl configuration----two intertwined simple cubic lattices. However, in a solidifying
white dwarf star which contains unequal numbers of ions of different charge as well as a
distribution of higher Z elements, the probability of freezing into any kind of perfect lattice
seems remote. More likely a random mixture solid is likely to be preferred. We have done
some simulations on

random solid mixtures by placing the at random on bcc lattice sites
at the start of MC runs. This initial state is not an equilibrium situation. As the MC
simulation proceeds the larger Z ions push the lower Z ions away so that the random lattice at
equilibrium is distorted lattice. The simulation also sets up the thermal vibrations in the
distorted lattice. The consequence is that the deviation from linear mixing for solid BIM is
positive and far larger than it is for the relaxed BIM fluid. Typically the Madelung constant
for the bcc lattice (- .895929) is larger for the random lattice by an amount roughly + .001
for equal numbers of C and O. The deviation from linear mixing of BIM random solids is
dominated by this effect, thus where The solid
mixture MC data of OIIVH for AUBIM agree moderately well with this result.

To summarize the linear mixing approximation is phenomenally accurate for BM
fluids and the tiny observed positive deviations are at the level of a constant, not or

By contrast the linear mixing approximation for randomly mixed solids is still
positive but far larger than in the BIM fluid case. The work left to be done is to generate
more BIM data of great accuracy for both fluid and solid phases so as to construct fitting
functions for and With a sufficiently large data base it
will be possible to construct fitting functions for that can lead to more accurate phase
diagrams. This project is difficult enough already at the stage of the OCP because the
thermal energy of the fluid and solid is only one or two percent of the total energy, thus
requiring great accuracy from long computer runs. For the BIM fluiids and solids the
computational problem is even worse because of the increased number of parameters

Also for the BIM random solids it is necessry to carry out several
simulations with different random starts. This will be a computer intensive project for some
years to come.

YUKAWA PLASMAS

A simple extension of the OCP is the system governed by the exponentially screened
potential, theYukawa potential, where x = r/a and  with

 as screening length in units of a. This system is used to model the fluid and solid forms of
charged colloidal crystals in electrolytic solutions. Crystals of bcc and fcc are commonly
observed19 at sufficiently high values of The screening length is the Debye length for
the electrolytic solution ions. There has been as much research on theYukawa system as on
the OCP, and too much to detail here. In 1994 Hamaguchi and Farouki20 published
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extensive MD results for N = 1000 Yukawa charges for the internal energy,
for both fluid and solid phases. Their results for the internal energy are extensions in

space of their earlier OCP results and are correct. Their integration to obtain the
excess Helmholtz free energy as functions of were inaccurate because of their
approximation that the solid phase entropy constant for the bcc lattice had the same value as
for the OCP. It was pointed out by Rosenfeld21, that this assumption was quantitavely in
error and led to incorrect freezing conditions as a function of Meijer and Frenkel22 had
previously obtained estimates of the freezing conditions with fewer particles, N = 250, that
are correct. The error in the entropy constant as a function of  has recently been corrected
by Hamaguchi, Farouki, and Dubin23 and the freezing value of  has been obtained; they
give at and at More recently that have obtained an
accurate result for the triple point for the bcc lattice, fcc lattice, and the fluid state24.
Yukawa plasma mixtures have been discussed by Rosenfeld25 who gave an accurate non-
linear mixing rule.
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DENSITY FUNCTIONAL THEORY IN 1997

W. Kohn

Department of Physics
University of California
Santa Barbara, CA
E-mail: kohn@physics.ucsb.edu

This paper offers a brief introduction to Density Functional Theory, an assessment of its
strengths and weaknesses and a mention of some current developments. It is meant as an
introduction to this session.

QUICK REVIEW OF BASICS

Density Functional Theory (DFT) is primarily a theory applicable to ground states of
interacting electrons in given external potentials, v(r), although it has been generalized and
extended to many other aspects of electronic and other many body systems. This paper is
intended to serve as an introduction to the following papers in this session.

Traditional wave-mechanical methods of ground state electronic structure are couched in
terms of the Schroedinger many electron wave function, or — in practice —
to approximation of this function. DFT represents a change of viewpoint, in that the central
quantity is the much simpler electronic density distribution, n(r). The fact that the theory
of an N-electron system can be couched in terms of a real, non-negative, function of three
variables, no matter how large the value of n(r), is a consequence of the following lemma
due to Hohenberg and Kohn.1

Let n(r) be the density distribution of the electronic ground state associated with the
external potential v(r). Then any other potential, constant) necessarily has a
ground state with a different density distribution, Thus n(r) uniquely determines the
Hamiltonian of the system and hence, implicitly, all its properties such as the ground state
energy E, the ground state wave function as well as properties of the excited
states, density matrices, Greens’s functions, etc.

The basic variational principle, in terms of n(r), for the ground state energy E (corre-
sponding to the Rayleigh Ritz variational principle in terms of is the following:1 For a
given v(r) we define the Hohenberg Kohn (HK) energy functional

where the functional F[n(r)] can be formally defined2 as
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over the set comprising all antisymmetric states whose density distribution is n (r), and
T and U are the kinetic and interaction energy operators.

Then

In this (exact) formulation approximations for F[n(r)] must be introduced for practical
applications, usually starting with the properties of homogeneous electron-gases of densities
n.

Another route to practical applications, which has been very fruitful, was taken by Kohn
and Sham(KS)3 who, under some assumptions, transformed the HK variational principle into
a set of self-consistent equations, now known as the KS equations. They are analogous to the
Hartree equations but, in principle, include all many body effects:

where the sum over j runs over the lowest N eigenvalues and is the exchange
correlation energy, formally defined as

here the non-interacting kinetic energy functional, is defined, in analogy with (2),
with U = 0, and the limited to single determinants. All many body effects lie in

In the KS formulation of DFT a central issue has been the search for good approximations
to The “mother”-approximation has been the local density approximation

where is the exchange-correlation energy per particle of a uniform electron gas of
density n. This function of one variable is known to an accuracy of better than 1%. In
spite of its simplicity, the LDA has, for most purposes, yielded valuable quantitative or at
least semi-quantitative results, especially for equilibrium (i.e., minimum energy) structures
of molecules and solids.

For binding energies of molecules and solids as well as for barrier heights of chemical re-
actions generalized gradient approximations have yielded substantial improvements
(typically by factors of 3–5) over the LDA. These approximations have the generic form

where the functional form of fxc has been chosen on the basis of various physical considerations
(e.g., sum-rules) and/or by fitting empirical data.

A third, so-called hybrid approach,5 is to take

where is the exact exchange energy evaluated with KS orbitals, is a constant between
0 and 1, and  is an appropriately chosen (different) GGA.
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STATUS IN 1997

In this paragraph I try to convey my assessment of the status of DFT at this time.

Strengths

a. A priori theory. The LDA is a wholly parameter-free, a priori theory, the only inputs
being the positions and charges of the nuclei, It is a very useful benchmark theory.
(The GGA’s are to a greater or lesser degree parameter free.)

b. Simplicity. Solution of the KS equations in LDA is only insignificantly more de-
manding, and much better, than solution of the Hartree equations; it is much simpler than
solution of the Hartree–Fock equations. It therefore provides a useful, quick orientation for
most questions related to the electronic structure of atoms, molecules, clusters, solids etc.
Use of the GGA is more computationally intensive, but very often still the simplest method
available for a given accuracy of the order a few percent.

c. Excellent results for structures. Experience has shown that, for a given “topology”
(e.g., bcs vs. sc), the LDA yields empirical internuclear separation with an accuracy of about
1%. It also generally yields the correct topology unless there is a competing topology within
a few meV/atom.

d. Crystals, Defects, and Surfaces. For periodic crystals where -based
many body approximations become either difficult or non-operative, DFT calculations are
very simple and “scale” as In fact, the LDA has become the standard theoretical method
for most of solid state physics. The same is true for crystalline defects and crystalline surfaces
with or without adsorbed atoms and molecules.

e. Non-periodic Systems of Very Many Atoms. Traditional, Hartree–Fock based
configuration interaction methods scale with the number of atoms as  where according to
present estimates, They are limited to for “chemical accuracy” of 0.1 eV. DFT
calculations scale with  and have been applied to systems with There is
considerable current activity to develop efficient methods which scale linearly in

f. Cohesive and Binding Energies. The LDA typically overbinds by  GGA’s
have errors of typically This makes DFT useful for semi-quantitative or quantitative
estimates and for studies of trends in sets of related systems. At the present time DFT
calculations of molecular binding energies are still short by a factor of 2–3 of the desirable
“chemical accuracy” of 0.1 eV, and the accuracy of calculated reaction barrier heights typically
falls short by a factor of about 5.

g. Temperature Ensembles. Ground state DFT is readily generalized to one-or multi-
component temperature ensembles.7 It is a natural tool for the study of the thermodynamic
properties of plasmas. While for finite T the LDA is reasonably well known,8 GGA’s remain
to be developed.

h. Chemical Concepts. DFT has shed light on chemical concepts such as the chemical
potential, electronegativity and hardness.9

i. Static and Dynamic Electric Polarizabilities. DFT has provided good results for
static and dynamic polarizabilities, and thus also for asymptotic Van-der-Waals forces.10 (See
also sec. 3.)
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Shortcomings

a. Limited accuracy. Of course, any many-body calculation will have finite errors. But
while -based methods, such as the Rayleigh–Ritz variational method, can (given enough
computing power), be systematically made arbitrarily accurate, this is (at least at present) not
the case for DFT. In principle there exist infinite gradient expansions for but in practice
they generally diverge.

At the present time practical DFT can be roughly characterized as a theory with errors in
the 1–10% range. I would be surprised, on the basis of past history and other considerations,
if, within the present conceptual framework, this error can be reduced by as much as an order
of magnitude.

b. Excited states and scattering. Although the calculation of excited states by DFT
is formally possible, and some promising results have been obtained,11 it is my belief that it
is intrinsically not as suited for excited states as for ground states or temperature ensembles.
(This matter will be elaborated in a future publication). No consistent applications of DFT to
scattering of electrons by atoms, molecules etc. are known to me.

SOME ONGOING WORK

Van der Waals energies in DFT

In principle DFT leads to the correct ground state energy E, including long range
attractive Van der Waals energies. However, in both the LDA and the GGA-s the interaction
energy, between two separated components of a composite system, a distance R apart, fall off
asymptotically as  due to density overlap, instead of the correct due to long range
polarization effects.

Recently there has been very good progress in accurately calculating asymptotic Van-
der Waals coefficients, using approximate theories of the dynamic polarizability of the
individual components.10 In ongoing work with Y. Meir and D. Makarov,12 we have obtained
good results for asymptotic Van der Waals energies and developed a theoretical framework
which should allow calculation of the energy E(R) of a composite system as a smooth function
of R, from small values to asymptotically large ones.

Electronic edge structure: The Airy Gas.13

The LDA and GGA-s take as their starting point the uniform electron gas whose KS
functions are oscillatory (corresponding to classical free particles). However any bounded
system of atoms has edge regions in which the KS functions evanesce, (corresponding to
classically forbidden regions). Thus the LDA and GGA-s for are qualitatively
inappropriate in these edge regions.

To correct this deficiency we have put forward the concept of the Airy Gas, designed to
play the same paradigmatic role for edge regions as the uniform electron gas does for bulk
regions. The Airy gas is defined by

where L describes a mathematical cut-off barrier, which tends to infinity. F, the slope of
can be renormalized to 1, so that the KS functions (Eq. 4), become Airy functions of z
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multiplied by plane waves in x and y. The half-space z < 0 is classically forbidden for all
occupied KS energies.

This system captures the essence of the physical edge region, which lies in the interval

For the local properties of the Airy gas approach those of a uniform electron gas at the
local density n(z).

We are currently calculating the single- and many-particle properties of the Airy gas and
of some of its refinements. At a later stage we plan to join the edge region smoothly to the
bulk region, as described by the LDA or a GGA.
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EQUATION OF STATE OF PARTIALLY-IONIZED PLASMAS

Forrest J. Rogers

Lawrence Livermore National Laboratory
P. O. Box 808,
Livermore, CA 94550

The equation of state of partially ionized plasmas is receiving renewed attention due to
recent helio- and astero-seismic measurements and laboratory experiments. The new data
encompasses a wide range of parameter space, ranging from weakly to strongly coupled.
Theoretical methods to treat these plasmas must confront issues concerning plasma
screening of bound states, how strong coupling affects ionization balance, and how to
include electron degeneracy and diffraction.. Two types of methods are used to treat
complicated mixtures, such as occur in stars. Chemical picture methods are based on free
energy minimization and must assert the effect the plasma has on bound states. Physical
picture methods view the plasma in terms of its fundamental constituents so that plasma
screening arises naturally. Herein I give a brief summary of the physical picture method.

INTRODUCTION

The equation of state (EOS) of partially-ionized plasmas has long been of interest in stellar
modeling. Stars having masses similar to or greater than the sun are weakly coupled and
simple models give results that are adequate for many purposes. However,
helioseismology is now able to measure the EOS of the sun, as a function of solar radius,
to an accuracy better than 0.1% [1]. This level of accuracy can not be obtained from
simple models and efforts to develop more rigorous theories are in progress.
The Sana equation [2] is the progenitor of methods to treat partially-ionized plasmas. It
solves a set of coupled equations that balance ideal gas chemical potentials across chemical
reactions occurring in the plasma. In its original form only the isolated particle ground
state of each atomic/ionic component was considered. The next simplest approximation
adds the classical Debye-Hückel Coulomb term corrected for electron degeneracy. In spite
of its simplicity, this is a particularly good model because the deeply bound states are well
represented by isolated (atomic) particles and the Debye-Hückel correction contains most
of the excited bound state contribution [3,4]. Helioseismology supports this theoretical
result [5]. The EOS calculations should also include a correction for electron exchange,
which is large enough to affect comparisons with helioseismic data [6]. In addition there
are small quantum diffraction corrections to the Debye-Hückel Coulomb term which are
not typically included.
For many years it was thought that the next improvement to the Saha equation should be to
add excited bound states perturbed by the plasma environment. Since this problem is
difficult to treat from fundamental theory, a voluminous literature based on ad hoc
approaches was developed. The most commonly used methods to account for
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environmental effects assume either bound state energies from screened potentials or the
confined atom model. This complicates the calculations and it is now known that EOS
based on shifted bound state energies are in significantly worse agreement with
helioseismology than those using unshifted bound states [7].
Neither EOS theory now commonly used to model stellar plasmas screens bound states.
The MHD method [8,9] is a chemical picture approach where the free energy is assumed to
be separable into translational, configurational, and Coulomb interaction components. In
the chemical picture it is necessary to assert the effect of the plasma on bound states.
Based on the null results of Goldsmith, Griem, and Cohen [10], MHD assumes that the
bound state energies are unshifted. Instead, plasma effects enter through an occupation
probability formalism that separates the Boltzmann sum into effective bound and
continuum state parts. The resulting internal partition function is convergent. For neutrals
the bound state occupation probability is obtained from a model based on hard sphere
interactions between atomic cores, while for ions the occupation probability is obtained
from the dissolution of states due to electric microfield fluctuations. The MHD Coulomb
interactions are given by the classical Debye-Hückel term corrected for electron
degeneracy, which effectively limits MHD to weakly coupled plasmas. An ad hoc free
energy term is added to guarantee pressure ionization. Electron exchange and diffraction
corrections are neglected. The ACTEX method [3,4,11,12], is based on a physical picture
approach that carries out a many body activity expansion of the grand canonical partition
function (GCPF). A conceptual advantage of the physical picture is that it views the
system in terms of its fundamental components; i.e., electrons and nuclei. A natural and
important consequence of this approach is that low lying bound states are unscreened.
ACTEX includes electron degeneracy and the leading quantum diffraction corrections as
well as systematic corrections necessary for strongly-coupled regimes.
Other EOS work aimed mostly at dense astrophysical objects has also recently appeared.
In the chemical picture: Saumon, Chabrier, and Van Horn [13] generated EOS tables
suitable for modeling low-mass stars and giant planets. An important feature of their work
is the prediction of a plasma phase transition that may affect models of giant planets.
Potekhin [14] has generalized the arguments of MHD so that the occupation probability of
charged particles is obtained directly without invoking Stark ionization theory. His
method does not require an ad hoc free energy term to produce pressure ionization.
Stolzmann and Blocker [15] have given a treatment of fully ionized dense stellar matter.
They include exchange and charged particle interaction by Padé approximates as well as
relativistic effects. In the physical picture: Perrot and Dharma-wardana [16] have given a
density-functional theory (DFT) method; Kraeft et al. [17] have developed a
thermodynamic Green's function method; Alustuey and Perez [18] have developed a
method based on Feynman-Kac path integrals ; Pierleoni et al. [19] have used the
restricted path-integral Monte-Carlo method to study hydrogen; and Penman, Clérouin,
and Zerah [20] have used density functional molecular dynamics to also study hydrogen.
Due to the extreme accuracy required, it is currently not computational feasible to apply
the simulation methods to helioseismology. Of the remaining methods the quantum
diagrammatic physical picture approaches should give the best comparison with
helioseismic data. So far however this has not been the case, primarily due to the difficulty
of applying these methods in the region of partial ionization. One problem is that the
diagrammatic methods involve a dynamic screened potential that significantly affects the
bound states. The ACTEX approach follows a similar line but introduces some
simplifications that allow it to treat the region of partial-ionization when the deBroglie
wavelength, is less than the Debye length, Consequently, at the corresponding
point in the analysis, ACTEX approximates the dynamic screened potential with a static
potential having screened energy levels. However, it can be shown that in the region of
partial ionization many additional diagrams must be included to treat composite particles
on the same basis as fundamental particles. ACTEX accomplishes this by introducing new
activity variables that are built from products of the fundamental particle activities and the
Boltzmann factors that control the ionization balance between states. The screening
corrections to the isolated atomic states introduced through the screened potential are used
to define the composite particle activities. Consequently, only isolated atomic energy
levels appear in the renormalized expansion. This is where ACTEX goes beyond the more
fundamental approaches. A brief description of the ACTEX methodology is given in
Section 2. Comparisons to helioseismic and shock data are given in Section 3.
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THE ACTIVITY EXPANSION METHOD FOR PLASMAS (ACTEX)

Quantum diagrammatic methods are quite complex and it is difficult to get beyond
asymptotic limits. However, the main affect of quantum mechanics is to remove the short-
ranged electron-ion divergence in the bound state sum. When  it is a good
approximation to first develop the classical theory and then replace classical Boltzmann
factors with their quantum mechanical analogues. This is the approach taken in ACTEX.
At more extreme conditions quantum effects on the distribution of unbound particles
become important.
The classical activity expansion of the GCPF of strongly coupled, fully-ionized plasmas
involves a many-body analysis of a very large number of both singly connected and
multiply connected diagrams. In contrast, only the multiply connected diagrams contribute
to a density expansion of the canonical partition function. Abe [21] showed how to carry
out an all-orders expansion in the density. The leading terms in the resulting convergent
multi-component expression for the non-ideal Helmholtz free energy are

where the indices i, j, k etc. range over all components,

is the ring diagram sum,

is closely related to the second virial coefficient, Bij, of the static screened potential

the n’s number fractions , the Z's are particle charges and,

is the Debye length. The Sijk, and higher order terms systematically replace the divergent
Coulomb virial coefficients with the virial coefficients for the Debye-Hückel potential

(equation.(4)). The terms through order given by equations. (2-5), show that there are
some differences in detail. For example, there appears a term of order  i.e. the Debye-
Hückel Coulomb interaction term, coming from the ring diagrams, while terms of order

and are missing from the screened second virial coefficient.
Equation (1) is a complete many-body solution for classical multi-component plasmas.
Consequently, even though it is an expansion away from weak coupling, it recovers the
Monte-Carlo strong coupling result [12]. It is well known that the grand canonical
ensemble (GCE) is the appropriate choice for partially-ionized plasmas. It would be
difficult to obtain a classical GCE result similar to the Abe result for the canonical
ensemble. The corresponding quantum-mechanical expression, would be even more
difficult to develop. The ACTEX method sidesteps both of these problems. The classical
GCE result for fully ionized multi-component plasmas is obtained from a procedure that
inverts equation (1) in terms of to obtain an expression for P/kT as a functional
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of The result for a two component plasma of electrons, e, and nuclei,  of
charge Z is

where, the ellipsis indicates that cross terms not necessary for the present discussion have
been left out and the

are the activities.
As it stands, equation (6) is not very useful, since it involves operations on the function S
which is a sum over virial coefficients, whereas, a properly constructed activity expansion
of the GCPF should involve cluster coefficients. However, it is a complete result that can
be reorganized in terms of cluster coefficients of the screened potential. For a two
component plasma of electrons, e, and heavy ions of type, the reorganized expression
through terms of order is [ 12]:

subject to the conditions,

In equation (8),

is the ring diagram sum, similar to equation (2),

is the screening length in the GCE, and

is defined for later convenience (the asterisk indicates that U* is not in final form), the

will be referred to as Coulomb cluster coefficients, the  are screened second cluster

coefficients, and are first and second order perturbation terms corresponding to the
linear and square terms in the integral in equation (3), and For two body terms
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The ellipsis in equation (8) indicates that terms of order not needed in the
present discussion are not included.
The second deficiency of equation (6), i.e., the Coulomb short range divergence, can now
be removed by replacing classical Boltzmann factors with their quantum analogs. For
example, the screened classical second cluster coefficient for the interaction is
replaced by

where the trace is over the states of the potential

is the thermal deBroglie wavelength. Beth and Uhlenbeck [22] have shown that equation
(14) can be expressed in the convenient form

where the are bound states and the are phase shifts. Only the phase shift term
contributes to the e-e cluster coefficient, while the second cluster coefficient can be
calculated from the classical expression:

At low temperature the ground state Boltzmann factor in equation (13) completely
dominates the sum, indicating that the equilibrium state is largely composed of hydrogenic
bound pairs. It is easy to show that in this situation the product in equation (8) is
the activity of hydrogenic pairs [12,23]. It follows that in partially-ionized plasmas every
occurrence of the product should be decomposed into linear and quadratic parts.
In general, all occurrences of terms involving electron-ion Coulomb cluster coefficients
for N particles should be decomposed into N terms of order 1 to N in the activity. In the
following we refer to the Is hydrogenic activity as dropping the superscript for
simplicity, i.e.,

In practice this is not the definition of actually used. Compensation [12, 24] between

the bound and scattering state parts of equation (15) replace
For simplicity this is ignored in the present discussion.
The next step in the ACTEX procedure is to reorganize equation (8) to account for the
formation of composite particles as the temperature is lowered. To introduce composite
particles on an equal footing with fundamental particles, it is necessary to find terms such
that appears as a new variable similar to fundamental particles. To lowest order the

reorganized expression for the pressure is where the new activity for
hydrogenic ions becomes from the term At the ring sum level (equation (10))
things are already much more complicated. In order to introduce the screening of
hydrogenic charges into the Debye length, i.e., replace with it is
necessary to find all the terms in the transformation
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To start this process note that (see equation (8)), ignoring the term involving

which is 3/2 order in similar to equation (10). Collecting all terms of order  in
equation (8) gives

This is close to what is needed in 1st order to make the transformation (18), except a cross
term proportional to Z is absent. A term would have to come from interactions
and in fact can be found in

Consider a perturbation expansion of

where is the unscreened state energy. The linear shift is the same for all states and can
be written in the suggestive form

Using this relation we can rewrite equation (21) in terms of the shifted Debye energy levels
[25] according to

Limiting the discussion to just the ground state activity and using (23) in (17) gives

equation. (24) can be used to define an activity for hydrogenic ions in terms of the shifted
Debye energy levels according to

where,

Next, expanding the exponential term involving gives
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The second term in equation (27) is just what is needed to give the factor  in
equation (20). Repeating the process for higher order terms in the expansion of
eventually gives the result

where

Continuing in this way for higher order terms in the activity gives the transformation

, plus extra terms. However, these extra terms obey simple

relations. For example, the sum of all terms of order have the important property:

Higher order terms display similar properties. The introduction of an augmented set of
activities to account for the shifting ionization balance as the temperature and density
change, results in an expansion in terms of The result is similar for
excited states except near the plasma continuum [3].
The discussion so far has been limited to Boltzmann statistics and weak coupling. This has
laid out the essential steps of the method and shows how the addition of diagrams in the
region of partial-ionization, which are not included in more fundamental calculations [12],
leads to an important result regarding bound states. The generalization of the ACTEX
method to include the affect of electron degeneracy is accomplished using the method of
Cooper and DeWitt [26] The effect of exchange is also added. Quantum diffraction
corrections for low order terms are obtained from DeWitt [27]. A method for adding
strong ion coupling is given in [12].

COMPARISON WITH SEISMIC AND EXPERIMENTAL DATA

Until recently it was not possible to validate theories of the EOS of partially-ionized
plasmas by other means. That situation has changed dramatically. Now there are not only
large projects aimed at observing the seismology of the sun to obtain very accurate EOS
data, but also laser techniques that measure the shock Hugoniot. There have been a
number of interesting comparisons between these observational and experimental projects
that can be mentioned only briefly (see the papers by Däppen, Kress et al., and Militzer et
al. elsewhere this Volume).
A number of comparisons of the MHD and ACTEX equations of state have been made to
helioseismic inversions [28-30]. In general both equations of state are in good agreement
with the data, but these studies have found that the ACTEX EOS yields better consistency.
Basu and Christensen-Dalsgaard [31] have recently used the newly available LOW L data
[32] to compare the difference in between the sun and theories. In
this case neither of the calculations stands out as a significantly better match with the data,
although ACTEX matches slightly better overall. Analysis of higher-degree data will
improve the quality of the inversions near the surface, where the greatest theoretical
discrepancies occur. Models using the ACTEX EOS reduced calculated globular cluster
ages by about a billion years, in better agreement with cosmology [33]
Gas gun [34] and laser shock measurements [35] of the deuterium Hugoniot present a
challenge to theory. Starting from a liquid state with a density g/cc these
experiments have reached pressures up to 2.1 Mbar (see Fig.(l)), The Hugoniot data
displays a large maximum in the compression, a value of six at a pressure of 1.5 Mbar,
although for most materials the maximum compression along the Hugoniot generally does
not exceed 4.5. The unusually large maximum compression ratio in deuterium is due to
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the large internal energy of the diatomic initial state. The shock temperature was not
measured, but calculations give a value around 3.5eV at 2 Mbar. Under these conditions
deuterium is mostly dissociated and about 15% ionized. There are large discrepancies
between the theories and between the theories and experiment. Tight-binding MD
calculations [36] give only a slight maximum near  while quantum MC
calculations [9] give a maximum compression ratio around 5 at pressure of 0.7 Mbar. That
there are such large discrepancies between the simulations as well as between the
simulations and experiment is a puzzle. The SESAME model [37] gives results similar to
MD. The Thomas-Fermi-based QEOS model [38] gives a bump at about the same
pressure as experiment, but at substantially lower density. Linear mixing model [39]
calculations agree well with the experimental data, except at the highest pressures. The
ACTEX calculations are in good agreement with the highest pressure data, but they do not
include molecules and so do not extend to the low pressure regime.
Comparisons of ACTEX with high density gas gun and nuclear shock data for Be, Al, CH,

and were recently used to validate [40] the method for up to 9.

DISCUSSION

There are plans to improve the range and the quality of EOS data obtained from helio- and
astro-seismic observations as well as laser shock experiments. This will present an
increasing challenge to ongoing efforts to model the seismic data from physical picture
approaches. The existing discrepancies between MD and MC calculations and experiment
are already causing considerable effort to understand the reasons and should lead to
improvements in these basic approaches. In the next few years it can be expected that
these new experimental and theoretical efforts will expand our understanding of partially-
ionized regime.

Fig.1 Comparison of theory and experiment for the deuterium Hugoniot.
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METALLIZATION OF FLUID HYDROGEN AT 140 GPA (1.4 Mbar)

W. J. Nellis, S. T. Weir, and A. C. Mitchell

Lawrence Livermore National Laboratory
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Livermore, CA 94550

The properties of hydrogen at high pressures and temperatures are important for the
interiors of giant planets, such as Jupiter and Saturn, and for Inertial Confinement Fusion.
Electrical conductivity measurements indicate that hydrogen becomes a metallic fluid at 140
GPa, ninefold initial liquid- density, and 2600 K. Metallization density is defined to
be that at which the electronic bandgap is reduced by pressure to at which
point  is filled in by fluid disorder to produce a metallic density of states with a Fermi
surface and the minimum conductivity of a metal. High pressures and temperatures were
obtained with a two-stage gun, which accelerates an impactor up to 7 km/s. A strong
shock wave is generated on impact with a holder containing liquid hydrogen at 20 K. The
impact shock is split into a shock wave reverberating in hydrogen betweeen stiff
anvils. This dynamic compression heats hydrogen quasi-isentropically to about twice its
melting temperature at 100 Gpa pressures and lasts ~100 ns, sufficiently long to achieve
equilibrium and sufficiently short to preclude loss of hydrogen by mass diffusion and
chemical reactions.

The measured electrical conductivity increases four orders of magnitude from 93 to
140 GPa and is constant at 2000 from 140 to 180 GPa. This conductivity is the
same as that of Cs and Rb undergoing the same transition from a semiconducting to
metallic fluid at 2000 K. This measured value is also within factor of 5 or less of hydrogen
conductivities calculated with the following models: (i) minimum conductivity of a metal,
(ii) Ziman model of a liquid metal, and (iii) tight-binding molecular dynamics. At
metallization this fluid is ~90 at.% and 10 at.% H with a Fermi energy of ~12 eV.
Fluid hydrogen at finite temperature undergoes a Mott transition at where

is the metallization density and a* is the Bohr radius of the molecule. Metallization
occurs at a lower pressure in the fluid than predicted for the solid probably because
crystalline and orientational phase transitions, which occur in the ordered solid and inhibit
metallization, do not occur in the fluid

Tight-binding molecular dynamics calculations by Lenosky et al suggest that fluid
metallic hydrogen is a novel state of condensed matter. Protons are paired transiently and
exchange on a timescale of a few molecular vibrational periods, ~10-14 s. Also, the
kinetic, vibrational, and rotational energies of the dynamically paired protons are
comparable. These tight-binding calculations indicate that the measured conductivity is
the minimum conductivity of a metal.
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INTRODUCTION

Hydrogen has been the prototypical system of the insulator-to-metal transition ever
since Wigner and Huntington1 predicted in 1935 that the insulating molecular solid would
transform to a conducting monatomic solid at sufficiently high pressure, P, or density, D, at
temperature T = 0 K. Substantial pressure is required to do this because solid molecular
hydrogen is a wide bandgap insulator at ambient. The original theoretical
estimate of the required pressure was 25 GPa. Since that time, the estimated pressure has
ranged up to 2000 at 0 K. The best recent theoretical estimate is 300
Extrapolation of recent pressure-volume experimental data at static pressures up to 120 GPa
in the hcp diatomic solid phase yields a predicted dissociative transition pressure of 620

It is also possible that metallization occurs within the diatomic solid, without a
transition to the monatomic phase. In this case metallization would be achieved by reduction
to zero of the electronic energy gap separating filled valence-band states from empty
conduction-band states. However, this metallization pressure is structural dependent5-7 and
the structure of solid hydrogen at metallization is not known. Metallization in the solid has
not been observed experimentally by optical measurements up to 250 GPa in the diamond
anvil cell.8-10

Hydrogen is of great importance for planetary science because its cosmological
abundance is about 90 at.%. Jupiter and Saturn contain over 400 Earth masses, most of
which is hydrogen. Jupiter-size planets now being discovered close to nearby stars11

probably contain massive amounts of hydrogen as well. The interiors of giant planets are at
high pressures and high temperatures in the fluid12 because of the large mass and low
thermal conductivity. Jupiter has the largest magnetic field in our solar system. This field
varies from 14 G at the north magnetic pole to 11 G at the south magnetic pole, versus 0.5 G
on Earth. Magnetic fields of giant planets are produced by the convective motion of
electrically conducting hydrogen by dynamo action.

The equation of state of fluid hydrogen is important for inertial confinement fusion. A
fuel pellet composed of the hydrogen isotopes deuterium and tritium is placed in a hohlraum
and radiated by a multistepped, high-intensity laser pulse.13, 14 The first step of the laser
pulse produces a ~100 GPa shock and the successive compressive pulses comprise a quasi-
isentrope to much higher pressures, similar to the compressive process used in our
conductivity experiments.

Because of the high kinetic energy of the impactor (0.5 MJ) in our experiment, we are
working at a confluence of High Energy and Condensed Matter Physics. This energy is
comparable to the total kinetic energy of the proton/antiproton beams in the Tevetron at the
Fermi National Accelerator Laboratory. The high kinetic energy enables discovery of novel
states of condensed matter, analogous to the discovery of novel states of subnuclear matter.

The reason solid hydrogen has not been oberved to metallize at static high pressures is
probably caused by phenomena which occur in the ordered solid, including, structural and
molecular orientational phase transitions.15, 16 Thus, a logical place to look for metallization
is in the disordered fluid at temperatures just above melting at high pressures. In this case,
metallization is expected when high pressure reduces where is Boltzmann's
constant. When thermal smearing and fluid disorder fill in the energy gap, a
metallic density of states is achieved, and the electronic system has a Fermi surface and the
minimum conductivity of a metal.

FINITE TEMPERATURES

It is extremely difficult to produce a stable hydrogen sample at high temperatures.
Hydrogen is so mobile that when it is heated statically above 500 K, it rapidly diffuses away
into the solid walls of the sample holder.17 Thus, it is essential that hydrogen be heated for a
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very brief time, say ~100 ns, which is sufficiently fast that hydrogen cannot be lost by
diffusion. Shock compression is ideal because the sample is compressed to high pressures
and simultaneously heated adiabatically and uniformly for ~100 ns. The calculated
temperature is ~3000 K, which is larger than the estimated melting temperature of ~1500 K
at 140 GPa,17,18 the observed pressure of metallization. A hydrogen temperature of 3000 K
is relatively low because the electronic energygap is 15 eV at ambient pressure and the zero-
point vibrational energy of the molecule is 0.3 eV. The time duration of ~100 ns is
sufficiently long to obtain both thermal equilibrium and an equilibrated configuration of
current flow and sufficiently short to avoid the growth of Rayleigh-Taylor instabilities and
loss of hydrogen by mass diffusion.

METALLIZATION EXPERIMENTS

The experimental configuration is illustrated in Fig. 1. A layer of liquid  or is
compressed dynamically by a high-pressure shock wave reverberating between two stiff,
electrically-insulating sapphire (single-crystal disks, or anvils. The two sapphire
anvils are contained between two Al plates, which are part of a cryostat at 20 K. The
compression is initiated by a shock wave generated when a metal plate, launched by a two-
stage light-gas gun at velocities up to ~7 km/s, impacts the Al plate on the left. This shock is
amplified when it is transmitted into the first sapphire disk. The first shock pressure in the
liquid is ~30 times lower than the shock incident from the sapphire. The shock then
reverberates quasi-isentropically between the two anvils until the final hydrogen pressure
equals the pressure incident initially from the sapphire. The P-D states achieved by shock
reverberation are illustrated in Fig. 2. The loading path consists of an inital weak shock
followed by a quasi-isentrope. The final temperature produced by a reverberating shock is
about 1/10 what it would be for a single shock to the same pressure.19 This figure shows
that states achieved by shock reverberation are relatively close to the 0 K isotherm and at
much higher densities than for the Hugoniot.

Electrical resistance of the hydrogen sample was measured versus time by inserting
electrodes through the anvil on the right in Fig. 1. Either  or samples were used,
depending on the final density and temperature desired,  giving lower final temperatures

Figure 1. Schematic of electrical conductivity experiments on fluid hydrogen. Metal impactor
is launched by 20-m-long two-stage gun. Four electrodes in (a) are connected to circuit in (b).
Sapphire disks are 25 mm in diameter; liquid hydrogen layer between sapphire disks is 0.5 mm
thick. For conductivities lower than metallic, two probes were used. Trigger pins turn on
recording system. All cables are coaxial.
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Figure 2. Effect of rise time on pressure-density states. (a) First pressure in hydrogen is
/30, where is incident shock pressure in Successive reverberations comprise quasi-
isentrope up to pressure This quasi-isentrope is represented by ramp over ~50 ns from

up to . After reverberation is complete, is held for ~100 ns. If were achieved in

one jump, this state would be on single-shock Hugoniot. (b) Equation-of-state curves plotted as
pressures versus densities: 0 K isotherm, points reached by shock reverberations, and single-
shock Hugoniot. Initial point is liquid at 1 atm.
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than That is, because the initial mass densities of liquid and differ by a factor of
2.4, the final shock-compressed densities and temperatures also differ substantially. There is
no isotope effect at these densities and temperatures.

At present there is no way to measure hydrogen density and temperature because the
high-rate deformations caused by the reverberating shock renders the sapphire anvil opaque.
Thus, density and temperature were calculated using two reasonable equations of state of
Ross20 and of Kerkey.21 The results did not vary significantly. The conservative
uncertainties derived from these calculations are 5% in density and 20% in temperature. The
experimental data are plotted in Fig. 3 as electrical resistivity versus pressure,22 in Fig.
2a. Electrical resistivities measured under single-shock compression were reported
previously.23

RESULTS

In the semiconducting range, 93-135 GPa, the data were fit to the dependence of a
thermally activated semiconductor. The result is - ( 54.7 )( D - 0.30 ), where

is the activation energy in eV and D is in moles/cm3. derived from this fitting
procedure and are equal at a density of 0.32 mol/cm3 (9-fold initial liquid- density)
and a temperature of ~2600 K (0.22 eV). At 0.32 mol/cm3 and 2600 K the calculated
pressure is 120 GPa, close to 140 GPa at which the slope changes in the electrical resistivity
(Fig. 3). At pressures of 140 to 180 GPa the measured hydrogen resistivity is essentially
constant at a metallic value of Thus, fluid hydrogen undergoes a continuous
transition from a semiconducting to metallic fluid at 140 GPa, 0.32 mol/cm3, and a
temperature of ~2600 K.

Figure 3. Logarithm of electrical resistivity of and samples plotted versus pressure.

Slope change at 140 GPa is transition from semiconducting to metallic fluid.
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DISCUSSION

This measured metallic value of is essentially the same resistivity as that of
the fluid alkali metals Cs and Rb at 2000 K undergoing the same transition.24 This metallic
resistivity of Cs, Rb, and hydrogen is achieved at essentialy the same Mott-scaled density of

where is the density at metallization and is the Bohr radius. Mott's
preferred value is 0.25. The Bohr radius is the same for and H,25 so this relationship
cannot distinguish whether hydrogen is in the form of dimers or monomers. Based on Ross'
bulk thermodynamic calculations, an estimated 5% of the molecules are dissociated.22 Tight-
binding molecular dynamics26,27 simulations also show that fluid metallic hydrogen at these
temperatures is essentially molecular. Since the size and shape of and H are very similar,
at 3000 K in the fluid the two are probably miscible. Thus, the energy gap we measure is
probably that of the mixture of and H. Neglecting dissociation and assuming one
conduction electron per molecule at metallization density, the free-electron Fermi energy
of metallic fluid hydrogen is  as for solid Al. Since at metallization
metallic fluid hydrogen is degenerate, highly condensed matter.

The measured value of 500 is bracketed by simple theoretical models. The
minimum electrical conductivity of a metal is given by

where e is the charge of an electron, h is Planck's constant, and a is the average distance
between particles supplying the electrons.28 In this case This calculated
minimum conductivity corresponds to a resistivity of

The measured metallic conductivity is in reasonable agreement with that calculated for
a strong-scattering free-electron system. The Drude conductivity of a metal, is given by:

where is the number of electron carriers per unit volume at the Fermi energy  e and
m are the charge and mass of the electron, respectively, and

is the relaxation time for electron scattering, where  is the mean free path of an electron and
is its Fermi velocity. Since our measured metallic conductivity is the minimum

conductivity of a metal, by definition the mean free path, is the distance between particles
supplying the electrons or at metallization  The velocity of a conduction
electron is the Fermi velocity, cm/s, of a system with a Fermi energy of 12 eV. The
number density of free-electron carriers at the Fermi level is the total electron density,
reduced by the factor Thus, the calculated conductivity is 600  which
corresponds to a resistivity of

A preliminary calculation of the electrical resistivity of molecular liquid metallic
hydrogen in the Ziman model yields a resistivity of

The electrical conductivity of fluid metallic hydrogen has been calculated using tight-
binding molecular dynamics.26,27 At 140 GPa and temperatures in the range 1500 to 3000
K, the calculated resistivities are 500 to respectively.

Since all these calculations produce electrical resistivities within a factor of 5 or less of
the measured value, our measurement of 500 mW-cm is quite reasonable.
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Iodine is another molecular element which metallizes at much lower pressure in the
liquid than in the solid, 3 GPa31 rather than 16 GPa,32 respectively.

The tight-binding simulations show that protons are paired transiently and exchange on
a timescale of a few molecular vibrational periods,               When averaged over times long
compared to the lifetime of a pair, the system behaves as though there is an equilibrium
concentration of molecules and momomers. These MD simulations also show that rotational
energies of the transient pairs are comparable to the kinetic and vibrational energies, which
complicates calculation of the electrical resistivity. This picture of a fluid in which protons
which comprise transient pairs and monomers continually exchange on a dynamical timescale
of s and in which characteristic times for collisions, vibrations and rotations are
comparable describes a novel state of condensed matter.
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Abstract Recent experiments on electrolyte solutions suggest that the critical
behavior of binary fluids in which Coulombic forces dominate may differ from
that exhibited by most systems. To attack this problem theoretically, the full
Debye-Hückel (DH) thermodynamic theory (that recognizes ionic hard cores) was
extended by Levin and Fisher to include (+,–) ion pairing and dipolar-pair-ionic-
fluid solvation contributions; now DH theory has been generalized to provide, in
a natural way, density and charge correlation functions, both needed to assess
critical behavior. The predictions for the various correlation lengths of the RPM,
the symmetric, hard-core model, prove exact at low densities. The appropriate
Ginzburg criterion supports standard (Ising-type) criticality; but that might be
modified by the explicitly predicted charge-density oscillations that set in near
criticality.

I. COULOMBIC CRITICALITY AND CROSSOVER

The universality of behavior in the neighborhood of a critical point is now
well established on both theoretical and experimental grounds (see e.g. [1]). In
a nutshell, the critical exponents describing the singular behavior of fluids, alloys,
ferromagnets, ferroelectrics, superfluids, etc., near critical points, and many dimen-
sionless ratios and functions depend only on very general features of the physical
system in question: foremost is the spatial dimensionality d ; next, although to
a quantitatively lesser degree, the tensorial character of the “order parameter” is
crucial; the particular forces driving the phase transition and criticality normally
play no role! But see [1] for a discussion of exceptions when long-range, power-
law forces are present: the issue here is “How exceptional are Coulombic forces?”
Thus, in typical, nonionic fluids, if is a density (or composition) variable, two
phases with densities and may coexist below the critical
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point at Then, asymptotically, as one finds

where the critical exponent takes a universal (d = 3, Ising) value
(while the amplitude, B, and, of course, depend on the details of the

system). This widely observed and theoretically rather well understood result [1]
contrasts starkly with the “classical,” van der Waals, mean-field, or Landau pre-
diction (which can usually be valid only when

Now many electrolyte solutions do, indeed, obey (1) with : see
the reviews [2, 3, 4]. However, Pitzer [2-5] has reported on a particular system
— triethyl-n-hexyl ammonium triethyl-n-hexyl bromide in diphenyl ether or, for
short, in — which fits (1) well down to  but with the
classical value Furthermore, this system was specifically designed to
mimic the simplest idealized picture of an electrolyte that is embodied in the so-
called restricted primitive model (RPM), namely, equisized
hard spheres of diameter a , one half carrying charges +q , the other – q , in a
medium of dielectric constant D (chosen to represent the solvent). This is just the
model treated by Debye and Hückel in 1923 [6].

Further experiments above [2-4] have supported the conclusion that Pitzer’s
salt solution obeys a van der Waals (rather than an Ising-type) equation of state
[7]! In particular, turbidity measurements (see [2-4]) indicate that the reduced
(osmotic) compressibility, and the associated density correlation length,

diverge as

with exponents and [2, 3, 7] close to the classical values,
in place of the usual Ising values,

From a theoretical viewpoint, and  are both derived from the Fourier
transform of the density-density correlation function

via

as Notice that is quite distinct from the charge correlation
length, alias the standard Debye screening length, that, in
turn, describes the decay of the charge-charge correlation function,

Since the density, , is the order parameter for
the gas-liquid (or “plasma”) phase transition [8], the correlation function of primary
interest in the critical region is However, the behavior of near
criticality is not reliably known [3(a), 9] and, as will be indicated below, it might
play a significant role.

Although the critical behavior of the Pitzer solution seems wholly classical,
other electrolytes, notably sodium-ammonia solutions and certain organic salts
in solvents of low dielectric constant [2-4] display crossover: for temperatures

i.e., outside the crossover scale, which depends on the system, classical
(effective) exponents are seen; but for the behavior
crosses over to standard Ising-type behavior, the true asymptotic exponents
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0.32, appearing for It is, indeed, possible — perhaps even
likely — that the Pitzer solution would, if the observations could be extended,
exhibit Ising-type behavior for

The crucial theoretical questions [3] thus become: “What determines the values
of in real systems? And, what is the value of in the restricted primitive
model?” It is most tempting to speculate that the RPM, with only Coulombic
and hard-core interactions, has a very small value of , say then the
observation of values [2-4], would most naturally be attributable to
the presence of van der Waals forces, hydrogen bonding, etc. The balance of this
article reviews briefly the work of the authors and their associates (Yan Levin and
Xiao-jun Li) to test this scenario [10-13] focusing, in particular, on a generalization
of DH theory [14-16] that yields the charge and density correlation functions, in
a natural way that proves, furthermore, to give exact, universal results in the low
density limit [14, 17] and to satisfy various thermodynamic bounds, in contrast
[18] to the predictions of the mean spherical model and its generalizations and
extensions (see, e.g., [19, 20]).

II. DEBYE-HÜCKEL THEORY

An exact analysis of the RPM would, clearly, reveal its critical behavior and
the value of any crossover scale But, in default of that, a renormalization-group
(RG) treatment [1] should elucidate the Ising (or other) character of Coulombic
criticality; more quantitatively, the implementation of a Ginzburg criterion (for the
validity of a classical theory) ought to provide estimates for [10, 15, 19(b)]. As
a basis, however, these two latter approaches, require a reliable, ‘first-level’ approx-
imation or mean-field description that captures the essential physical features in
the critical region and provides reasonable quantitative accuracy. Such a descrip-
tion is now available for the thermodynamic properties of the RPM in the so-called
DHBjDIHC theories of Fisher and Levin [10,11].

To explain these developments it is helpful to recall the basic strategy of
Debye and Hückel. Starting with the ideal gas free energy, one desires
the “excess” contributions arising from the Coulombic interactions: in these days
one would usually supplement       by an excluded volume or hard-core term,

[10, 11]. Then (a) one first aims to compute the mean electrostatic energy,
say               of an ion     of species     diameter a, and charge       in the field of
the remaining ions. To this end, (b) one seeks the mean electrostatic potential,

induced at r when is held at From this (c) one may obtain the
mean “self-potential”

seen by the charge (which may be taken at the center of (d) The cor-
responding species energy density is then just (e) Integrating
over position and summing on yields the total interaction energy. (f) The ex-
cess, electrostatic free energy follows by setting (all and integrating
on from 0 to 1: this is Debye’s charging process!

Finally, and, crucially, (g) to obtain Debye and Hückel first appeal
to electrostatics for Poisson’s equation and then call on statistical mechanics. In
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this era we can recognize that there is an exact statistical Poisson’s equation [16,
21, 22]

which, in essence, (h) DH approximate for via the natural ansatz

although they impose the exact relation for (j) Lin-
earizing the resulting Poisson-Boltzmann equation then yields the DH equation,
namely, (for where, as usual, the inverse Debye
length is given by

Lastly, (k) solving the DH equation with and continuous across
and as yields the sought-for potential,

This, of course, depends on T and on the densities and charges of all the
species: it provides the input needed in (4) to obtain what we will call
the Debye-Hückel approximation for the excess free energy [6, 21].

III. ION-PAIRING AND DIPOLE-IONIC SOLVATION

Now, it was not realized for many years that the “pure” DH theory (with
predicts [3, 20, 11] a critical point at

with a corresponding, highly asymmetric coexistence curve. These results change
only slightly when a hard-core (HC), excluded volume term, is added us-
ing, say, free-volume or Carnahan-Starling approximations [10, 11]. However, as
stressed by Bjerrum (Bj) [23], pairing of oppositely charged ions must become im-
portant at low temperatures say Indeed, the essential role of association
into dipolar ion pairs can be demonstrated analytically [18] since, when lacking
pairing, the DH (and the MSA) free energies, with or without HC terms, violate
Gillan’s bound (see [18]).

The equilibrium density of ion pairs, say must be determined via a
mass-action law with an association constant that (at low temperatures,  is
optimally chosen in Ebeling’s form (see [10, 11]). Clearly, in creating pairs, the
density of free ions, is reduced to and only these
contribute to in (7). Since lies close to unity in nearly all the approximate
theories, this depletion of free ions raises the overall critical density to around
0.04. This value lies within the range suggested by Monte Carlo
(MC) simulations in the last few years (see [3(b)]); these also indicate

with currently favored [3(b)] — that is only about 20%
below the DH value (8)!

However, Fisher and Levin [10, 11] showed that a second, important “miss-
ing ingredient” in the total free-energy expression was a dipole-ionic-fluid term,

That is needed to account for the solvation (or ‘screening’) of each neutral,
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but still electrically active (+,–) ion pair by the fluid of free ions. The required
DI contribution can be found [10, 11] simply by adapting the basic DH approach,
as sketched above, to an ion pair [24].

The resulting DHBjDIHC theories (including some minor variants [11]) pre-
dict in the range 0.052-0.056, only about 10% higher than the MC values
[3(b)]. Note that an overestimate of is to be expected for such classical theories
which, in essence, neglect critical fluctuations. (The predicted DHBjDI densities,

[11], are lower than current MC estimates but because of the
extreme asymmetry of the coexistence curve, these closely correlate with the lower

values.)

IV. GINZBURG’S CRITERION

By their phenomenological construction, all the DH-based theories (and their
MSA counterparts, see [11, 19, 20]) must yield the van der Waals exponents,

and But that has, of course, no relevance to the true nature of
criticality in the RPM (or in more realistic models). On the other hand, Ginzburg,
followed by others (see [10, 15, 19(b)]), has advanced a criterion for the validity
of such classical theories: In the language of (1) and (2), one can construct a
“Ginzburg reduced temperature scale”

where is a somewhat arbitrary numerical coefficient [15, 19(b)]. For  the
classical theory should be adequate; for it should fail. If one supposes, as
is plausible in light of RG considerations [1], that Ising-type behavior appears for

it is reasonable to identify the suspected crossover scale, with [10,
15, 19(b)]. Accordingly, the speculation of Sec. I, suggests that  for the classical
RPM theories might prove to be very small.

Now the critical amplitudes and B in (9) are known, say from DHBjDI
theory; but the density correlation length amplitude, which enters to the sixth
power, is not! To fill this need, a natural generalization of DH theory has been
devised [14, 16] that yields approximations for the correlation functions,
and that are sensible in the critical region and exact at low densities [14,
17]. The resulting “GDH theories” provide values for and, hence, for (Note
that the standard MSA does not generate a density correlation length,
that diverges at the critical point.)

V. GENERALIZED   DEBYE-HÜCKEL    THEORY

To obtain information on correlation functions we aim [14, 16] to obtain a
free energy functional, in which the spatially varying ionic
densities are specified. From such a functional, one can compute the direct
correlation functions via

and, thence, using the multicomponent Ornstein-Zernike relations [21, 14, 16] all
the correlation functions and, so, and For the DHBjDI -
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based RPM theories one has corresponding to free ions and bound
pairs; but the approach is quite general [16]. In (10) the denote the overall,
uniform equilibrium densities. For computational convenience [14, 16] one may
choose the spatial variation

Expansion of to quadratic order in the then yields and
directly [14, 16].

To obtain the functional (approximately!) we follow again the basic
DH strategy set out in Sec. II: the only essential difference is that the spatially
varying densities, must be carried through all steps (a)-(k) [14, 16]. Thus,
in (a) and (b), to compute we seek which leads via (4) to

and, through steps (d)-(f), to (or, more conve-
niently, using (11), to

To obtain we may still appeal to (5) since it remains valid for the inhomo-
geneous situation [16]. At the next step (h), however, a new insight is required,
namely, that any spatially varying charge imbalance entails an overall electrostatic
potential determined by [16]

with appropriate boundary conditions (where is a reference charge). Now
must be separated from to obtain the local induced potential [16, 25]

which decays to zero when Accordingly, in the Boltzmann ansatz
(6) we should replace by Linearization, (j) then yields the GDH equation
[16]

which replaces the usual DH equation. The new, spatially varying Debye parame-
ter, is defined just as in (7) but with replacing [26]. Finally, (k)
solving (14) with the previous boundary conditions completes the theory.

VI. PREDICTIONS FROM GDH THEORY

GDH theory yields quite novel results for the density correlations of the RPM:
Within pure DH theory (neglecting ion pairing) a simple closed form is found for

[14]. More generally, when  the universal behavior

with is predicted. This is in striking contrast to the variation of the
screening length, and in strong disagreement with
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MSA and GMSA predictions for [19]. However, analysis [17] using the Meeron-
Mayer -resummation of the cluster expansions for [27] proves that (15) is
exact! Of course, GDH theory also reproduces the exact thermodynamic limiting
laws [21]. But, further, the fourth-moment correlation length [28]

and the density-correlation exponential decay length [15, 16]

are likewise predicted correctly to the orders shown [16, 17].

The full charge-charge correlation function, can also be found explic-
itly in GDH theory without pairing [16]. In contrast to the expressions usually
ascribed [16] to the DH theory, the GDH form satisfies both the Stillinger-Lovett
(SL) conditions [29] (which may be expressed as
More generally, at low densities the charge correlations are predicted to decay as

with, as expected, the exact relation as When ion pairing
is introduced, following the DHBjDI theories, the first SL condition is still satisfied
but the second is obeyed only up to corrections of order This observation
could, perhaps, point to an improved treatment of the ion-dipole interactions.

Since GDH theory provides a sensible, classical approximation for
through the critical region, one may calculate the amplitude and, thence, the
Ginzburg scale, within the DHBjDI theories (see (2), (9) and [15]). The results
[15] are instructive but, in light of the speculative hopes expressed, disappointing!
Calibration of the coefficient in (9) is necessary. For that, the hard-core square-
well (SqW) fluid, which shows no crossover, serves well [19(b)]: a reasonable choice
of [19(6)] and a range of approximations gives [15] or, more
usefully,

What transpires for the RPM? The theory predicts values for of the same
order, or larger by a factor of 10, say, quite contrary
to the proposed smaller values. A similar conclusion has been reached using the
GMSA [19(b)]; however, that cannot really be trusted since even the form of the
low-density behavior (15) is not reproduced. On the other hand, Schröer and Weiss
(WS) [30], reach the opposite conclusion, i.e.,  but their analysis is highly
suspect since, although the form of (15) is now reproduced, the WS coefficient is
5.7 times greater than the exact (GDH) result. Translated directly to the critical
region, this error factor would yield [30] in consonance with our
conclusion [15].

In summary, if the identification of with is valid for the RPM one is driven
to conclude that the model should exhibit nothing but Ising-type critical behavior!
Indeed, some, although not all, recent Monte Carlo studies point in this direction
(see [l(b)] and [31, 32]). Such an outcome would certainly not serve to rationalize
the observations on Pitzer’s solution [1-5]; but those, in turn, have come under
question [7].
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VII. CHARGE-DENSITY OSCILLATIONS

Should one trust the identification of with  In fact GDH theory can also
cast some light on this question. Specifically, the explicit forms for (with
or without pairing) are readily analyzed to show that charge oscillations arise
when exceeds [16, 33]. Such oscillations in have been
anticipated in previous treatments [19, 22 29] although with “Kirkwood values,”

higher by 2-6 % [16]. But, as mentioned, the DHBjDI theories all place close
to unity (but recall that is to be computed with the free ion density

Consequently, in the critical region charge-density-wave fluctuations may
well compete nonlinearly with the basic density fluctuations that ultimately drive
the transition. Indeed, in a slightly enlarged parameter space, a multicritical point
might appear (see e.g., [3(a)] and [32]). The critical behavior of both the RPM and
real systems could be significantly influenced by the presence of such an incipient
or hidden multicritical point [3(a), 16, 32]. In these circumstances, furthermore,

is unlikely to be a reliable guide to a crossover to Ising criticality at some
To translate these suggestions into serious calculations, however, seems to de-

mand a renormalization-group treatment [1]. GDH theory may go some way to-
wards providing the necessary starting point; but the way ahead remains misty
[32]. In short, the nature of Coulombic criticality is still an open question!
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ORDERING IN CLASSICAL COULOMBIC SYSTEMS
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The properties of finite one-component plasma clouds at very low temperatures have been
investigated–similar to the conditions obtained in laser-cooled ion traps or storage rings.
The minimum-energy configurations of few ions in isotropic confinement are discussed,
and the features of the shell structure that is characteristic of larger clouds. The eventual
transition to infinite-matter behavior is being investigated. Dimensional phase transitions
as a function of the external confinement have been studied. Normal modes of these
systems has been explored.

It has been well known for some time [1,2] that infinite Coulombic matter will
crystallize in body-centered cubic form when the quantity (the dimensionless ratio of the
average two-particle Coulomb energy to the kinetic energy per particle) is larger than ~175.
But the systems of such particles that have been produced in the laboratory in ion traps, or
ion beams, are finite with surfaces defined by the boundary conditions that have to be
satisfied. This results in ion clouds with sharply defined curved surfaces, and interior
structures that show up as a set of concentric layers that are parallel to the outer surface. The
ordering does not appear to be cubic, but the charges on each shell exhibit a 'hexatic' pattern
of equilateral triangles that is the characteristic of liquid crystals. The curvature of the
surfaces prevents the structures on successive shells from interlocking in any simple fashion.
This class of structures was first found in simulations [3] and later in experiments [4].

The Molecular Dynamics simulations are straightforward application of Newtonian
mechanics with the equations of motion integrated in sufficiently small time steps to
approximate the classical trajectories. At each step the interactions between all particles have
to be computed anew, thus for an N-particle system  terms contributing to the net force
need to be computed. The method is limited by computer power, but modern parallel
computers have been making considerable strides recently.

For small aggregations of ions isotropically confined in a harmonic potential the
calculations are almost trivial, yet a number of the minimum-energy configurations have been
reported incorrectly until recently [5,6]. This Hamiltonian corresponds to J. J. Thomson's
classical pre-quantum-mechanics model of the atom and the configurations are shown in
figure 1. Note that the charges are equidistant from the origin up to 12 ions, but the 13th ion
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Fig. 1 Minimum energy configurations for few ions in isotropic confinement from ref. 6.

Fig. 2 View of outer surface, and interior radial density distribution of a simulation of 20000
ions in isotropic confinement.
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prefers to sit at the origin. This has little to do with the symmetric icosahedron -- it is simply
the consequence of 12 being the last integer smaller than Since the minimum energy
configuration requires the ions to be as nearly equidistant as possible, the 13th ion sits at the
center. For larger numbers of ions both the outer shell grows further, and slowly more ions
join the first one in the interior until for 61 ions the last one again sits at the origin with two
shells outside it.

With larger ion clouds the configurations are qualitatively similar: a set of concentric
shells with approximate order on each one but no particular order between shells except for
constant spacing. The case of 20000 ions in isotropic confinement is shown in figure 2
where 18 concentric shells are discernible in the system. Is there a sharp phase transition as
a function of temperature for such systems? The answer is in figure 3 which shows the
gradual cooling of a cloud of 1000 ions in isotropic confinement. It seems that an outer crust
forms first at the surface of the space-charge limited ion cloud, then the interior layers form
gradually, the shells becoming sharper as the temperature is lowered, but the shell widths
seem to reach a limit, with the outer shell substantially sharper than the others. No sharp
change in the shell structure is found with temperature in the simulations.

Fig. 3 Radial density profiles of simulations of a 1000 ion cloud in isotropic confinement at
various temperatures, corresponding approximately to 10, 100, 10,000

Now when the ion clouds become anisotropic the cloud takes on a spheroidal shape.
But this is not just a matter of concentric spheroids as the consideration of simple systems
will show. In the limit, for a relatively very weak restoring force along the z axis, all ions
will sit on this axis along a line, though not equally spaced. As this force is increased, there
is a distinct point where a two-dimensional configuration is favored, and the ions form a zig-
zag pattern, starting at the center. With the force increasing further, another point causes a
three-dimensional configuration to be favored. These sharp transitions show all the
characteristics of dimensional phase transitions [7] and are illustrated for 70 ions in figure 4.
In the limit of a relatively very strong force in z the system will again become a two-
dimensional pancake at z = 0.
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Fig. 4  Simulation of the configurationss of seventy ions in anisotropic confinement showing
the dimensional transitions as the strength of the confining force in the longitudinal
direction is increased, from ref. 7. The transverse dimensions are increased by a factor
of ten compared to the longitudinal.

For large systems with anisotropic fields there are many more complicated transitions -
- and a cloud can have linear tails, and go through the transitions from two to three-
dimensional structures moving along its axis. A limiting case of interest is where the
restoring force in one direction disappears, but a constant density of charges per unit length
is maintained, such as in a beam of ions. In this case, the system is very similar -- with a set
of concentric cylindrical shells [8].

How large a cloud is needed before the shells give way to the cubic structure
characteristic of infinite systems? Recent experiments reported here with very large
(N > 100000) ion clouds indicate conclusively that an appreciable fraction of the cloud is in a
single body-centered cubic crystals. Simulations have not yet caught up with this, largely
because for 100000 ions  pairwise interactions must be computed at each time step and
this is rather expensive of computer time. Short cuts, such as cutoffs or multipole
approximations are dangerous -- since the competition between two symmetries depends on
the fine details of the energies.

The simple normal modes of these ion clouds [9] are hydrodynamic multipole modes.
One of them, the monopole mode or (for non-magnetic traps) volume oscillation, is a true
eigenmode of these systems and proceeds without damping. Others (in non-magnetic
confinement the volume-conserving shape oscillations), are illustrated in figure 5 and show
damping, and this damping is a result of the mixing of the multipole modes with the true
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Fig. 5 Various hydrodynamic multipole oscillations induced in the simulation of a 1000 ion
cloud. The top figure shows the decay in the amplitude of a monopole, quadupole and
octupole oscillations. The bottom figure shows the decomposition of the quadrupole
mode among the true eigenmodes of the system for a 100 and a 1000 ion cloud with
the frequencies in units of the plasma frequency, from ref. 9.

eigenmodes of the system. In other words, the multipole modes are those of a charged
liquid -- the discrete structure of these clouds only enters into the damping. There are,
however, also some (strongly damped) torsional modes that do depend on the discrete
ordered structure, since a liquid would not support a shear displacement.

The question of temperature in these systems is an interesting one. In a rotating
system, such as a Penning trap, the ion cloud is rapidly rotating and thus in a non-inertial
system. The 'temperature' then seems to be the random component of motion in the rotating
frame. In the radio-frequency Paul traps the ions are subject to an alternating rf field and the
time average of this rf field gives a net confining Hamiltonian. The ions, however, undergo
coherent oscillations in this rf field. The question of defining what is meant by a temperature
-- from the perspective of the ordering phenomena, for instance, is clearly somewhat fuzzy --
especially since the coherent motion includes shearing movements in different directions
between ions and their neighbors. Defining temperatures in these systems is rather delicate -
- as a practical matter it is usually done by looking at the velocity spread in the direction that
is not affected by the motion (e.g. along the magnetic field in a Penning trap, or
perpendicular to the macroscopic motion in rf confinement.)
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Quantum effects are not significant in these large clouds. If one were to cool these
systems to regime it would reach its quantum-mechanical ground state. However the
wave functions of the individual ions would extend over a volume that is very small
compared to the inter-ionic spacing (typically tens of microns) and so this would be difficult
to observe.

This research was supported by the U.S. Department of Energy, Nuclear Physics
Division, under Contract W-31-109-Eng-38.
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ELECTRON CORRELATIONS IN COULOMB SYSTEMS IN  2 AND  3
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A. K. Rajagopal

Naval Research Laboratory,
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In this overview, the recent theoretical (and some experimental) works on a variety
of physical properties that arise from correlations among electrons interacting via Coulomb
interactions in three and two - dimensional systems will be discussed. The subject matter
has a long 70 year history which we meander through in this brief presentation, even after
exclusion of several important aspects of the problem. The astrophysical and nuclear
physics aspects of these problems will not be discussed. The main focus will be concerning
issues of condensed matter physics. Also not discussed in this presentation is the important
works on the electron correlations based on the Slater-Hubbard model (with a relatively
shorter 40-year history) which is central in the recent discussions of strongly coupled
systems such as high temperature superconductors and magnetic materials. Excluded also
from discussion here is the effects of disorder, which is a separate topic in itself. Included
in this talk will be spin-polarization as well as finite temperature effects, in both bulk and
semi-infinite situations, and electron-hole plasmas. Interesting physical situations of two-
dimensionality occuring in Mosfets, semiconductor heterojunctions, and electrons on
cylindrical surfaces as in carbon nanotubules, will be briefly touched upon as they possess
rich consequences of correlations. The effects of quantizing magnetic fields and the
relativistic situations will only be mentioned in passing. Theoretical techniques used fall
basically into five categories in my classification:
(1) wave function methods - variational and nonvariational,
(2) phenomenological/intuitive methods subsumed by diagrammatic techniques,

(a) collective excitation theory of Bohm-Pines leading to Boson formulation,
(b) dielectric formulation of Singwi and coworkers,
(c) Fermi liquid theory of Landau, culminating in diagrammatic perturbation theory of

Gell-Mann and Brueckner which in various forms contains all these and had
important off-shoots,

(3) Quantum Monte Carlo methods,
(4) the method of Green functions, and finally,
(5) density-functional method of Kohn and coworkers.

Each of these had different insights to offer which we will spell out. Very recent
work on the single particle Green function will also be discussed because of its
implications to several physical properties of the system. A brief discussion of pair
correlations and response functions is given as this provides information on collective
properties such as plasma and spin wave oscillations, etc.
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I. INTRODUCTION

The model of electron gas with mutual Coulomb interactions has been with us ever
since the Quantum theory was enunciated as a proto-typical model at the heart of a large
number of fields: condensed matter physics (more recently in Chemistry as well via the
density functional formalism), astrophysics (Chandrasekhar limit, white dwarfs etc.where
relativistic version of the electron gas is employed), physics of one-component plasma,
nuclear matter (a different avatara in terms of quark matter), and model field theory. The
electron correlations manifest themselves in many ways - originally conceived by
Sommerfeld in 1928 [1] as a noninteracting gas obeying the Pauli exclusion principle [2]
for explaining properties of metals from its structure to electrical properties. The role of
Coulomb interaction and the exclusion principle on the magnetic properties of the electron
gas was discussed by Bloch in 1929 [3] based on a discussion of magnetism by Heisenberg
earlier in 1928 [4], which in turn was based on the Heitler-London work [5] during 1927-
1928 on simple molecules. In 1928, Hartree [6] introduced the famous mean field theory
by setting up a many-electron wavefunction without incorporating the Pauli exclusion
principle but only invoking electrostatics. This was soon superceded by the proper
incorporation of the exclusion principle independently by three different physicists, from
different parts of the world, each bringing new methods with their own insights into the
problem, all around the same year, 1930: Dirac [7] introduced the density matrix method,
showed how the exclusion principle manifests as a new statistics of particles; Slater [8]
introduced the antisymmetric (determinental) wavefunction; and Fock [9] introduced the
operator method incorporating the exclusion principle. Slater and Fock introduced also the
variational principle and showed how the Hartree result comes about! Dirac and Slater also
reported the calculation of the exchange energy of the electron gas. Then came an
important contribution from Bloch [10] in 1928 incorporating the periodic arrangement of
atoms to describe the real solid, resulting in the idea of band structure for the electrons,
thus replacing the simple free electron spectrum used by Sommerfeld. (This Bloch theorem
was known to mathematicians as Floquet's theorem.) Wilson [11] in 1931 using just the
bands extended the Sommerfeld model to study the electronic properties of
semiconductors. In 1934, Wigner [12] showed that at low densities the correlation effects
would prevent ferromagnetism of the electron gas found earlier by Bloch [3] but instead
would lead to a crystalline antiferromagnetic state. Bardeen [13](1935) introduced the idea
of work function associated with surfaces. In 1956, Cooper [14] discovered pairing
correlations if the interaction between electrons is attractive and this became the basis for
the BCS theory of superconductivity [15], where the attractive interaction comes about
because of electron-phonon interaction. Much later, Kohn and Luttinger [16] examined the
possibility of Cooper pairing due to the attractive region produced by the screeing of the
interactions. More recently, in high temperature superconductors, the superconductivity is
expected to be arising from electron correlations alone! Overhauser [17] in 1962 showed
that in the Hartree-Fock approximation, a broken symmetry solution for the unscreened
Coulomb electron gas appears as a ground state in the form of static spiral spin density
wave (SOW), with the pitch of the spiral Q=2kF, the diameter of the fermi sphere. This
was shown to be prevented by electron correlations when the Coulomb interactions are
screened by Rajagopal [18.19], who besides formulating this in a Green function form,
also examined the collective excitations of such a system. It should be remarked, various
types of SDW states are now part of the subject matter of magnetic states of metals and
alloys (Fawcett, [20]), with the concept of nesting at the Fermi surface as an important
ingredient in these problems.

Given this history of the correlation problem blossoming into a "theory of
everything" at least as far as condensed matter physics and chemistry was concerned, it is
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no surprise this activity has not abated even to this day. Like the knife that has been with
the family for generations unknown, with its handle changed several times and the blade a
few times, the electron gas correlation problem is now appearing in its two-dimensional
form in Mosfets, in superlattice structures, or on the cylindrical surface of a carbon
nanotubule or even in three-dimensions in laser produced plasmas, and so on. In the more
recent density functional theory of condensed matter due in large part to Professor Walter
Kohn and his colleagues, this problem has taken a different turn in that it uses the results of
the interacting electron gas in all its forms, be it spin-polarized, relativistic, or at finite
temperatures. Thus this problem has resurfaced in many avataras!

In the words of the 12th Century Afghan/Persian poet, Jalaluddin Rumi,

MIND DOES ITS FINE-TUNING HAIR-SPLITTING
BUT NO CRAFT OR ART (SCIENCE?)BEGINS
OR CAN CONTINUE WITHOUT A MASTER
GIVING WISDOM TO IT.

(Tr. Coleman Barks, in The Essential Rumi(1995)).

I will here try to summarize the wisdom I have gathered from the masters on the
topic of my presentation today.

In sec.II, we describe several theoretical approaches to this problem as pertaining to
three dimensional infinite as well as semi-infinite systems to cover the bulk and surface
properties. In sec.III, we will give an account of the results obtained for systems
manifesting two-dimensionality. In sec.IV, we turn our attention to some new results
obtained in the investigations of the one-electron Green function which contains important
information about the detailed spectral properties of the system as well as yet another new
avatara created by Professor Kohn to take into account correlations near spatially varying
situations as near a system surface. In sec.V, we address the problem of linear response to
external probes such as neutrons or electromagnetic radiation. This opens up another class
of problems of great current interest, because of experimental probes of neutron scattering
and photoemission are yielding results to be explained and understood. In the final section
contains some concluding remarks. In Table I, the Hamiltonian and the system parameters
are defined for the sake of completeness. Table II gives a list of topics not covered in this
presentation, as some of them are discussed in this Conference by others.

II. THEORETICAL APPROACHES
- Results for infinite and semi-infinite three dimensional systems

A dramatic improvement in the computational power since the 1980's combined with
innovative methods of formulating the problem have contributed to better understand the
nature of the electron correlations in real systems. At one level, the model of interacting
electron gas provides a bench mark for these methods to check against, and at another level
of the density functional formalism, they provide input into the starting of the self-
consistent scheme for realistic computation of the actual problems of condensed matter
beyond the model stage. We here classify these methods into five broad classes and give a
brief description of each, highlighting the insight that each of them provide in its wake. We
will intermix historical account in the process of such a description, mainly because the
various contributions did not appear in any chronological order. The one thing that stands
out is the first seminal work of Bohm and Pines in 1953 [21] which spawned an array of
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TABLE I: HAMILTONIAN AND THE SYSTEM PARAMETERS

The Hamiltonian for the system is

Here kinetic energy operator of the electrons, and : operators
representing the Coulomb interactions between the ions (i) and the electrons (e), and
kinetic energy operator of the ions.

Here we consider and and  providing a non-responsive
neutralizing positive charge background.

This model is characterized by the electron density, n, at zero temperature,
T=0,parametrized by a dimensionless number (in 3-D) defined by

Equivalently, in terms of the ratio of Fermi energy,

to Coulomb energy,

Plasma frequency,

The system is characterized by the dimensionless temperature, being the
Fermi temperature. At high temperatures, in classical regimes, the system is characterized
by the plasma parameter,

Spin polarization is parametrized by a dimensionless parameter,

being the density of

up and down spin electrons.

Low temperature high density parametrized by a single and high
temperature and high density (corresponding to Classical Plasmas), similarly
parametrized by a single

High temperature and low density, and low temperature and low density are
parametrized by both t and rs .

We have no known technique which covers all these regimes in a single scheme.
(See however Dandrea et.al. [81], who suggest using the ratio of some average energy,

in place of Fermi energy, to , in defining the dimensionless parameter above,
 then goes to for t=0, and to kT for
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many-body techniques from 1957 onwards, beginning with the pathbreaking publication of
Gell-Mann and Brueckner (1957)[22], (henceforth denoted as G-MB) making dramatic
changes in the way we perceive the correlation problem. One may refer to the collection of
papers on these subjects for a more complete appreciation of these developments by Pines
[23] and by Morrison [24]. A summary of the methods and their respective insights are
given in Table III.

(1) Wave function methods
As stated in the introduction, the Rayleigh-Ritz variational method for calculating

the ground state energy of the interacting electron gas began with Slater and Fock in 1930.
Besides showing the earlier Hartree's electrostatic self-consistent equations follow, using a
simple determinantal wave function consisting of single particle orbitals to take account
the antisymmetric property of the wave function of the many-electron system, they
obtained the well-known Hartree-Fock-Slater self-consistent equations for the orbitals. In
this approximation, Slater already noted the important role played by the pair-correlation
function in determining the average energy due to the mutual electron interaction. There
followed a large number of calculations of properties of systems with varied degrees
difficulty which we shall not discuss here because more sophisticated improvements were
forthcoming beginning with the introduction of a symmetric wavefunction of two and
more particles multiplying the Slater determinant, D, due to Bijl [25], Dingle [26] in 1949,
and Jastrow [27] in 1955.
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There is a large literature following this but here we focus on its use for electron gas.
This choice of wave function immediately drew attention to the importance of pair
correlation function in determining the energy due to the Coulomb interaction as well as
the kinetic energy of the system which had a further contribution due to triple--correlation
function as well. The phenomenological but collective description of electron correlation
theory of Bohm-Pines [21] had already yielded very important insights into the problem:
the Coulomb correlations could be separated into a long range part of the Coulomb
interaction which is described in terms of the collective plasma oscillations, and a short
range part, whose form was determined by them. This played a very important role, it must
be emphasized, in the development of this as well as the Monte Carlo method to be
discussed later, even though the Bohm-Pines theory itself was superceded later by more
sophisticated theories of the electron gas. A successful variational calculation of the
ground state energy of the electron gas, including the spin polarization, after incorporating
the nature of the short range nature of pair interactions, u, in Eq.(l), observed by Bohm
and Pines, was given by Zabolitzky [28]. References to other previous attempts at arriving
at the ground state energy may be found in this paper.

A nonvariational coupled cluster expansion method pioneered by Freeman [29],
Bishop and Luhrmann [30] for electron gas systems is founded on a method due to
Coester and Kummel [31] and Cizek [32] almost 17 years earlier. This method is
superficially similar to the Jastrow wave function method, Eq.(l) above but employs an
operator form for the exponential. The ground state wave function is thus written in the
form, in its lowest order, which suffices for our purposes here, and is called the
approximation,

where represents the antisymmetric Slater state and the exponent consists of all
possible particle-particle, particle-hole, and hole-hole interactions. The coefficients
appearing here are determined by requiring the wave function given in Eq.(2) to be the
solution of the Schrodinger equation. A further approximation involves choosing a subset
of the terms in this equation and solving the resulting integral equation. Freeman [29]
solved them numerically while Bishop and Luhrmann [30] solved them analytically. The
ground state energy of the electron gas as a function of the electron density, both for
paramagnetic(spin unpolarized) and magnetic (spin polarized) cases obtained by Freeman
are bench mark results. These extend the first work of Bloch result [3] for electron gas,
who had found that the gas is either nonmagnetic or fully magnetic below a certain
electron density, but when correlations are included the intermediate values of the
magnetization appear and the entire density range is moved to much lower densities. This
feature was noticed by Rajagopal et.al.[33] at first for screened Coulomb gas; later, this
was found in the correlated electron gas when the spin polrized G-MB without making the
high density approximation was studied by von Barth and Hedin [34] and more thoroughly
by Rajagopal et.al. [35]. A fairly complete account of the results of the use of variational
wave functions used in the electron gas problem may be found in Krotscheck [36].

The semi-infinite electron gas problem is a model for studying the electronic
properties at surfaces. A variational calculation of the above type was performed by
Krotschek et.al.[37], and they found the results of surface energy and work function.

The configuration interaction method involves using not one determinant but a linear
combination of several determinants whose orbitals and coefficients are determined by the
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variational principle. I do not know if any calculation of the electron gas problem has been
reported by this method. As can be seen, these methods are computer intensive.

INSIGHT: Central role of two- and three- particle correlations.

(2) Phenomenological/intuitive methods overtaken by diagrammatic techniques
Soon after the appearance of the work of Bohm and Pines [21], several authors

reformulated the problem in terms of the dielectric function or the fourier transform of the
dynamical pair correlation function of the system. This led to a clearer understanding of
the Bohm-Pines phenomenology which contained certain features of cut-off wave vector
beyond which the plasmon collective mode should give place to different excitations. For
the early discussion of this see, Pines [23]. Also, the work of Gell-mann and Brueckner
[22], who developed a diagrammatic approach to the determination of the correlation
energy of the electron gas in the high density limit, had recaptured and obtained a clearer
picture of the Bohm-Pines results. The subsequent work of Hubbard and others (see Pines
[23]) showed some inadequacies of the G-MB theory, in that while it is exact in the high
density limit, it may not be good for lower densities, in particular, the static pair correlation
function, which is positive for all interparticle separations, was found to be negative at zero
electron pair separations at even moderately high densities.This was rectified by an
improved theory of the dielectric formulation of Singwi and coworkers (1968
onwards)[38,39], which took into account in a phenomenological way, further corrections
needed to the high density theory of G-MB. The major point of the Singwi method is to
introduce a new self-consistent scheme which links the dynamic dielectric function to the
pair correlation function in two ways, one by the kinetic equation, and two, by the
fluctuation-dissipation theorem. While this corrects the problem of the pair correlation
function becoming negative at least for densities of interest in condensed matter, it violates
the static compressibility sum rule and the high frequency sum rule. While the first
defect could be remedied [39], the second remains a problem. For a discussion of the
possible ways of correcting these, one may refer to the work of Kalman [40] and
coworkers. Kalman and coworkers have also generalized the Singwi method in two
directions, one, to include higher order dynamic correlations beyond the Singwi’s second
order, and two, to multicomponent plasmas such as solid state electron-hole plasmas and
electron-ion plasmas. As far as the author is aware, the Singwi method has not been
generalized to spin-polarized electron systems except by an early attempt by the author
with D. K. Ghosh [Phys. Letts.30A, 335 (1969)]. Here we encounter three pair correlation
functions corresponding to the singlet and triplet correlations which are then related to the
corresponding dynamical susceptibilities. There is a superficial resemblance to the multi-
component generalization [40] but the physics is entirely different. This remains an open
problem, I believe. It should be pointed out that the coupled cluster theory which appeared
a decade later and described under the wave function techniques in (1) above, obtained the
correct pair correlation functions because in that theory, the interactions among pair
excitations in the system were taken into account more completely than before, thus
completing the underlying picture of the phenomenology in terms of particle processes.

It is interesting to point out that the collective excitation theory of Bohm-Pines lead
to Boson formulation by Arponen and Pajanne [41] and Pajanne [42]. They developed an
entire theory of the electron gas by transforming the problem to boson operators and
understood the physics of this problem and other related problems of positron annihilation
in electron gas, proton in an electron gas etc.in this language. They also obtained
satisfactory results for the pair correlations and the ground state energy of the system.

Yet another important phenomenology was put forward by Landau [43] in 1957,
called the Fermi liquid theory which focussed on the properties of the system in the
important energy region of the system, namely the fermi energy, the quasi-particles, thus
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expressing the physical properties of real systems in terms of the various scattering
amplitudes at the Fermi energy. In the hands of Luttinger, Kohn, and Nozieres, this theory
was justified for real systems possessing nonspherical Fermi surfaces as well, by elevating
the diagrammatic perturbation theory of G-MB which in various forms embraced all these
with important off-shoots. The reader is referred to an excellent account of these works and
the corresponding references in the book by Nozieres [44].

INSIGHT: Enormous simplification and power of the second quantization methods.
(3) Quantum Monte Carlo methods

The quantum Monte Carlo method was used to examine the electron gas problem
notably by Ceperley [45], and Ceperley and Alder [46]. This method is based on newer
computational techniques using stochastic methods to obtain a variational bound for the
ground state energy of the one component electron plasma. The starting trial function is as
in (1), the Bijl-Dingle-Jastrow form and an ensemble of a few suitable number of systems
are selected from a variational Monte Carlo calculation. The results are obtained both for
nonmagnetic and magnetic electron gas and compares very well with those of Freeman
[47] using coupled cluster method. This method has been applied to the semi-infinite
electron gas problem by Acioli and Ceperley [48] and they found agreement with the
earlier variational results of Krotscheck et. al. [37]. The pair-correlation functions at
regions close to the surface exhibit anisotropy of the exchange-correlation hole where there
is fast-varying densities.

INSIGHT: Powerful use of computer combining (1) with stochastic methods.

(4) Method of Green functions
There are many other properties of the system that one would like to know besides

the ground state energy of the system such as the single particle properties. These are
contained in the one particle Green function. The theory of these Green functions was put
forward by Galitiskii, Migdal, in 1958 [49, 50]. As can be expected from the work using
the wave function methods, the equation for the Green function is quite complicated in
view of the various contributions from the interactions among the electrons. Symbolically,
this equation is written in the form

represents the noninteracting part of the Green function and represents the
contributions due to the interactions in the system, often called the self-energy of the
system. With slight modifications, it is also valid for finite temperatures, which we discuss
later in this section. Another important feature is the important result of Luttinger and
Ward [51] which states that the free energy (or the ground state energy at T=0K) is a
functional of G and is stationary with respect to variations in the Green function.
Moreover, G contains all information concerning the one particle aspects of the many-
particle system: the expectation value of a one-particle operator, the expectation value of
the Hamiltonian of the system, which is the total internal energy at finite temperature and
reduces to the average energy at zero temperature, a result due to Galtiskii and Migdal
[49]. A good knowledge of the self-energy is therefore of great importance. All types of
approximations made are reflected in this self-energy. A very useful approximation
scheme suggested by Hedin [52] and is known as the GW approximation continues to be
employed to this day. It is a way to include dynamic screening of the interactions in a
systematic way. In order to make this applicable to realistic systems with numerical
feasibility has only been possible in recent years, mainly due to the efforts of von Barth,
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Ambladh and their students, who use this GW scheme with remarkable success. More later
on this subject.

Holm [53] and Hindgren [54] have been able to obtain the ground state energy of the
electron gas for the nonmagnetic and magnetic cases respectively at the same level of
accuracy as the variational and Monte-Carlo results discussed above. The spectrum of the
single particle excitations are found to be not as reliable so far, however. The reason for
this is the realization that the ground state energy is stationary with respect to the variations
in the Green function as was shown long ago by Luttinger and Ward [51] in 1960. Much
work needs to be done in this area.

Effects of finite temperature can be determined most elegantly by the Green function
method. The extension of the G-MB work to finite temperatures with a view to adoptation
to the density functional theory was given by Gupta et. al., [55] for nonmagnetic case, by
Kanhere et. al. [56] for magnetic case, and more recently by Hong et. al. [57], who
improved the earlier work [55, 56] by a self consistent calculation of the chemical
potential. One feature of these calculations is that the exchange-correlation energy reduces
from its zero-temperature counterpart, because of the smearing of the occupation of the
states of the system. No attempts were made to find the transition temperature at which
magnetism appears in these calculations.

INSIGHT: Better field theoretic approximations in obtaining in formation obtainable
with difficulty by other methods.

(5) Density-functional method of Kohn and coworkers
Hohenberg and Kohn [58] in 1964 showed in the presence of a local, spin-

independent external potentials leading to a nondegenerate ground state of a many-body
system is a functional of the particle density.

where the first term is the kinetic energy contribution, the second, the Coulomb interaction
energy, are universal functionals of the density n(r), not depending on the external
potential v(r) of the last term in Eq.(4).

Many generalizations came soon afterwards and over the last three decades it has
become a very practical method of studying the inhomogeneos and interacting electron
systems of all conceivable forms. For a review of this subject, one may refer to the book of
Dreizler and Gross [59] and a more recent collection of contributions edited by Nalewajski
[60] in a four volume comprehensive set, covering almost all aspects of this formalism
with applications to many areas of physics and chemistry. The major input into this theory
is the interacting electron gas results obtained by the methods outlined above.

Before the Monte Carlo calculations for the semi infinite electron gas mentioned
earlier, density functional theory was put forward by Lang and Kohn for nonmagnetic
surfaces (see a review article on this subject by Lang [61]) and by Pant et.al. [62] and
Kautz et.al. [63] for magnetic case. They had found how the magnetization varies near the
surface etc.

Since this topic is most likely covered in more detail by Professor Kohn, I will not
dwell on it much more.

INSIGHT: "Density" as a variable, simplifying problems enormously in handling
both correlations and inhomogeneities in real systems, which could not be handled by the
other methods as easily.
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III. SYSTEMS MANIFESTING TWO - DIMENSIONALITY

There are two experimental situations in which one had a two dimensional electron
gas. One is the electrons on the surface of liquid Helium (Grimes and Adams, [64]), and
the other, the electrons attracted to a silicon-silicon dioxide interface by an electric bias
field. One may refer to the review article by Ando et.al.[65]. In the last few months, new
experimental findings are reported suggesting an unexpected metal-insulator transition at

in 2-D electron system. This is speculated to be due to strong electron correlations.
The correlation energy of this system was calculated in the spirit of G-MB, by Rajagopal
and Kimball [66], in the Singwi-scheme by Jonson [67], in the coupled cluster method by
Freeman [47, 68], and by the Monte-carlo method by Ceperley [45]. These authors also
calculated various magnetic ground states, in particular essentially confirmed the earlier
work of Rajagopal et. al. [35] who had investigated how the magnetic states change as we
go from strictly two-dimensions to quasi-two dimensions by calculating the ground state
energies of (a) an ideal 2-D electron gas, (b) a quasi 2-D electron gas resembling electrons
trapped on a liquid-helium surface, (c) a quasi 2-D electron system resembling inversion
layers of system (MOSFETS), and (d) an ideal 3-D electron gas by
numerically evaluating the GMB contributions to the correlation energies for all
magnetizations and a wide range of electron densities. In (c) the electrons experience finite
thickness of the electron gas due to image forces and the bias field, and the calculations
were made for two typical values of the depletion density. The transition from
nonmagnetic to ferromagnetic is abrupt in (a) and (b), and gradual in (c) and (d). Ceperley
found that his results supported these earlier less sophisticated calculations that the ground
state of this system may be spin polarized at intermediate densities.

The plasma oscillations in this system was calculated by Stern [69] who found that it
goes to zero as the square root of the wave vector unlike in the three dimensions where it
goes to the constant plasma frequency. He also calculated the next term in the dispersion.
Rajagopal [70] calculated the longitudinal dielectric function including corrections due to
exchange contributions, thus improving Stern's work.

More recently, there are many more types of two dimensional electron systems
constructed by experimentalists, using semiconductor heterojunctions. These are at least
two-well systems unlike the single-well systems considered in the Silicon-Silicon dioxide
MOSFETS, and recently this complication has been included in the calculation of the
various possible ground states of this quasi-two dimensional electron gas by Radtke et. al.
[71]. Because one has two wells, there are more complicated structures to the plasma mode
and the ground states, thus generalizing the earlier work on one-well considerations
described above [35].

Electrons on carbon nanotubules offer an interesting two-dimensional system as a
many-electron problem. The underlying carbon atoms can appear in several helical forms
thereby giving the one-electron states moving in this environment the helical wave
character. Lin-Chung and Rajagopal [72] incorporated these features and calculated the
magnetoplasma oscillations of this system, when a constant magnetic field was applied
along the axis of the tubule. They also considered the case of two concentric tubules and
incorporated the corresponding inter- and intra-tubule Coulomb interactions between
electrons. They classified the magneto-oscillations in terms of the angular momentum
around the tubule axis. A complete summary of the methods, systems investigated, results
obtained, and their relevance is given in Table IV.

IV. REMARKS ON SOME NEW RESULTS

Green's function: The Green function is usually expressed as the Hilbert transform of
a positive definite spectral weight function as follows:
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is the positive definite spectral

weight function, z is a complex number.  (5)

The singularities in G give us the physical information about the single particle
spectral features of the system. For example, the real part of a complex pole in the Green
function tells us about the single particle excitation, the corresponding imaginary part,
about its life-time, and the residue at this pole, the strength of the excitation. The GW
approximation including self-consistency for investigating G has been recently studied by
Shirley [73] as well as von Barth and Holmes [74] for the electron gas. The results of these
investigations are that the weight of the quasiparticles increased, reducing that of the
plasmon satellite; increased the life-time of the quasi-particles, and the plasmon satellite
broadened and shifted towards the Fermi level. The next step is to improve the calculations
by incorporating vertex corrections. One of the major problems at the present time is to
preserve the positive definiteness of the spectral weight, A, in any reasonable
approximation proposed. The reader is referred to a review article on the subject by
Aryasetiawan et.al. [75] for more implications of this approximation etc. for condensed
matter research.

V. RESPONSE FUNCTIONS

The calculation of response functions are of great interest because of their direct
relationship to the experimental cross sections for neutron and electromagnetic scattering.
This involves complicated integral equations which have not been studied with the same
fervor. Rajagopal [19, 76] developed a variational method for studying these equations and
found interesting results such as spin wave dispersion in magnetic electron gas, exchange
scattering contributions to the dielectric function, etc. An important point to be made here
is that the single-particle electron energies must be consistently used in setting up the
vertex equations, otherwise one gets wrong results. In the GW approximation mentioned
in the previous section, requires corrections to the vertex appearing in the dielectric
function for further improvement. Our method of treating the vertex equation may be of
some use in this area of research.

Similar vertex functions were set up by Rajagopal [77] for the study of response
functions in the spin density functional theory. In an attempt to better understand the pair
correlation functions in the magnetic electron gas, Rajagopal et. al. [78], extended the cusp
conditions derived by Kimball [79] for anti-parallel spin correlation function. These
conditions have been used by Pickett et. al. [80] in developing variational Monte Carlo
method for studying partially polarized electron gas for electron densities in the range
found in bulk metals. They confirm the suggestion of Rajagopal et. al. [78] that the
correlation energy is more sensitive to the anti-parallel spin correlation function than the
parallel spin function, so that special attention should be given to improving the
antiparallel correlation factor in the Jastrow function.

There is a lot of work yet to be done in this area.
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VI. CONCLUDING COMMENTS

In summary, we note that the model of electron gas is the bench mark problem in
assessing any new method of computing many-body properties. The methods such as
coupled cluster and Monte Carlo now yield mutually agreeable results on the various
properties of this system, with the Green function method joining recently this group in
providing results of the same accuracy. The importance of understanding and obtaining
accurate results concerning this model lies in its use as the starting point of the self-
consistent density-functional formalism.

I have given here a personal summary of a modest fraction of a very large body of
work on electron correlations in Coulomb gas, also known as Jellium model, over a period
of little over seven decades. The work covers topics where I have myself been personally
involved more or less directly. I am sure to have missed important contributions to the
areas covered as well as those which are currently becoming important and interesting,
such as electron correlations in clusters, quantum dots, wires, etc. The implications of the
results of the continuing research in this area to understanding problems of condensed
matter physics through the density functional formalism, Green function theory, Monte
Carlo methods etc. are staggering. Books and collections of reviews on the subject are
appearing in a continuous stream and soon it will be an impossible task for one person to
give a comprehensive one hour talk including all these works, let alone write even a mild
critical review!
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COLLECTIVE EXCITATIONS IN A QUARK–GLUON PLASMA

Michel Le Bellac
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We use the analogy between ordinary plasmas and the quark—gluon plasma to explain the
nature of collective excitations in the latter case. We examine the novel features which
are brought by gauge symmetry in the case of collective excitations with fermion or gluon
quantum numbers.

INTRODUCTION

The physics of the quark–gluon plasma has been a rapidly expanding subject lately, and
it would be impossible to give a general review in a single talk (for a recent review, see e.g.,
Le Bellac.1 Thus I have decided to focus the present talk on one specific aspect, the physics
of the collective excitations in the quark–gluon plasma. I’ll begin with a short introduction,
in order to give the physical motivations and to define some basic notions; following common
practice in elementary particles physics, I’ll use a system of units where

Quantum Chromodynamics (QCD) is the now accepted theory of strong interactions; in
this theory, hadrons (protons, neutrons, pi-mesons...) are made of quarks, which interact by
exchanging gauge bosons called gluons, and, most importantly, quarks and gluons carry a
new quantum number which has been dubbed color, and which is the analogue of the electric
charge in Quantum Electrodynamics (QED). In fact the analogy between QCD and QED is
as follows: quarks correspond to electrons, gluons to photons and color to electric charge.
The only (but crucial!) difference is that the underlying group is the non-Abelian SU(3) in
the case of QCD, while it is the Abelian U(1) in the case of QED. This is the reason why
gluons carry color, while photons are electrically neutral.

Hadrons are color neutral (they transform according to the one-dimensional representa-
tion of the color group SU(3)), while, as explained previously, quarks and gluons are colored
objects: they transform according to the representations of dimension 3 and 8 of SU(3)
respectively. Confinement means that the only particles which can be observed in nature are
color neutral. However, if one heats up a hadronic system at very high temperatures, of the
order of 150 MeV, or if one applies to it a strong enough pressure, quarks can be liberated and
form, together with gluons, a medium of freely propagating colored particles. The analogy
with ordinary plasmas is clear: color neutrality is the analogue of charge neutrality, and freely
propagating colored particles in a quark-gluon plasma are the analogue of freely propagating
charged particles in an ordinary plasma.

Strongly Coupled Coulomb Systems
Edited by Kalman et al., Plenum Press, New York, 1998 65



Figure 1. The phase diagram of  QCD

However, if one adds quarks, the character of the transition has not yet been established
with certainty. Indeed it is quite possible that there is no transition at all, but a smooth
cross-over between the confined and plasma phases. The problem is that an order parameter
can only be defined in the absence of quarks (the correlator of two Polyakov loops), or in the
case of massless quarks (the quark condensate).

ULTRARELATIVISTIC QED PLASMAS

As an introduction to the more complex situations to be treated later on, let me study the
case of an ultrarelativistic QED plasma. The particles in the plasma are electrons, positrons
and photons, and the electron mass m may be neglected if the temperature is large enough:
more precisely one must have where e is the positron charge. For simplicity, I
consider only the case of a zero chemical potential, but a non-zero could be added without
any difficulty. Let me denote by f ( t ,x,k) the electron distribution function, for example. It
will be convenient to use a four dimensional notation: The Vlasov
equation reads

It is then linearized by writing: where is the equilibrium distribution.
Defining an unintegrated electromagnetic current by

one obtains from (1) a kinetic equation for

From this result one derives the induced electromagnetic current
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The phase diagram of QCD is drawn in figure 1 in the plane, where is the
(baryonic) chemical potential and T the temperature; in this plane, a line separates normal
(confined) matter from the deconfined phase. However, although this diagram has been around
for more than fifteen years, one must be aware that it is far from being well-established. The
only reliable tool for studying the QCD phase transition is lattice simulation, and the non-zero
µ  part of the phase diagram is out of reach of present lattice simulations, due to the fermion
sign problem which was mentioned many times at this Conference. At zero chemical potential,
only “pure SU(3),” namely QCD without quarks, is under control in lattice simulations: in
that case, one does know that there is a (weakly) first order phase transition (see e.g., Boyd et



The last equation (Maxwell equation) is a self-consistency equation, which allows one to
compute the electromagnetic field from the external and induced currents

where is the field strength tensor. It is straightforward to write the solution to the kinetic
equation (3.b), which can be checked by inspection

where the factor takes care of the adiabatic switching of the external
sources. In other words, we are looking for a retarded solution which starts from equilibrium
at Equation (4) is completely general. Let me now specialize to the ultrarelativistic
case: then the velocity v is a unit three-vector and it is convenient to define a light-like
four vector In (4) the k and integration decouple, and the k-integration may
be performed at once, leading (after summation over electrons and positrons) to

where is the plasma frequency. The retarded photon propagator can be obtained
from Kubo’s formula

which leads to the following explicit formula in Fourier space

This result was obtained long ago by Silin.3

FIELD THEORETICAL FORMULATION

The field theoretical approach to the previous results has been worked out by Blaizot
and lancu.4 The main advantage of this approach is that it allows one to generalize the set
of equations (3.a,b,c) to the case of fermions and gluons. The strategy consists in finding a
consistent approximation scheme to the Schwinger–Dyson (SD) equations of motion. The SD
equations are the field-theoretical analogue of the BBGKY hierarchy in classical dynamics:
they relate mean fields to two point functions, two-point functions to three point-functions
etc. Of course, as in the case of the BBGKY hierarchy, one must truncate the SD equations
in order to obtain a manageable scheme. Let me explain the method in the more familiar
QED case; the electromagnetic mean field  and the fermion mean field will be
denoted by and In the Maxwell equation (3.c), the induced current is given by
the two-point function where “c” stands for “connected” and is a Dirac
matrix. This induced current is related to the momentum integral of a Wigner transform
of the electron propagator this Wigner transform depends on a slow
variable and a fast variable which is conjugate to the momentum
K. Thus the induced current is given by an equation similar to (3.b), where the unintegrated
induced current is now interpreted as a Wigner transform. Finally the SD hierarchy
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is truncated by putting to zero the three-point functions and a gradient expansion is performed
in the variable X.

The physics behind these approximations relies on the existence of two well separated
energy scales in the perturbative limit There are “hard” particles with energy
(the particles of the heat bath) and “soft” collective modes, or mean fields, with typical
energy In the gradient expansion which was mentioned previously,
while In the field theoretical approach, the x-derivative in the kinetic equation
(3.a) becomes a derivative with respect to X, namely the ordinary derivative in more
complicated cases, kinetic equations will involve the covariant derivative
see eqs (9.a) and (13). One may show that, in an approximation scheme consistent with gauge
invariance, both terms of the covariant derivative must be of the same order of magnitude, and
this implies that the field A characteristic of collective excitations must be of order T. Now, if
one applies on a hard particle a force  during a time interval  typical
of the collective modes, the momentum variation of the hard particle so that
the hard particle motion remains essentially undisturbed by its interaction with the collective
modes. The collective excitations may be treated as classical, while the single particle degrees
of freedom remain quantum. Genuine quantum effects, such as pair production and off-shell
effects enter at the next-to-leading order, on the same footing as the collision term.

In the general case, the structure of the equations will be similar to that of eqs (3.a,b,c).
There will be: (a ) a kinetic equation for the unintegrated induced current, (b) an equation
giving the induced current from a K-integral and (c) an equation connecting the mean field
to the induced current. For example, in the case of electrons, the induced current is given by
the mean value of a photon-electron two-point function

where defining the two-point function its Wigner
transform obeys a kinetic equation

where and are respectively the equilibrium photon and electron distributions. The
induced current is given by the AT-integral of )

and the equivalent of  Maxwell’s equations is

One should notice the similarity of structure between eqs (3) and (9). However there are two
important differences between the two sets of equations. First (9.a) involves the covariant
derivative, so that both sides of the equation have the same transformation law under local
gauge transformations: then the solution of the kinetic equation depends on the parallel
transporter

and reads, as can be easily checked
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Figure 2. Dispersion law for photons

Figure 3. Dispersion law for electrons

where the “electron thermal mass” is given by Since U is a non-linear
function of A, the induced current will generate, through functional differentiation with
respect to and not only an electron self-energy, but also n -point functions with two
electrons and any number of external photons. The explicit expression of the electron self
energy is

Secondly, (9.a) depends on the electron and photon equilibrium distributions, and not on their
derivatives as in (3.a): this means that the interaction of the soft collective modes modifies the
quantum number of the hard particles, not their momentum (a hard electron is transformed into
a hard photon, or vice-versa), the collective electron excitation providing for the necessary
quantum number.

The expressions (7) and (12) of the photon and electron self-energies allow one to
compute the dispersion laws of the elementary excitations, which are drawn in figures 2
and 3 respectively. As is well-known, there are two branches in the photon dispersion law,
the longitudinal branch and the transverse branch. Much less well-known is the existence
of two branches in the electron case; the new branch has been sometimes dubbed
the “plasmino” branch. It decouples at large momenta, exactly as the longitudinal photon
decouples at large momenta; only the vacuum like excitations, namely the transverse photon
and the branch in the fermionic case, remain coupled at large momenta.
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EXCITATIONS IN THE QUARK GLUON PLASMA

After these (lengthy!) preliminaries, I am now ready to write down the results for a
non-Abelian gauge theory like QCD; using the notation where the are
color matrices, one can write the kinetic equation obeyed by the unintegrated color current

where g is the QCD coupling constant, the number of colors (flavors), the
equilibrium gluon (quark) distribution. The presence of the covariant derivative ensures that
(13) is gauge covariant. Since the kinetic equation (13) involves the covariant derivative

the solution for the induced current depends on the parallel transporter
U(X,Y)

where the plasma frequency is now Comparing (5) (6) and (14)
one sees that the gluon two-point function is identical, within a numerical factor, with the
photon two-point function (7). Thus the dispersion law of collective excitations with gluon
quantum numbers will be given again by figure 2. Similarly, the dispersion law of collective
excitations with quark quantum numbers will be given by figure 3; one has only to modify the
thermal mass, which in the quark case, is  where is the Casimir
of the quark representation.

However (14) (as well as (11)) depends non linearly on the field so that the solution
(14) for the induced current generates Green functions with an arbitrary number of external
gluons, while the photon four-point function, for example, is identically zero. The remarkable
feature of (11) and (14) is that they contain the minimum non-linear effects in the gauge field
which are necessary to preserve gauge symmetry.

CONCLUSIONS

The low energy structure and the hierarchy of scales of finite temperature QCD was
uncovered before the work of Blaizot and Iancu in a remarkable analysis of Feynman diagrams
by Braaten and Pisarski5 and independently by Frenkel and Taylor;6 this analysis led to the
concept of “Hard Thermal Loops.” The main outcome of this analysis is a reorganization
of perturbation theory, called the “effective expansion,” which allows one to compute safely
many quantities such as transport coefficients, damping rates, production of photons and
lepton pairs...,1 and is able to overcome in almost all cases the difficulties with infrared
divergences7 and gauge dependence. It seems, however, that difficulties persist in some cases,
where the effective expansion does not give the full answer.8 Moreover, although asymptotic
freedom tells us that QCD becomes certainly perturbative at very high temperatures, in
practice T is at most of the order of 3–5 times the critical temperature in heavy ion collisions.
Then the QCD coupling constant is not really small so that the hierarchy of scales
is not obvious. Nevertheless, one can reasonably hope that the effective expansion gives a
good qualitative guide to perturbative hot QCD.
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Correlated ion stopping of charged debris resulting from the fragmentation of
energetic cluster ions focussed on Au foam converters is considered for driving indirectly a
thermonuclear capsule. The 1D simulation of converter time evolution demonstrates a very
high conversion efficiency of projectile energy into hard X ray photons building up a very
hot (Tr > 300 eV) thermal bath. Intense and energetic cluster ion beams thus demonstrate
considerable potential as a novel driver for inertial confinement fusion.

Presently, in the highly active field of inertial confinement fusion (ICF) driven by
intense heavy ion beam (HIB) the so-called indirect drive approach is given a lot of
attention1-3. It essentially implies a three steps process. The driver energy is first focussed
on purposely laterally located converters on a two-sided hohlraum cavity enclosing a smaller
and spherical capsule with the thermonuclear fuel deuterium + tritrium (DT) in it (see Fig. 1).
Then, the converters get heated up after a few nsec irradiation, up to a few hundreds of eV
temperature. They fill the hohlraum cavity with hard X rays for 10-12 nsec.

The corresponding photons then gradually thermalize with a radiative temperature
through repeted bouncings on the casing inner surface enclosing the hohlraum

and the capsule outer surface. The given heat bath is then able to provide a highly isentropic
compression of the inner capsule. To optimize those processes one has to focus kiloamps of
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heavy ions on a 3 mm radius spot area on converters, in order to get a huge power
deposition Pd. The crux of this well established scenario is that one should transport the ion
of masse in a lowest charge state in order to minimize space charge effects as well as
the triggering of electromagnetic instabilities. On the other hand, the much higher projectile

charge in plasma target secures a beam-target coupling  through a standard stopping

Fig. 1a. Hohlraum design: Target structure with cylindrical Au foam (1g/cc) convertors
surrounded by a corona of solid Au

Fig. 1b. Hohlraum design: Pulse shape profile (Table 1)

process in the hot converters. Those rather contradictory requirements on the projectile ion
charge could be strongly relaxed or even resolved by considering the focalisation of intense
cluster ion beams (CIB). The production, characterization, linear acceleration and even
circular storage4 of supermolecular arrangements of basic atomic entities is now progressing

at a very swift pace4,5. For instance, is one of the best known and more robust of them.
In contradistinction to atomic ions, there is no limitation for cluster ions. So, on can use
them on a much larger scale, allowing provided the given structure can

sustain linear acceleration or This in indeed the case for  with
The CB-converter coupling features a strongly enhanced and correlated

stopping (ECS) arising from inflight and dynamical electrostatic interferences between the
ion debris resulting from the initial fragmentation of a cluster ion impacting
the target dense electron fluid6-9. The sum over i runs over all those fragments. This
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coupling is advantageously contrasted to the usual HIB coupling corresponding to
uncorrelated ion projectiles, in otherwise identical beam-target conditions.

As a result one expects a much shorter penetration indepth. Those specific CIB
features have already been used to design highly innovative direct drive scenarios6,7, giving
credence to the momentum rich beam concept due to Mashke10.

Here we intend to unravel their powerful potentialities for the indirect drive approach
to ICF.

The much shorter cluster ion ranges makes it possible to envision very thin converter
depths accomodating the corresponding very short CIB ranges. A few typical range-energy
relationships of related concern are given in Figs. 2 for Au target at various cold matter
density. So, in contradistinction to hohlaums1-3 currently designed for heavy ion drivers, a
much larger volume is left unoccupied for further isotropization of the thermal photon bath
around capsule and converters.

The stopping data displayed in Figs. 2 are then introduced into a 1 D hydrodynamical
simulation based11 on the code MULTI to investigating the time evolution of a Au foam
cylindrical converter (Fig. 3) 0.15 mm in radius and 0.5 mm long wraped in a corona
thick) in solid gold. The latter is expected altogether with a 0.01 g/cc gas fill in hohlraum
to restrict the transverse radial expansion to a few mm only, 10 nsec after the peak CIB
illumination has begun according to the pulse shaping featured by Fig. 1b and Table 1.

Fig. 2a. Range-Energy relationships for correlated stopping of eight ion debris (charge Z,
atomic mass A) on vertices of a 2 atomic unit (a.u.) edge cubic box flowing in foam
Au target at several densities with one edge // overall drift velocity.

The specific deposited power Pd is considered in the W/g range. Figs. 3
exhibit Pd variations in terms of the corona thickness parametrized respectively by       CIB
energy conversion efficiency into hard photons and radiative hohlraum temperature Tr. The
given converter illumination conditions thus correspond to an energy transfer in the (1-100)
MJ range.
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Fig. 2b. As in (a) for Z = 1 and gold foam at 1/10 solid density (Table 1)

Envisionning a fullerene     CIB producing ion fragments eightfold correlated in target
(Fig. 2), which appears as a reasonable estimate for the fragment distributions available to
the presently considered target scenario fixed for instance at 10 MJ irradiation level demands
10 MA of on each converter for 8 nsec with a projectile kinetic energy

The required linear accelerating structures seem to lie within the realm of present
technology making use of induction linac facilities provided sufficiently intense cluster ion
sources may be developed12.

Fig. 3a demonstrates that for  ranges between 0.85 and unity. On the
other hand, Tr remains remarkably for It increases rapidly with
Pd up to values > 600 eV.

Fig. 3a. 1 D simulation (MULTI) of converters evolution 10 nsec after beginning of peak
illumination.  Conversion efficiency of CIB kinetic energy into X rays.

Those results look promising enough to qualify unambiguously CIB as a serious
candidate to the indirect drive approach for particle driven fusion.

They also secure a swift thermalization of the produced hard photons in the hohlraum.
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The issues of conversion and symmetrization have been also considered at length. It
has been shown that in a simple two converters configuration it is not possible to achieve the
high level of 98% symmetry in the radiation field.

However, more sophisticated configurations including radiation shields placed at
appropriate places in the hohlraum, make it possible to reach this required symmetry level13.
Then the problem of capsule implosion can be reduced to a 1D problem handled with a three-
temperature computer code14,15 providing simulation results of compression, ignition and
thermonuclear burn of a typical reactor-size target.

Fig. 3b. 1 D simulation (MULTI) of convertors evolution 10 nsec after beginning of peak
illumination. Hohlraum radiative temperature Tr.

Fig. 4a. 1 D simulation of inner capsule compression. Capsule design (Table 2)

The target initial conditions are shown in Fig. 4a while the target initial parameters are
presented in Table 2. The target consists of a fusion capsule that contains 5 mg solid DT
shell whose inner radius is 3.02 mm and is filled with a low density DT gas. The fuel shell is
followed by a radiation shield made of a low-Z material doped with high-Z atoms. The
advantages of using such a radiation shield instead of a pure high-Z radiation shield have
already been presented15. The radiation shield is followed by a carbon ablator shell. The

77



capsule is enclosed in a solid gold casing and the radius of this hohlraum casing is three
times the outer capsule radius. The cavity is filled with a black body radiation characterized
with a radiation temperature which varies in time as shown in Fig. 1b. This shaped input
pulse is essential to achieve a high target gain16,17. The precise pulse parameters used in this
set of calculations are given in Table 1. The heat bath radiation ablates the material from the
capsule surface that generates an ablation pressure which is responsible for driving the
implosion.

Fig. 4b. 1 D simulation of inner capsule compression. Final compression stage. The ignited
hot spot spreads all over the compressed fuel.

In Fig. 4b we plot the electron temperature, the ion temperature, the radiation
temperature, the density, and the pressure P vs the capsule radius at t = 32.584 ns,
when burn has spread into the entire DT fuel. The latter has then absorbed 3.8 MJ radiation
energy while about 5.6 MJ radiation energy is lost to the casing, when the target gets
9.4 MJ of CIB kinetic energy. The implosion is shown to yield 965 MJ output energy with
a capsule gain The overall target gain drops to a still handsome
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In summary, we have conducted the first investigation of indirectly driven ICF
through intense cluster ion beams. Making use of much shorter ion ranges in uniformly
irradiated converters, we have been able to demonstrate an unusually high conversion
efficiency of projectile kinetic energy into hard X rays altogether with a radiation temperature
in the 300-600 eV for a driver energy spanning the [1-100] MJ interval. We expect those
encouraging results to foster more investigation on the production and acceleration of intense
cluster ion beams.
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DENSE HYDROGEN AT HIGH AND LOW TEMPERATURES*

N. W. Ashcroft

Cornell Materials Science Center and Laboratory of Atomic and Solid State
Physics
Cornell University
Ithaca, NY

Hydrogen, at near 9-fold compression and at low temperatures, conforms to a time-averaged
state of crystalline symmetry. By shock methods it can be transiently taken into a state of
continuous symmetry which, at approximately the same compression, is at a temperature
equivalent to about 0.27 eV. Here it is reported to be significantly conducting, and an appraisal
of this state via band-theory suggests that it is not inconsistent either with the electronic
character typical of a significantly excited narrow gap semiconductor or, with less certainty,
a band-overlap semimetallic state. These states develop from low temperature phases repre-
sentable by a Landau theory formulated in terms of the order associated with three principal
domains, one a crystalline but rotational state, the second a crystalline but highly librat-
ing phase, and the third a self-sustaining crystalline assembly of dipoles augmented with
significant dynamic polarization.

INTRODUCTION

Some 99 years ago Sir James Dewar succeeded in producing the first condensed phase
of hydrogen in the laboratory, an insulating liquid state at low temperatures. It is in the same
liquid phase, but at high temperatures and high densities that a significantly conducting state
has been reported. Hydrogen is hardly massive, and quantum effects are not trivial even under
the conditions of this measurement. A standard measure is the thermal deBroglie wavelength
which for atomic hydrogen is 1.85 Bohrs at room temperature, 5.85 Bohrs at 30K, and
importantly for what follows, 0.585 Bohrs at 3000K. Until recently the solid phase structure
of dense hydrogen could be summarized by Figure la, a largely low temperature and quantum
product of many careful crystallographic, Raman and infrared scattering experiments. Up to
about 100 Gpa (1 million atmospheres) and for relatively low temperatures hydrogen persists
in its common proton-paired or “molecular” conformation, an arrangement where essentially
permanent pairs appear to be in unfettered rotational states as they go about their vibrational
motions, both within the pairs themselves and about the sites of a lattice. This is Phase
I, or the low pressure phase. A line separates it from Phase II, or the broken symmetry
phase, characterized by the fact that the rotational states of the pairs have evidently become
hindered, and they participate in large amplitude librational motion about average directions
that are not determined (they may even be disordered). An elegant experiment of  Loubeyre et
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Figure 1. (a) A partial low temperature phase diagram of dense hydrogen showing rotational (Phase I),
hindered (Phase II), and hindered and highly infra-red active (Phase III) states. Note that 1 Gpa is equivalent to
10,000 atmospheres, (b) Phase diagram extended to higher temperatures, and showing the point accessed in
the experiment of  Weir et al.4 where a conducting state is reported. The dashed region indicates a possible
boundary separating conducting from insulating behavior.

al.1 utilizing intense synchrotron x-radiation indicates that the structure itself may be in the
hexagonal class, though interpretations in terms of orthorhombic structures are also possible.

Continuing at low temperatures, but moving to higher pressures still, a second line is
crossed at 151 Gpa (about 9 fold compression) into a phase of again largely undetermined
structure where the proton-pairing is preserved, but the state itself (Phase III, or the HA phase)
is significantly different from phase II: the difference is that at a frequency corresponding to
the familiar “breathing mode” of the proton pair, Hanfland et al.2 reported strikingly intense
infrared activity, typical of behavior anticipated for permanent distortions of electronic charge,
and not expected of the normally quite symmetric arrangements of electron charge usually
associated with proton-pairs originating with the molecules we start with at low pressure. The
same effect is found in deuterium by Cui et al.3 and interestingly enough this infrared activity
sets in at the pressure where a noticeable drop was earlier found in the Raman shifts; there is
little isotope effect at this onset and temperature inexorably drives the infra-red activity away,
as recorded in the line separating Phase III from Phase I an observation strongly suggesting
that both the development of the infrared activity, and the drop in the vibron, are collective
properties (they depend on all pairs acting in concert). The experimental situation in the
upper reaches of  Phase III is not completely clear, something we return to below.

DENSE HYDROGEN: A CONDUCTING PHASE

A quintessential feature of the states represented in Figure la is that all are insulating,
even though the densities are rising an order of magnitude or more over that of ordinary solid
hydrogen and actually into regions of  predicted metallic behavior. Stated more carefully, all
are insulating at the scale of temperatures represented in Figure 1a; for if we fix pressures
but proceed towards a much higher scale of temperatures, that is, towards an ostensibly more
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Figure 2. (a) Resistivity of dense hydrogen as a function of pressure as obtained under shock-conditions
(temperature is not fixed at different pressures). It is likely that a melting line has been crossed and that the
hydrogen is in a fluid state, (b) Resistance of solid iodine as a function of pressure (and at room temperatures).
As is Figure 2(a) the evident change in character has been interpreted as an indication of a transition to a
metallic state, but actually taking place with pairing preserved.

classical regime (Figure 1b) the experimental situation changes in a very significant way.
Recently Weir et al.4 reported that at 8–9 fold compression, but at some 3000K, hydrogen
displays conducting properties. This may at first suggest a line or a band on the phase
diagram which, when crossed, could take us into a metallic-like region. Standard melting
equations indicate that at 3000K this highly compressed form of hydrogen should indeed be in
a liquid state. Initial offerings on the character of this liquid are prompted by hydrogen’s dual
placement in the Periodic Table (both group I and Group VII), that is, fluid states based either
on atomic-like particles, or on pairing preferences, as the fundamental elements of a statistical
description. These are truly limiting cases, however, and a more reasonable inference is that
some intermediate structure is far more likely (e.g monatomic but with strong remnant pairing
correlations). If this crucial structural issue centering on the degree of permanence of proton
pairing can be settled, then in electronic terms an important associated issue concerns the
physical nature of the ensuing conducting state. For Weir et al. also monitored the resistance
and eventually converted it to resistivity; it is shown in Figure 2a as a function of pressure.

In a shock-wave experiment temperature is not constant as pressure increases; never-
theless the changes in resistivity are somewhat reminiscent of those found much earlier in
(Group VII) solid iodine (Figure 2b), known to become a metal under increase of density
at ordinary temperatures but also known to retain its form as a solid composed of     units.
Likewise Weir et al. indicate that fluid hydrogen also attains its conducting character with,
they report, very little dissociation being recorded. Since hydrogen might also be viewed
as a divalent entity its conducting behavior could also be compared with mercury which has
also been probed over a wide range of density; again there are qualitative similarities, but
also a critical difference for the scattering physics because hydrogen has internal degrees of
freedom which can accept energy.
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STRUCTURE

As resistivities go for mercury and many other known liquid metals (usually, it should be
stated, at much lower temperatures) the values reported for hydrogen, around  may
be considered high. But the conditions of this experiment are intriguing: First, the system
becomes extremely dense; typical separations between proton-pairs are comparable to the
sizes of the pairs themselves. A common way of representing the density is through the use of
the standard parameter here a linear measure of the average volume available to a proton
(for N protons in a volume V we have the defining relation where is
Bohr’s radius). Thus at one atmosphere and T = 0,  at 9-fold compression
(Bohr’s radii are also the units of  Figure 3 which illustrates typical molecular separations in
an equivalent crystalline arrangement). Second, the temperature of 3000K, which converts
to 0.02 Rydberg units (0.27 eV), is substantial: from equipartition as applied to translational
motions the average speed of a proton pair at 3000K is about it then takes a mere

to cross a typical intermolecular separation. Third, an ideal gas at 3000K and with
molecules in a cubic centimeter (corresponding to 9-fold compressed hydrogen)

will already be at a pressure of 100,000 atmospheres; the pressures actually achieved are 15
times this reflecting the strength of interactions and associated correlation. Fourth, for kinetic
reasons phase transitions, if they exist, can take some time to complete; the experiment is
brisk and one might well consider the possibility of mixed phases should it just
transpire that hydrogen has a liquid–liquid phase transition (see below). Fifth, as hinted at
above the conditions may be such that the integrity of the molecule itself is not guaranteed.
It may opt to dissociate, or the system may even prefer to reconstitute into a phase based on
electrons and hydrogen molecular-ions, or other transitory complexes.

Elementary thermodynamics can be brought to bear on molecular integrity: equilibrium
between, say, diatomic and monatomic phases would require equality of Gibbs energies
per molecule and double the corresponding value per atom, each written as an ideal term
augmented by the excess contribution: if is the difference in the latter, then it is
straightforward to show that the concentration c of atomic species is approximately

At quite low densities, will just be the dissociation energy of a pair (about 4.8 eV),
and even at 3000K the concentration c(H) is small. But the work done in compressing a
dense phase of hydrogen by a factor of 9 is substantial, well into the range of an electron
volt per proton, and much of it goes into a “weakening of the bond.” In a thermodynamic
transcription, is significantly reduced (it then records the energy of separation but in a
dense environment) and (1) then suggests that fragmentation levels can begin to rise very
significantly. It provides a basis for the conjecture above on the expected physical character
of the high temperature and high density liquid as one in which pairs may be rupturing and
reforming constantly, i.e a state intermediate between atomic and paired.

This can also be reinforced by an elementary kinetic argument: In terms of character-
istic times an assumption of equipartition (and also of approximate equilibrium) shows that
orientational times for the pairs are also about equal to those needed for a pair to transit the
intermolecular distances. In other words there must be very considerable entanglement be-
tween orientational and translational degrees of freedom. Add to this the fact that the quantum
of vibrational excitation energy of a pair rather closely matches the 3000K of the experiment
and we see, kinematically, that there is a very favorable situation promoting rapid exchange
of energy between pairs. From this the fast exchange mechanisms known to be operative in
the notably under-coordinated liquid metallic forms of well studied semiconductors like Si
and Ge might also now be the norm for hydrogen. Undercoordination can be a signature of
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Figure 3. (a) Electronic density in molecules of hydrogen, but arranged on the sites of a fcc-like lattice with a
lattice constant chosen to mimic 9-fold compression, the density conditions of the experiment of Weir et al..4

As can be seen, even under these extreme conditions there is relatively little overlap for the most favorable
alignment geometry (indicated in the lower inset). Points 1,2 3, etc. indicate the values of the contours of
density shown in the upper inset (it also shows the cut along the contours). Also given for comparison are the
average valence electron densities found in the simple monovalent, divalent and trivalent metals Li, Mg and Al
respectively. The line marked indicates the average electronic density found in hydrogen at 9-fold
compression. (b) Electronic density of molecules of hydrogen at the spatial separations of Figure 3(b), but
orientationally arranged (lower inset) to least favor overlap (the cut along the contours is shown in the upper
inset).
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the failure of the standard model of simple fluid systems, namely that their configurational
energies are comprised mainly of pairwise interactions. Highly covalent systems, with cova-
lency persisting in metallic states, are characterized by very significant three-body and higher
interactions. In dense hydrogen, the presence of multi-center interactions are also therefore
expected (certainly is an interesting molecule in its own right).

To get a better idea of average density at 9-fold compression and its consequences, Figure
3 shows the ground-state electron distribution in a single molecule of hydrogen. By placing
similar distributions in two relative orientations and at crystalline separations typical of those
of the compressions we are dealing with it also makes the point that the changes being wrought
by increase of density are literally “in the wings” of the electron distributions. Electron density
profiles in crystals are not a reliable indicator of non-conducting or conducting behavior; in
one-electron terms we need at least a band structure for this in order to establish whether or
not an overall energy gap is present. In hydrogen, these abound, but although quite accurate in
delivering ground state total energy values for static arrangements, their predictive capabilities
for excited states (and hence band gaps) are less satisfactory. Nevertheless, the scale of the
gap at 9-fold compression appears to be about an electron volt, depending somewhat on
structure.

TRANSPORT

The estimates of band gaps are useful in a beginning assessment of the important role
played by thermal effects associated with temperatures which may reach an equivalent of 0.27
eV. A pertinent question is whether dense hydrogen under the conditions of this experiment
might be seen as a significantly excited semiconductor (supposing that there is a gap, see
Figure 4a), or a alternatively as semi-metal, but also one that is significantly excited (supposing
there is not a gap, see Figure 4c). The question is clearly being posed in the language of
independent electrons and for crystalline states; we have to return to the role that correlation
plays particularly for disordered states (see below). But for the present, imagine moving
along a line such as AL in Figure 1b, where at A(T = 0) the band gap is, let us say from
the above, an electron volt, a value not too different from common semiconductors. Persist
for the moment with the crystalline phase, but recognize that thermal effects can also affect
the band gaps which are themselves, on average, functions of temperature (see below). As
temperature increases thermal generation of carriers across these gaps ensues (Figure 4b) and
if  hydrogen remains crystalline and is of sufficient purity that intrinsic effects dominate (and
also that the chemical potential does not wander from the gap region), then the density of
either holes or electrons is where

Here we are choosing to measure quantities with dimensions of energy in Ry
units (13.59 eV) and we are assuming that effective masses are reasonably close to their free
electron values. In (1) is an average energy gap under the prescribed thermodynamic
conditions, and it is straightforwardly related to the self-consistently determined electron–
proton interaction.

Now energy gaps in crystalline semiconductors are well known to depend on temperature,
primarily through a reduction originating with a Debye–Waller factor associated with the
thermal motion of the ions, here protons. In this case it is determined by substantial vibrational
and librational motion, and the effects of temperature of the experiment of Weir et al. are
hardly small, even in a crystalline phase. Given that thermal excitation can also drive libration
into full rotational motion (the crossing of the phase line) we see the prospects that can
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Figure 4. (a) Schematic of  energy vs. wavevector (the band-structure at pressure ) for a dense proton paired
crystalline phase of  hydrogen exhibiting a small overall but indirect energy gap of about 1/2 eV. (b) Density of
states (dotted curve) corresponding to Figure 4a, and (dashed line) the scale of  variation  of the
Fermi–Dirac occupation factor. (c) Schematic of energy vs. wavevector (the band-structure at pressure

for a dense proton-paired crystalline phase of  hydrogen in which a band overlap state has been
attained. (d) Total density of states (full line) corresponding to Figure 4c, and, once again (dashed line) the
Fermi–Dirac occupation factor for

quite rapidly diminish.5 Since, as noted, is about 0.25 eV (at 3000K) can quickly
become appreciable. If is a mean scattering time then the associated resistivity is

where is the atomic unit of resistivity and is again measured
in Ry. Interestingly enough for a gap of just 1/2 eV (corresponding to at 3000K)
this already gives some if we merely take for a characteristic ballistic time
for molecules. Here we are invoking the simplest of all physical assumptions namely that
transport proceeds by dynamic percolation within an energy band picture similar to the
crystalline phase, and therefore that the rate of transference of electrons in the conduction
process is dominated by those structural confluences which lead to maximal near-neighbor
wave-function overlaps. But these occur at a rate given by the kinematic collision time given
above, and it depends on a preference by the protons for a characteristic pairing separation.
From inspection of the charge densities associated with a highly paired phase (see Figure 3)
the situation is here is obviously quite different from the simple picture of an ionized plasma.
To obtain the dependence of resistivity on pressure we clearly require more information from
the experiment itself. But using a standard adiabatic law for such a dependence we see that
the behavior in Figure 2b is certainly not unexpected. Whether it is a unique signature is not,
however, so clear.

For example, what of a completely different viewpoint based on a band-overlap state?
Again, a crystalline-like picture of energy bands is being invoked and the question implies
that a gap has closed (see Figure 4c) but that the level of thermal excitation remains very
high (see Figure 4b). Now, at low temperatures the system would be typified by a small and
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fragmented Fermi surface, S, and the resistivity in such a system is then

where is an equivalent free-electron surface area. In (3) is a carrier speed and is
again the equivalent free electron value. Using the Schwartz inequality we can rewrite this
slightly as

where is the standard band effective mass. From (3) and (4) (or (5)) it is clear that in order
to reach experimental values of in a band-overlap state (if  is again fixed by percolative
physics) the Fermi surface area must be small, in fact so small that the chemical potential
must also then be very close to the conduction band minimum. As can be seen from Figure
4d, band overlap can result in a rapidly rising density of states. This indicates a qualitative
difference when compared to the previous case possessing an overall band-gap. But (see
below) in the presence of strong disorder a conducting state is not guaranteed for a given
degree of band-overlap.

This crystalline perspective can only be an approximate guide. The experimental situa-
tion is one where the electrons face considerable proton disorder; as noted above there is little
reason to believe that the proton pairs are endowed with any particular permanence and proton
motion is also reasonably violent. If no further phase transitions intervene (see below) it is
possible that for a given density the notion of a “gap” may persist but it will now be strongly
dependent on the average structure, and in fact is better manifested as a separation between
mobility edges, or shoulders, which divide localized from delocalized states. In an adiabatic
sense any dense non-crystalline configuration of protons can lead both to non-localized states
and to localized states, the latter being slaved in meandering paths to the subsequent motions
of the protons. There will be thermal excitation of electrons (from states below the lowest
mobility edge and above) into a distribution of states which, by their very definition are far
from localized. Their scattering properties are therefore those of quite extended states, and
it is straightforward to obtain an estimate of the resistivity from methods similar to those
used for ionized gases and again for a gap of about 1/2 eV the result is actually not far from
experiment.

But the other case, i.e an equivalent band-overlap situation for significant structural
disorder, is also not easy to rule out. In a crystalline environment the “filling in” of the gap
would be expected to lead to a conducting state (see Figure 4d), but in a static disordered
system, this is not necessarily the case, as was originally shown by Anderson.6 With sufficient
disorder there is the possibility that electrons will not diffuse, even though the density of states
of the highest occupied level is appreciable. To obtain a conducting state it is necessary for
this density of states to exceed a certain fraction of the equivalent nearly free electron density
of states (about 0.3 according to Mott7). However, here the disorder is not at all static; the
degree of thermal agitation of this system is considerable and states considered localized in
a static environment surely cannot remain so. Instead the concept is more one of dynamic
localization where the entangled nature of the fluid state imposes on the electrons just the
kind of diffusive motion that typifies the protons themselves: mean free paths would then
be expected to fall in the range of intermolecular spacings, and again by this argument it is
possible to obtain resistivities on the scale of what is measured in the Weir et al. experiment.

For the crystalline phases of dense hydrogen, numerous studies closely link the “gap”
to the presence and geometry of proton pairs.8 For the high temperature fluid phase the
basic units of statistical physics are not enduring proton-pairs but transient objects yet with
a lingering preference for a distinct average bond length. Thus, whether or not the “band
gap” is closed cannot as yet be established, even within the picture of independent electrons,
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though by the arguments given above, it would seem easiest to conclude that it has not even
though the state has appreciable conductivity. Adding in the effects of correlation (especially
in a state of considerable disorder) is not in the least a trivial matter. One very elementary
measure of correlations is embodied in the energy obtained by the simple device of putting
2 electrons as a spin singlet in the same 1s orbital, the state responsible for the bulk of the
density cusps seen in Figure 3. The is the Hubbard U parameter, and in hydrogen it is large,
namely 1.25 Ry. There is much agreement on band widths and at the density of the experiment
the paramagnetic band-width W in hydrogen is around 1.4 Ry. These figures are not so far
apart, and hence the generally reinforcing effects of disorder and correlation are likely to play
an especially important role, even under the conditions of ostensibly high density.

Has a metal been formed in the sense that a Fermi surface exists which, on the scale of
widths typical of band overlap, is sharp? That remains to be seen by further experiments,
but deciding this question in theoretical terms requires an even deeper understanding of the
structure of dense but increasingly energetic phases of hydrogen. The experiment of Weir
et al. has certainly spurred intensive efforts in this direction, mainly by simulation methods
(molecular dynamics, quantum Monte-carlo and the like). Lenosky et al.9 have approached
the problem by using molecular dynamics with the electronic aspects being treated via the
tight binding method which in turn provides the required effective pair interactions. At
densities somewhat lower than the shock experiments significant dissociation of the proton
pairs is found as temperatures climb beyond those of the experiment, and with these they
also associate the possibility of significant ionization  ’donor’ states in an otherwise
semiconductor-like environment). So-called ab initio molecular dynamics calculations have
been carried out by Pfaffenzeller and Hohl,10 and they find an even higher dissociation
fraction; they also report a resistivity which is about a factor of 6 below experiment. Path-
integral Monte Carlo simulations are very close to a first principles approach to this problem;
the results of Magro et al.11 seem to also support the additional possibility of a plasma-
phase-transition, an idea originally introduced by Landau and coworkers where an ionizable
system might be induced to undergo a first order transition from a modestly ionized to a
significantly ionized state. This indeed might be example of the liquid–liquid phase transition
hinted at earlier and if this is in fact an important part of the hydrogen physics then an
additional timescale arises namely the time for physical phase separation; this might well
be longer than the 100ns of the experiment and since the constituents have very different
conductivities the measured conductivity will then be actually determined by the properties
of an inhomogeneous medium.

HIGH DENSITIES BUT LOWER TEMPERATURES

Returning now to Figure 1 a the low temperature experimental behavior of dense hydrogen
remains puzzling in view of the simplicity of the underlying fundamental description (N
electrons, N protons, a volume V, and mutual Coulomb interactions). It is well to be
reminded that even at room pressures the average electron density of the low temperature
form of solid molecular hydrogen is remarkably high; it corresponds quite closely to the
conduction electron density found in calcium, or lithium, or silver. Figure 3 also illustrates
that in terms of electron density hydrogen may very much be a special case; the average
densities of lithium, magnesium, and aluminum are compared there with the familiar density
of the ground state of the hydrogen molecule. They pale in comparison. Yet hydrogen is a
tenacious insulator, and as indicated remains so at low temperatures even at the 10 fold or
more compressions achievable in ultrapressure diamond cells.

From Figure 1, it is also seen that in crossing from Phase I into Phase II we move
into a state where orientational order has begun to develop; crossing the phase II-phase
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III boundary adds intense infrared activity to the list of unanticipated but striking physical
properties occurring in an otherwise simple system. The symmetry of the strictly isolated
free hydrogen molecule forbids such activity, but distortions provided by invasion of charge
from neighboring molecules can lift this embargo, albeit weakly for this “induced effect” (as
it is called). However, the activity observed in phase III, which is seen to be driven away
by increase in temperature, is reported to be orders of magnitude stronger than expected on
the basis of any direct induced effect. Hemley et al.l2 suggest that the effective charges that
might be associated with what, after all, is appearing as partial ionic behavior, may simply
be dynamic in origin (though the argument places restrictions on symmetry and cell content).
If so one might expect a significant difference between deuterium and hydrogen, something
that could be assessed further with current experimental techniques. But it is surely also
interesting that all this is happening at densities where the familiar Lorentz–Lorenz factor
relating local to total fields present at a molecule should begin to diverge, if we use the average
polarizability of a single molecule as a guide.

Following this line of reasoning a little further, if we take the hint from the remarkable
infra-red activity that charge is suffering a permanent distortion, then electronic symmetry is
being broken in a most unusual way. This is not entirely unanticipated; its likely occurrence
can be seen in physical terms with a simple one-dimensional model. Figure 5a shows a row
of spherical, polarizable molecules, each with an internal dynamic electronic structure. All of
the molecules are coupled by instantaneous dipolar, quadrupolar, etc. interactions. For each
molecule taken separately, the instantaneous dipoles would follow a principal equation of

motion of the type But all are coupled  and if for the molecule at i
we invoke the molecular field approximation where is the linear polarizability,
and the average local field at i) then to the right hand side of the equation of motion we
add a term proportional to where is proportional to In the same mean field
approximation this leads to wave-like solution for the polarization (“polarization waves”)
with frequency

with a function which peaks at k = 0. Because of this, it follows that
at k = 0, and for increasing values of a mode can become “soft” and spontaneous
polarization would be developed along the chain. The role of pressure is clear; it is the
mechanism by which lattice spacing a is reduced relative to  in fact to the point where
the inversion symmetry of the system can be broken. The very same argument obtains for
anisotropic molecules as aligned in Figure 5b. But for hydrogen (which has a significant
polarizability) a far more interesting prospect arises, and this is illustrated in Figure 5c.
Once again conditions on density impel a state of spontaneous broken symmetry, but in this
instance a quantized mode of spontaneous polarization becomes “soft” at a zone-boundary
wave-vector. From Figure 5c we see that the emerging state is one in which two sublattices
develop polarization, but their sum vanishes. The result is an antiferroelectric (the case
illustrated by Figure 5b being a ferroelectric), and it is clear that the broken symmetry
will now permit coupling to external infrared radiation. The role of the higher multipoles
(especially quadrupoles) is not unimportant to this argument since they can also order on their
own, and couple to the ordering of the dipoles (see below).

When this argument is carried out in 3 dimensions, the known average value of for
hydrogen predicts13 an instability at which is very close to the density corresponding
to the low temperature onset of intense IR activity. In the Landau theory of phase transitions,
antiferroelectrics can be assigned an average order parameter of dipolar origin (say d) in
terms of which the Gibbs free-energy, g(P, T) per pair can be developed, i.e., as a classical
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Figure 5. (a) Spherical polarizable molecules with isotropic average linear polarizability at equal
separations (a) and all coupled by instantaneous dipole–dipole interactions. At each site is a local field
resulting from the instantaneous polarization of all other molecules. The system admits of elementary
excitations which are quantized waves of electronic polarization (dashed curve) and if a is reduced sufficiently
in comparison to the scale of polarizability it is possible for a long wave length mode to become “soft.” This is
a Goldstone boson for the system heralding a break in symmetry (and also possibly related to the Dicke
phenomenon), (b) The same argument as in Figure 5a but now applied to anisotropic molecules (with principal
polarizability components as shown) and again resulting in a long wave length electronic distortion of a
ferroelectric character, (c) Once again a similar argument, but here the soft-mode occurs at a zone boundary
and results in two opposed sublattices of spontaneous polarization (an anti-ferroelectric arrangement).

guide

Here d could be taken as the average sublattice polarization; if then we may have
a first order transition. It is important to remark that the term quadratic in d includes the
energy cost of forming the dipoles; the temperature signals the onset of a transition, but the
antiferroelectric phase has a wider stability limit. The coefficient a is dependent on pressure,
and again favors formation of the antiferroelectric phase for some

Phase II evidently lacks the intense infrared activity associated with Phase III, and we
may therefore presume a symmetric disposition of electronic charge (or very nearly so).
Phase I is thought to be rotationally symmetric, so in passing from Phase I to Phase II the
evident ordering is not associated with any directed quantity; the order parameter is of a
higher character, and since hydrogen does possess a sizable quadrupole moment, a clue to its
form might be sought here. In fact the average order can be given in terms of a quantity

where the are components of the unit vector which characterizes the average direction
of pairs. The scalar S is now a measure of alignment of pairs and will be close to zero in
Phase I. Unlike the case where order is associated with polarization, a separate development
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of g in powers of S can contain odd powers, the first beginning with ,  i.e., in addition to
(7) we now have terms

and this leads to the possibility of a first-order transition from complete orientational disorder
(Phase I) with a corresponding tilt of about 37° in Phase II. This suggests a state of average
order in which there is significant libration, and crystal field effects not incorporated in S
will also play a role at higher compressions and lower temperatures. The average structure
of this phase (Phase II) is now reported by Kohanoff et al.14 to be one which indeed favors
alignment of quadrupoles.

As just noted hydrogen has a considerable quadrupole moment, and to a significant degree
the form of the order parameter S actually reflects the statistical ordering of quadrupoles.
Given this, and a coupling that must necessarily result from quadrupoles and dipoles, we
immediately expect one further term in the development of g(P, T), namely a term proportional
to Sd, whose role indicates that the ordering of dipoles is not independent of the ordering of
the quadrupoles, and vice versa. It might well be argued that within current experimental error
the Phase II-Phase III boundary (see Figure 1 a) represents a first-order transition, for instance
a transition to a new and significantly different crystal structure. Further, an accounting of
the intense infra-red activity of Phase III could then be attributed to dynamic polarization
now very much larger than in the progenitor phase, and also evidently rising with pressure.
As remarked above, such a picture will place significant bounds both on the symmetry
and cell content of Phase III; in addition the explanations of other physical characteristics
associated with the transition become more troublesome.13 But an obvious point is that this
issue is decidable by further experimental probing of the nature of the phase boundary itself.
Further detailed experimental elucidation of the phase diagram can therefore expected to
lead to some particularly significant insight on the nature of the couplings impelling the
transitions. However, these general arguments appear to account for the basic features of
the phase diagram of hydrogen at least as recorded in Figure 1a, and in fact, can be given
a fully microscopic justification.15 In particular, Phase III appears consistent with a state of
spontaneous polarization, of antiferroelectric character, whose occurrence modestly widens
the one-electron gap which had been previously declining with pressure.13 It certainly requires
additional correction for dynamical polarization, but the main point is that it accounts for the
downward shift in vibron frequencies at the transition, and the relative insensitivity to mass.

DISCUSSION

Probing the higher reaches of the phase diagram at low temperatures is a currently
active enterprise and hints of other structures being favored at even higher pressures (but
still preceding the metal) are also now in the literature.16 Further structural determinations
at higher pressures (and densities) will significantly aid in the education of the electronic
ordering. Why hydrogen obdurately clings to its Group VII status appears closely linked
to the fact that as noted above volume changes per molecule (the manifestation of external
physics) can be brought about that are significant fractions of the molecular polarizability
(the manifestation of internal molecular physics) and with relative ease. The symmetry of
the Wigner–Huntington state which, when broken once to form the paired state, is difficult to
reverse. It is traced to hydrogen’s lack of any “inner core” electrons, whose presence in other
atoms tend to shield or soften the interaction with the nucleus and to significantly weaken the
exchange driven pairing tendencies. As we have seen, hydrogen is a strong scattering system
and it is a particularly important one because of  hydrogen’s dominance in the universe, and
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especially in the giant planets of our own solar system. The understanding of the magnetic
field on Jupiter is especially linked to the transport properties that are now emerging. They
promise to be extended considerably by laser-shock experiments which are following on the
heels of the gas-gun experiments of  Weir et al.
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Results are presented which were obtained in the field of quantum kinetic theory to describe
reaction processes in dense strongly coupled plasmas. Statistical expressions for ionization
and recombination rates are given taking into account plasma density effects such as dynamic
screening, self energy, lowering of the ionization energy and Pauli blocking. The influence
of these effects on the rate coefficients and on the ionization and population kinetics of dense
hydrogen and carbon plasmas is discussed.

INTRODUCTION

The properties of strongly coupled plasmas have obtained a new increasing level of
interest. One reason is the progress in the field of laser–matter interaction. Femtosecond
laser pulses with intensities of more than are available now to produce hot dense
plasmas in the laboratory.1 These new developments are a challenge to the theory of strongly
coupled plasmas.

The formation and decay of bound states is one of the most important problems in the
physics of such dense plasmas. In the laser–plasma experiments mentioned above, dense
plasmas are created which are in nonequilibrium.2,3 Here, ionization and recombination
cannot be modelled by the well-known Saha equation. There are phases in the plasma
evolution where one has to start from rate equations instead of the Saha equation and one
has to determine the temporal evolution of the number densities of free and bound particles.
Usually, these rate equations are based on a phenomenological approach.4 Plasma density
effects are neglected in the rate coefficients or they are considered from an elementary point
of view. However, in dense nonideal plasmas there are strong interparticle correlations and
such a level of description cannot be applied.

Recently, calculations of rate coefficients for strongly coupled plasmas were made by
several authors based on different theoretical assumptions. We mention papers of Biberman
et al.,5 Schlanges et al.,6, 7 Rasolt and Perrot,8 Weisheit and Murillo,9, 10 Gutierrez and Gi-
rardeau,11 Leonhardt and Ebeling,12 Iglesias and Lee13 and others. Of course, a systematic
approach to calculate rate coefficients for strongly coupled plasmas requires a strict foun-
dation of rate equations on the basis of quantum statistical theory. This leads to explicit
expressions for the rates including all the typical plasma density effects such as dynamical
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screening, self-energy, lowering of the ionization energy and Pauli blocking.7, 14 In the present
paper we will follow this line and give some results obtained in this field.

LENARD–BALESCU EQUATION FOR BOUND STATES

An appropriate approach to describe the formation and the decay of bound particles in a
strongly coupled plasma is quantum kinetic theory.15, 16 We use Green’s function techniques17

and start from the Bethe–Salpeter equation for the two-particle Green’s function defined
on the Keldysh time contour ’C’

(1)

The are the single-particle Greens functions given by the Dyson equation. is the
general effective interaction potential which can be expressed in terms of higher-order Green’s
functions. To describe ionization and recombination processes in strongly coupled plasmas,
a cluster expansion is used for which includes three-particle processes as well as plasma
density effects.18 Using this cluster expansion and positioning the times on the upper and
lower branch of the time contour, we get from (1) the following kinetic equation for the
two-particle correlation function

(2)

An operator notation is used where t denotes the macroscopic time and ω the energy variable.
Equation (2) has a well-known structure. The l.h.s. describes an effective two-particle
problem with dynamically screened interaction whereas the r.h.s. represents a collision
integral in terms of the screening correlation functions Here,

are the correlation functions of the dynamically screened potential considered in more
detail below.

In order to find a kinetic equation for the distribution functions of bound states, we use
the bilinear expansion of the two-particle correlation functions

(3)

The sum over K includes all the two-particle states, i.e., the correlation functions   consist
of  a bound state part for K = P, j (total momentum P, set of internal quantum numbers j) and
a scattering contribution for The are the corresponding eigenstates of the
effective hamiltonian where static screening is assumed to simplify the problem. The
occupation numbers are for bound states and  for
scattering states with and being the distribution functions of bound and free particles,
respectively.

Now, let us return to equation (2). We insert the bilinear expansion (3) and perform the
integration over what leads to the following kinetic equation for the distribution function
of bound particles in the state

(4)
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There are different collision integrals. The first two terms include elastic and inelastic
scattering processes. The last term accounts for collisional ionization and recombination. It
is given by

(5)

The energies and are quasiparticle energies which we consider in the so-called “rigid
shift approximation,” i.e., thermally averaged shifts are used.17

For the correlation functions of the dynamically screened potential, a general dissipation-
fluctuation theorem can be found. In random phase approximation (RPA) it reads

(6)

Here is the Coulomb potential, is the retarded dielectric function in RPA
and the abbreviations are used.
In RPA, screening is determined by the free particles in the plasma. Of course, a consistent
treatment of screening for partially ionized plasmas requires also the inclusion of bound states.
Therefore, one has to go beyond the RPA. This was discussed already by Klimontovich15

based on a pair operator formalism and by Röpke and Der19 using thermodynamic Green’s
function techniques. Recently we have considered the problem for nonequilibrium plasmas
starting from the equations of motion for real-time Green’s functions. For the dielectric
function then follows18

(7)

The first line on the r.h.s. gives the well-known RPA result and the second line presents
additional contributions coming from the two-particle bound and scattering states. The
atomic form factor can be written as

(8)

An important point is that the wave functions have to be determined from an effective
Schrödinger equation. In comparison to the Schrödinger equation of an isolated pair of
particles, there are some differences: (i) a dynamic self-energy correction, (ii) Pauli blocking
and (iii) a dynamically screened potential. As an important result follows from this equation
that the effective ionization energy is mainly determined by the lowering of the continuum.
For a more detailed discussion we refer to Ref. [17] and, more recently, Refs. [20] and.21

REACTION RATES

Let us now consider the consequences which follow from the kinetic equation (4) in order
to describe the ionization and population kinetics in strongly coupled plasmas. Integrating
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Figure 1. a) Cross section for ionization from the 2s-level versus impact energy for different screening
parameters The solid lines refer to dynamic screening in the e—e potential, the dashed curves to static
screening, b) Ionization energy  and plasma frequency versus free electron energy for different
temperatures: 1) 10,000 K, 2) 30,000 K, and 3) 100,000 K.

the kinetic equation with respect to the total momentum, we get the following set of rate
equations for the number densities of bound particles in atomic states

(9)

On the r.h.s. there are the coefficients of three-body recombination of impact ionization
and of excitation (deexcitation) for which the theory now gives generalized statistical

expressions valid for strongly coupled plasmas. For instance, we get for the coefficient of
impact ionization

(10)

Similar expressions follow for the recombination, excitation and deexcitation coefficients.
In the following, screening is assumed to be determined mainly by the free plasma

particles. Then the RPA expression (6) can be used for the screened potentials Further-
more, we consider the case of local equilibrium with respect to the momentum distribution,
i.e., the Fermi function can be used for the electrons. It is easy to show that ionization and
recombination coefficients are then related by

(11)

The effective ionization energy reads  where the thermally averaged
self-energy shifts of electrons (e), ions (i) and atoms (j), respectively, determine the density
and temperature dependent lowering of the ionization energy. At this point we want to mention
that the relation (11) cannot be used if the distribution functions are not local equilibrium
ones. In this case ionization and recombination rates have to be calculated separately from
their statistical expressions.22

For nondegenerate plasmas the αj can be written in the usual form7 introducing the total
ionization cross section

(12)

It is given in terms of the electron–electron potential, screened by the RPA dielectric function,
and of the atomic form factor. The latter was calculated using the effective Schrödinger
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Figure 2. a) Coefficients of ionization of various hydrogen-like carbon ions versus free electron density b)
Corresponding recombination coefficients. The solid lines denote the calculation with a dynamically screened
potential, the dashed lines those with statically screened potential. Shown is the ratio of the rate coefficients to
their ideal values.

equation with statically screened Coulomb potential and with single-particle shifts
inverse screening length).

In Fig. 1a the cross section of ionization from the 2s atomic state of hydrogen is shown
in different approximations. The solid lines are the results for dynamic screening in the e–e
potential, the dashed curves for pure static screening. Due to plasma density effects there
are drastic changes in the behavior of the cross section. With increasing plasma density,
the threshold moves down to zero energy which indicates the Mott point. The cross section
near the threshold is essentially determined by the screening in the atomic form factor. At
high densities we observe an irregular behavior. The cross section calculated with dynamical
screening increases with increasing impact energy. This indicates that the usual picture of
a scattering process of the atom with one single electron breaks down because of collective
effects. Indeed, with lowered effective ionization energy, the energy argument of the dielectric
function in (12) can take values near the plasma frequency. This can be seen from Fig. 1 b. We
can conclude that there is the special many-body effect of ionization and recombination by
absorption and emission of plasmons. This makes the usually defined cross section unsuitable.
Therefore, one should start right from the basic statistical expressions for the rate coefficients.
For the ionization coefficient we find the following appropriate form14, 22

(13)

The expressions derived above make it possible to calculate the rate coefficients studying
the influence of many-body effects. There are several papers dealing with this problem.
In a simple model, the lowering of the ionization energy was taken into account leading
to generalized Arrhenius-like ionization rates.6 Statically screened interactions, continuum
lowering and Pauli blocking were included in a more systematic way in Ref. [7], see also
Ref. [12].

Effects of dynamic screening on ionization rates were first discussed by Murillo and
Weisheit10 and Murillo23 using an expression similar to that given by (13) and then by
Schlanges and Bornath24 on the basis of quantum kinetic theory. A semiclassical approach
was recently applied by Jung.25

Let us discuss now some results for rate coefficients obtained from expressions presented
in this paper. In Figs. 2a,b the coefficients of ionization and recombination for different states
of hydrogen-like carbon ions are given as a function of the free electron density. With
increasing density there is a strong density dependence of the rates due to the influence of
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Figure 3. Ionization degree and temperatures of electrons and heavy particles versus time. The initial state is a
fully ionized hydrogen plasma with and

many-body effects. The comparison of dynamic and static screening in Fig. 2 shows higher
rates for the case of dynamic screening. This is more drastic for exited states. The step-
like behavior of the curves is connected with the shift of higher lying bound states into the
scattering continuum.7 There they contribute as resonances enhancing thereby the rates. An
interesting model to include this effect was recently given also by Iglesias and Lee.13

Our calculation have shown a smaller influence of many-body effects on the collisional
excitation and deexcitation rates.

DENSITY–TEMPERATURE RELAXATION

In order to study the ionization and population kinetics of a dense spatially homogeneous
plasma, we start from the rate equations (9). Balance equations for temperatures of electrons
and heavy particles can be derived in usual way from the kinetic equations of free and bound
particles. For electrons in a partially ionized hydrogen plasma the equations read26

(14)

A similar equation follows for the temperature of the heavy particles. The r.h.s. of Eq. (14)
describes the energy transfer due to elastic, inelastic and reactive processes including many-
body effects. The last two terms stand for the energy transfer following from elastic electron–
proton and electron–atom scattering which were calculated in T-matrix approximation.26

In Fig. 3 the temporal evolution of the degree of ionization and the temperatures is
shown for a hydrogen plasma which is fully ionized in the initial state.26 The rate coefficients
were used in the approximation proposed in earlier papers.6 Nonideal plasma effects lead to
higher ionization during the relaxation. Furthermore, the equilibration process of electrons
and heavy particles takes much longer than in the ideal plasma due to screening.

Figs. 4a and 4b show the population dynamics of a hydrogen-like carbon plasma. The
main many-body effect can be seen from the behavior of the population density for the
excited level  j = 3 ( j denotes the principal quantum number). The influence of the plasma
medium on the reacting particles prevents the population of this state in the first period of
relaxation. However, near thermodynamic equilibrium, the state  j = 3 vanishes again because
the Mott point is reached where the bound state moves into the continuum. In this manner
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Figure 4. a) Level population and b) temperatures of light and heavy particles versus time for a hydrogen-like
carbon plasma. The initial state is a fully ionized plasma with

the appearance and disappearance of bound states during the relaxation of a strongly coupled
plasma is described.24, 27 Population dynamics based on a stochastic model was discussed
recently by Beule et al.28

In Fig. 3 and Figs. 4a,b examples for the temporal evolution of densities and temperatures
are given for the case that the total density remains constant. But for plasmas produced by
intense subpicosecond laser pulses impinging on a solid target such an assumption cannot be
made. In order to describe the recombination phase after the pulse, the system of equations
(9) and (14) has to be modified including an adiabatic expansion model.27

Interesting properties can be studied if ionization and recombination are considered in
spatially inhomogeneous plasmas. Now one has to deal with reaction—diffusion equations
coupled with the energy balance equations. Besides the reaction rates, the diffusion coefficient
and the thermal conductivity must be calculated for the dense partially ionized plasma. An
interesting result is that nonideal plasma can lead to well-known nonlinear phenomena such
as bistability, phase separation and ionization fronts.29–31
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Responses to external perturbations have been treated in many theoretical works for
various systems. The same problem has been studied via molecular dynamics (MD). The
goal of the review is to compare the results obtained by these three general approaches
when they are applied to the same object, namely, strongly coupled electron-ion plasmas.

First, we shall remind of the necessary physical concepts and definitions, then
briefly outline theory, discuss MD simulations and consider fluctuations as they follow
from theory and simulations. We draw attention to some unexpected features of experimen-
tal generations of strongly coupled plasmas (SCP) and proceed to comparison of theory,
simulations and experiments. Final remarks concern nolinear response.

1. GENERAL RELATIONS

Discovery of the connection between equilibrium system fluctuations and dissipative
properties of the system at weakly non- equilibrium conditions was an outstanding achieve-
ment of statistical physics1. First relations were of phenomenological kind: the relation be-
tween diffusion coefficient and random force amplitude derived from Langevin equation as
well as Nyquist relation between conductivity and current fluctuations.

The rigorous proof was carried out in the Green-Kubo linear response theory. The un-
perturbed Hamiltonian is and perturbed one is perturbation is

where F(t) is an external force. The response A(p,q,t) of the system is
related to the Hamiltonian by the equation

where generalized susceptibility is
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< > means averaging over equilibrium system. These equations represent a relation between
a dissipative coefficient and fluctuations of dynamics quantities A and B in the system with
a Hamiltonian Fourier-transformation results in

For constant force F one obtains

Later the approach was extended to nonmechanical perturbations, for example to gradients of
density, pressure or temperature. Coefficients of diffusion, viscosity and heat conductivity
are also related to the corresponding time correlation functions.

The equation for is a particular case of the fluctuation-dissipation theorem. The theo-
rem is valid not only for Hamiltonian but for dissipative systems too.

Examples. The conductivity of conductors is related to the current autocorrelation function

The dielectric function  of the systems with space dispersion is related to charge den-
sity correlation function

P is the principal value.

2. STRONGLY COUPLED (NONIDEAL) PLASMAS 6 , 7

In gas plasmas the electron Debye radius  is much greater than the av-
erage intercharge distance T is temperature, is electron number den-
sity. Or Debye number is much greater than unity.

As temperature and number density dependencies are different for two radii, it is pos-
sible to find out the value of a charge number density for any temperature when this ratio
equals to unity. The values for three temperatures are presented in Table 1.

The values are not exotic. So it is possible to generate plasmas which fit the inverse
inequalities. The Debye number becomes less than unity for number densities greater than
shown in the table and this plasma is non-Debye.
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The nonidealty parameter characterizes the ratio of interaction en-
ergy to thermal energy. If about 1 the plasma is nonideal. Virial expansions are no more
valid. The Debye number becomes less than 0. 1 for We call both non-Debye and
nonideal plasmas strongly coupled plasmas. We consider only non-degenerate plasmas.

Collective phenomena are the basis and essence of any gas plasma theory and it is
known that plasma waves are the starting point of the theory 8-14. It is often assumed9 that the
range of plasma wave existence is restricted by the following inequalities

(1)

(2)

k is the wave number, The inequality (1) results from Landau damping,
The inequality (2) is due to collision damping. The fact that plasma waves were neglected

barrier between approaches 8-14 and 15, 16. Now we know that plasma waves do exist in
SCP4-7, 17-19 and it is possible to develop strongly coupled plasma theory starting with plasma
waves just as in gas plasma theory5-7, 20-25 and thus to incorporate SCP in conventional
plasma theories6, 7.

In ideal plasmas, the collision damping decrement  is determined by the Landau col-
lision integral, and its correct form is

(3)

where and the screening length  is taken as an upper
cut-off distance. Equation (3) takes into account weak long range multiparticle interactions.
As becomes less than the mean interparticle distance and the latter begins to
play the role of the screening distance. Then, short range interaction between charged parti-
cles is predominant, the collisions become strong and almost binary, and the Landau colli-
sion integral should be replaced by the Boltzmann collision integral. In this case, collision
damping has the same functional form but with replaced by

(4)

where Thus, at small  the  quantity increases as according to (3) and
at large decreases as A maximum between these two branches of the damping dec-
rement can be evaluated by matching equations (3) and (4) at This estimate gives a
value of The withdrawal of the collision restriction (2) is explained by
the fact that ae becomes less than

The inequality (1) should also be modified, that is

(5)

where is the Debye wave number. In a Debye plasma, and the restriction (1) is
stronger than (5). As  the inequality inverses

Landau damping is determined by the electrons moving with velocity equal to the
phase velocity of the wave. In a Debye plasma, this corresponds to the electron thermal ve-
locity. In nonideal plasma, the minimum phase velocity increases so that the number of elec-
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trons contributing to Landau damping decreases. They correspond to the tail of the Maxwell
distribution. Hence, the maximum value of Landau damping decreases as γ  grows.

The range of plasma waves existence is presented in Fig. 1. Account is taken of the
fact that according to 13, the Landau damping decrement  when and

Two regions can be distinguished in Fig. 1. In the first, where the lines are parallel to
the one marked by unity, Landau damping dominates. The region where the isolines are ver-
tical is dominated by collisional damping. And both Landau and collisional damping decrease
when

From the definition of it follows that the fraction of the collective degrees of free-
dom at The value 1/3 means that only longitudinal
waves are considered.

Thus, the number of collective degrees of freedom in a nonideal plasma is greater than
in a Debye plasma, since in that case, they are no longer restricted by Landau damping.

3. OSCILLATION MODES

In order to make use of collective variables in the theory, it is necessary to define them
and to carry out a canonical transformation of the Hamiltonian. For gas plasma each collec-
tive degree of freedom corresponds to a normal oscillation mode, that is, to an oscillatory
motion of a collective variable14

with a certain frequency The SCP case is much more complicated, because we deal
with a system of interacting oscillators with non-linear coupling.

New collective variables were proposed for SCP in 22, 26, 27. Kaklyugin 27 followed the
analogy with phonons in solid state and assumed that every charge (i is its number) in SCP
is in a certain equilibrium site Then its instantaneous position        is
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where is a displacement from equilibrium site. Then new coordinates and momenta are
defined by equations

where Fourier transformation leads to

In quasilocalized charge approach, Kalman and Golden22 started from and as
new collective variables. So the approaches developed in 22 and 27 were originally identical.
However Kalman and Golden22, contrary to Kaklyugin27, completed further transformation.
They introduced the equilibrium pair correlation function into their formalism by ensemble
averaging over the quasiequilibrium positions of the highly localized charges. Additionally,
these authors22 assumed that it is a good approximation to consider variables  and as
the canonically conjugated dynamics variables.

Kalman and Golden22 obtained a new Hamiltonian, derived equation of motion for
and finally obtained the expression for  The cost of the approximations was that only
the dispersion, but not the damping of the collective modes, can be determined from the the-
ory developed.

To derive the motion equation for collective excitations in SCP and to take into account
the damping of the collective modes the authors of 6 , 7 use the smallness of plasma wave
damping (cf. Sec. 3) from the very beginning. Then, similarly to 14, the Hamiltonian of the
system has the form

(6)

where is the Hamiltonian of the collective degrees of freedom, is the energy
of the individual degrees of freedom, and and represent relatively small inter-
actions between different collective degrees of freedom and between collective and individual
degrees of freedom, respectively.

Differentiating (6) with respect to one can obtain the equations of motion of the
collective degrees of freedom. Then, following Tatarskii28 who studied a system of coupled
oscillators at small evolution times, one can reduce these equations to the Langevin form

(7)

where is the effective friction coefficient, which includes both collision and Landau
damping and y is the random force

is the diffusion coefficient in ρ space.
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The equations (7) are not coupled with respect to different k and can be treated as usual
equations for a stochastic oscillator.

4. APPROXIMATE THEORIES

Generalized Langevin equation is a natural bridge to some SCP models. Memory
function formalism4, 29 uses Laplace transformation of the generalised Langevin equation to
relate transforms of density and current correlators to memory function transform. The equa-
tion obtained contains static structure factor. The latter should be taken either from MD re-
sults or from another independent calculation of pair distribution function.

This or similar models are involved in all SCP theories. Various theoretical treatments
can be separated into two groups. Singwi at. al (1968) proposed, may be the first model.
They, as Singwi30, Kalman and Golden22, Tkachenko and Ortner21, 25, Ishimaru31 proceed
from the most general expressions of statistical physics. For that reason they call sometimes
these approaches modelless. However certain transformations then follow which are based
on approximations of rather mathematical than physical character. Finally, in order to obtain
some numerical results either a model is introduced or data taken from simulation or another
theory are used. The principle problem of these theories is how to define physical conse-
quences of the mathematical approximations which were done.

Another treatments are of heuristic nature. Model approximation is a starting point, but
its physical meaning is evident, for instance, (cf. Sec. 3). Further the approxima-
tion can be used both for heuristic model constructions and in analytical approaches.

5. MOLECULAR DYNAMICS SIMULATIONS

We treat non-degenerate plasmas. So Newton equations are used. The principle prob-
lem is how to treat short inter-charge distances where classical mechanics is no more valid,
in particular, for electron-ion pairs when bound states exist. The situation is just like in solid
state theory, where pseudopotential was introduced32 in order to get rid of discrete spectrum.
The pseudopotential cuts the Coulomb infinity and replaces it by a shallow well.

The first pseudopotential (or effective pair potential) was introduced for SCP simula-
tion by Zelener, Norman and Filinov33. It was calculated from the reduced Slater sum, i. e.
ignoring contributions of lower bound states. The depth of the well was chosen to
be equal where Such pseudopotential satisfies the mechanical similarity condi-
tion. For this reason SCP properties occurred to be the functions of one argument, namely,

A smooth effective pair potential was introduced independently by Ebeling34. It ac-
counts for layering of results due to various values of quantum parameter.

Having chosen effective pair potentials any MD investigator faces the numerical inte-
gration of Newtonian equations. It is not a trivial task for electron-ion SCP. We shall draw
attention to the computational peculiarities below, when the MD results are discussed.

MD simulation of electron-ion SCP was performed first by Norman and Valuev17-19.
Only electron dynamics was considered. Ions were moved by Monte Carlo method.

MD of both electrons and protons was simulated by Hansen and McDonald4. Their
work was very extensive. Its influence has been conserving for many years.

6. ENERGY OF ELECTRIC FIELD FLUCTUATIONS

Fluctuations in uniform equilibrium SCP are the basis for any response theory. This
subject is considered in Sec. 7-9.
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Fig. 2. Energy density F(k) of longitu–dinal modes. 1 is noncorrelated system of charged
particles, 2 is correlated system of charged particles, 3 is , 4 is collective modes
in approximation that neglects damping for 5 is collective modes with
damping.

Fig. 3. Intensity spectrum of longitudinal modes.

The potential energy of the system of charged particles is proportional to the mean
squared intensity of the electric field, including the collective field. However, to obtain ther-
modynamic functions it is necessary to calculate the difference between the potential energies
of the real system and of the system of noncorrelated charged particles (Fig. 2).

The derivation is rather complicated but can be performed analytically using ideal-
plasma general formulas. The following expression for internal correlation energy E/nkT (the
area between lines 1, 3 and 2 for  is obtained35:

(8)

For equation (8) gives the Debye-Hückel law (the area between lines 1 and 2 for
Further development of the thermodynamics can be performed in the framework of

the approaches some of which were considered in 15, 16.
The collective field energy is important for evaluation of certain properties of SCP. Its

intensity spectrum is related to dielectric function

Examples are presented in Fig. 3 for several values of The result of numerical in-
tegration of over is given by curve 5 in Fig. 2. Integral over k is the total energy of
collective degrees of freedom. It is con venient to reduce it to a dimensionless value i. e.
the fraction of collective degrees of freedom or the ratio of the energy of the collective fluc-
tuations to the electron thermal energy. One can obtain from curve 5

(9)

Curve 4 (Fig. 2) results in13

(10)

The maximum value for a nonideal plasma is
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Thus, starting up from curve 2 one obtains the negative correlation energy, starting
down results in positive energy of plasma waves.

7. DISPERSION RELATIONS

The equation of plasma wave dispersion can be presented in the form9

(11)

where P is pressure, is a polytrope index. Using (8) to estimate P one obtains curve 2
in Fig. 4. This curve is closer to molecular dynamics results than to the ideal plasma curve 1.

It is necessary to take into account that molecular dynamics data correspond to maxi-
mum of function Denote the position of the maximum by Damping of
plasma waves reduces the value of comparing with It is demonstrated for ideal
plasma by curves 3 and 1 in Fig. 4. The similar effect should be expected for the curve 2,
that may improve the agreement with molecular dynamics data4, 36.

Fig. 4. Dispersion of plasma waves for nonideal plasma. Calculations: 1 is ideal plasma13,
2 and 3 are equation (11) using expression (8) for and 1. 56, respectively,
4 is Molecular dynamic simulation: squares are4 for 39, triangles for

circles36 are for

Fig. 5. Dispersion of plasma wave damping decrement for nonideal plasma. 1 and 2 – two
estimates corresponding to maximum and minimum choice of the Coulomb
logarithm. Molecular dynamic simulation: squares are4 for triangles are4 for

circles are36 for

Damping decrement is presented in Fig. 5. Two curves correspond to maximum and mini-
mum estimates of collision damping. The curves are in agreement with the results of mo-
lecular dynamics simulations4, 36, which were obtained for the Landau damping region.

Virial expansions16, 37 and response theory consider the same object (SCP) from two
points of view. Inspite of being very different, two pictures observed should have some in-
herent proximity. First, the equation of state15, 16 , 37 incorporating correlation energy (8) can
be substituted in (11). Second, short-range quantum correlations studied in 16 , 37 must influ-
ence dispersion relations at large k.

The equation of state provides the response theory also with charge number density.
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8.  INDIVIDUAL  DEGREES  OF  FREEDOM

Differentiating (6) with respect to the coordinates of individual degrees of freedom,
one can obtain the motion equations of individual quasiparticles. According to (6), two force
terms appear. The first is due to the strong pair interaction of the electrons with other charges
at short distances and the second is the action of the collective high frequency electric field.

Each force term results in a corresponding electron “collision” frequency term. Thus,
the total effective scattering frequency can be written in the form

(12)

where is the electron–charge collision frequency. This estimate agrees with molecular dy-
namics results4, 36 (Fig. 6).

Fig. 6.
Effective electron collisional
frequency. 1 is collisional
contribution, 2 and 3 are total
values (12) using according to
(10) and (9). Molecular
dynamic simulation: points are
36, square is 4 (the latter value
was obtained for the potential
that is more shallow than in36).

9. EXPERIMENTAL SCP ARE FAR FROM EQUILIBRIUM

The most dramatic part of the report is the comparison with experimental results. It is a
serious test to theory and simulations.

It is a common place in plasma manuals that the higher is plasma density the closer is
plasma state to equilibrium if we consider plasmas at equal temperature. So SCP is used to
be considered as an equilibrium plasmas.

Unfortunately for the theory and fortunately for the inquiring theoreticians SCP are
generated usually in diverse nonequilibrium states. The general reason is as following. SCP
is always generated by impulse methods. Therefore, space inhomogeneity arises. Large den-
sity gradients results in charge diffusion. Since diffusions coefficients are different for elec-
trons and ions a region of volume charge appears. The situation is similar to double layer
plasma near electrode . There is only one important difference. The thickness of double
layer is restricted by several Debye radii. The thickness of volume charge area in impulse
experiments is the same as the length of inhomogeneous region. And this region is not nec-
essarily close to any solid surface. The volume charge region may be shock wave front,
plasma focuses of various kind38-40, actual cathode plasmas41-43 etc.

MD simulation17-19, 44 showed that breaking of electroneutrality (or presence of a dipole
momentum) excites nonequilibrium oscillations in SCP. Separation of charges in non-
homogeneous experimental SCP should result in the same effect.
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The specific estimates of non-equilibrium plasma wave excitation were made in45, 46.
Electrical explosion of caesium wires in high pressure argon atmosphere was considered
in45. Space gradient creates strong electric field. The field accelerates electron beam from
dense almost metallic region. Beam-plasma interaction produces beam instability. The insta-
bility excites non-equilibrium plasma wave turbulence. Ion-sound instability caused by
plasma density gradient in shock wave front was considered in46.

10. RESPONSE FUNCTIONS FOR NON-EQUILIBRIUM SCP

It is necessary to accept the challenge of experimentalists and to modify the theory.
Electron velocity autocorrelation function drops exponentially

for equilibrium SCP. It was shown by MD simulations4, 36. However the autocorrela-
tion function of oscillative appearance was obtained by the same method as early as in
197517. It was understood later44 that the origin of the oscillations which we discovered, was
caused by excitation of non-equilibrium plasma waves. We did not calculate dipole momen-
tum that time and, all the more so, did not minimise it. So the oscillations occurred by chance
or by accident. It depends on the point of view.

Our simulation results permitted us to present non-equilibrium velocity autocorrelation
function in the simplest form as6, 47

(13)

11. COMPARISON WITH EXPERIMENTAL DATA

Conductivity. SCP conductivity measurements were carried out by many authors
(cf.20, 48 and references therein). The experimental points are assembled in Fig. 7. The field
of the experimental points is rather wide. Scattering of experimental results obtained in

Fig.7.
Electrical conductivity. 1 is
Spitzer formula, 2 is Spitzer
formula with for
06, 3 is Spitzer formula modi-
fied according to (4), 4 is esti-
mate corresponding to (12)
with equilibrium value of
is estimate corresponding to
(12) with Open points are
MD simulations: squares and
triangle are 4 for two different
temperatures, asterics are 36,
circles are 17-19. olid points are
different experiments (see ref.
in20)

different laboratories is a substantial one. However we do not attribute this scattering to ex-
perimental errors. We would draw attention to the fact that various installations and methods
were used for SCP generation in different laboratories. So the degrees of non-equilibrium
plasma wave excitation were also different. Consequently the experimental values of con-
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ductivity obtained do not agree with each other. Most of the experimental points lay lower
than the equilibrium curve 1, which follows from Eq. (12) with  from (10), and higher than
the constant value 2, which corresponds to the same Eq. (12) with

Spitzer formula (curve 3) and its finite modification (curve 4) which uses correct ex-
pression for collision integral are both quite unsatisfactory in this region. Modification48

(curve 5) which uses constant value obtained by fitting to the experimental data at
=0. 1 is also unsatisfactory in the region

MD simulation4 results are not better than Spitzer formula. The deviation from ex-
perimental results exceeds an order of magnitude. This fact points to a hidden shortcoming
inherent in the simulation4. We should like to note that the work4 is of a very high scientific
and computational level. So the hidden defect is able only to emphasise that MD simulation is
a very sensitive, sophisticated and subtle method.

Results4 were used as a base in many theories discussed in Sec. 5. May be the hidden
defect influenced them too.

Equilibrium36 and non-equilibrium17, 19 MD simulations are close to the top and bot-
tom bounds of experimental data, just as curve 1 and line 2.

Reflectivity. We use the following expressions

(14)

(15)

The functions corresponding to (14) at (plasma waves are not
taken into account) and 0. 5, as well as corresponding to (15) at and experi-
mental values49 at are shown in Fig. 8. Also shown is the curve for ideal plasma
It is seen that expression (15) gives better agreement with experimental data. An account of
the plasma waves improves the agreement in comparison with Even better agreement
is achieved when

Equation of State. This property is not a response function. However it is related
to fluctuations. Return to Fig. 2. Non-equilibrium excitation of plasma waves will rise the
curve 2 and, consequently, decrease the area between lines 1 and 2 for i. e. the abso-
lute value of the correlation en- ergy. So violation of the equilibrium makes SCP closer to
ideal gas. The latter statement remind us of the conclusion which Fortov et al50-52 derived
empirically from the measurements.

It is necessary to remember that here we have a point, where correlation energy should
be supplemented by short-range contribution (cf. Sec. 8), modified for non-equilibrium
case.

12. NON-LINEAR RESPONSE

Up to now the Maxwell distribution was implied for all particles for the cases of both
equilibrium and non-equilibrium excitation of plasma waves. His majesty the experiment put
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forward the next challenge for theoreticians. As early as in the measurements38, 39 demanded
to include deviation from Maxwell distribution for electrons in order to interpret the results
for static electrical conductivity and radiation (Fig. 9).

Fig. 8. Reflectivity. Points are the data of49. Analytical: 1 is according to (15),
is according to (15), corresponds to the values of experiment49, 3 is Drude for–
mula for ideal plasma, 4 is (14) with, is (14) with,

Fig. 9. Nonlinear response (conductivity) in nonideal plasma. Points are the data of 38, 1 is
the polynomial-2 fit.

The non-homogeneous plasma was generated in38, 39, but electrical field was relatively
small, (cf. the fields in 53). So, a very specific effect can be assumed for this
case. We think that the electric field is able to arrange plasma waves, which are, in general,
chaotically directed. That is why a particular direction of wave vector k can arise. Landau
damping of non-equilibrium plasma waves leads to heating of electrons in the tail of Max-
wellian distribution54.

The growth of the electric field increases the anisotropy of plasma waves. The latter, in
turn, gets stronger pumping of energy to the tail of electron energy distribution . For that
reason the non-linear dependence of conductivity on electric field and increase of superradia-
tion should be observed. The effect is possible only for SCP and manifests itself more sub-
stantial with increase of was the case in38, 39. Z-dependence of the effect observed in
38, 39 is required an additional study.

The effect discussed above is a hypothesis. Even when it is seen through to the quan-
titative results, it will remain an estimate. The rigorous approach to the non-linear response
theory has been developing by Kalman, Gu, Tao and Rommel55-57. Initial expressions are
generalization of the expressions presented in Sec. 2 for ternary time and space correlation.
Quadratic FDT was formulated. The quadratic density response function and the quadratic
dynamical structure function were studied and new sum rules were established by Kalman
and Rommel57. Besides, it was alluded to the intimate relationship between linear and quad-
ratic response functions. It leads to a rather sophisticated improvement in the calculation of
the linear response. Results obtained in 55-57 have not yet been used in MD simulation.
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13. CONCLUSION

The review that was made on response function theory, simulations and experiments
for SCP revealed that those three approaches to one problem remain sometimes unnecessar-
ily independent. We found that the approaches were not sometimes seen through to the end
where it would be possible to compare the results.

Even if the approaches were seen to the necessary end, it was not easy to compare the-
ory, simulations and experiments. It was not a trivial task to find such characteristics of SCP
for which comparison of three approaches is possible. Remember, for instance, theoretical
dispersion curve and the value obtained by simulation (Fig. 4). It was not clear earlier
that these values are different for large k. So there is a problem of choosing such theoretical
values, that are observable in simulations or experiments.

As to the theory, it is necessary to emphasise two main results
1.) All integrals in wave vector space for SCP should be cut at the Debye wave number
which is well known in solid state theory.
2.) It is necessary to apply concepts from both plasma theory and solid state theory to de-
velop SCP theory. Besides the Debye wave number one is able to mention pseudopotentials
and phonon-like Kalman&Golden canonical transformation. It was Ebeling who developed
SCP theory combining gas and solid approaches most consistently.

MD simulations need caution.
SCP generated experimentally are not mostly in equilibrium state. Nonequilibrium ex-

citation of plasma waves effects SCP properties drastically.
The next step we are going to do is to extend the analytical and MD approaches to

plasmas with multiply charged ions.
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FLUCTUATIONS IN MULTICOMPONENT SYSTEMS*
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I give a brief review of  particle and charge fluctuations in multicomponent systems. The long
range nature of the Coulomb forces greatly reduce the fluctuations of the net charge in
a domain In particular, while the variance of particle numbers in grows like the
volume, grows only like the surface area of

The basic building blocks of matter are charged particles, so the behavior of electric
charge fluctuations in space is a problem of some conceptual interest. To be specific I will
consider fluctuations in a domain contained inside a very large, spatially homogeneous and
overall neutral system in d-dimensions. I shall later take itself to be of macroscopic size
but always such that the volume of denoted by is very small compared to the size of
the whole system. This situation is idealized by taking the system to be infinitely extended
from the beginning with some regular domain in

The microscopic configuration of  the full system is specified by
representing the coordinates of the particles and the

measure For a classical system in equilibrium, at temperature and uniform
densities will be an infinite volume Gibbs measure obtained as the
thermodynamic limit from some sequence of finite boxes. For an equilibrium quantum

species. Let be the microscopic particle density of species at

* Dedicated to the Memory of E. P. Gross
†Research supported in part by AFOSR Grant 95-0159 and NSF Grant 95-23266
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species of  the particle at position Statistical properties of relevant observables or functions
on the phase space,  f(X), will be obtained from a translation invariant (extremal) probability

system will be the infinite volume limit of  the diagonal elements of the density matrix in
the position or X representation.1 The existence of such a limit measure can be proven under
suitable assumptions on the potential; Coulomb interactions require extra care, see [2,3].

To appreciate the “peculiar” behavior of charge fluctuations in equilibrium systems (both
classical and quantum), I will first consider fluctuations of particle numbers of  the individual



The number of particles of species in will then be the integral of  the random variables
over

Their expectations and covariances, with respect to the measure will be given by

Here is the density of species and

where is the usual pair density, see [ 1,4].
Note that in (3) and (4) we have used the fact that is translation invariant. This permits

also to rewrite (4) in the form

where

In (7) is the characteristic function of the set

The existence of the separate integrals in (6) requires that be integrable, e.g., decay
faster than for some This is expected to be the case for pure phases away
from critical points. It can generally be proven rigorously only at high temperatures and low
densities.1,3

To find out what happens to when is large, formally when we observe5–7

that when in a self-similar way then will grow like the d – 1 dimensional
“surface area” of 2 for d = 1.) Averaging (r) over rotations yields,5

with a constant and

Hence, dividing (6) by the volume, the second term on the rhs will vanish when to
give

For systems in equilibrium the right hand side of (9) can be identified, under gen-
eral conditions involving equivalence of ensembles, with thermodynamic susceptibilities or
compressibilities, that is
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where is the chemical potential of species and is the Gibbs free energy or grand
canonical pressure (each multiplied by

The covariance matrix per unit volume, b, is expected to be strictly positive for systems
with short range interactions — it was proven by Ginibre for some model classical systems.1

This implies in particular that if we look at the covariance of  the fluctuations in some linear
combination of the with  then
will remain strictly positive as

We note that can be thought of as a sum of random variables, each variable
representing the number of particles of  species in a unit cell inside When these variables
are “approximately” independent, as in systems with short range interactions away from
critical points, then the variance will grow like and the right side of (9) will be bounded
away from both zero and infinity. The deviation of from its average, divided by
will then also converge to a Gaussian random variable. This is ‘normal’ behavior. At a critical
temperature there may be long range positive correlations between the densities in different
regions and some of the fluctuations will then grow like This represents ‘super-
normal’ fluctuations corresponding to infinite susceptibilities. We do not expect to find, in
systems with short range interactions, ‘subnormal’ fluctuations or zero susceptibilities.

The situation is however very different when there are free charges in the system, i.e.,
charged particles which can move about without restraints. These interact with the Coulombic
potential,

which are now included explicitly in the Hamiltonian. In such cases, with the system overall
neutral, the variance of the net charge in is sub-normal,
growing more slowly than More precisely, while is strictly positive, for each
and This is a direct consequence of  “complete charge screening”5,8

corresponding to

where S(r) is the charge–charge correlation

with

What we have instead is that the fluctuations grow only like the surface of

with defined in (8). This behavior of implies that the determinant of the matrix
b vanishes, which is consistent with the independence of the thermodynamic pressure from
certain components of  the chemical potentials.2,3

In writing (13) we have assumed that the infinite system is isotropic and the integral
(13) exists, e.g., that S(r) decays faster than There are also interesting situations
corresponding to (d + 1)-dimensional charges (points, lines, d = 2,1) confined to when

in which case grows like (These have been much studied
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for the one component system of  ‘charges’ in d = 1, where the statistics of the charges corre-
sponds, after suitable scaling, to the distribution of eigenvalues of the Gaussian Orthogonal,
Unitary, or Symplectic Random Matrices.9)

Eq. (12) is the first of an infinite set of moment conditions or sum rules which can be
shown to hold for systems with Coulomb interactions under certain assumptions on the decay
of correlations; the latter can be proven to hold for classical systems at high temperatures and
low densities and for various exactly solvable special cases, see [5,6,8,10] and references
there. The sum rule in (12) is expected to always hold for both classical and quantum systems.
Hence, starting with the formula analogous to (7)

and using (12) and (8) leads directly to (13).
Eq. (13) can also be understood and derived by using Gauss’ theorem

where is the inverse of the area of a unit sphere in E is the electric field and ds is an
element of the surface area of The integral in (15) (like that in (2)) can be treated as a

out to be “approximately” independent so that the variance of their sum grows like
A physical interpretation of the charge fluctuations in is that they behave as if the

charges in the system were combined into neutral molecules.7 To see this consider a two
component system with charges ± e which forms neutral dipoles of length l. Then the
charge fluctuation in would be due entirely to the boundary, “cutting” some of the
dipoles. Assuming further that these dipoles had only short range correlations in position and
orientation, we would have where is the density of  dipoles and
c is a constant of order unity. This is of course a caricature of what happens in real systems
where, at high temperatures, or if we are treating a classical system with hard cores, then at
any temperature, we do not expect any permanent very tightly bound neutral structures. The
length l should then be identified with the Debye correlation length
On the other hand, for quantum systems at not too high temperatures, the charges form
neutral atoms and molecules and l would then be characteristic of atomic sizes determined
by quantum mechanics, e.g., 1 Bohr radius for Hydrogen, unless the dominant contribution
to the charge fluctuations comes form the small fraction of ionized charges. What (13) shows
is that the fluctuations exhibit similar behavior at all temperatures even when we deal with
plasmas or molten salts.

The above interpretation of the charge fluctuations is strengthened by considering not
just the variance but the whole probability distribution of It was shown by Martin and
Yalcin5 that in dimension approaches, as a Gaussian random
variable with variance given in (12). This result was extended in [7] to show that the
distribution of  charges in two disjoint domains, and is again Gaussian with a covariance
equal to i.e., it is proportional to the area of  their joint boundary. This is
exactly what would be expected from fluctuations due to the surface cutting the dipoles and
gives, for two adjacent cubes of  volume

(In one dimension when doesn’t grow with the charge fluctuations in a given interval
L remains bounded and the probability of finding a charge in a two species system with
charges ± e can be found exactly.6)
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It would be interesting to know the behavior of  the charge fluctuations at the critical point
(cp) of the liquid–vapor phase transition in a Coulomb system discussed here by Michael
Fisher.12  While the truncated pair correlation functions corresponding to the particle densities
become non-integrable at the cp, it is not clear what happens to the charge correlation function
S(r) defined in (12). While there is no apriori reason for S(r) to have power law behavior at
the cp, it is surely going to be different in the liquid and vapor phases and hence will have
some nonanalytic behavior at the cp. This should carry over to defined in (13), whose
behavior as a function of is very much an open problem.
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INVESTIGATIONS OF CONDENSED MATTER BY INELASTIC X-RAY
SCATTERING WITH HIGH ENERGY RESOLUTION

E. Burkel, Ch. Halcoussis, and H. Sinn

Universität Rostock
D-18051 Rostock, Germany

Synchrotron radiation has opened new possibilities for experimental investigations in
condensed matter physics. The high intensities of the emitted X-rays allows scattering
experiments with an energy resolution high enough to study ionic excitations and dynamics,
directly.1–3

So far, this was only possible by means of inelastic neutron scattering. In that method
the probe is coupling to the nuclei in the sample, whereas in case of X-rays the coupling
occurs to the electrons. Therefore, X-ray scattering experiments with high resolution in
energy and momentum allow to determine the dynamical structure factor which
is the fourier transform in time and space of the time dependent electron density–density
correlation function. Within the validity of the adiabatic approximation this function is
proportional to the ion density–density correlation function

This means, peaks in of a liquid, for example, can be interpreted either as
localized density fluctuations around or as propagating sound modes for The
latter excitations correspond to the well known phonon excitations observable in solids.

Since the coupling of the energy to the momentum transfer is negligible, inelastic X-ray
scattering has almost no restrictions in the accessible space. Hence this method is
extremely attractive for investigations at small Q-values of the coherent part of  the dynamical
structure factor for liquids and amorphous solids with high sound velocities. In contrast to
this, inelastic neutron scattering is strongly limited by the mass of the neutron itself just in
this part of  the space.

Conventional triple axis spectrometer can be optimized for high energy resolution by
Bragg scattering from perfect single crystals in extreme backscattering geometry at the
monochromator and the analyzer. This technique was used to build the inelastic X-ray
spectrometer INELAX2,3 at the synchrotron radiation laboratory at DESY, Hamburg and the
second generation instrument4 at the ESRF in Grenoble. Energy resolution values of 10 meV
down to 1 meV can be achieved by using high order reflections from perfect silicon crystals.
The energy transfer in an inelastic scattering experiment is established by an energy shift
between the monochromator and the analyzer crystals. This is done by thermal tuning of
the lattice parameter of the analyzer or the monochromator crystal. Using the (7 7 7) Bragg
reflection of silicon with a primary energy of 13.8 keV, a temperature difference of  0.01 K
between both crystals corresponds to an energy transfer of  0.35 meV. The resolution function
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Figure 1. Dispersion scheme of  along direction. The X-ray data were taken with photon
energies of 13.8 keV (open circles) and 17.8 keV (full circles). Open and full squares indicate the instrumental
resolution. The lines represent the dispersion according to the shell model of  [6,7]. Figure from [5].

of the spectrometer can be directly measured by recording the elastically scattered intensity
from fused silica as a function of the energy transfer.

During the development, this new technique was applied to various systems.2 The
reliability of the method was demonstrated by its application to lately. It has
hexagonal structure and its unit cell contains three units leading to 27 phonon branches.
However, along the direction selection rules reduce these to only 13 visible
branches. The investigations with inelastic X-ray scattering were performed along this
direction. Figure 1 shows the obtained dispersion scheme for these modes together with
dispersion lines according to a shell model6, 7 based on neutron data. There is excellent
agreement between both methods. These results were obtained using a scattering volume of
only 0.05 at the sample. The analysis of the dynamics of such small samples is one
major strength of the new technique.

Investigations of the collective density modes in the liquid metal lithium at 215 °C
were started at the instrument INELAX with an energy resolution of 30 meV and later of
12 meV.2, 8 Further data were taken at the inelastic X-ray scattering beamline at the ESRF with
a resolution of 11 meV.9–11 Figure 2 shows the energy resolved X-ray scattering intensities
of liquid lithium observed at various momentum transfers as functions of the energy transfer
together with the instrumental resolution function.

The quasielastic scattering contribution around zero energy is clearly visible. The
inelastic scattering intensities due to energy gain and loss from collective atom excitations
called Brillouin lines are well separated and reveal their dispersion already in the raw data. The
coherent structure factor can be described with the model of extended hydrodynamic
modes12 using a central Lorentzian as Rayleigh line and two asymmetrical Lorentzians as
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Figure 2. X-ray intensities scattered from liquid lithium at different momentum transfers as functions of  the
energy transfer. The full lines represent fits according to the extended hydrodynamic modes. The resolution
function of  the instrument is also given.11

Brillouin lines.
In order to compare the experimental result with a theoretical model, the data can be

deconvoluted with the resolution function of the spectrometer, for details see [10]. Figure 3
shows the deconvoluted data with error bars indicating the statistical uncertainty at selected
Q values. The full and dashed lines are molecular dynamic calculations performed by [13]
using the neutral-pseudo-atom (NPA) potential14 and the empty-core potential.15 Obviously,
the NPA simulation describes the experimental data better at and
At however, it is not possible to distinguish between both models within the
experimental error.

The dispersion of  the Brillouin lines is shown in Fig. 4 together with results from inelastic
neutron scattering16 and the molecular dynamic calculations. There is good agreement of the
experimental data with the NPA model (full line). The empty core potential (dashed line) can
not represent the observed dispersion. The discrepancies between the neutron results and the
X-ray results are not understood and require further investigations.

Figure 4 also demonstrates the positive dispersion in liquid lithium at small momentum
transfers with a slope steeper than the macroscopic sound velocity (dashed-dotted line),
known from [17]. This effect is associated with viscoelastic shear relaxations (dotted line).18

There is another interesting effect looking at the absolute cross section of the X-ray
data. The experimentally observed scattering intensity for are higher than
the NPA simulation predicts. This effect was further investigated by additional small angle
scattering experiments with X-rays without energy resolution.10 The static structure factor of
liquid lithium which was derived from the elastic (full circles) and from the inelastic scattering
(open circles) experiment is shown in Fig. 5 together with the result from molecular dynamics
based on the NPA potential (solid line). The molecular dynamics data can be extrapolated
for small Q to values close to the compressibility limit S(Q = 0). But there is significant
disagreement between the experimental results and the simulation.

A possible explanation of this extra intensity might lie in incoherent scattering contribu-
tions not taken into account, yet. Generally in an X-ray experiment the radiation is scattered
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Figure 3. Deconvoluted experimental data (vertical bars) at different momentum transfers in comparison with
results from molecular dynamics13 with the NPA potential15 (full line) and the empty core potential16 (broken
line). Figure from [11].
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Figure 4. Dispersion of  collective modes in liquid lithium. The results from inelastic X-ray scattering (open
circles) are shown together with neutron data8 (open triangles) and molecular dynamical results13 using the
NPA (full line) and the empty core (dashed line) potential. The macroscopic sound velocity (dot-dashed line)
and the viscoelastic sound velocity (dotted line) are given as well. Figure from [11].

Figure 5. The static structure factor resulting from inelastic X-ray scattering (open circles) and small angle
scattering (full circles) and molecular dynamics with the NPA potential (solid line).10
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off of the electron density fluctuations. In the liquid metal, core and valence electrons con-
tribute to the coherent and incoherent scattering.19 As shown before, the coherent dynamic
structure factor describes the collective motions of the ions. The incoherent structure factor
is known to be due to excitations of the electron gas that means electron–hole excitations
of the core electrons and from Compton scattering. These contributions are not significant
at the discussed energy transfers. However, according to calculations for liquid sodium and
aluminum from [20], additional correlations of the valence electrons can lead to an addi-
tional incoherent contribution as observed. Therefore, it has to be concluded that there are
deviations from the adiabatic approximation as it is used normally.

The presented results are a demonstration of the actual capabilities of inelastic scattering
of  X-rays with meV resolution. Certainly, this new method of spectroscopy is complementary
to inelastic neutron scattering. It reveals additional information, which is inaccessible for
neutron scattering.
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Usually, a liquid metal is treated as a one-component liquid where the particles interact
via a binary effective potential, which is determined within the pseudopotential formalism.
However, this quite successful method for a liquid metal cannot be extended to calculate the
structure of a plasma, since for such a system this kind of pseudopotential cannot be set up.
In previous contributions, we have proposed a method which allows the calculation of the
radial distribution functions (RDF’s) in an electron–ion mixture on the basis of the density
functional (DF) theory; it is called the quantal hypernetted (QHNC) approximation:1 the
QHNC equations are derived from exact expressions for the electron–ion and ion–ion RDF’s
in an electron–ion mixture. Up to now, we have applied this approach to liquid metallic
hydrogen, lithium, sodium, potassium and aluminum, obtaining ion–ion structure factors
in excellent agreement with experiments. Recently, we have extended the formalism and
have performed a first-principles molecular dynamics simulation based on the QHNC theory
for alkali metals near the triple point: in this study those small deviations which were still
observed between experimental results and QHNC data for the structure factor disappeared
completely.2

In the present study we first show that the QHNC method can provide an accurate
description of  liquid metals in a wide range of densities and temperatures: we calculate the
structure factors of compressed liquid rubidium, which have been studied experimentally at
high pressures from 0.2 to 6.1 GPa by Tsuji;3 furthermore we calculate the structure factors
of expanded rubidium states which have been studied by Franz et al.4

Secondly, we show that the QHNC method can be extended to treat a plasma: in such
a system, both the ionic valency and the electron–ion interaction may vary over
a wide range as temperature and density are changed. Our method is in particular suited
to treat a plasma, since it is able to calculate these quantities in a self-consistent manner
using the atomic number of the system as the only input data. In order to treat plasmas, the
electron–electron correlation must be determined for arbitrary temperatures. In this work, we
show that the QHNC method applied to the electron gas is in fact able to provide the electron
correlation at arbitrary temperature. Using then this electron–electron correlation, we study
how a liquid metal becomes a plasma for the case of  rubidium by increasing the temperature
at a fixed density.

We can consider a liquid metal or a plasma as a mixture of electrons and ions interacting
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through pair potentials Since the ion–ion and electron–ion RDF’s,
are identical to ion- and electron-density distributions under the external potential caused by
a fixed ion at the origin respectively, DF theory provides exact expressions for these functions
in terms of  direct correlation functions (DCF’s) and bridge functions as follows:1

Here, is the number density and is the density distribution of the noninteracting
system. These expressions for can be transformed into a set of integral equations for
the one-component model of liquid metals. One of them is a usual integral equation for the
DCF C(r) of a one-component fluid:

with an interaction and the other is
an equation for the effective interaction that is expressed in the form of an integral
equation for the electron–ion DCF

where is determined by solving the wave equation for an electron under the
external potential Here, is the density response function of the noninteracting

electrons, is the electron density, being an operator to represent some quantum effect and
The QHNC equation can be obtained from Eqs. (3)

and (4) by introducing the following five approximations:1

1. (the HNC approximation).

2. The bridge function of the ion–electron mixture is approximated by that of one-
component hard-sphere fluid (Modified HNC approximation5).

3. in terms of the the local-field correction (LFC)
of the jellium

4. An approximate is obtained by treating a liquid metal as a nucleus–electron
mixture7 in the form:

, where is the bound-electron distribution and is the exchange-
correlation potential in the local-density approximation.

5. is taken as pure Coulombic.

Under these approximations, a set of  integral equations can be derived; its solution allows
the determination of the electron–ion and ion–ion correlations together with the ionization
and the electron bound states. In this contribution, the bridge function required in the MHNC
approximation, is the one proposed recently by Rosenfeld.8,9 The MHNC equation based on
the Rosenfeld bridge function is in fact able to produce accurate data for the structure factors
of Rb as shown in Fig. 1: the white and black circles denote the experimental results.

Recently, Tsuji3 measured the structure factor of liquid Rb at high pressures: 0.2, 2.5,
3.9 and 6.1 GPa. The corresponding densities are estimated by the author as 1.07, 1.41, 1.56
and 1.95 times the normal density, respectively. We have calculated the structure factors
corresponding to these states within the QHNC method. From 0.2 to 6.1 GPa we have
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Figure 1. The ion–ion static structure factor S(Q) for liquid Rb at a temperature of  313 K: solid curve, QHNC
result; o experiments.10

Figure 2. Structure factors for Rb calculated for 0, 0.2, 2.5, 3.9 and 6.1 GPa. All results are scaled in units of a
in almost one curve; •, experiment.

found an excellent agreement with experimental results. It should be mentioned here that our
method is at high pressures as reliable as for room pressure, since all the approximations in
the QHNC method remain valid as the pressure is increased.

The electron–ion RDFs for these five states remain almost unaffected under these pres-
sures variations (if we plot in Angstroms). The effective ion–ion interaction in liquid rubidium
is hence practically invariant under pressure variation and no scaling feature is observed in
units of the Wigner–Seitz radius a. On the other hand, the structure factors for these five
states coincide almost into a single curve when Q is scaled in units of  the Wigner–Seitz radius
a as shown in Fig. 2.

Next, we briefly consider expanded liquid rubidium, where the structure factors have
been measured experimentally by Franz et al.4

Here, we apply the QHNC method in the same way as we have done for compressed

Figure 3. The structure factor for expanded liquid Rb at a temperature of  900 K: solid curve, the
QHNC result; • experiment.
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Figure 4. The structure factor for expanded liquid Rb at a temperature of 1600 K: solid curve, the
QHNC result; • experiment.

liquid Rb. The full curves in Figs. 3 and 4 indicate structure factors at 900 K and 1600
K calculated by the QHNC equation, respectively. The experimental results are shown by
circles: the agreement is excellent, in particular for low wave-vectors, a result which could
not be obtained when using simple pseudopotentials.11 A similar agreement is observed at
1700 K. As the temperature is increased to 1800 K (which is already quite close to the critical
point), the calculated structure factor diverges at the origin stronger than the experimental
structure factor.

Up to now we have shown that the QHNC method is able to give accurate results for
compressed and expanded liquid Rb; in the following we will demonstrate that this method is
able to give results of  similar reliability also for a strongly coupled plasma. We now investigate
the plasma state of  rubidium by increasing the temperature while fixing the density to its value
for the normal liquid state. However, when we apply the QHNC method to a plasma, the
electron–electron DCF must be evaluated at arbitrary temperature. Here, we apply the QHNC
equation to obtain the electron–electron DCF,

with
which reduces to the well known HNC equation for the classical electron gas in the high
temperature limit. Here, the DCF for the one-component system is defined by

The Fourier transform (denoted by of the den-
sity distribution yields the following bootstrap relation for together with Eqs. (5):

The electron–electron correlation, that is, the
electron-density distribution around a fixed electron is shown in Fig. 5 calculated for a partially
degenerate electron plasma at the density varying the temperature
from 0.05 eV to 30 eV. The degeneracy is denoted by i.e., the Fermi energy
over temperature. For high degeneracy (0.05 eV), the Thomas–Fermi (TF) approximation
(denoted by full circles) gives quite a different density distribution from the one calculated
by the wave equation. When the temperature is increased to 10 eV, the TF result becomes
identical to the result obtained in the wave equation except for small r-values. When the
temperature approaches 30 eV, the electron–electron correlation reduces to the classical one.

From these calculations, we can obtain the electron–electron DCF, which determines the
plasma properties in terms of the LFC G(Q). Using now the QHNC-LFC G(Q) instead of
a Geldart–Vosko6 type G(Q), we apply Eqs. (3)–(4) to Rb at the fixed density of the normal
liquid metal; the temperature has been varied from 0 to 30 eV in order to investigate how a
liquid-metal state changes into a plasma state.

The electron–ion RDF of liquid Rb is plotted in Fig. 6 along with the ion–ion RDF’s
and the effective ion–ion interactions calculated using both the QHNC- and Geldart–Vosko-
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Figure 5. Electron–electron correlations in the electron gas at a density of for temperatures ranging
from 0.05 to 30 eV.

Figure 6. The electron–ion and ion–ion RDF’s with the effective interactions in liquid Rb: solid curve, QHNC
result; •, electron–ion RDF derived by using an Ashcroft potential.

Figure 7. Electron–ion and ion–ion RDF’s together with the effective ion–ion interaction at a temperature of  3
eV.

Figure 8. Temperature variation of outer bound levels in the Rb ion in a plasma. Numbers attached to bound
levels denote the occupation numbers.
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LFC’s: the resulting two effective potentials differ, but yield almost the same ion–ion RDF’s,
as shown by the full curve and the white circles.

In Fig. 6 the electron–ion RDF obtained from the QHNC method has an inner-core
structure which is caused by the orthogonality of the free-electron wave function to the core-
electron wave functions. On the other hand, it should be noticed that the usual liquid-metal
theory based on Ashcroft pseudopotentials yields an electron–ion RDF, which has no inner-
core structure (shown by full circles): this cut-off of the inner core structure brings about a
simple treatment of  liquid metals in the standard liquid-metal theory. At a temperature of 0.05
eV, the electron–ion RDF has a distinct inner-core and outer-core part. Even at a temperature
of 1 eV, this clear distinction remains characteristic for a liquid metal: the ionization is
practically unity and the ion–ion effective interaction is almost the same as that of liquid
metal at the normal condition, although the ion–ion correlation becomes weak. Figure 7
shows that at a temperature of 3 eV the distinction between inner- and outer-core parts has
disappeared and that the ionization, now 1.21, has become significant. When the temperature
increases to 30 eV, the ionization becomes as large as 6.35. Figure 8 shows the temperature
variation of the outer bound levels of  an ion in a Rb plasma at the fixed density of the normal
liquid metal. The 4s- and 4p-bound levels are plotted there corresponding to a free atom,
at 0, 1, 2, 3, 5, 10, 22 and 30 eV, respectively. As the temperature increases, the bound
levels become deeper due to the decrease of  the number of bound-electrons, which makes the
screening effect weak. At 22 and 30 eV new bound levels, 5s and 4d, appear. The occupation
number at each level is shown for every level line in Fig. 8. The ionization variation is
shown at the top of Fig. 8 as the temperature is increased.
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Forschung under Proj. No. P11194-PHY.
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INTRODUCTION

Problem of Phase Transition (PT) in Strongly Coupled Coulomb Systems (SCCS) is
of great interest in plasma theory during very long time1-5. Besides the study of hypothetical
PT in real plasmas1-3 a complementary approach is developing4,5 where the main subject of
interest is definitely existing PT in simplified plasma models. In our previous study6-8 we
dealt with a phase transition in the set of plasma models with common feature - combination
of (i) absence of individual correlations (coupling) between charges of opposite sign, and (ii)
total compressibility of system. The simplest example of such a system is One Component
Plasma (OCP) on uniform, but compressible compensating background (following notation -
OCP{c}). The well-known prototype model is OCP with a rigid background (notation -
OCP{r}). This variant of OCP is studied carefully nowadays9,10. The system can not
collapse or explode spontaneously. The only phase transition - crystallisation - occurs in
OCP{r} without any density change.

Transition to the OCP on uniform and compressible background leads to appearance of
a new first-order phase transition of gas-liquid type6. New phase diagram combines previous
crystallisation, now with a finite density change, with a qualitatively different coexistence
curve of the new phase transition. The structure and parameters of this phase diagram
strongly depend on exact definition of thermodynamic contribution of background. The
simplest variant of OCP{r} is the - the system of classical point charges with
a compressible background of ideal fermi-gas of electrons. This variant of OCP was declared
repeatedly11,12 but the discussed phase transition was out of consideration. Closely similar
structure of global phase diagram was obtained in This is
superposition of two non-coupled OCP-s of mass-non-symmetrical charged particles of
opposite sign.

PHASE DIAGRAM OF SINGLE OCP{C}

Three qualitatively different situations should be distinguished for the OCP{c}
depending on the value of charge number Z:
1) Low value of charge number                    -
2) High value of charge number                  -
3) Intermediate value of charge number           -
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Figure 1. Phase diagram of the Single OCP{c} of classical point charges on uniform
compressible background of ideal fermi-gas of electrons at intermediate value of
charge number Notations: 1- melting line of prototype
OCP{r} global crystal-fluid (gas and liquid)
coexistence: sublimation, melting; 4 - spinodal of metastable liquid-
gas coexistence; 5 - its critical point.

Figure 2. The same for the lowest of two boundary values of charge number

points, melting gas-liquid and gas-crystal coexistence, are totally equivalent to
those for normal substances.

High Values of Charge Number (Z ~100).
Highly anomalous structure of global phase diagram was announced at previous

study6,7. The melting crosses gaseous part of coexistence curve of the
new phase transition.

• Triple point is placed at gaseous part of two-phase boundary.

• Critical point is placed at crystalline part of two-phase boundary.
• Crystal-crystal coexistence of two dense and expanded crystalline phases of the same

structure occurs in OCP{r} at such a high values of charge number Z.

Intermediate Values of Charge Number
The most remarkable anomalous phase diagram corresponds to the case when the

melting line of prototype OCP{r} crosses coexistence curve of the new
gas-liquid phase transition just closely to its critical point. As a result of this coincidence:

• The only phase transition exists in the model. It corresponds to the global crystal - fluid
coexistence – continues superposition of melting and sublimation (see Figure 1).

• There is no true critical point.

• There is no triple point.
• Coexistence curve in plane is a continues, infinite curve.

There is no any break at this curve.
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Notations: 1-4 - as at Figure 1; 5 - pseudo-critical point;
metastable liquid-gas binodal.

Low Values of Charge Number (Z ~ 1)
Phase diagram of the model was carefully studied in6-8. The ordinary structure of

global phase diagram was obtained in this case: the relative position of critical and triple



Boundary Values of Intermediate Charge Number Interval
Remarkable feature of phase diagram of OCP{c} at is an existence

of  pseudo-critical point where the well-known standard conditions are fulfilled:

– on gaseous part of crystal-fluid binodal (see Figure 2)
– on crystalline part of crystal-fluid binodal.

When we use the same as in6-8 analytical fits for equation of state of both subsystems,
OCP{r} and background, we obtain following parameters of the both pseudo-critical points:

CRITICAL EXPONENTS

Remarkable feature of two discussed pseudo-critical points at is the
non-standard values of all critical exponents in comparison with the ordinary (van der Waals
like) critical exponents that correspond to the case of OCP{c} with the charge number Z
beyond the discussed interval For example, at the latter case

the standard relation is valid

For the pseudo-critical points  the following relation may be proved:

Direct calculation gives:

SATURATION CURVE

Similar violation is observed for saturation curve. So-called Plank – Gibbs
rule (equal slope of saturation curve at and critical isohore at is valid
for an ordinary critical point
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It is not evident (see Figure 3), but it can be proved that this rule is not valid for pseudo-
critical points

Figure 3. Saturation curve and isohores in reduced coordinates for the Single OCP{c} of
classical point charges with uniform compressible background of ideal fermi-gas of
electrons at boundary value of charge number Notations: 1-
sublimation; 2 - melting; 3 - pseudo-critical point; 4 - critical isohore;
5,6 - sub-critical isohores.

Figure 4. The same as on Fig. 3 in - coordinates. Notations: 1-4 - as on Fig. 1.

This statement is illustrated on Figure 4. Small deviation in position of binodal (curves 1, 2)
and critical isohore (curve 4) corresponds to the small difference in slope of both the curves
at pseudo-critical point (Figure 3).
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THERMODYNAMIC PROPERTIES OF THE MIXTURE He–Hg AT HIGH
TEMPERATURES AND PRESSURES
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Philipps Universität Marburg
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INTRODUCTION

At low temperature, coexistence of  two fluids is possible. Under a wide range of field-
variables, a vapor phase characterized by a strong entropic contribution to the free energy
is in equilibrium with a denser liquid, in which the configurational internal energy plays
a dominant role. As the temperature is increased, the cohesion energy among the particles
influences relatively less the free energy content of the system and the liquid and vapor phases
abridge their properties; both phases enhance their entropic contribution to the free energy.
The critical point is the limiting situation in which the cohesion energy is no longer able to
differentiate a second denser phase from the gas. A pure supercritical fluid exhibits therefore
an appealing feature, as it is the possibility that their density may be varied in a continuous
manner without the occurence of a liquid–vapor phase transition.

However, as soon as a second component is incorporated to the system, its composition
appears as a new density-variable and the occurence of material instability may force the
system to split in two fluid phases. If a sample containing equal volumes of a binary liquid
mixture and its equilibrium vapor is heated, and if the pressure is adjusted to maintain the
equality of volumes, then the system must come eventually to a critical point at which all
the intensive properties of both coexisting phases are the same 1 Moreover, if the sample’s
composition changes differentially, then a neighboring critical point on the binary critical line
is reached.

The variety and complexity of phase behavior for mixtures at high pressures and tem-
peratures is large;2 even for binary mixtures, the equilibrium region where two fluid phases
may coexist is not limited to temperatures lower than the critical temperature of the less
volatile component. Poorly attractive and repulsive systems as most simple binary mixtures
containing helium as one of their components show an interrupted critical line, one branch
of which remains open up to the highest measurable temperatures and pressures. Since a
phase separation now occurs at temperatures and pressures above the critical ones of both
components one speaks about gas–gas or better fluid–fluid equilibria. The suggestion that
fluid–fluid phase separation may occur at astrophysical conditions3 has stimulated intense
theoretical research since it has important consequences for forming a conception of the
composition and structure of the Jovian planets.
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like the one sketched in figure 1, where the density variable is not shown. The critical
line starts at the critical point of pure Hg = 1673 bar) and runs to higher
temperatures and pressures as the helium composition increases.

Figure 2 shows two isothermal sections of the phase diagram. The two-phase
region is located above the He solubility curves of phases and on the left and on the
right hand side of cl, respectively. Representative tie lines connecting coexisting phases are
shown in the figure and the corresponding values of the equilibrium variables are given in
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Figure 1. (p–T–x) first-type fluid–fluid phase diagram of a binary mixture. Three isothermal (p–x) sections of
the two-phase coexisting surface are shown. 1, 2: critical points of  the pure components; cl: critical line of  the
mixture.

Figure 1 sketches a typical (p–T–x) thermodynamic phase diagram of a binary mixture
which shows first-type fluid–fluid equilibrium. Number 1 indicates the critical point of the
less volatile component, at the end of the vapor pressure curve, on the front plane of the
three-dimensional diagram. Number 2 denotes the critical point of the other substance, on
the rear plane. A two-phase coexisting surface appears folded along the vapor pressure curve
of component 1 and then along the critical line cl.

Recently, hydrogen has been proven to be a fluid metal at megabar pressures,4 a pressure
range which is relevant to astrophysical conditions. The existence of a repulsive interaction
between helium and the conduction electrons of the metallic phase has often been proposed
to be responsible for demixing in the hydrogen–helium planets Jupiter and Saturn. Unfortu-
nately, precise experimental phase diagrams of helium–hydrogen mixtures are only possible
up to kilobar pressures,5 where hydrogen behaves still as an insulating fluid.

The motivation of the present work is to study the interaction of helium (2) atoms
with the conduction electrons present in a model metallic fluid. Expanded supercritical
mercury (1) in the density range where its metal–non-metal transition occurs was selected
as the model two-electron fluid metal. At sufficiently high density, non-metallic expanded
mercury experiences a transition to a metallic state6,7 in the same way that hydrogen does at
pressures corresponding to those in the interior of the planets. The influence of this change
upon helium’s miscibility and its consequences on sensitive thermodynamic properties of the
mixture have been investigated here. The control of the density in the supercritical mixture
without the occurence of a phase transition has provided a means of fine tuning the present
interactions.

RESULTS AND DISCUSSION

The pressure-density–temperature-composition phase diagram of He–Hg mixtures has
been measured8 using an isochoric synthetic method to temperatures up to 1882 K and
pressures up to 3325 bar. The (p–T–x) phase equilibrium surface obtained is qualitatively



Figure 2. isothermal sections of  the He–Hg phase diagram at 1763 K and 1791 K. critical points;
- • -: critical line. Isothermal solubility curves: — experimental; - - - extrapolated to
Selected tie lines are shown.

Table 1. Experimental data (thick solid lines) show that He solubility in the denser phase
decreases monotonically as the density increases along the metal–non-metal transition

region of Hg. The data trend has been used to extrapolate the solubility isotherms to
where most of the properties of Hg are well described by the free electron

model.7 Here, the solubility of He is low enough to justify the use of an equation of state for
pure Hg9 to estimate the pressure p.

Derivation of the thermodynamic properties of the mixture was performed by use of a
Taylor expanded molar Helmholtz free energy function in powers of and
where is the critical molar volume of the mixture at temperature T

Phase diagram data were employed to fit the parameters taking into account
that and the phase equilibrium conditions. Important
thermodynamic quantities can now be calculated using the parameters for example:

This quantity denotes the rate of  change of  pres-
sure upon the exchange of solvent by solute molecules at constant (T ,V ) and it is related
to the solvent–solvent and solvent–solute direct correlation function integrals
in a straightforward way: Large and positive values of

are then characteristic of repulsive systems with solvent depletion around the
solute.10

Figure 3 shows the values of for the systems He–Hg and He–Xe as a
function of  the reduced density Although both systems exhibit fluid–fluid phase
separation and can be labeled as repulsive systems, the occurrence of a metal–non-metal
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Figure 3. Isothermal isochoric change of pressure upon the exchange of  solvent by solute molecules. —
experimental; - - - extrapolated to (see text). 1.023 He–Hg, 1.015 He–Xe. c: critical
points on the isotherms. He–Xe values calculated using data from Ref. [11]

transition in the mixture He–Hg dramatically differentiates its behavior from that of the
simple mixture He–Xe. Electrical, optical and magnetic evidences7 show that a gradual
evolution of metallic properties occurs in fluid Hg within the density range (at

most properties are already well described by the nearly free electron model). A
clear correlation between the relatively steep increase in the positive figures of
and the change in the electronic structure seems to occur demonstrating the interplay between
the latter and the helium solubility.
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THE ATOMIC–MOLECULAR TRANSITION IN EXPANDED LIQUID RUBIDIUM
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INTRODUCTION

Though it is known for long that dilute alkali vapors show significant dimerization1

it is still an open question to which extend molecular association does also exist at higher
densities in the compressed vapor or in the expanded liquid. During the past twenty years the
density dependence of the dimer concentration in cesium and rubidium vapors has extensively
been investigated. The results from measurements of electrical conductivity,2 magnetic
susceptibility,3 optical spectroscopy4 and from statistical considerations5 indicate that in the
vicinity of the liquid–vapor critical point a dimer concentration of about 20–30% should
be expected and that higher molecular aggregates like trimers and tetramers are also being
formed under these conditions. The question that emerges from these findings is, do these
molecular aggregates also survive further compression of the fluid into the dense liquid?

Recently, we could investigate this problem in determining the inelastic scattering law
for several densities of liquid rubidium between the melting point and the critical

point. In a series of experiments we were able to extend our inelastic neutron scattering
investigations up to temperatures of 1873 K under conditions close to the vapor pressure
curve. This corresponds to about twice the critical density. Measurements of electrical and
magnetic properties show that localization of conduction–electrons in the metallic liquid is
already significant under these conditions hence interactions between the paramagnetic atoms
should be expected.

The liquid was expanded along the liquid–vapor coexistence line towards the critical
point by simultaneously increasing temperature and pres-
sure. The results expressed as for and in terms of the longitudinal
current correlation function for are given in
figure 1 for some of the experimental conditions investigated hitherto.

As can be seen, neither the scattering law nor the current correlation function shows
dramatic changes if the liquid is expanded from high densities at 1073 K to 0.83 g/cm3

at 1673 K which corresponds to about three times the critical density. This indicates that
the ion–ion dynamic under these conditions of p and T is still controlled by the electron
sea of the metal. The same conclusion can be drawn from comparing our experimental
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Figure 1. and current correlations functions for four different
densities measured along the vapor pressure curve:

results with theoretical findings of Hoshino et al.7 In their work the static structure factor
has been calculated in a modified hypernetted chain approximation for 1700 K and a density
corresponding to conditions close to the liquid vapor coexistence curve. The resulting S(Q)
was then employed to calculate the dynamic scattering law in the viscoelastic approximation.8

Although this model is exactly valid only at conditions close to the triple point of a liquid
metal, where the nearly free electron approximation applies, the dispersion of the maxima
from the longitudinal current correlation functions  is in accord with our experimental
results under similar thermodynamic conditions.9 In figure 2 our experimental result at 1723 K
is compared with the theoretical finding at 1700 K. The observed consistency between the data
again indicates that the dynamic of the liquid at about three times the critical density, is still
controlled by the metallic binding between the atoms and the screening from the nearly-free
electron-gas. This interpretation is consistent with findings from measurements of electrical
conductivity10 and magnetic susceptibility.3

In decreasing the density further to about twice the critical density drastic changes are
observed which are apparent in both, and A well defined excitation peak
appears in the scattering law. In the peak is centered around 3.2 meV while in

the peaks can be identified as resulting from excitations at 3.2 meV with higher
harmonics around 6.5 and 9.5 meV. In the excitation seems to be most pronounced
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Figure 2. Comparison between the theoretically determined dispersion of the current–current correlation at
1700 K (line) with the corresponding experimental results for 1723 K (open circles).

Figure 3. Q-dependence of the intensity of an excitation peak from a particle executing harmonic oscillations
about its center of mass for with = 3.2 meV,

around However, this observation is consistent with a simple model for the scattering
law resulting from a system of noninteracting diatomic harmonic oscillators. For
this model simplifies to [11]:

Herein are modified Bessel functions of the first kind and nth order, is the
energy difference between adjacent energy levels of the oscillating particle and the function
under the sum ensures for energy conservation during the interaction between the neutron
and the molecule. Inserting the observed value of 3.2 meV and the reduced mass M for a
rubidium dimer yields the Q-dependence of the excitation intensity given in figure 3. As can
be seen the maximum intensity for such an excitation is indeed centered around

In order to get more theoretical support for the existence of molecules in liquid rubidium
and to gain an insight into the microscopic properties of such particles we have undertaken
exploratory calculations for the total energy of expanded lattices of monatomic Rb and Rb2-
dimers using density functional theory in the local density approximation.12 The calculations
were made for a system of Rb atoms in a body-centered lattice (bcc) and for diatomic
molecules in a simple cubic lattice (sc). To create the diatomic solid the two atoms in the bcc
unit cell were moved towards one another forming a simple cubic lattice (sc). The lattices
were then continuously expanded and the total energy was calculated for several densities.
It was found that below a density of 0.9 the lattice has the lower energy. The
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Figure 4. Density-variation of the vibron energy for Rb2 obtained from theory (open squares). Included is the
experimental point (solid circle) at = 0.61 The line is a smooth fit to the calculated data.

potential curve of the dimer was obtained by variation of the bond length from its equilibrium
value and calculating the change in energy These data were then fitted to a
Morse-Potential from which the dissociation energy and excitation energy could be
obtained for each density. The latter is given in figure 4 as a function of density.

Also shown is the experimental data point, at and = 3.2 meV, which
is in remarkably good agreement with the calculations. In order to find out whether the
concentration of molecules in the liquid is sufficiently high to be observable in a neutron
scattering experiment the fraction of molecules present in the liquid was calculated with the
mass action equation for an equilibrium mixture of atoms and dimers using the values of

and The vibrational partition function was calculated by summing over all states of
the Morse oscillator and the temperature at each density along the liquid–vapor curve was
obtained from experimental results.6 A value of about 25% dimer concentration is obtained
for the experimental conditions. This is in good agreement with other estimates.3, 5
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INTRODUCTION

Equation of state of gaseous and liquid uranium dioxide is of primary importance for
the nuclear safety problem1,2. Solid uranium dioxide is known to be of ionic structure.
Liquid uranium dioxide is presumed to keep significant part of ionic bonding on melting3-5. It
is well known that adequate description of ionic systems both of simplified models6 and of
real ionic liquids7 is obtained when bound associations are taken into account explicitly.
Study of thermodynamic properties of liquid uranium dioxide within the general approach of
INTAS project1,2 deals with the assumption that liquid UO2 may be successfully described in
frames of more that one "equivalent" models, including quasi-molecular model as well as
pure ionic one3,4. For two such simplified ionic models the real calculations were
performed1,2. We considered Restricted Ionic Model (RIM-4:2) - electroneutral
stoichiometric composition of two ionic species of sort  and with equal
hard-sphere diameters of ions. Within Restricted Primitive Ionic Model (RPM) the mixture
of ions with only Coulomb interaction was studied. An additional short-range attractive
interaction of the van der Waals’ type was taken into account within Improved Restricted
Ionic Model (IRIM).

Equation of State
Inter-ionic interaction assumed to be pair–additive and consisting of two parts: short–

range hard-sphere repulsion and Coulomb long-range interaction
= +4 and An additional short–range van der Waals attraction was considered
in the Improved Ionic Model.

Free energy of liquid UO2 was written as the sum of ideal gas contribution and
three types of interaction corrections corresponding to the Coulomb interactions and to
short–range repulsion and attraction,
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(1)

Partition function of ion which was included in the ideal gas free energy
contribution was calculated in8 with excitation energy levels of ion recommended
by IVTAN9. Partition function of negative ion  was assumed to be equal to that of ion
For the hard-sphere excess free energy contribution we used Carnahan–Starling formula

Approximations for Coulomb Contribution
Many of approximations10 proposed for Coulomb contribution are consistent only in the

limit of hot and dilute conditions when diameters of ions are small relatively to Debye
radius (weakly non–ideal plasma). For molten salts, on the contrary, the large values of
dimensionless parameter are typical. The most important assumption of present
study was the specific one-parametric form of correction function in the
Coulomb contribution, which was represented in the form:

Here is the Debye–Hückel Limiting Law10. It should be
noticed that in general case is two-parametric function, but many of well-known
approximations (e.g. Mean Spherical and Debye–Hückel Approximations etc.) have the form
(2) and this assumption proved to be adequate for the well-known Monte Carlo results of
Larsen11 in the limit of dense and cold ionic RPM liquid. A number of approximations for

were compared1,2 and two of them are presented here:

• Debye–Hückel approximation for charged spheres (from energy equation, DHSE)10:

• Mean Spherical Approximation (from energy equation, MSAE)12:

Both the approximations give positive deviations from the DHLL limiting law, and
differ progressively the higher the value of x is. Since we don’t know computer simulation
for a 4:2 Restricted Primitive Model, we have corrected the form of function for large x
values with the aim to describe existing experimental data13,14 on UO2.

RESTRICTED PRIMITIVE IONIC MODEL (RPM)

Flexibility of the RPM is restricted by the hard-sphere diameter and form of correction
function Two adjustable parameters were used at present calculations: - hard-sphere
diameter, d, and an additional parameter, scaling the modified DHSE and MSAE
correction functions

(5)
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It should be stressed that we could not calibrate these two parameters using
a procedure of fitting of Gibbs free energy of liquid9. It was appropriate in the case of the
neutral models of liquid The problem is the great uncertainty in the energies of
formation of ions and Available value of sum of the first four ionisation potentials
of uranium vary from The sum of energies needed to attach two
electrons is also very uncertain and was estimated as being within the
interval from zero to Thus, the total uncertainty of energy of formation of
one ion and two ions is estimated as In view of this uncertainty the
tabulated8 entropy value of liquid was used as appropriate fitting parameter, because
the entropy does not depend on the uncertainty mentioned.

The second fitting parameter was the density of melting uranium dioxide, from which the
pressure in the liquid can be equated to zero:

After fixing values of two adjustable parameters of RPM: d and  (3-5), we can
achieve an agreement with the tabulated values9,1,2 of liquid Gibbs free energy and enthalpy,
varying uncertain values of energy of formation of  and  For RPM-4:2 the procedure
described turned to be successful within the modified DHSE-approximation (3,5), when
being combined with the first set of uranium ionization potentials and value

for the affinity of . We did not succeed in similar fitting with the
modified MSAE-approximation, and it proved to be obviously impossible for any variant of
virial versions of the approximations discussed.

Thermodynamic properties of liquid UO2 at melting point and its extrapolation up to
T=7000 K along zero pressure isobar, calculated within RPM, are presented in Table 1 in
comparison with known experimental values.

IMPROVED RESTRICTED IONIC MODEL (IRIM)

An additional van der Waals attractive correction was taken into account within the
improved variant of ionic model. As well as in the case of ionic model, RPM, considered
above, the Coulomb correction in IRIM is still of one-parametric form (2). Its principal
feature is special correction term to MSAE formula. The form and parameters of this term, as
well as parameters of van der Waals attractive correction, were chosen with the aim to
reproduce thermodynamic properties of liquid uranium dioxide at melting temperature:
density, Gibbs free energy, G, enthalpy, H, thermal expansion coefficient,
compressibility, and heat capacity, These requirements give rise to the important
compatibility conditions to which Coulomb correction (2) and unknown parameters of
van der Waals attraction must satisfy.
1) Due to identity of equations for thermal expansion and heat capacity the value of van der

Waals attraction parameter may be calculated directly from measured excess heat
capacity, liquid molar volume and thermal coefficients  and independently of other
parameters of the EOS. It gives:
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2) Linear dependence of equations for pressure, energy and isothermal compressibility
when the Coulomb correction of form (2) being used, give rise to the equation:

Using Carnahan-Starling formula_we obtain the ion diameter, d, packing fraction, v, , and
parameter at melting temperature,

Being quite reasonable the MSAE and DHSE formulae are incapable to describe experimental
data. Thus a correction term was introduced to the MSAE formula in the form

The correction term must reproduce the necessary values of and
deduced from experiment, and must begin on term. The simplest form of

is the polynomial. More appropriate functional form is the Pade approximant:

Satisfaction of above requirements gives the following numerical values of coefficients (12):
Some results of calculated properties of liquid

uranium dioxide are presented below in Table 1.

!
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CONCLUSIONS

• Ionic model may be considered as a reasonable basis for development of EOS for liquid
UO2. It can be successfully used for calculation of gas-liquid phase equilibrium in UO2
when being combined with separate model for vapours.

• Restricted Primitive Ionic 4:2 Model gives a reasonable agreement for integral
thermodynamic properties of liquid UO2

• It is necessary to take into account both Coulomb and van der Waals forces to describe
correctly differential properties of liquid Urania Dioxide;

• The ionic model provides the simplest way, to date, of reproducing the observed decrease
in liquid heat capacity, the decrease being directly related to the Coulomb contribution.

• The predictions of Ionic Model are extremely sensitive upon fine details of ion-ion
interaction due to large Coulomb contribution to the free energy. Additional efforts needed
to find better expression for this contribution.

• If the assumption of the ionic structure of liquid UO2 is valid, it is clear that starting from
cold and dense mixture of highly ionized uranium and oxygen, and moving along the
coexistence curve, we have to translate continuously to the cold neutral vapors,. The
features and location of this translation in uranium dioxide is an open question.
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1. INTRODUCTION

Recently, we developed the perturbative hypernetted-chain (PHNC) integral equation
which can predict reliable thermodynamic and structural data for a system of particles inter-
acting with either short range or long range (Coulomb) potential.1,2 The present work extends
this earlier work to mixtures. This is done by employing a reference potential which is de-
signed to satisfy a thermodynamic consistency on the isothermal compressibility as described
in the next section.

We test the present theory in Sec. 3 by applying it to plasma mixtures interacting with
either an unscreened or a screened Coulomb potential. We made comparisons of results
from the present theory with those from the best available theory, i.e.,, Rosenfeld’s density
functional theory (DFT).3 The DFT was shown to give internal energy with three to five figure
accuracy compared to a wide range of Monte Carlo data.4–6 Meanwhile, small deviations of
excess internal energy from the so-called “liner mixing rule” (LMR)7, 8 are better predicted
by a less sophisticated theory like the hypernetted-chain (HNC) equation. This rule relates
thermodynamics of an unscreened mixture to those for individual components in a strongly
coupled regime where the potential energy of a constituent particle is much larger than its
kinetic energy.

We also apply the present theory to a mixture interacting with Morse potentials.
For this system, comparison of thermodynamic properties and radial distribution functions
from the present theory will be made with those from another successful theory of dense
fluid, i.e.,, the HMSA equation of Zerah and Hansen.9, 10

2. FORMULATIONS

The PHNC integral equation for a multi-component mixture employs a closure relation:

Bij(r)=Bij,0(r), (1)
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where and denote the bridge function for a system of interest and that for a
reference system, respectively. The PHNC chooses the reference system so that the range
of the reference potential between species i and j depends on the temperature T and density

For a one-component system = Min was shown to give a reliable result, where
is the nearest neighbor distance at a given density for the face-centered

cubic lattice and  is the interatomic distance where the potential  is the minimum.
For a mixture composed of species, we need a more sophisticated choice.

Namely, is chosen so that the partial isothermal compressibility
from the compressibility relation,

gives the same result as that obtained from the virial equation,

Here = 1 / k T , where k is the Boltzmann constant; is the direct correlation function
between species i and j, respectively. We choose to be additive,

For a plasma system, Eqs. (2) and (3) need to be modified to include contributions by
the compensating background. This is done by replacing and by
and , respectively. Other details for choosing the reference potentials are similar to
those described in Refs. [1] and.2 For example, it is assumed that the perturbation potentials
are linear functions of r at  and have continuous first derivatives at

Once the reference potentials are defined, is determined from the numerical
solution of another set of coupled integral equations for the reference systems, using Ballone
et al’s closure relation11

with s = 15/8. Here  where is the total
correlation function between the species i and j. In summary, Eqs. (l)–(4) constitute a
self-consistent cycle.

3. RESULTS AND DISCUSSION

Two-component plasma (TCP) corresponds to a simplest model of plasma mixture
where ions with charge (in units of e) and  move in a uniform background. Parameters
describing this system are the coupling parameter  and the mole fraction
x of the species 2, where is the ion-sphere radius. Instead of ,  alternative
description is possible in terms of where is the electron
radius and is the electron density.

Table 1 compares the excess internal energy for the TCP calculated from the PHNC,
computer simulations,4–6 and the DFT.3 Note that and . It shows that the
PHNC is generally more accurate than the DFT, unless the species 2 is present at a very small
mole fraction (= 0.01). And yet, more detailed calculation shows that the deviation from the
LMR is not accurate enough. Figure 1 shows that the PHNC also gives accurate partial radial
distribution functions, which is at least as accurate as the DFT. [See Fig. 5 of Ref. [3].] Next,
we briefly mention our results of the PHNC calculation on the Yukawa system, which is a
more realistic model for the plasma than the one-component plasma (OCP) or the TCP. For
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Figure 1. Radial distributions for an equimolar TCP mixture with and  at
Diamonds, circles, and squares represent the Monte Carlo data of DeWitt, Slattery, and Chabrier14 for the 11,
12, and 22 interactions, respectively. Solid lines correspond to the PHNC.
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a two-component Yukawa mixture composed of ions with charges Z1 and Z2, an interaction
potential between the ions is represented by In the linear screening
approximation, the screening parameter is inversely proportional to the Debye length of
background plasma. The potential energy of this system depends on five parameters, i.e.,,

and Although not shown here, excess internal energy of the one-component
Yukawa system calculated from the PHNC is as accurate as those for the OCP in the entire
range of investigated. This was confirmed by comparing the PHNC calculations
with Monte Carlo data recently presented by Farouki and Hamaguchi.12 In addition, we have
found that which satisfies the self-consistency criterion is very close to at a wide range
of density around the freezing point. Typically, the difference between the two is within 5%
of the latter for the Yukawa system. This is puzzling in that the weakly screened Yukawa
system freezes to the body-centered cubic lattice. Table 2 gives a comparison of the potential
energy between Yukawa charges calculated from the PHNC and the HNC for the two-
component Yukawa system. Also shown are those from the Yukawa mixing rule (YMR)13

based on the calculations performed on the one-component Yukawa systems using the PHNC
and the HNC. Here is related to the linear response energy  by

where distance is in units of the ion-sphere radius In terms of the YMR can
be expressed by

where denotes the potential energy between Yukawa charges in the one-component system
of the species i, and

Here is obtained from the solution of the coupled algebraic equations

and

Since the simulated data are not available, it is not possible to assess the accuracy of the
PHNC. However, the table shows that the YMR holds very well for both of the PHNC and
the HNC. We note that deviations of the HNC solution from the YMR are almost constant
and positive at all values considered in the table. It will be interesting to check
this relation at a strong screening condition  where the HNC is generally considered
to be inaccurate.

Table 3 shows that the PHNC can predict reliable results for a mixture interacting with
potentials for  mixtures. We note that it gives slightly better results than the HMSA
equation of Zerah and Hansen. [The potential parameters used in this work are the same as
those in Ref. [ 10]. ] This is further supported by the heights of the first peak in the  radial
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distribution function. They are 1.798 0.005, 1.802, 1.69, and 1.72, for the Monte Carlo
data obtained in this work, the PHNC, and the one- and two-parameter HMSA, respectively.
In the two-parameter calculation, the HMSA determines two parameters in their “switching
functions” from conditions of thermodynamic consistency of two partial compressibilities
similarly to the PHNC. [The switching functions are used to mix the soft mean spherical
approximation (SMSA) at small and the HNC closure at large .] On the one hand, the
one-parameter HMSA calculation employs a single switching function and determines its
parameter from the consistency in the total compressibility calculated from the virial theorem
and the compressibility equation.
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INTRODUCTION

The properties of hot and dense matter are of great importance in astrophysics or labo-
ratory laser-plasma physics.1 As the thermodynamic situations encountered can be extremely
diverse, their study is often difficult. The number of states (different ionization and excited
states) playing a role in the ionization dynamics may be enormous due to the high temperature
of the plasma. In addition, soft x-ray radiation transport is very effective in redistributing
the absorbed laser energy and the hydrodynamic phenomena are strongly correlated to the
emissivity and opacity of the plasma. When LTE conditions fail, the problem to handle
shows a great complexity. Since no a priori expressions are known for the electronic config-
uration probabilities, one must resort to find the statistical distribution of the different ionic
states by solving the relevant rate equations involving the ions and the photons. Yet, one
face rapidly a situation which is very similar to the DCA method for medium- or high-Z
element plasmas. The number of many-electron configurations to select can be very large
and the data are often lacking, or known only for isolated atoms or ions. Moreover, the NLTE
photon distribution has to be coupled self-consistently to the statistical distribution of the
ionic states. A widespread solution is to extend to NLTE conditions the LTE average atom
model formalism.2 By taking into account various microscopic processes that can alter the
shell occupations of an electronic configuration, this method consist in going from integer to
fractional occupation numbers and in calculating all the transition rates of interest affecting
the configuration under study. The shell occupation fractional numbers obey a set of time-
dependent non-linear coupled equations which is analogous to the LTE case. The system is
closed by using the neutrality condition. This method seems attractive but it suffers of one
major drawback: one has no way to estimate NLTE correlations between electrons.

The purpose of this paper is to propose a method to overcome the above difficulty. By
using the NLTE average-atom model, an analytic formula of the two-electron correlations
(TEC) is obtained. Numerical results are presented and discussed by using a screened
hydrogenic model with one-electron configurations treated in the n – l representation3 and
analytic transition rates.4, 5 The variance of ionization, deduced within the framework of our
formalism, is compared to the values obtained by extending the LTE formulation to the NLTE
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regime, by using the ionization temperature concept, in which is the temperature at
which an LTE model will give the same average charge as the actual NLTE value.6 We
have compared our results with full-blown DCA calculations in a germanium plasma at low
density and an electron temperature between 10 eV and 1 keV.

FORMAL DEVELOPMENT

We develop our formalism in the framework of a one-particle central potential approxi-
mation. Each ionic state is determined by the set of occupation numbers of its one-particle
bound states j. Each ion embedded in a plasma undergoes collisional and radiative transitions
which change by discrete steps the values of its The AA model in NLTE consists in
considering the evolution of the first-order moment (center of mass) of the ionic distri-
bution in the space of the occupation numbers. The fluctuations around the mean value are
defined by

Center of Mass Evolution

The evolution of the center of mass is given by the formal NLTE master equation:

where j runs over bound states. The summation over is made over bound states and the
continuum (free states) whereas the transition rates are functions of the occupation
numbers (denoted by vector the electron temperature, the density and the radiation field.
The symbol denotes the average over the ensemble. The values mj assume discrete values
but their average is continuous. Equation (1) can be simplified by considering the as
functions of continuous parameters. We substitute in Eq. (1) the first-order Taylor expansion,
taken at the center of mass. The linear term averages to zero and we get, as in the mean-field
model:

Fluctuations

Let us consider an ion initially at position  in the occupation numbers space at
Let us wait conceptually an infinitesimal time During this time interval, the

ion may undergo a transition and change its coordinates with infinitesimal probability. At
the expectation value of is:
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(3)

where the are the transition rates calculated at and is the Kronecker symbol. We
expand to first order the into Eq. (3) and average over the ensemble. We finally get:

where the first term in the right hand side of Eq. (4) describes the relaxation towards the AA.

The second term in the right hand side of Eq. (4) denotes something similar to a “random
noise”:

where greek letters runs over both bound and free states.
Equation (4), thanks to its simplicity, is well-suited to be implemented into numerical

codes based on AA methods. The fluctuations around the AA configuration depend on the
AA configuration only. This equation, with Eq. (5) and (6), can be obtained differently by
starting from a general master-equation where the atomic-configuration probabilities appear
explicitly.7 Because of the analogy with a diffusion process, we coin the name “Brownian
Motion Picture” (BMP) to Eq. (4).

NUMERICAL RESULTS

To test our formalism, we have performed calculations with a simple collisional-radiative
model based on a screened hydrogenic model3 with n – l splitting. We have performed cal-
culations for Germanium at and electronic temperatures between 10 eV and 1
keV. The NLTE calculations were made considering an optically thin media where radiation
reabsorption processes were neglected. This assumption breaks microreversibility (sponta-
neous emission is not balanced by the inverse process). We have calculated the variance
of the ionic charge this quantity depends on two-electron correlations as:

In figure 1, we show the ionization variance as a function of temperature. BMP results
(heavy line) are compared to DCA calculations, performed with configurations (thin
line). The agreement is excellent where the DCA converges. We did not try to increase the
configuration number in the DCA calculations because the computational burden increases
rapidly. The rapid decrease of for temperatures around and below 1 keV occurs when
is close to 22, a value corresponding to the neon-like ionization stage where both the n = 1
and n = 2 shells are filled. The dashed and dotted lines are the LTE variances extrapolated
to NLTE by using an effective temperature This temperature can be taken equal to the
electron temperature or to the ionization temperature
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Figure 1. Variance of the ionization as a function of electron temperature for a NLTE optically thin
germanium plasma at a density of . Heavy solid line: present results, thin solid line: detailed
configuration accounting, dotted line: LTE calculation at the ionization temperature, dashed line: LTE
calculation at the electron temperature.

CONCLUSIONS

A new description of NLTE statistics of a highly-charged ion plasma has been presented.
Two-electron correlations are evaluated by taking into account the “diffusion” of the time-
dependent solution of the master equation around the center of mass of the distribution. This
method has been tested by calculating the variance of the ionization in a NLTE stationary
situation.
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INTRODUCTION

Since the beginning of the nineties, the renewed interest in the exact calculation of
thermodynamic functions for weakly coupled (or, weakly non-ideal), weakly degenerate
multicomponent quantum plasmas beyond the Debye–Hückel limiting law has led to a num-
ber of profound papers1,2 by French, German, and American authors. They derived virial
expansions for thermal pressure p and free energy F through the order in the densities
from first principles by using the Feynman–Kac formalism and the method of Green’s func-
tions, respectively. These recent works confirmed and supplemented older results by Haga,3

Friedman,4 DeWitt,5 and Ebeling6 and co-workers from the Rostock School dating back to
the fifties and sixties, so that now the virial equation of state for Coulomb fluids is generally
accepted as completely known up to order

For the present calculations I employ, like Ebeling, Morita’s effective-potential ap-
proach7 which allows, starting with a charging procedure, to easily give an expansion for the
Helmholtz free energy in terms of the so-called cluster integrals that correspond
to the screened virial coefficients Then, the actual density series follows by
expanding with respect to powers of the reciprocal Debye radius where the involved
elimination of the Coulomb divergences requires precise knowledge of the asymptotic be-
havior of the Slater sums for large inter-particle separation. Here I concentrate on all
those cluster integrals that contribute to at least the order namely and and
present some new contributions of the orders and arising from along with the
integral representation of a higher virial function Finally, Haga’s constant that appears
in the lowest-order classical term of and was known so far only approximately has been
evaluated exactly for the first time.

DENSITY EXPANSION OF THE FREE ENERGY UP TO ORDER

The density expansion through the order  for the interaction part of  the Helmholtz
free energy per volume in units of  for weakly coupled, weakly degenerate
quantum plasmas, i.e., for multi-component fluid mixtures of  point-like free electrons,
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and bare nuclei, having masses charges and spins at sufficiently low
densities and high temperature T, has the compact form

with reciprocal Debye radius Landau length thermal
de Broglie wavelength Born interaction parameter and
reduced mass and are numerical constants, given below.

The different terms in Eq. (1) describe two-particle bound and scattering states, exchange,
classical screening, and quantum diffraction where the complete contributions to the orders

and were first obtained by Ebeling6 while Haga,3 Friedman,4 Ebeling,6

and Alastuey et al.1 all contributed to  at the order

CLUSTER EXPANSION OF THE FREE ENERGY

The basic expressions that are used as starting–point in the present calculations can be
readily derived from the charging formula for the excess free energy and summarized as
follows: The cluster expansion for

is the sum of the Debye–Hückel limiting law, and all cluster integrals e.g.,

which are related to the corresponding screened virial coefficients

Here the generalized Mayer functions

are written in terms of the two-particle and three-particle Slater sums and respec-
tively, Debye correlation function and bare Coulomb potential

Note that Eqs. (5) and (6) give closed integral representations for the second
and third virial coefficient, and valid at any value of
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SECOND CLUSTER INTEGRAL

Recently I calculated some new terms8 of third order in the density by expanding in
powers of following the same procedure that was also applied at lower orders. However,
as it is explained at the end of Ref. [8], regularization at the order requires the inclusion of
the first quantum correction in the asymptotic expression for at large inter-particle
separation. This produces two more terms in comparison with Eq. (35) of the above-mentioned
article that are of quantum-diffraction type. Then, the full density expansion of the second
cluster integral, Eq. (3), up to order reads

with the two quantum virial functions

the latter now being the supplemented version of Eq. (34) in Ref. [8]. is the Euler–
Mascheroni constant, was evaluated by Ebeling6 for arbitrary
temperatures, whereas the explicit determination of the new is still lacking.

Similar calculations at the order n3 have been performed by Czerwon and briefly reported
in an unpublished paper.9 This author obtained exactly the same result for as shown in
Eq. (10). On the other hand, he has wrong coefficients for the last two terms in Eq. (9), and
the second part of the logarithmic term linked to is missing.

THIRD CLUSTER INTEGRAL

The leading classical term3 coming from the third cluster integral, Eq. (4),

gives a contribution to the order and includes the numerical constant
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Fourier transformation using the convolution theorem leads to the familiar integral3

that can be computed only numerically, and is identical10 to the
sum of Eqs. (4.15), (4.16), and (4.20) in the second paper of Ref. [1] with

Instead of Eq. (14) I derived another integral by Legendre polynomial expansion,

where Ei(x) denotes the exponential-integral function, for which an analytical result in terms
of Euler’s dilogarithm  is easily obtained,

A quantum diffraction term of the order also follows from if the asymptotic
forms for the Slater sums  and both include their first quantum correction

FOURTH CLUSTER INTEGRAL

The fourth cluster integral yields a classical term3’4 of  the lowest order

with the numerical constant

Here the conventional treatment of  Eq. (18) gives an integral4 that is similar to Eq. (14),

and finally the value A preliminary estimate for taking
into account only the first two terms from the Legendre polynomial expansion of  Eq. (19) is

while Alastuey et al.1  have
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INTRODUCTION

The equilibrium and non equilibrium properties of plasmas pose greater experimental
problems than those for simple atomic systems. However, the theory for such properties can
be applied and tested using closely related systems at the mesoscopic level where experimental
control and results are more direct. Dusty plasmas and colloidal suspensions are two such
physical systems providing the potential to study the dynamics of freezing, melting, and
metastable states of charged particles. For example, charged colloids exhibit a rich phase
diagram with fluid and crystal phases easily observed under conditions where the screening
length can be varied. More recently, laboratory formation of the crystal phase for dusty
plasmas has been accomplished, providing a second system for direct and simple observation
of two phase dynamics. The theory for equilibrium properties is well-developed via density
functional theory1 but the dynamics of systems supporting both fluid and crystal phases
remains a fundamental challenge. An example of such a challenge is the characterization and
description of  metastable state dynamics and a possible glass formation. It is believed that such
metastable states correspond to local minima of the same density functional that determines
the equilibrium states. Thus it is desirable to formulate a dynamical description incorporating
the structure of density functional theory to admit stationary solutions corresponding to all
phases (including “special” metastable states), and therefore having the capacity to describe
the mechanisms for evolution from one phase to the other. Since dense fluids and crystals
are strongly coupled the usual perturbative and diagrammatic many-body methods to obtain
kinetic equations are not useful for this purpose. Instead, we consider a phenomenological
approach based on closure approximations to the second BBGKY hierarchy. The class of
acceptable closures are restricted by three requirements: 1) the exact first hierarchy equation
must follow from the approximate second hierarchy equation, 2) the exact local conservation
laws are preserved, 3) the stationary solutions are the exact equilibrium states, including
all phases. One example of such a closure is given in reference 2: A second example,
generalizing those results to charged systems is described here.
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BBGKY HIERARCHY AND DENSITY FUNCTIONAL THEORY

We consider the simplest model of a dusty plasma or colloid as a one component system
of charged particles in the presence of an external force, This force represents the
confining potential for dusty plasmas (the combined effects of gravity, the electrodes, and the
streaming ions) or the effective interaction with the background fluid for colloids. Its detailed
form is not important for the present purposes. The construction of an appropriate kinetic
equation for the time dependence of  the one particle distribution function
follows from the exact first two equations of the BBGKY hierarchy

Here  and  where F(1,2)
is the force between charges 1 and 2 (typically taken to be a screened Coulomb interaction).
The equilibrium states are stationary solutions to (1) and (2) with the forms
and Here n(r) is the density and  is the
Maxwell–Boltzmann distribution. The configurational distribution functions

can be generated from the grand potential for the Gibbs ensemble by functional
differentiation with respect to where is an external potential. For
example,

Similarly, is determined from the order functional derivative of A fundamental
result of density functional theory is that there is a one-to-one functional relationship of  n(r)
to u(r). Consequently,  and therefore  also are functionals of the
density. When the functionals in (1) are evaluated at the equilibrium density, the equilibrium
distributions are obtained. The equilibrium density is obtained from the variational condition

i.e., the topology of determines the most probable density in the Gibbs
ensemble.

A closed kinetic equation follows from an approximation expressing the three particle
distribution function, as a functional of the one and two particle distributions

Accordingly, solution to the corresponding second
hierarchy equation with this approximation leads to Finally, use
of this in the first hierarchy equation gives a closed kinetic equation for f. Many approximate
choices for have been considered, usually selected on the basis of small parameters such
as the density or plasma coupling constant. Here we restrict the class of approximations by
requiring that it should reduce to the exact equilibrium functional

CLOSURE APPROXIMATION

To motivate an appropriate closure approximation, or equivalently an estimate for , it
is convenient first to represent  in terms of two particle correlations,
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and the residual three particle correlations defined by U( 1,2,3; t),

If U (1,2,3;t) is neglected a weak coupling kinetic equation is obtained which generalizes the
Lenard–Balescu equation to all length and time scales. However, it clearly does not satisfy
the above constraint (4) and therefore does not lead to the exact equilibrium stationary states.
The strong coupling effects contained in U( 1,2,3; t ) can be accounted for partially by noting
that at equilibrium it is a specific functional of f ( 1; t). Our closure approximation is therefore
to replace U(1,2,3;t) by the corresponding equilibrium functional, but evaluated at the non
equilibrium state, More explicitly this is

Note that there is both the explicit functional dependence on f and the implicit dependence
through The functional dependence of the right side on n(r,t) is
known from equilibrium density functional theory. Clearly, (6) gives an approximation that
satisfies the equilibrium constraint (4).

The second hierarchy equation is most conveniently expressed in terms of U (l,2;t)
rather than with the result

with the definitions

where is the usual mean field force

The last term on the right side of (7) is a Vlasov operator that generates dynamic screening
effects. Finally, the total force on the right side of (7) includes the effects of three particle
correlations necessary for the exact equilibrium states

Equation (7) is the primary result of this work. It has the same form as the “polarization
approximation” for a weakly coupled plasma. The latter leads to a generalization of the
Lenard-Balescu kinetic equation, valid on all space and times scales and preserving all
conservation laws. The generalization here is to extend these properties to strong coupling.
This occurs entirely through the total force in place of F( 1,2), on the right side of
(7). To interpret this change, consider in the equilibrium fluid state (relevant for
linear response). Then only the contribution from survives and (10) can be simplified
further using the second BBGKY hierarchy for stationary states to give
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This is the mean force representing the interaction between a pair of particles in the presence
of correlations with all other particles. Note that Eq. (7) does not simply replace all “bare”
forces F(1,2) by this mean force. Instead, the dynamics is in terms of the bare force while
the source of dynamic correlations on the right side is the only place where the mean force
occurs. This asymmetry is required by the constraint of energy conservation.

DISCUSSION

The objective here has been to formulate a description of the complex dynamics for
systems that can exist in fluid and solid states, and which can transform between them. The
dynamics of such systems under dense fluid or solid state conditions is clearly very complex.
We have not provided here any solutions to this problem but rather a practical formulation
from which to study the problem. To our knowledge there is no other kinetic theory for
charged particles capable of describing both the fluid and crystal states. It remains to be
seen how accurate this approximation is for quantitative studies. The first test should be an
evaluation of the transport coefficients for a one component plasma in the fluid phase at strong
coupling. This follows from the corresponding linearized equation and the calculation is in
progress. If the results are encouraging, more complex dynamics can be studied, such as a one
component plasma in an initial fluid-like state at coupling for which the crystal state is stable.
In the longer term, systems such as dusty plasmas with the strong influence of the confining
potential can be studied with confidence in both the fluid and crystal phases. Solutions
to the kinetic equation under strong coupling, nonlinear conditions will require numerical
techniques. There has been remarkable success recently in extending the Bird Monte Carlo
simulation method for the Boltzmann equation to dense, strongly coupled neutral systems.3

Corresponding results for screened Coulomb interactions can be anticipated shortly.
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DUST CRYSTALS IN PLASMAS

S. Hamaguchi

IBM Thomas J. Watson Research Center
P. O. Box 218, Yorktown Heights, NY

INTRODUCTION

Small solid particles (i.e., dust particles) in a plasma are usually negatively-charged due
to the high mobility of electrons, and they interact through a Yukawa (i.e., screened Coulomb)
pair potential.1–6 Laboratory experiments have recently shown that, when the interparticle
potential energy exceeds the kinetic energy, particulates in plasmas may form crystalline
structures (Coulomb crystals).7–10 In this paper, we shall employ molecular dynamics (MD)
simulations to identify the conditions under which dust particles in a plasma condense into
Coulomb crystals.

Consider a system of identical particles with mass m and charge
immersed in a neutralizing background plasma. The interparticle potential is of Yukawa type,
given by

where r denotes the radial distance between two particles and denotes the Debye
length, i.e., the electric-field screening length of the background plasma.

Taking the Wigner–Seitz radius as the unit of length, where n is the
particle number density, we may describe the thermodynamics of the Yukawa system in terms
of two dimensionless ratios:

In the limit the Yukawa system becomes the classical one-component plasma (OCP)
— i.e., a system of mobile charges immersed in a strictly uniform neutralizing background.

MOLECULAR DYNAMICS SIMULATION

In MD simulations, simulation particles are placed in a finite domain. To emulate the
infinite physical space, we impose periodic boundary conditions. If the simulation domain
is given by a cubical box with side L, the effective pair potential between two simulation

Strongly Coupled Coulomb Systems
Edited by Kalman et al., Plenum Press, New York, 1998 175



Figure 1. Phase diagram of  Yukawa systems in the plane. The circles are fluid–bcc phase boundary
points                    the squares are fluid—fcc phase boundary                    points and the triangles are bcc—fcc phase
boundary points. The solid lines are fitting curves.

particles are expressed3 by

Here represents the interaction energy of particle i with particle j (at separation
and with all periodic images of the latter. The infinite sum of over integer vectors

n = ( l ,m,n) represents the periodic images.11

For a given the intersection of the free energies of Yukawa systems in the fluid and
solid phases determines the fluid–solid phase transition (i.e., melting or freezing) value.
Similarly the intersection of the bcc and fcc solid free-energies yields values at the bcc–fcc
phase transition. These free energies are evaluated by numerically integrating a functional of
the potential energy obtained from MD simulations over the plane.3

MD simulations solve the equations of  motion for simulation particles, using the effective
pair potential of Eq. (2). To emulate a constant-temperature system, the velocities of
all particles are renormalized periodically to bring the system kinetic energy into agreement
with the target value. The numbers of particles used in the simulations reported here were
N = 686 for a bcc and N = 500 for an fcc lattice. These lattices are used as initial conditions,
and the system is allowed to equilibrate to the desired

Figure 1 illustrates the phase diagram of Yukawa systems in the plane, where
the curves show the phase boundaries. The representative error bar due to uncertainties in
evaluating the free energies is given at The point where the three phases (fluid, bcc
and fcc lattices) meet — the triple point — is given as and Both
the fluid-solid and bcc–fcc phase transitions are of first order as the jump of the entropy per
particle is finite at those boundaries.

Some earlier studies12–16 have used normalizations different from Eq. (1) to represent
the particulate temperature T and the Debye screening length For example, one may
use instead of the Wigner–Seitz radius a as the length unit, and define
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Note then that Kremer, Robbins, and Grest12 normalized the
temperature T by the typical phonon energy of the fcc Yukawa lattice according to

where is the Einstein frequency for the fcc Yukawa lattice defined by

with all particles situated at fcc lattice sites. The triple point  and  is
then given by K = 6.90 and

In Fig. 2, we recast the phase diagram of  Fig. 1 in terms of and and also plot earlier
MD and MC simulation results based on different methods.12–16 These earlier MD and MC
simulations do not include the infinite sum for periodic boundary conditions—i.e., the second
term in Eq. (2) — that we have included in our MD simulations3 and are thus valid only in
the large regime (i.e., In Fig. 2, the fitting curve is extended to The filled
marks and solid lines are the same as those used in Fig. 1. The crosses (×), together with the
error bars, are the fluid–solid phase boundary points obtained by Meijer and Frenkel.14 The
error bars show the statistical errors. The open rectangles triangles and diamonds

indicate stable fluid, bcc, and fcc states, respectively, obtained by Stevens and Robbins.15

The open circle plus and nabla are a fluid–bcc boundary point, a bcc–fcc phase
boundary point, and the triple point, respectively, obtained by DuPont et al.16

The fluid–solid phase transition temperatures obtained in our MD simulations are sys-
tematically higher (by about 5% in than those obtained by Meijer and Frenkel. The
discrepancy may be due to the following reasons. First, the MC simulations by Meijer and
Frenkel employed relatively small numbers of particles Second, Meijer and
Frenkel assumed that the solid phase at their data points of (K = 5,33) and
(K = 6.77) is fcc. However, our simulations, as well as those by DuPont et al.,16 indicate
that this phase is actually bcc.

The stable fluid phase data presented by Stevens and Robbins,15 which are considered to
give an upper bound of the fluid–solid transition phase, lie more or less on or above our fitted
fluid–solid phase boundary, suggesting good agreement with our data. Only two data points
given by Stevens and Robbins—those at and 2.597 (K = 3.332 and 4.186) — are
slightly lower than our fitted phase-transition curve. To determine the stable phase, Stevens
and Robbins used the “phenomenological melting test,” i.e., ran MD simulations starting from
a two-phase state (equally divided fluid and solid phases) and observed its time evolution. If
the difference between the free energies of the two phases is very small, which is the case
near the transition point, the evolution of the MD simulation may be sensitively dependent on
the shape of the simulation box, number of particles, initial perturbations, and the potential
truncation radius. However, it is not clear from Ref. [15] that their phenomenological melting
test can distinguish small differences in the free energy near the phase boundary, such as at
those data points.

DuPont, Moulinasse, Ryckaert, and Baus16 used MC simulation and the Frenkel–Ladd
lattice coupling method18 to evaluate solid free energies. The bcc–fcc phase boundary point
obtained by DuPont et al.16 [denoted by a plus (+) in Fig. 2] is in excellent agreement with
the bcc—fcc phase boundary curve estimated in our study.

In summary, we have obtained the phase diagram of Yukawa systems in the range
between and We have also compared our MD simulation results with earlier
MD and MC simulation results obtained by other authors. At larger  values, for which all the
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Figure 2. Phase diagram of Yukawa systems in the plane.

previous studies are conducted, our simulation results in general show good agreement with
earlier results, especially those obtained more recently using more sophisticated techniques.
Our MD simulations have identified the triple point — at which the three phases (fluid, bcc
and fcc lattices) coexist — as being and
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DUST DYNAMICS IN PLANETARY MAGNETOSPHERES

Mihály Horányi

Laboratory for Atmospheric and Space Physics
University of Colorado
Boulder, CO

INTRODUCTION

Many exciting phenomena were recently recognized that are associated with the in-
teraction of magnetospheric fields and plasmas with the embedded dust grains. Lorentz
resonances, gyrophase-drifts due to compositional and/or plasma density and/or plasma tem-
perature gradients, transport due to charge or magnetic field fluctuations, shadow resonance
and the coupling between radiation pressure and electrodynamic forces, for example, all
contribute to shaping the fine dust distribution in planetary rings. The spokes in Saturn’s B-
ring, the ring-halo transition at Jupiter or the structure of Saturn’s E-ring are examples where
the observed radial and vertical structure clearly demonstrates the effect of magnetospheric
perturbations.8

The extreme cases, where gravitationally dominated particles are perturbed by electro-
static forces (i.e., the charge to mass ratio or when gravity becomes a perturbation
on magnetically dominated particles are well understood. However, when these
forces are of similar amplitudes, dust grains may exhibit unusually complex dynamics: parti-
cles can get ejected from or captured into a magnetosphere by swiftly exchanging energy and
angular momentum with the electric and magnetic fields. Here we show that dusty plasma
effects are responsible producing streams of small grain escaping from Jupiter.

JUPITER

Jupiter was first recognized as a source of dust particles during Ulysses’ encounter with
the planet in 1992 as high speed intermittent streams of small grains were discovered.5 The first
estimates put the mass of the stream particles in the range of
g and their velocity in the range of  Assuming an average density

the radii of these grains were estimated in the range of  0.03 However,
these estimates remained uncertain since the detector was not calibrated in this size and
velocity range. Similar fluxes were seen with the identical dust detector on board the Galileo
spacecraft as it first approached Jupiter in 1995.5

The suggested mechanism to eject dust particles from within the Jovian magnetosphere
matched the size and velocity range of the observed stream particles by recognizing that these
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grains become positively charged and can gain energy from the co-rotational electric field.7

Dust grains escaping Io enter a cold plasma torus where they become negatively charged
and all the grains smaller than in radius remain confined there. Larger grains
could visit the outer hot regions of the plasma torus, where they change their sign of charge
to positive, due to the switch on of secondary electron production. Once a grain charges
positively it will be accelerated by the outward pointing co-rotational electric field. The
intermittent nature of the observed dust streams is most likely caused by the changes in the
azimuthal component of the solar wind magnetic field, that periodically accelerates these
particles toward and away the ecliptic plane.6

In fact, the detailed analysis of the propagation of the stream dust particles in the solar
wind led to the recognition that they must be much smaller in size and move much faster
than it was suggested earlier. The new estimate for the size range of the dust grains seen by
Ulysses is  and their velocity These seem to be the ranges for
the dust particles seen by Galileo as well.12 This size range was also indicated earlier from
the photometry of volcanic plume images.3

DYNAMICS AND CHARGING

In Gaussian units the equation of motion of a dust particle with radius a, mass m and
charge Q, in an inertial jovicentric coordinate system can be written as

where r is the grain’s position vector and an over-dot signifies differentiation with respect
to time. The first term on the right hand side is the gravitational acceleration due to Jupiter
with the gravitational constant  mass of the planet,

its radius (=71,398 km) and the higher order terms of Jupiter’s gravity are
expressed in terms of Legendre polynomials with  coefficients  and

The last term is the Lorentz acceleration where B is the local magnetic field and,
assuming a rigidly co-rotating magnetosphere (for up to  is the co-
rotational electric field, with the rotation rate of Jupiter         magnetic
field of Jupiter can be described using the O6 model.2 We ignore solar radiation pressure since
the light scattering efficiency of the very small grains discussed here is approaching zero. We
also ignore plasma, neutral and Poynting–Robertson drags, these are negligible for the short
time scales we discuss below.

As grains traverse the various plasma regions their charge will not stay constant. A
grain’s charge can be followed via the current balance equation

where represent electron and ion thermal currents, and also the secondary and photoelectron
emission currents. These are all functions of the plasma parameters, material properties, size,
velocity and also the instantaneous charge of a dust particle.10

To follow the orbits simultaneously with the evolution of the charge we need a particles
and fields model of the jovian magnetosphere. We use the most recent interpretation of the
Voyager 1 and 2 measurements to describe the plasma parameters in the centrifugal equator,
which is the plane of symmetry for the plasma distribution in Jupiter’s magnetosphere.1
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Figure 1. A snapshot of the positions of small grains released at the moon The left side shows
the projection into the equatorial plane and the right side shows the projection perpendicular to the equatorial
plane (the Sun is to the right and Jupiter’s orbital motion points into the paper). The dashed circle represent the
orbit of moon Ganymede and the thick lines show the orbit of the Galileo spacecraft as it cut
through to Jovian system moving from South to North, in counter-clockwise direction. The gray scale
represents the radius of the dust particles in nano-meters (nm). The ‘ring’ of the smallest grains at is due
to the temporarily trapped grains in the Io plasma torus.

Figure 2. The impact rates from our computer simulations (left panel) and measured rates (right panel) during
the second loop of the Galileo spacecraft about Jupiter. The dotted line marks the time of the closest approach
to the moon Ganymede.

NUMERICAL RESULTS

The ultimate test of the model is to reproduce the observed impact rates.9 For the G2
orbit (the second loop of the spacecraft at Jupiter) we started our simulation 10 days before
the closest approach and followed Galileo for 12 days. The initial position of Io and the
spacecraft, and the phase of the magnetic field was matched to the real values. We have
generated one particle every minute from Io and followed their trajectory and charge to a
distance of  where is the instantaneous distance of the spacecraft from Jupiter. A
snapshot of the evolving dust cloud is shown in Fig. 1. For each grain we noted the time and
the relative velocity of the closest approach to Galileo. In the course of a simulation we have
generated 17,280 particles randomly selected from the range of

Fig. 2 compares our simulation result with the measurements. We capture the gross
features of the observations, but did not reproduce the details. The exact timing and the
relative intensity of the flux peaks are features that are generally not well reproduced. The
grain size distribution, the fields and particles environment close to Io, or the location of the
dust sources on Io are not modeled yet, but likely to be important.
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In our computer simulations we used a simple description of the Io plasma torus and
assumed a constant production rate of dust from Io that was treated as a point source. We
captured the gross features of the observations, signaling that the basic physical ideas in this
model are correct. The model can and will be further developed by comparing its predictions
with later observations during consecutive orbits. Since every tiny dust grain ejected from Io
acts as an active probe of the fields and particles environment, matching the observed dust
impact rates provides perhaps the most stringent test of our models of  Jupiter’s magnetosphere.
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COLLECTIVE PROCESSES IN STRONGLY COUPLED DUSTY PLASMAS

M. Rosenberg

Department of  Electrical and Computer Engineering
University of California, San Diego
La Jolla, CA

INTRODUCTION

Ionized gases laden with fine (charged) dust, loosely referred to as dusty plasmas, occur
in several laboratory environments. The dust grains, with radius a ranging from m to
sub- m, can be highly charged in the plasma. A consequence of grain charging is that the
dust can be strongly coupled when1

where is the dust charge state, d is the intergrain spacing where is the
dust density), is the dust thermal energy, and is the plasma screening length. Strongly
coupled dusty plasmas in which the grains form highly organized lattice structures, referred
to as Coulomb crystals or “plasma crystals,” have recently been produced in the laboratory by
a number of experimental groups.2–5 In addition, strongly coupled dusty plasmas may occur
in laboratory rf plasmas used for processing6–9 and have been observed in thermal plasmas.10

While the grains are charged negatively by the plasma electron and ion collection currents
in the recent Coulomb crystal experiments, we have theoretically investigated a different
type of  Coulomb crystal with positively charged grains when photoelectron emission is the
dominant charging current.11,12 We discuss this scheme for forming a Coulomb lattice of
positively charged dust grains in both moderate and high pressure gases.

It has been shown within the context of standard plasma theory that the presence of
highly charged dust grains in a plasma can lead to new low frequency dust acoustic waves
and instabilities.13–19 When the dust is strongly coupled, with the strong spatial
correlation of the dust grains can affect the dispersion relation of such modes.20,21 We discuss
the dispersion relation for dust acoustic waves in a strongly coupled dusty plasma, and
compare with available experimental results.

COULOMB CRYSTALS WITH POSITIVELY CHARGED DUST

Recently we suggested that the condition for Coulomb crystallization of positively
charged dust grains might be achieved in a high-pressure  inert gas with dispersed
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dust grains in the presence of a flux of ultraviolet (UV) photons.11, l2 This avoids the need for
a background plasma to charge the grains, but requires photons with sufficient energy

to charge the grains positive by the photoelectric emission of electrons, but with energy
low enough to avoid photoionization of  the gas. This driven system would thus
be comprised of positively charged dust grains and photoemitted electrons in a background
gas which cools the grains; the dust itself then provides the source of ionization and there by
controls the (electron) Debye length. The maximum charge on a grain can be estimated
from the energetics of  the photoemission process; the energy of the incoming photon should
be greater than (where W is the the photoelectric work function of the grain material
and is the grain surface potential), giving

The positive equilibrium potential of  the grain is maintained by the balance of photoelec-
tron emission and electron re-collection on the grains. The electron photoemission current
for

where is the efficiency of absorption for the UV radiation
where is the wavelength), J is the UV photon flux, Y is the yield of the photoelectrons,
and is their average energy. The expression for the electron collection current to the
grain depends on the regime of Knudsen number Kn = l/a ( ratio of the mean free path for
electron-neutral collisions to the grain radius), as well as the ratio  In the collisionless
regime where the orbit-limited current to an attracting probe is23

where is the electron density and is the thermal velocity of electrons with
temperature In the collisional regime where the electron current to the grain
taking into account mean free path effects is smaller23 by roughly a factor of ( l /a) . The
equilibrium charge is obtained by balancing the currents using the condition for
charge neutrality and estimating the electron temperature by noting that
when the electrons are re-collected onto the grains faster than they thermalize with the
background gas, while thermalization give  the neutral temperature

We find theoretically that the condition for Coulomb crystallization  can be
satisfied for a broad range of dust sizes and interparticle spacings both in the collisionless

and collisional regimes (e.g., figs. 1 and 2 in Ref. 12). For example, in the
regime for photon intensity

photons and with and we find that
for a ranging from and d ranging from In such

systems comprised of  two charged components (electrons and positive dust), the dust provides
the source of ionization so that both the interparticle spacing and the electron Debye length
might be varied. In addition, higher neutral pressure may lead to more efficient cooling of the
dust motion, and additional forces on the grains due to the UV flux, such as the photophoretic
force, might aid in levitation or confinement.12

DUST ACOUSTIC WAVES IN STRONGLY COUPLED DUSTY PLASMAS

The dust acoustic wave is the analog of the ion acoustic wave in very low frequency
regimes, where the dust mass provides the inertia and the electrons and ions provide
the pressure to sustain the wave.13 The wave has frequency the dust plasma frequency

and phase speed the ion thermal speed. The dust acoustic wave
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has been observed in a laboratory dusty plasma experiment,24 and recently the dispersion of
the dust acoustic wave in the strong-coupling regime has been studied experimentally.25

To investigate the effect of strong dust coupling on dust acoustic waves, we consider a
model system comprising dust grains that interact with each other via a screened Coulomb
(Yukawa) potential

with the exponential factor taking into account within the linear approximation the screening
of  the dust charge by the plasma electrons and ions that are weakly correlated and classical.
The strength of the intergrain coupling in this system is characterized by as given in Eq.
(1) in terms of two parameters: the Coulomb coupling parameter  and the
parameter which is a measure of dust charge screening by the plasma.26 For high

coupling values but below the crystallization limit the dust plasma is a “liquid” phase
with a strong short-range order. Focusing on this phase,20 we use a Quasi Localized Charge
(QLC) approximation which was developed to study waves in strongly coupled plasmas.27,28

Based on the main physical feature of strongly coupled Coulomb systems that the charges
are quasilocalized when but smaller than the critical value for solidification, the
QLC approximation describes the motion of the system around the average configuration
represented through the equilibrium pair correlation function g(r).

The QLC model adapted to the Yukawa system can be used to determine the linear
response of the system to a small perturbing external scalar potential.20 This is done by
considering the microscopic equations of  motion for the rapid oscillations of  the dust charges
about their slowly drifting equilibrium sites, and then calculating the linear response. The
resulting dielectric function of  the system, which can be written in terms of  a dynamical
matrix which is a functional of  g(r), gives the dispersion of collective modes. In the
small-k domain, and for the dispersion can be related to the total correlation energy of
the system: this latter can be obtained from the results of numerical simulations of Yukawa
systems given in Ref. 26. This results in the following dispersion relation for dust acoustic
waves20

where the term arising from strong coupling is given approximately by
with when and

There appear to be three effects of  strong dust–dust correlations on the dust acoustic wave
dispersion relation. In the regime  Eq. (5) gives
where is the dust acoustic speed. From here it can be seen that the first effect of
strong dust coupling is a softening of the mode dispersion, with the phase speed decreasing
(note that The decrease of the phase speed as increases may be related to an
increase in the compressibility of the fluid as the range of the repulsive intergrain potential
decreases.29 In the regime the dispersion relation (5) becomes

Here it can be seen that the second effect is a reduction of the
effective dust plasma frequency, which may be related to a decrease of the effective dust
charge with stronger screening, i.e., with increasing The third effect here is the onset
of negative dispersion, that is, These properties are analogous to those of ion
acoustic waves in strongly coupled electron–ion plasmas analyzed in Ref. 31.

The effects of collisions of charged dust particles with neutrals can be included via an
ad hoc collisional damping term in the microscopic equation of motion for the dust, using
the hard sphere collision rate and are the neutral
density, mass, and thermal speed).20 The result is that in Eq. (5). From
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this it can be seen that collisional effects can dominate strong coupling effects when roughly
This may help explain why a fluid dispersion relation without

strong coupling effects apparently fit the experimental results as reported in Ref. 25.
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INTRODUCTION

“Plasma crystals” have rapidly become an established means of investigating certain
“solid state” properties. Their possible existence was first suggested by Ikezi1 on theoretical
grounds, experimentally the first announcements came 8 to 9 years later.2–6 They consist of
charged monodisperse microspheres (typical sizes are a few microns) embedded in a plasma,
which in most investigations is generated by radio-frequency discharges and recently also in
DC glow discharges7, 8 and combustion plasmas.9 The microspheres become self-organized
by mutual Coulomb interaction into a regular crystalline structure — which is their min-
imum energy state — provided the Coulomb coupling parameter and the spatial density
exceed certain thresholds [see e.g.,3]. Since the original discovery there have been impor-
tant fundamental investigations on processes such as the solid/liquid phase transition,10–12

dislocations13,14 and stimulated sublimation.15 For a review of our work on plasma crystals
see [16]. The unique properties of plasma crystals, i.e., their fast response times (seconds),
the small damping, the easy experimental control, the wide accessible range of parameters
and the detailed imaging, possible even at high time resolution, make them ideal objects for
studying dynamical effects of interest in crystal physics, colloidal physics, strongly coupled
plasma physics and monolayer physics. Here we report on one such dynamical aspect of
crystal physics — the propagation and damping of lattice waves.

In a recent paper,17 Pieper and Goree examined the dispersion of compressional waves
propagating through a colloidal (or dusty) plasma in the strong coupling regime. Over a wide
range of coupling strengths where = Coulomb potential / kinetic energy)
they found that the measured dispersion relation could be fitted rather well to the theory of
damped dust acoustic waves (DAW, see [18]) but not dust lattice waves (DLW). Surprisingly,
DLW were never seen!

In many ways plasma crystals can be expected to behave much like natural crystals —
the heavy, charged, microspheres correspond to the ions and the plasma in the Debye-sphere
surrounding the microspheres may be viewed analogous to the electron cloud surrounding the
ion. Thus plasma crystals should propagate “acoustic” lattice waves as well as the equivalent
of  the “optical branch” — the latter occurring at infrared–microwave frequencies, however.19
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In addition, there are of course plasma crystal specific effects, such as the random charge
fluctuations and Brownian motion, which introduce a random forcing term,20 the polarization
of the microspheres themselves,21 and the systematic charge fluctuations associated with
compression and rarefaction22,23 in these longitudinal lattice waves.

THEORY

In order to calculate the wave propagation through a plasma crystal we have to treat
the mutual interaction of three components: the negatively charged microspheres, the Debye
clouds of positive charges and the neutral gas background. For present purposes we restrict
ourselves to two components only (microspheres and neutral gas) and assume the neutrals to
be stationary. In19 we will consider the Debye ion clouds as well.

Wave propagation in crystals is a well-studied subject [e.g.,24 and references therein].
We adopt the established techniques here and adapt them, where appropriate, to the conditions
relevant for plasma crystals. Accordingly we use a screened Coulomb potential to describe
the interaction between neighboring particles (microspheres) in the plasma crystal lattice.
Using a linear chain model and considering only nearest-neighbor forces, we can derive the
force acting on particle n in this chain

where we have assumed that all particles carry the same charge, Q. The separation between n

and  n – 1 is that between n and n + 1 is is the total Debye
length. The undisturbed plasma density is and are electron and ion temperatures,
respectively, K is Boltzmann’s constant and e the electronic charge unit.

The neutral gas in the rf-discharge chamber exerts a frictional force on the microspheres.
Conditions are such that the mean free path for the gas molecules is substantially larger than
the particle size, so that we have to use the Epstein drag law. The validity of this was checked
experimentally using single suspended microspheres and was found to be correct to better
than 15 %.25 The frictional force term is

where is the neutral gas density, the thermal speed of the gas atoms, R the radius of the
microspheres and the velocity of the nth particle in the chain. Writing (1) and (2) in terms
of the mean lattice spacing, a, and defining the particle’s deviation,  from the ideal lattice
site as etc. yields in the limit of

with M the particle’s mass and the “coupling constant” defined as

where The constant Making use of  the Bloch condition, i.e., the
fact that to zero order we have a regularly spaced array of particles, we get
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Figure 1. The amplitude variation of microspheres in the plasma crystal, oscillating in an externally applied
sinusoidally varying electric field at frequencies 0.5 Hz, 1 Hz and 2 Hz, is shown. The field is applied from a
wire located in the crystal plane (=image plane) parallel to the y-axis on the left of the image. Images were
recorded at 50 Hz, the particle positions are plotted at each individual recording and gray-scale-coded from
white (first image) to dark gray (5th image).

where k is a given wave vector, l the lattice vector and subscript denotes our origin. In an
infinite periodic lattice the origin position is arbitrary (so we may pick position n). Then we
get

and the force equation becomes

The dispersion relation is then given as

where This result is identical to the linear solution obtained by
MelandsØ

 26 with the addition of the damping term. As shown in [26] nonlinear corrections
do not lead to a significant change, so that (8) is a rather good representation of the dispersion
relation for DLW.
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Figure 2. The amplitude variation of the plasma crystal particles is plotted in a log-linear diagram to
emphasize the exponential nature of the damping. Representative examples are shown at 0.2 Hz, 0.5 Hz, 1.0
Hz and 8.0 Hz. The solid line represents the least squares fit through the data points.

EXPERIMENTAL RESULTS

In order to measure the propagation and damping of lattice waves, we used the rf-
discharge chamber described in [3], modified as discussed in [25]. The plasma was ignited
(Krypton at a pressure of 0.42 mbar, neutral gas temperature 300 K) and the microspheres
were injected (radius density The plasma crystal formed had
typically 40 lattice planes in the horizontal and 8 lattice planes in the vertical direction
(particle separation 0.25 mm). A sinusoidal electrical signal was applied to a wire located
outside the crystal approximately in the crystal plane and the response of the microspheres
was monitored with a CCD camera from vertically above. Examples of such observations
are shown in Fig. 1. The length of the particle trajectories in the x-direction gives a direct
measure of their oscillation amplitudes, A. These amplitudes decrease with distance, x. It
is easy, therefore, to measure the decay of the propagating wave by fitting an exponential
function to all the amplitudes A (x). Repeating this over a broad range of frequencies (from
0.1 Hz to 10 Hz) we can measure the damping length variation and thus determine directly.
To show that the decay really is exponential to a very good approximation, we have compiled
several results at different frequencies in Fig. 2.

The real component, can be obtained directly also — by measuring the signal
propagation speed, as a function of frequency and using A second method is the
Fourier technique described in [17]. This also yields  and of course, so that in principle
we have two ways to determine the dispersion relation, providing an independent check and
independent assessments of the uncertainties.

The comparison between theory and measurements is shown in Fig. 3 a and b. The
experiment was repeated under the same conditions, showing that the results are reproducible.
Regarding the quantitative agreement we point out the following:

• The neutral gas damping is known accurately to a few percent, because the gas pressure
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Figure 3. a, b) The normalized wave number and damping length for lattice waves in plasma crystals are
defined as and respectively. In this figure we plot and as a function of wave frequency, f.
Increasing implies more rapid damping. Measurements of  are given by the open squares, those of
by the open circles and the filled circles. Open symbols were computed using the Fourier analysis method,
filled symbols were obtained from fitting exponentials to the amplitude variations (see text). The theoretical
results are given by the continuous line for and the dashed line for The theoretical values were
calculated for Krypton at room temperature for particles of diameter   and material density
The lattice distance, a, was set equal to the Debye length, λ d , and the charge on the microspheres was taken as

Two experiments are shown, which were performed under similar conditions (a and b), to illustrate
repeatability.

is monitored.

• The lattice coupling is not known so well, because the charge on the microspheres is
not known to better than a factor 2. In addition the ratio which enters in the
expression for the coupling constant, is O (1) but again the exact value is somewhat
uncertain.

Hence the procedure is to vary the parameter in (8), until a good theoretical fit is
obtained for both and as a function of wave frequency. The theoretical fits shown are
for and

This allows us now to determine some more plasma crystal properties. The lattice
wave speed at high frequencies is measured to be frequency independent, i.e., the waves
are nondispersive — as the theory suggests. Its value is  for the particular
plasma crystal parameters of  our experiment. The Debye frequency (i.e., that frequency where
the wavelength is twice the lattice separation) is for the principal direction of a hexagonal
lattice structure

which turns out to be 55.8 Hz for our crystal parameters. Lattice waves with higher frequencies
should not be able to propagate through the crystal.

We see from Fig. 3 that the quantitative agreement between measurements and DLW
theory is, in general, very good, confirming the identification that we are indeed observing
dust lattice waves. There are, however, also some discrepancies.

• There is a weak suggestion in the data that damping at high frequencies may be
somewhat lower than predicted.
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• at low frequencies f < 1 Hz both and as derived from the measurements are
significantly larger than the theoretical predictions.

This low frequency result may have an interesting explanation: the plasma crystal had
40 lattice planes. When the wavelength gets larger than the crystal size, the particles still

move under the influence of the wave field, but the crystal then works more in the manner of a
compressible membrane. For our system this happens when i.e., at about
1.5 Hz, just at the “point of departure.” If this explanation is correct, we have an interesting
possibility to study signal transfer effects across lossy membranes microscopically for the
first time. This requires more research, but it is clear that the near constancy of the signal
damping length (with frequency) in this “membrane regime” is an important pointer towards
the physics there.
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STRUCTURAL TRANSITIONS IN CONFINED YUKAWA SYSTEM AS A MODEL
OF DUSTY PLASMAS AND CHARGE STABILIZED COLLOIDAL SUSPENSIONS

Hiroo Totsuji, Tokunari Kishimoto, and Chieko Totsuji

Department of Electrical and Electronic Engineering
Okayama University
Tsushimanaka 3-1-1, Okayama 700, Japan

INTRODUCTION

Dusty plasma is a mixture of charged macroscopic dust particles and plasma which is
often encountered in semiconductor plasma processes and space physics. The control of
dusty plasma is an important issue to improve the quality of semiconductor wafers and the
behavior of dust particles is closely related to various astrophysical phenomena. Since dust
particles are usually highly charged and can easily be in the state of strong coupling, their
collective properties are quite interesting as a subject of  basic plasma physics.

The interaction between dust particles is screened by environmental plasma. As the
simplest approximation, we assume they interact via the isotropic Yukawa potential:

Due to their large mass, dust particles concentrate around the boundary of the plasma and
the sheath where the gravitation and the electrostatic force balance with each other. In other
words, they are confined by these forces. Recent experiments have shown that dust crystals
of various structures are formed in strongly coupled dusty plasmas.1–4

In charge stabilized colloidal suspensions, charged macroscopic particles interact via
the DLVO potential. When the radius of core is neglected, the interaction potential reduces
to the Yukawa potential. In many cases, these colloidal particles are strongly coupled and
are observed to form colloid crystals. When they are confined between parallel glass plates,
various layered structures have been observed.5

These confined Yukawa systems have the dimensionality between two and three and the
Yukawa potential covers both short-ranged and long-ranged interactions. The purpose of this
article is to present some results of numerical experiments and theoretical analyses on the
strongly coupled confined Yukawa system.6–9

Around the equilibrium plane, the effect of external forces may be expressed by a
one-dimensional parabolic potential

The bulk Yukawa system is characterized by two dimensionless parameters. With the in-
troduction of a new parameter k, we have now three independent dimensionless parameters
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characterizing our system at the temperature T:

Here a is the mean distance defined by being the surface number density.
We have performed molecular dynamics simulations on the confined Yukawa system

with a number of sets of characteristic parameters. Periodic boundary conditions in x- and
y-directions are imposed and free deformation of magnitudes and directions of fundamental
vectors are allowed. The temperature and the surface number density are kept constant for
each set of characteristic parameters. Typical number of  particles is  Details of  numerical
method are given elsewhere.8

STRUCTURES IN THE GROUND STATE

One of the most interesting properties of our system may be the structures at low
temperatures. Though the phase diagram of the three-dimensional Yukawa system is well
known,10 our system has an additional parameter related to confinement.

At high temperatures, particles are distributed as a thick cloud with infinite extensions in
the xy-plane. When the temperature is slowly decreased, the cloud changes into a collection
of almost equally spaced thin layers. The number of layers is a function of characteristic
parameters at low temperatures, and as shown in Fig. 1 which is a kind of phase diagram
for the ground state structure. A competition between the confinement and mutual repulsion
determines the structure; we have smaller number of layers for strong confinement (larger
and/or larger and larger number of layers for strong mutual repulsion (smaller  and/or
smaller The distance between layers repeats systematic changes: When parameters are
changed to increase the number of layers, the distance is smallest just after the appearance
of a new layer and largest just before the appearance of another new layer. In each layer,
particles are organized into two-dimensional lattices and the lattice symmetry changes from
square to triangular synchronously with the interlayer distance as shown in Fig. 2.

The structures of confined nonneutral plasmas have been analyzed theoretically from the
viewpoint what is essential in the formation of such structures.11,12 We extend this method
to confined Yukawa systems.7–9 The natural starting point is the continuum model where
particles are regarded as a fluid. In the case of nonneutral plasma without screening, the
minimum energy state of the fluid model approximately reproduces the profile of particle
distribution in z. In our case, this model overestimates the profile by a factor of two.

The next step may be to assume the existence of layers (shells) and compare the ground
state of such a shell model with experiments. The ground state, however, has an infinite
number of shells and we are forced to return to the continuum model.

When we take the correlation energy in each layer into account, the structures observed
in numerical experiments are reproduced to a good accuracy as shown in Fig. 1 by thin lines.
This indicates that the effect of correlation in each shell is of essential importance to make
layered structures stable against the state with infinite number of layers (continuum).

Some examples of three-dimensional configuration are shown in Fig. 3. We have bcc,
fcc, and hcp-like structures according to values of parameters. In experiments, there often
(but not always) appears the structure where particles are aligned in z-direction and it has been
argued that the alignment is due to an effective attraction between particles resulting from
the ion flow in the sheath. In our numerical experiments with isotropic Yukawa potential,
particles in adjacent layers are not aligned, seemingly indicating the role of the anisotropic
part of interaction potential.
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Figure 1. Phase diagram for structure in the ground state. Boundaries determined by our simulation (thick
lines with symbols) are compared with our theory (thin lines) and other results for  (arrows).

Figure 2. Intralayer symmetry and interlayer distance D for (open symbols) and 1.4 (closed symbols),
b being mean distance in each layer. Triangles and squares denote triangular and square symmetries,
respectively.

Figure 3. Examples of three-dimensional particle configuration projected onto xy-plane.
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Figure 4. Examples of  orbits at various temperatures.

Figure 5. Examples of  Voronoi analysis and positional and bond-angular correlation functions. Filled
polygons are lattice defects.
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Figure 6. Phase diagram for melting: Two-dimensional Yukawa system (a) and confined Yukawa system with
a few layers (b). Ordinate  is proportional to critical temperature and N is number of
layers.

MELTING OF CONFINED YUKAWA SYSTEM

With the increase of the temperature, the above structures melt and particles form a thick
cloud at high temperatures as shown in Fig. 4. In the ground state, there are two kinds of
orders, lattice structures within each layer and layers in z-direction. We observe that these
structures are lost in this order: Layered structures survives the melting in each layer and
there exists a domain of layered liquid.

Regarding each layer as two-dimensional, we have analyzed the behavior of correlation
functions for the positions and bond angles of neighboring particles. Some examples are
given in Fig. 5. The melting in two dimensions is characterized by disappearance of quasi-
long range positional order and those of long range and quasi-long range bond angle orders.
In a theory due to KTHNY, two-dimensional solids melt via two second order transitions.13

first, to a phase called hexatic with short-range positional and quasi-long-range orientational
orders, and then to liquid where both orders are short-ranged.

We have observed the positional and orientational correlation functions and determined
the boundaries of    phases by the long-range behavior of the bond angular correlation function:
The boundary between solid and hexatic or liquid is drawn at the highest temperature for
which the long-range limit of the bond-angular correlation function is finite, and the boundary
between liquid and hexatic is drawn at the lowest temperature for which the long-range limit
of the bond-angular correlation function is short-ranged. The result is summarized in Figs.
6a and 6b. In the case of one-layer state shown in Fig. 6a, our system is nothing but the
two-dimensional Yukawa system. The domains of liquid and solid are determined by the
long-range limit of the bond-angular correlation function. In the domain between bars, we
may possibly have the hexatic phase. Our phase diagram is also consistent with that of
classical electrons in two dimensions shown by a small circle. It is to be noted, however, that
the positions of bars could be lower since the long-range limit is taken in our finite system.

For multilayer cases, the phase diagram is shown in Fig. 6b. We observe that, with
decreasing  the critical temperature repeats the changes from higher values just after the
appearance of a new layer to lower values just before the appearance of another new layer.
These changes are synchronized with those of interlayer distance and we may regard them as
the effect of nearby layers: Two-dimensional solid in each layer is stabilized by the existence
of neighboring layers and such an effect is stronger when neighboring layers are closer.
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CONCLUSION

We have analyzed the Yukawa system confined by external fields. The structure in the
ground state is obtained as a phase diagram in the parameter domain and we have reproduced
the diagram by taking intralayer correlation energy into account. Ordered structure in each
layer melts before the structure in z-direction and critical temperatures of intralayer melting
is determined including the case of two-dimensional Yukawa system. It is shown that the
critical temperature is enhanced when neighboring layers are closer.
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INTRODUCTION

Stars, planets, and most other bodies in the universe are presumed to have formed from
collections of primordial dust. A necessary part of this formation is the accumulation of
microscopic dust into macroscopic bodies. Generally the strongest force acting on dust
particles is gravity or radiation pressure; in many cases, however, the dust coexists with a
plasma and becomes charged. The magnitude of the electrostatic force between the grains can
then exceed the magnitude of the gravitational force for micron-sized dust grains and
influence the dynamics of particles up to 1 cm in size. These effects play an important role in
many gravitoelectrodynamic phenomena such as the coagulation of grains, the formation of
Coulomb lattices, and the perturbation of ring particles from Keplerian orbits.

Several coagulation methods have been investigated recently including studies on coag-
ulation in various astrophysical environments,1,2,3 enhanced coagulation due to oppositely
charged grains.4 and the production of fluffy aggregates during coagulation.5 Most of these
models fail to incorporate many of the physical parameters important to the coagulation
process. In particular, most statistical approaches assume that the result of a collision
between two spheres is a spherical particle with mass equal to that of its constituent particles,
completely ignoring the three dimensional geometry of the problem. Models that allow fractal
aggregates circumvent this, but usually only allow for either particle-cluster aggregation,
where a single particle collides with an aggregate, or cluster-cluster aggregation, where two
clusters of the same size collide. This is a problem since it is more likely that agglomeration
proceeds through the collision of clusters of different size.

The formation of Coulomb lattices in dusty plasmas was first suggested by Ikezi,6

predicted in theoretical simulations,7 and subsequently observed in laboratory plasmas.8

Lattices or “dust crystals” may play a role in the stability of tenuous rings or aid in explaining
the contradiction between the observed and theoretical particle sizes in Uranus' This
study addresses several of these problems by employing a numerical simulation for the
charged dust cloud which allows the consequent coagulation or equilibrium positions of the
grains to be explicitly followed. The model also allows for a full treatment of rigid body
dynamics, including rotation, enabling cluster trajectories and the orientation of fractal
aggregates to be tracked.

EQUILIBRIUM OF CHARGED DUST GRAINS

Dust grains usually exist in a radiative and plasma environment and the grains therefore
become charged. For isolated grains, the equilibrium potential on each grain is found by
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summing the charging currents to the grains. When the net charging current is zero
(considering only the electron and ion flux) the equilibrium potential is   The
charge is related to the grain potential via the capacitance for isolated, spherical grains,

where a is the radius of the grain. Thus, the majority of the grains in
the dust cloud will be negatively charged which may reduce or even prohibit coagulation
since the grains must then have relative velocities great enough to overcome the subsequent
Coulomb repulsion barrier in order for them to collide and stick. Inclusion of the secondary
electron current produces multiple solutions for the potential and grains may become charged
either positively or negatively.10 Additionally, changes in the grain environment, such as
temperature fluctuations, can also induce a variation in grain charge. This premise was
utilized by Horányi and Goertz4 to demonstrate that a dust population with variations in size
can produce oppositely charged grains for a plasma temperature that oscillated about 1 eV,
which in turn could lead to enhanced coagulation. However, plasma temperatures in this
range are unlikely to exist for extended periods in astrophysical environments and differential
charging is likely to occur only for transient heating events. Work by Chow et al.11 has
shown that secondary electron emission can lead to differentially charged grains due simply
to the size distribution of the dust, obviating the need for evolving plasma parameters. In
some environments, photoemission also plays a large role in grain charging and may lead to
oppositely charged grains for particles with the same size but differing photoemission
yields.12 High densities of charged dust can also lead to interesting equilibrium conditions.
When the ratio of the thermal kinetic energy of the particles to the electrostatic interaction
energy between the grains, exceeds a critical value, a coulomb lattice is
formed. (Here q is the charge on the dust grains, b is the interparticle spacing, and T is the
temperature.) The plasma will shield the field of the particles requiring Debye-shielding to be
incorporated using a shielded coulomb potential  Coulomb solidification
is expected in a laboratory plasma when

NUMERICAL MODEL

To investigate the effects of coagulation and coulomb coupling in dusty plasmas, a
computer model for the collisional behavior and coagulation mechanisms of a large number
of micron sized dust grains is needed. The model for this study is a modification of the
Box_Tree code developed by Richardson.13,14 The Box_Tree model is a hybrid of two
computer algorithms: a tree code15 and a box code.16 The box code specifies a coordinate
system, the linearized equations of motion, and a prescription for handling boundary
conditions. The tree code provides the means for a fast calculation of interparticle forces
which can then be included as perturbations to the equations of motion. The box code has
previously been used to model ring systems by first dividing the ring into self-similar patches
or boxes orbiting the planet, where the box size is much greater than the radial mean
excursions of the constituent particles. This allows the boxes to be dynamically independent
with more distant regions of the ring being represented by copies of the simulated region.
Thus a large N system can be modeled by a small N system with boundary conditions being
met using ghost boxes. An N-body simulation normally requires CPU time that scales as

This rapidly makes direct numerical simulations of systems with large N unrea-
sonable. The tree code is a hierarchical algorithm that reduces the CPU expense to O(NlogN)
for sufficiently large N. The idea is to place particles into a tree-like hierarchy of boxes. The
force due to particles in a box small enough or far enough away from a test particle may then
be calculated by a multipole expansion about the center of mass of the box. In addition to
self-gravitational forces, the electrostatic forces between grains must also be calculated. A
tree code lends itself to the calculation of the electrostatic forces between particles since the
dust cloud in a plasma is charged to a non-zero potential. An option has been added to the
code for including electrostatic forces with or without debye shielding.

RESULTS

Initial simulations indicate that fractal agglomeration significantly increases the amount
of coagulation in a given system (Figures 1a, c). Oppositely charged particles will produce
larger aggregates than gravitational interactions alone (Figure 1b), while like charged particles
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reduce the average size of the aggregates. These results require further analysis, however,
since this preliminary model does not take into account several of the important physical
properties of charged aggregates. Arguably the most important of these is that currently
charge is assumed to reside at the center of the aggregate. In a more realistic charging model,
charge would migrate toward fractal extremities. The stress on the aggregate due to the
resulting electric fields could be sufficient to exceed the tensile strength of the bonds between
the individual particles comprising the aggregate and thus cause a disruption of the
extremities. However, the resulting fractal “debris” could in turn recombine with the
aggregate in such a way as to produce a denser, more compact aggregate with a more stable
charge configuration.

Figure 1. Coagulation of 5600 dust particles in a dusty plasma, showing effects of charged vs. uncharged
grains and fractal agglomeration vs. simple collisions after 6500s. The box is on a side and the grains
range in size from 1 to a) Particles influenced only by self-gravity undergoing fractal agglomeration.
Seventy-one aggregates formed with the largest containing 7.5% of the total mass. b) Fractal agglomeration
of oppositely charged particles. Sixty-six aggregates with the largest containing 30% of total mass. c) Coag-
ulation of charged particles allowing only spherical particles as a result of collisions. Total of 314 particles
with the largest containing 2.7% of the total mass.

Coulomb solidification was observed in the dust for the parameters used experimentally
by Thomas, et al8. The “dust crystal” contained 724 particles in a box 7.7 mm on a side. The
particles ranged in size from and had a density of 1.514 g/cc. The charge on the
dust grains was and the debye length The dust grains were
given an initial random distribution and with Brownian velocities and allowed to reach
equilibrium. A Voronoi analysis of the dust grain equilibrium positions showed the grains
occupying mainly six-sided cells with uniform spacing (Figure 2).
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Figure 2. Detail of  Voronoi analysis of positions of dust particles. The cells are mostly six-sided with equal
spacing between panicles. Analysis of nearest neighbor distances shows that the interparticle spacing is
peaked at 0.26 mm. Nearest neighbor distances for a random distribution of particles (white columns) is
shown for comparison.

CONCLUSIONS

Fractal agglomeration appears to lead to enhanced coagulation over coagulation methods
which only allow the participants and products of collisions to be spherical. It also has the
added benefit of being a more realistic approach. The consequences of more realistic charging
and charge distribution algorithms for the fractal are the topic of ongoing research.
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INTRODUCTION

Relaxation phenomena accompany any change of plasma parameters caused by various
plasma processes, for example by strong plasma oscillations or waves. The relaxation
phenomena can include various elementary processes, for example an ionization, an
excitation, and a deexcitation of atoms and molecules as well as a recombination of electrons
and ions. These phenomena can include also various transport processes, for example a
diffusion, thermal and electrical conductivity, as well as other collision processes.
Relaxations can be caused also by some collisionless evolution of self-consistent electric and
magnetic fields. Therefore relaxation phenomena can be very various even in plasmas
without dust particles.

However in cases of dusty plasmas, some new relaxation process takes place, namely:
a collection of electrons and ions by dust particles. This collection strongly depends from an
energy of electrons and ions therefore there is a possibility of new relaxation phenomena, for
example due to an possible influence of this collection on electron and ion energy distribution
functions1-4. Of course, these new relaxation phenomena can be accompanied by other
various processes, for example various collisions, which have to be taken into account in
general cases. However a relaxation due to a collection of electrons and ions is interesting
without other processes especially in cases of a mutual influence of dust particles which
takes place in dusty crystals. Therefore the main aim of this work is a study of these
relaxation phenomena in some dust crystals where this mutual influence is strong.

MODEL

Some 2D crystal initially consisting of motionless neutral dust particles of the radius
and background equilibrium electrons and ions with initial densities  and temperatures
and is considered. Dust particles are divided by some distance d which is counted

out centers of these particles. Relaxation phenomena start after a start of an interaction of
electrons and ions with dust particles (collection and collisions). Collisions between
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electrons and ions are not taking into account, because the relaxation time is less than the
electron-ion collision time owing to the choice of plasma parameters.

Of course, there is some square crystal cell around each dust particle. A periodic
structure of the crystal gives on boundaries of this cell some periodic boundary conditions
which provides an equality of all parameters in corresponding points of these boundaries.

The modified 2D PIC method5 is used for a modeling of relaxation phenomena. A
crystal cell around some dust particle is divided by square simulation cells where electrons
and ions are presented by large macroelectronocs and maicroions of a corresponding square
cross-section. These microparticles are collected by a dust particle if their trajectories cross a
surface of this dust particle. Macroparticles are reflected from boundaries that is a result of an
influence of neighbour crystal cells. The Poisson’s equation is solved using the Fourier
transform method with periodic boundary conditions.

RESULTS

Typical results are shown in Fig. 1-4 for a dust crystal with d= 1,
where spatial coordinates and all line sizes are divided by an initial Debye

length, and a time t is multiplied by a initial ion plasma frequency.

Figure 1. Mean X-components of electron Figure 2. An evolution of a dust particle
and ion velocity distribution charge and relations of mean

functions for various times t after a potential and kinetic  energies of
relaxation start. Here and then is the electrons (b) and ions (c). Here is an
initial ion plasma frequency, initial ion charge in the Debye cube.

is the initial mean ion
velocity

Of course, obtained results show a monotonous decrease of the total number of
electrons and ions in a crystal cell due to their collection by the corresponding dust particle.
However this decrease is accompanied by an essential change of electron and ion velocity
distribution functions. Mean X-components of these functions are plotted for various times
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t after a relaxation start in Fig. 1 where is the initial ion plasma frequency. Y-
components were identical.

As can be seen from Fig. 1, an electron velocity distribution function is
impoverished by fast electrons during a relaxation in contra to an ion velocity distribution
function which is impoverished by slow ions. This evolution is a result of a collection of
electrons and ions by a dust particle with a negative charge  like1,2. An evolution of this
charge is shown in Fig. 2a where is divided by an initial ion charge in the Debye
cube.

The plasma relaxation is accompanied by a change of mean potential and kinetic
energies of electrons and ions. A time evolution of relations of these energies are
shown in Fig. 2b and Fig. 2c for electrons and ions, respectively. As can be seen from these
figures, these relations grow quickly after the relaxation start and are essentially more one
during some time. It means that electrons and ions are non-ideal components of relaxing
dusty plasmas during this time although their initial number in the Debye cube is essentially
more one and these electrons and ions have to be an ideal gas without dust particles.

This non-ideality of electrons and ions is caused by a change of self-consistent
potential distributions in a crystal cell due to a charging of a dust particle and a
corresponding change of spatial distributions of background electrons and ions. Spatial
distributions of the potential and a electric charge  are shown in Fig. 3 and
Fig. 4 for various times t after a relaxation start, respectively. The potential and the
electric charge are divided by and an initial spatial ion charge
respectively.

Figure 3. Spatial distributions of the Figure 4. Spatial distributions of a electric
potential for various times t after a charge for various times t
relaxation start. Here a potential is after a relaxation start. Here  is an initial
divided by where is an initial      spatial ion charge.
electron temperature.
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As can be seen from Fig.3, the potential is negative in all points of this cell
including its boundaries due to an influence of neighbour cells during a relaxation. Note that
this potential is equal zero in all points before a relaxation due to a plasma quasineutrality and
neutral dust particles.

Corresponding spatial distributions of an electric charge (Fig. 4) show a
sandwich structure. Slow electrons are concentred close to boundaries of a crystal cell
according to spatial distributions of a self-consistent electric potential. Of course, positive
ions are concentred close to a negative charged dust particle due to a previous reason. These
spatial distributions show a non-trivial shielding of an electric potential in relaxing plasmas
with dust particles due to a selective collection of electrons and ions by dust particles.

CONCLUSION

Computer modelling of relaxation phenomena in dusty plasmas shows a essential
influence of a collection of electrons and ions by dust particles on these phenomena.
Electrons and ions are non-ideal components of relaxing dusty plasmas due to a self-
consistent electric potential caused by a mutual influence of dust particles even in the case if
an initial number of electrons and ions is essentially more one. Besides, electron and ion
velocity distribution functions are strongly non-equilibrium in such plasmas due to a
selective collection of electrons and ions by dust particles. Spatial distributions of electrons
and ions around dust particles are strongly non-uniform so that some sandwich structure of a
space electric charge.
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INTRODUCTION

The theoretical prediction of the formation of a Coulomb crystal in a dusty plasma1 has
been verified by the experiments in glow discharge plasmas containing carbon particles2-5,
silicon-dioxide particles6, and melamine resin particles7 of microns in diameter. The
structures of the crystals were simple hexagonal, body-centered cubic (BCC), face-centered
cubic (FCC), and so on. A simple hexagonal crystal was observed with their (0001) planes
parallel to electrodes. Therefore particles are vertically aligned for the crystal, i. e., form a 2-
dimensional structure. On the other hand, (110) planes for the BCC-Iike structure and (111)
planes for the FCC structure, parallel to electrodes, were observed. In these crystals,
particles are alternately arranged in the vertical direction and form 3-dimensional crystals. We
have shown with the help of in-situ monitoring of Mie-scattering ellipsometry8,9 that 3-
dimensional crystals are formed by smaller particles while the 2-dimensional one by larger
particles. In this paper, the transition of structure of Coulomb crystals in relation to the
forces acting on particles will be discussed.

EXPERIMENTAL

Coulomb crystals composed of spherical monodisperse carbon particles, which were
synthesized by coating of hydrogenated amorphous carbon films on the seeds of ultra-fine
particles, were formed in a 20% methane/helium RF plasma generated between two parallel
plates set horizontally . The gas was introduced into the reactor under a controlled gas flow
so as not to blow away particles trapped in the plasma. The time evolutions of size and
density of particles at the sheath-plasma boundary near a lower grounded electrode during
the growth were obtained by Mie-scattering ellipsometry. The particle arrangement of top
and side views in Coulomb crystals was observed by the scattered light of an argon-ion laser
with a CCD video camera.
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RESULTS AND DISCUSSIONS

Particle density first increased because growing particles were transferred from the
upper sheath-plasma boundary to a measurement position by gravity, and then decreased.
The decreasing rate changed by four stages, i. e., fast, slow, fast, and slow in this sequence.
The top views of particle arrangement were disordered during the fast decreasing periods,
while ordered during the slow periods. Being taken into consideration of cohesive forces in
solid, it can be supported that the particle arrangement was in the liquid phase during the first
and third periods and in the solid or the hexatic phase during the second and fourth periods.

The crystal structures during the second period were body-centered-cubic-like (BCC-
like) or face-centered cubic (FCC). The structure during the fourth period was simple
hexagonal. Figure 1(a) shows a top view of particle arrangement in the two lowest layers
during the second stage, (110) planes of a BCC-like structure. In the image, particles are
alternately arranged in the two layers. The average distance between two adjacent particles in
the same layer is laterally and lengthwise The ratio of the lateral distance to
the lengthwise one is not the value for the BCC structure, 1.4 but 1.6. Figure l(b) shows a
top view during the fourth stage, (0001) planes of a simple hexagonal structure. In the latter
image particles are piled up in the perpendicular direction to (0001) planes.

Fig.1 Top views of particle arrange–ment in the two lowest layers for (a) a 3-dimensional
Coulomb crystal and (b) a 2-dimensional Coulomb crystal.
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Fig.2 Time evolution of particle arrangement in the two lowest layers. The determined
particle diameter was

Figure 2 shows the time evolution of particle arrangement in the two lowest layers
during the third stage when the particle diameter and density determined by the Mie-
scattering ellipsometry were and for and for (b),
and and for (c). It is seen in the images that the particles in the second
lowest layer, which are indicated by dimmed spots, gradually approach the horizontal
positions of the particles in the lowest layer, which are indicated by bright spots. Particle
charges were estimated, with plasma parameter values measured in a pure helium plasma
under the same conditions, to be 3100e for (a), 3700e for (b), and 4500e for (c) in Fig.2.
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The gravity for carbon particles of and in diameter are
and respectively. The estimated strength of an ion-drag or an

electrostatic force under the conditions is larger than those values.
It is suggested that the crystals in the second stage were formed mainly by the three-

dimensional Coulomb repulsive force, while the crystal formation in the fourth stage was
affected by the two-dimensional Coulomb force aligning particles in the perpendicular
direction to the electrodes. Forces acting on particles are able to be supposed to be isotropic
in a plane parallel to the electrodes but perpendicularly directional due to the electrode
arrangement. The directional forces, like an ion-drag or an electrostatic one, affect the
formation of layered structure parallel to the electrode10 not only for a 2-dimensional crystal
but also for 3-dimensional crystals. The effect was also observed for 3-dimensional
structures in the reconstruction of particle arrangement from FCC to BCC-like: the ratio of
the lateral distance to the lengthwise one in the BCC-like structure in Fig.1(a) is close to the
value of minimum Coulomb potential energy, 1.6 calculated for the ratio of the Wigner-Seitz
radius to the Debye length of 3 and the constant particle density in layers11. In the two-
dimensional Coulomb crystal, a force attractive in a far region but repulsive in a close region
might exist between particles in the perpendicular direction. It is suggested that the force is
caused by the interaction of dipoles, which result from the negatively charged particles and
the surrounding positive ions or by the wake potential due to an ion flow to an electrode12.
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INTRODUCTION

A dusty plasma is a classical Coulomb system consisting of electrons, ions and highly
charged massive dust grains. Such a system can readily go into the strongly coupled regime,
because, for the charged dust component the parameter can easily be of
order 1 or larger is the charge on the dust grain, a is the intergrain distance and
is the dust temperature). This was first pointed out by Ikezi1 and many recent laboratory
experiments2–4 have vindicated this prediction. It is therefore of considerable interest to
investigate the question of collective excitations in such strongly coupled systems and to
develop appropriate theoretical descriptions of   wave propagation in this regime. In this paper
we carry out such an analysis for extremely low frequency modes in a strongly coupled dusty
plasma by using the generalized hydrodynamic description. We find that for the longitudinal
dust acoustic wave5–13 strong correlations introduce new dispersive corrections, an overall
reduction in frequency and the existence of regions where We also find that a
novel transverse shear like mode can propagate in this regime.

MODEL EQUATIONS AND DISPERSION RELATIONS

We assume the electrons and ions to be in the weakly coupled regime and to have
a Boltzman distribution The weak coupling assumption is
justified because when the for dust is large the corresponding coupling parameter for the
electrons and ions can still be small due to their higher temperatures and smaller electric
charges. For the strongly coupled dust dynamics we adopt the generalized hydrodynamics
model which provides a simple physical picture of the effects of strong correlations through
the introduction of viscoelastic coefficients.14–17 This phenomenological model is generally
valid over a large range of the coupling parameter  all the way from the weakly coupled
gaseous phase  to the strongly coupled liquid state  and may even be used
in the supercooled regime (beyond the critical for crystallization) as long as the plasma
retains its fluid characteristics. The linearized GH equations are given as [16]
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(2)

(3)

where  is the viscoelastic relaxation time,
are the coefficients for  the shear viscosity and the bulk viscosity respectively,  is the adiabatic
index, is the compressibility,  is the
so called the excess internal energy, is the correlation energy and other notations are
standard. The quantity is usually calculated from simulations or statistical schemes and
expressed in terms of an analytically fitted formula. Typically, for weakly coupled plasmas

In the range of Slattery et al18 have given the
relation, where we omit a small correction
term due to finite N (number of particles). The dependence of the other transport coefficients
e.g., on are somewhat more complex and are available as tabulated results derived
from MD simulations and a variety of statistical schemes.16 Finally, we note that the plasma
equations need to be closed by the full set of  Maxwell’s equations for the field quantities and
the equilibrium charge neutrality condition,

For longitudinal low frequency waves the linear dielectric response of
the electrons and ions (which obey the Boltzmann law) can be simply expressed in terms of the
susceptibilities, where  denote the Debye lengths for the ion and electron
species respectively. The corresponding susceptibility function for the dust component can
be obtained by Fourier transforming Eqs. (1)–(3) in time and space. Carrying this out
and introducing the dimensionless quantities,

(where is the
Wigner–Seitz radius), the low frequency dispersion relation for the correlated dusty plasma
can be written down as,

(4)

We solve this dispersion relation in two limits, namely, for (hydrodynamic regime)
and for

For the dispersion relation (4) simplifies to,
which can be readily solved to give,

(5)

For Eq. (5) describes the usual undamped dust acoustic mode in a weakly
correlated plasma. In the presence of correlations we see that this mode
changes its phase velocity through terms, gets additional dispersive corrections through

terms and also suffers a damping proportional to the viscosity with the damping
rate being given by In the weak coupling limit reduces to the standard
Navier–Stokes viscosity coefficient arising from collisional damping of the dust species and
is inversely proportional to the dust dust collision frequency. Thus the damping decrement
has a  dependence in the weakly coupled regime. MD simulations confirm
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this behavior of which continues to decrease as a function of and displays a broad
minimum in the region of after which it begins to rise again.16 Very close to the
crystallization point (near there is a sharp and very large rise in which is attributed
to a change in the momentum transfer mechanism in the presence of short range order.19

Turning now to the changes in the phase velocity, we note that in the range  the
corrections can change sign (since is a negative quantity that increases with  This

has the interesting consequence that the dust acoustic dispersion curve can turn over with the
group velocity going to zero and then to negative values. Typically this turnover happens for

In the limit (sometimes called the kinetic regime) the dispersion relation
simplifies to Substituting for and this
further gives,

(6)

In the kinetic regime, the dust acoustic mode does not experience the viscous damping of
the hydrodynamic regime and dissipation can arise only through Landau damping on the
electrons and ions. The existence of these modes is restricted to the weak coupling regime
and the very strong coupling regime where the condition  can be satisfied.

We next consider transverse wave propagation. The GH equations show that a dusty
plasma with strong correlations acquires significant ‘rigidity’ to transverse motions and may
therefore be able to support ‘shear’ modes with This is a novel behavior which
is unlike normal fluids and arises only because of the strong correlations. The low frequency
transverse motion of the dust fluid will produce transverse currents which
couple these shear modes to electromagnetic waves However the dominant
response of electrons and ions to such slow perturbations makes
the coupling quite weak. Following standard procedure, we use the perpendicular components
of the equation of motion and the Maxwell’s equations to get the dispersion relation,

(7)

As discussed, the electromagnetic contributions represented by the  term is
quite negligible and this shear mode is primarily of a mechanical nature. In the hydrodynamic
limit the above dispersion relation yields a low frequency damped mode,

which is very reminiscent of a convective cell mode in ordinary plasmas. In the
opposite limit, one obtains a propagating mode given by,

(8)

Substituting for reverting to dimensional variables, and taking the large  limit (where
the condition holds) Eq. (8) can be rewritten approximately as,

(9)

This is analogous to elastic wave propagation in solids with the correlation energy   playing
the role of  the elasticity modulus.
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SUMMARY

We have studied the propagation of low frequency waves in strongly coupled dusty
plasmas. The dust dynamics has been modelled using the generalized hydrodynamics de-
scription which accounts for the dust correlation effects by means of generalized viscoelastic
coefficients that are functions of the coupling constant The principal effects on the dust
acoustic wave propagation in addition to viscous damping are new dispersive corrections in
the strongly correlated regime, an overall reduction of the frequency and phase velocity and
the existence of parameter regions where These effects are analogous to what
has been predicted for ion acoustic waves propagating in strongly coupled electron ion plas-
mas.17, 19–22 A novel result for the strongly coupled dusty plasma regime is the possibility of
sustaining a low frequency transverse mode that has no analog in the weakly coupled gaseous
regime. This dust shear mode is similar in nature to elastic waves in a solid with the correla-
tion energy playing the role of the elastic bulk modulus. Such modes should be excitable in
the dusty plasma as one approaches solidification point or in ‘melting’ experiments of dust
crystals. It should also be possible to look for evidence of these modes in molecular dynamic
simulations.
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INTRODUCTION

Expanding plasmas with dust particles have been intensively investigated in recent
years1-3 including investigations of relaxation phenomena in such plasmas2,3. However
these investigations have been carried out under an assumption of an equilibrium initial
state although non-equilibrium plasmas can be realized in many cases, for example, by an
interaction of laser radiation with solid state surfaces, in particular in laser fusion.

The aim of this work is the computer modeling of an expansion of bounded plasma
layers with dust particles and with two groups of electrons with different temperatures
which can be realized by an interaction of laser radiation with solid state surfaces.

MODEL

An uniform quasi-neutral plasma layer with the initial size L and sharp boundaries
consist of two groups (cold and hot) of electrons with initial densities and as well

as with different initial temperatures and , respectively, as well as ions with

density and temperature . The quasi-neutrality condition gives the following
relation between densities of electrons and ions:

This plasma layer can expand into a vacuum due to the self-consistent electric field.
Non-charged dust particles with radius and density appear in this plasma layer at
the initial time. Therefore the plasma relaxation takes place both by this plasma expansion
and by the collection of electrons and ions from the plasma on dust particles. The plasma is
considered to be collisionless because the plasma relaxation time is much less than the
electron-ion collision time due to a choice of plasma parameters and non-changed dust
particles.

Various parameters of this relaxing plasma have been numerically simulated using
the PIC method and taking into account the dynamics of the dust particle charge in the
framework of the orbit-limited-probe theory without the assumption about equilibrium of
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electrons and ions. Coulomb collisions of electrons and ions with dust particles are taken
into account in the framework of the method of stochastic differential equations. In some
cases, the electron and ion collection by dust particles and the Coulomb collisions have
been also simulated by the Monte Carlo method.

RESULTS

Typical results of the computer modeling are plotted in Fig. 1 - 6 for different
numbers of dust particles in the Debye cube at

and which last value is taken to obtain higher simulation precision.
Here and the spatial coordinates X are divided by the initial Debye length of the
cold electrons, the time t is multiplied by the initial ion plasma frequency

Figure 1. Spatial distributions of an ion density
for various times t after the start of the

plasma expansion without dust particles (a) and
with dust particles (b) where is an initial

ion plasma frequency, is the initial ion
density.

Figure 2. X-components of the mean (for
positive values of the spatial X-axis) electron
velocity distribution function for various cases
corresponding to Fig. 1. Here

is the initial mean ion
velocity.

The influence of dust particles on the plasma expansion is clearly seen from Fig. 1 in
which the spatial distributions of the ion density divided by the initial ion density
are shown for various times after the start of the plasma expansion in case of the plasma
expansion without dust particles (upper part) and in case of the plasma expansion with dust
particles (lower part). In the first case, we have the usual plasma expansion with a
rarefaction wave propagating into the central part of the plasma layer. Therefore the
decrease of the ion density in the same layer point starts only after this point has been
reached by the rarefaction wave. In case of plasma expansion with dust particles (lower
part of Fig. 1) the decrease of the ion density starts in all points of the plasma layer
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simultaneously due to the ion collection by dust particles. Besides, this decrease is faster
than in the case of the plasma expansion without dust particles.

The influence of dust particles on electrons is clearly seen from Fig. 2 in which the
X-components of the mean (for positive values of the spatial X-axis) electron velocity
distribution function are shown for various cases corresponding to Fig. 1. As can be seen
from Fig. 2, this function is non-equilibrium initially because the plasma layers consist of
two groups of electrons. In the case of plasma without dust particles, this function evolves
due to a transfer of the electron energy to ions by the self consistent electric field during
the plasma acceleration. All electrons participate in this energy transfer and therefore the
non-equilibrium of this function as well as the special properties of this non-equilibrium
are preserved during the plasma expansion without dust particles (Fig. 2a). However in the
case of plasma with dust particles, fast electrons can only be collected by dust particles due
to their negative electric charge. Therefore these fast electrons vanish just after the start of
the plasma expansion and the electron velocity distribution function is like Maxwellian.

Figure 3. X-components of the mean (for Figure 4. Spatial distributions of electric
positive values of the spatial X-axis) ion potential  and field E in an expanding
velocity distribution function for various cases plasma layer without dust particles for various
corresponding to Fig. 1. cases corresponding to Fig. 1. Here

As can be seen from Fig. 3, there is also some difference between the evolution of
the mean ion velocity distribution function during the plasma expansion for these two
cases. In case without dust particles, the ion acceleration takes place due to the self
consistent electric field along the X-axis during the plasma expansion. Therefore there is
some shift of the mean (for positive values of the spatial X-axis) ion velocity distribution
function to the right. In the case of plasma without dust particles, this shift is smaller
because fast electrons are just collected by dust particles and their contribution to the ion
acceleration is smaller than in the case of plasma without dust particles.
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It is of interest to investigate especially the influence of dust particles on an electric
potential and field E which are created during the plasma layer expansion. Spatial
distributions of these parameters are plotted in Fig. 4 in the case of plasma without dust
particles as well as in Fig. 5 - 6 for different numbers of dust particles in the Debye cube.
Electric fields E and potentials are divided in these figures by characteristic values

respectively.
Comparison of these figures shows that dust particles essentially decrease electric

fields and electric potentials created by the plasma expansion. This change corresponds to
the influence of dust particles on electron and ion velocity distribution functions during
plasma expansions.

Figure 5. Spatial distributions of electric Figure 6. Spatial distributions of electric
potential and field E in an expanding potential and field E in an expanding
plasma layer with dust particles at plasma layer with dust particles
and for various cases and for various cases
corresponding to Fig. 4. corresponding to Fig. 4.

CONCLUSION

Computer modeling of expanding non-equilibrium plasma layers with dust particles
show that dust particles can strongly influence different phenomena accompanying this
expansion. This influence is caused by the selective collection of electrons and ions by dust
particles with self-consistent negative electric charge. First of all, these particles can
change the initial energy distribution functions of electrons and ions due to the selective
collection of electrons and ions.
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INTRODUCTION

Non-linear sheaths are existing on all cold walls which the plasma is in a contact.
These sheaths determine an interaction of plasmas with wall surfaces including flows of
charged particles from plasmas to these walls. In much practical important cases, for
example at an interaction of a laser radiation with a pellet, dust particles can be created
close to a surface. These particles can strongly influence various plasma properties,
including sheaths, due to a selective collection of electrons and ions from plasmas.

The aim of this work is to study non-linear sheathes in plasmas with dust particles
in order to investigate an influence of these particles on sheaths.

MODEL

An one-dimensional slab plasma consisting of equilibrium electrons and ions with
densities and temperatures and creates an equilibrium sheath in front
of an electrode to which a large negative potential is applied. According to the Bohm’s
sheath criterion1, an drift ion velocity has to satisfy the well known boundary condition

close to a sheath boundary where M is the ion mass. Dust particles
with a density and a radius appear in this sheath at some
initial time and both a collection and scattering starts of electrons and ions by these dust
particles here. These processes cause an evolution of a sheath.

The PIC method is used for computer modelling of sheaths, taking into account the
dynamics of dust particle charge in plasmas with self-consistent energy distribution
functions of electrons and ions2-4. The Coulomb scattering of electrons and ions are taken
into account in the framework of the Monte-Carlo method.

A case of a sheath without dust particles is used as a test of computer programs
created according to these methods. In this case, spatial distributions of plasma parameters
for a usual steady-state sheath1 are used as initial conditions for a computer simulation of
their evolution. These simulations show that initial equilibrium distributions are conserved
during simulation times. In case of some deviations of initial distributions from the
equilibrium case, these non-equilibrium distributions evolve to equilibrium one during
several ion plasma cycles. These results confirm an adequation of computer programs.
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RESULTS

Obtained results show that an influence of dust particles on sheaths strongly depends
from relations between some characteristic times, namely: a time of an ion penetration
through a sheath, an ion collection time and an ion scattering time  Of course, this
influence is very small in the case of In the opposite case of
dust particles create some barrier between a plasma and an electrode due to a strong
collection and scattering of electrons and ions by dust particles so that electrons and ions
can not reach an electrode at all. In this last case, there is not a space electric charge close
to an electrode and a sheath vanish.

Figure 1. Spatial distributions of an ion flux
in a sheath with dust particles for various

times t after an appearance of dust particles
in a sheath where is the initial ion plasma
frequency, is an initial Debye length,

is the Bohm’s flux.

Figure 2. An evolution of an electric current
in an external circuit after an appearance

of dust panicles in a sheath where is the
initial current.

The most interesting phenomena are realized in the case Typical
results of computer simulations are shown for this case in Fig. 1 - 6 for

Spatial distributions of various plasma parameters
are plotted here for various times t  after a start of their evolution from initial equilibrium
distributions due to an appearance of dusty particles in a sheath at In these
figures, the spatial coordinate is divided by the initial Debye length

a time t is multiplied by the initial ion plasma frequence
a potential is divided by a characteristic value is the

number of dust particles in the Debye cube, is the radius of a dust particle divided by
the initial Debye length
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Figure 3. Spatial distributions of an ion Figure 4. Spatial distributions of an electron
density in a sheath with dust particles for in a sheath with dust particles for various
various times t after an appearance of dust times t after an appearance of dust particles
particles in a sheath where is an plasma in a sheath where is an plasma density,
density.

As can be seen from these figures, all plasma parameters change essentially due to
an influence of dust particles in a sheath. This influence is seen especially clear from an
evolution of an ion flux shown in Fig. 1. Initially, this flux is practically uniform
because it is a case of steady-state sheaths without dust particles1. However dust particles
decrease this flux and cause its essential heterogeneity due to a different collection and
scattering of ions in different places of a sheath. A flux decrease causes corresponding
changes of an electric current in an external circuit (Fig. 2).

A sheath evolution is accompanied by a decrease of ion and electron densities
in a sheath (Fig. 3-4) due to their collection and scattering by dust particles. However some
increase of these densities takes place close to a boundary of a sheath with a plasma. This
increase is caused by a scattering of an ion flux by dust particles close to this boundary.
Therefore an ion flux changes here and does not correspond an preliminary ion flux from a
non-disturbed plasma1.

Of course, distributions of an electric potential (Fig. 5) evolve according to an
evolution of electron and ion densities. These distributions can be non-monotonous during
their evolution times but a final distribution is monotonous always. Note, the Child-
Langmuir law1 is not valid for sheathes with dust particles because an ion flux does not
conserve in a sheath for this case (Fig. 1).

Finally, spatial distributions of a dust particle charge (Fig. 6) show a various sign
of these charges in various regions of a sheath according to spatial distributions of
electrons and ions. Note that Fig. 6 allows to determine for various cases using a
plasma ion charge in a Debye cube.
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Figure 5. Spatial distributions of an electric Figure 6. Spatial distributions of a dust
potential in a sheath with dust particles for particle charge in a sheath with dust
various times t after an appearance of dust particles for various times t after an
particles in a sheath where is an plasma appearance of dust particles in a sheath where

density. is an plasma ion charge in a Debye cube.

CONCLUSION

Computer modeling of sheaths with dust particles show that dust particles can
strongly influence properties of these sheaths. This influence is caused by a collection and
a scattering of electrons and ions by dust particles with self-consistent negative electric
charge. First of all, these particles can strongly change an ion flux in a sheath that causes
other change of sheath parameters.
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INTRODUCTION. BASIC REMARKS

This paper concerns some new aspects of dusty plasmas physics, which have attracted
the great interest during few recent years. The features of correlated systems with cold grains
immersed into low temperature plasma were studied and discussed intensievely [1]. Below,
we will pay attention to opposite case: behavior of high temperatures dense plasma “grains”
on the background of rather cold delute plasmas. We consider the creation of a high power
density matter (HPDM) configurated in a low pressure discharges. Our prime goal is to
produce and study a "dusty"-like (erosion) plasma followed by an intense energy deposition
into this medium. The anomalous absorbing (stopping) power phenomena related provide to
use this media as a working one for high power sources of radiation including hard x-ray.
We present below the basic physics used to create HPDM. This is followed by a brief
description of the experiments related and results obtained on hard x-ray generation.

The never-ending and exciting physics of pulse electrical discharges in vacuum and at
low pressure have allowed to study dense plasma phenomena like cathode micro drops and
hot spots [2-4]. The occurrence and physics of anode ectons are less investigated [3,5].
Theory is led by the experiment here, and the summing up both the knowledge available for
particular processes in discharges and hot dense matter physics itself allows hopefully to
formulate the set of conditions for getting a new quality, in particular, for the possible simple
ways of HPDM production and use. The present work is concerned by this goal-oriented
experimental study of this cross-disciplinary problem.

We are looking for to realize few cumulative (or high local power density) effects for
our aim: to tansform cold dusty plasmas into hot microplasmas dust, with further collecting
HPDM (originated from clusters or dust grains) in the inter electrode space [6]. As a
reference system we consider the hollow cathode ns discharge scheme at low pressure which
have been modified reasonably [5,6]. Some key points of scenario needed are presented and
discussed below.

First, a well known fact is that the initial electronic beams issued from hollow cathode
are converging at a near-axis area. This feature together with a variation of the cathode -
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anode distance is a way to get a maximum current density at the axis for particular
electrode configuration.

Second, the choice of the anode configuration itself may essentially increase the
efficiency of its heating by pre-breakdown electron beams. In fact, the anode power density
related may be higher than known values being effectively close up to laser
action of [1,2]. For example, it can be realized as a result of  “scanning” of
anode sharpen edge by avalanche beams with high power density delivered on a small
surface Additionally, the special choice of the anode geometry may provide
the focusing of explosively evaporated matter on the axis during its expansion into vacuum
(this cooling associated partially with the adiabatic one). The expansion process of the anode
flare and oversaturation of concentrated anode vapours on the axis will be accompanied by
the compact collecting of clusters, nucleated microdrops, accelerated microparticles, etc. at
the fixed place beyond the electrodes. The degree of condensation is estimated as high as
0.2-0.5 [2,3]. The analysis of the experiments shows that the dust grains (cluster,
microparticles) may typically vary from 0.01 to 1 µm under certain conditions [2,7]. Thus,
unique configured medium with combination of advantages both solid density and gas-
plasma “targets” may be “prepared” behind of anode flare front before the moment of
breakdown.

Just after breakdown., the further anomalous deposition of external energy into this
condensed phase obtained in vacuum (beams-clusters interactions and their ns heating by
postbreakdown current) may provide a large number of well-collected microplasmas with
extreme temperatures and densities inside of each ones

In fact, low velocity ion stopping and Joule heating under anomalous low
plasma conductivity [8] is the plasma frequency) due to current- and
beams-driven instabilities have to allow the very effective energy deposition, up to

(The plasma spot conductivity will decrease at any stage of the hydrodynamic
expansion, ns, supporting the overheating of dense plasma.) Correspondingly, the
process of destruction of dusty grains by high density currents have to be
accompanied by x-ray radiation during expansion, cooling and recombination of the dense
hot microplasmas created. In principal, further manipulation with the effective frequencies of
hot grain-grain collisions may provide the different levels of their overlapping. The related
goal-oriented experiments and the results obtained are presented and discussed briefly
below.

EXPERIMENT

The preparation of hot dense plasmas with extreme parameters in vacuum is a complex
task where very different physics are involved. The application of the general scheme
described above is performed using a hollow cathode, a cylindrical anode and a low
inductance ns discharge at low pressure The electrode typical diameter is 5
mm. A Marx generator provides a 70 kV, 50 ns, kA pulse and a stored energy of 1 J
[5,6]. The spatial distribution of the emitting hot spots has been determined using a sensitive
imaging device and a rapid scintillator. The exposure time may be as short as 5 ns. During a
single pulse, when the voltage is applied, the “dusty“ anode matter is first created and
focused in the interelectrode space. After breakdown, this dusty plasma-like medium is
transformed into HPDM (on the background of rather dilute post breakdown plasma). The
radiation with wavelength nm of this HPDM is registered during 10 to 40 ns, through
appropriate attenuators. It may have the shape of a 1 to 4 mm diameter "ball" of collected
micro plasmas hot spots. To illustrate it, Fig. 1 shows a typical example of rather
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Figure 1. Hard x-ray radiation from hot microplasmas dust cloud

"transparent" x-ray "ball" (inverted solarized intensities). This collection of  hot microplasmas
may be trasformed into cilindrical or disk-like clouds of  hot microplasmas dust. Compresion
of this sort of clouds may be accompanied by partial merging of hot microplasmas. This
process started is illustrated by Fig. 2. In a latter case the x-ray intensity and duration are
increasing under particular curcumstances.

CONCLUSION

We have considered consequently few qualitatively different stages of creation of high
power density matter in our simple experiments with hollow cathode discharge: solid target
(anode) – electron beam interaction, generation of anode flare with cold grains collected (cold
dusty plasma), hot plasmas dust ensemble (with extreme local parameters and anomalous
properties of hot spots), and high temperature uniform self-organized plasma. This study
have allowed to demonstrate some crucial effects: formation hard x-ray "balls" with power

W and total photons number about per shot, self-organization of
microplasmas of extreme parameters, certain suprathermal x-ray output. The experimental
data accumulated in this new branch of dusty plasma physics is a broad basis for the
formulation of reasonable and adequate theoretical description.

Note that the x-ray production and the energetics related are of similar origin and levels
as that due to the volume irradiation of clusters by intense laser pulses [9], but differ of high
current z-pinches. The role of possible intracluster processes, inner-shell excitations and
anomalous x-ray emission under direct e and i beams deposition have to be discussed also
[10], as well as some elements of other cluster ionization mechanism models [11].

A relatively small and low energy device provides the well reproducible generation of
high power density matter configured (with maximal energy densities up to  [6].
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Figure 2. The example of compressed x-ray "ball" consisted of partially merged
microplasmas.

Different opportunities related with possible manipulating by hot microplasmas after their
creation in pseudospark discharge are studied. In fact, this table top scale experiments give
new ultimate opportunities for studies of energy conversion, lasant media, superchemistry,
self-organization effects [12] or evolution’s of dense astrophysical plasmas.
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INTRODUCTION

The B-ring of Saturn consists of an admixture of ice flakes and plasma electrons and
can be referred to as a “dusty plasma.” Ice grains in Saturn’s rings range in size with the
majority of those contributing to the observed opacity lying in the range of centimeter to
meter-sized.1 The presence of radial features of lower optical depth in the B-rings (the
“spokes”) strongly suggests localized regions comprised of micron to submicron-sized
grains. Electrons present in the B-ring are generally produced by photoemission from the ice
and/or injection from the ionosphere of the planet. Under normal circumstances, the electron
density in the B-ring is very low and only about As a result, the probability of an
ice flake being able to attain even a single electron charge for any significant amount of time
is extremely small. Thus the charging processes in the ring proper under “normal conditions”
are inefficient and probably not responsible for any macroscopic electrostatic phenomena,
such as the spokes.2 The best, current theory attempting to explain the spokes assumes a
meteoritic impact on the primary ring which vaporizes the source as well as part of the target
material, forming a plasma cloud which rapidly expands and thermalizes. It has been shown3

that the expansion of such a plasma cloud ceases at a plasma density of and a
plasma temperature of 2 eV and that the cloud corotates with the planet, frozen to the
magnetic field lines and moving radially outward. This plasma cloud in the region of the ring
increases the probability of ice grains being able to maintain a charge long enough to allow
for levitation of the charged grains through electrostatic forces out of the ring plane proper.
Thus, as the plasma cloud moves radially away from the planet, the grains that have a normal
electric force strong enough to overcome the gravitational attraction to the ring are “levitated”
out of the ring plane in the wake of the cloud. The spokes can form anywhere on the ring,
but it has been recently suggested4 that there is a preference for their creation in the shadow
of the planet.

GRAIN CHARGING

The grain’s charge and radius along with the plasma’s shielding properties are the
determining factors for the possibility of grain levitation. The charge on a grain is determined
through its surface potential which is found by demanding a vanishing current to the grain
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surface along with charge conservation in the cloud. The present model considers the
primary ion and electron along with the secondary electron current. (The secondary electron
current can be nonzero even in low-temperature plasmas, if insulating submicron grains are
present.) Since the possibility of spoke formation while in the shadow of the planet is being
examined, the model does not consider the photoelectric current. Once the potentials are
computed and an appropriate capacitance is assumed, the grain charge is easily found. The
resulting electrostatic force normal to the ring must be greater than the gravitational attraction
of the grain to the ring for levitation to occur. Using this criterion, the range of grain sizes
which can be levitated while in the shadow of the planet are calculated.

Currents to the Grain Cloud
The equations describing the charging currents to a single grain immersed in an

ambient Maxwellian plasma are well known and assumed as given in Bringol and Hyde5 or
Chow et al.:6

being the primary current (j = i for ions, j = e for electrons) and being the
secondary electron current. The plasma ion species charge is with e the electron charge,
r the grain radius, the plasma temperature, the plasma number density, the plasma
species mass and U the grain surface potential. The secondary electron yield parameter is

and is the thermal energy of the secondary electrons under the assumption that
they exhibit a Maxwellian distribution leaving the grain.

To find the currents to a grain cloud immersed in a plasma, the single grain currents
must be integrated over the specified distribution of grain sizes, which can be taken as a
power-law for grains residing in planetary rings1 or

The power-law parameter is given as S with C (a normalization constant) taken to be

where is the total number density of the grains in cm-3 and and are the minimum
and maximum grain radii, respectively. For this model, we assume a very flat spectrum (S =
0.4) for the layer of smaller-sized dust in the B-ring as is appropriate for rings having large
numbers of micron-sized dust.7 Thus, the integrated currents are
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where the subscript j represents ions (i), electrons (e) or secondary electrons (se).
(Integrating over a distribution of grain radii allows for size-dependent effects to be taken
into account.) The plasma number density is assumed to be Maxwellian

(where is the number density of species j in the absence of the grains, and V is the
average plasma potential) and the condition for current conservation to the grain surface is

Charge Conservation
Assuming the plasma cloud is of finite extent, plasma particles will be lost from the

cloud as the grains charge. Subsequently, the potentials in the dusty plasma must also obey
charge conservation. Assuming equal numbers of ions and electrons (in the absence of
grains) and that the grains are initially uncharged,

where is the charge on the grain cloud and is the charge on the plasma cloud. The
charge on a cloud of icy grains of radii r is found by multiplying the surface potential
(assumed constant on each grain surface) by the capacitance. (As a first approximation, the
capacitance will be taken to be its the free-space value.) Employing (3), (5) yields,5

Grain Number Density
The B-ring will be assumed to consist of a mixture of micron and submicron grains

floating above a layer of larger grains. The density in the B-ring for the smaller grains of
mean radius is given by

with the normal optical depth of the B-ring given as ~ 1.0 and the scale height h
approximately equal to 1.0 km.8

PARTICLE LEVITATION

Equations (7) and (9) are solved simultaneously for the grain surface potential (U) and
the plasma potential (V) and the charges on the grains are then calculated. Once this charge is
calculated, the ratio of the electrostatic force to the gravitational force can be found using
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which yields a measure of  the grain’s probability to be levitated out of the ring proper. In the
above, E is the local electric field normal to the plane, m(r) is the mass of a grain of radius r,
and g is the local gravitational acceleration normal to the plane. Equations (7) and (9) are
solved so that, along with (10), the ratio of forces  can be found. The electric field due
to the B-ring is taken to be dyne/C, the gravitational acceleration toward the ring is

and the density of the ice grains is Since the upper limit on grain
size is not precisely known, it must be specified in the model. Cases of microns
and 100 microns are considered, following a suggestion by Cuzzi et al.1 Consequently, a
range of grain sizes that can be levitated is determined.

DISCUSSION

The model described above takes into consideration charging effects in a dust cloud
with a specified power-law size distribution due to the ambient plasma from an impact
plasma cloud. Figure 1 shows the levitation ratio R as a function of the grain radius for
specific values of the smallest grain size with 10 microns being the largest grain size
considered. Figure 2 is a plot of the levitation ratio R as a function of the grain radius with
100 microns being the largest grain size considered. It can be seen that the formation of
spokes within the planet’s shadow is possible while considering only primary and secondary
charging effects. As can be seen in Figure 1, for example, for a B-ring cloud with a range of
sizes from 0.05 microns to 10 microns, all dust smaller that 1.0 microns will be levitated.
The model presented does not take into effect the deviation from a Maxwellian velocity
distribution of the plasma due to ion and electron depletion or the modification of the dust
cloud capacitance, which will not be strictly equal to the free-space value, as assumed. Even
with these approximations, the model agrees well with previously published results in the
field2,4 and predicts the minimum grain size that can be levitated off of the B-ring plane.

Figure 1. Levitation ratio R as a function of grain size for a maximum cloud grain radius of
10 microns.
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Figure 2. Levitation ratio R as a function of grain size for a maximum cloud grain
radius of 100 microns.
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INTRODUCTION

In the last few years, a number of laboratory experiments involving dusty plasmas
have shown that a crystalline structure can be produced under certain conditions.1–4 The
experiments involve a weakly ionized rf discharge plasma and take advantage of  the fact that
the dust grains collect in “electrostatic traps,” i.e., regions of the discharge where the electric,
ion drag, and gravitational forces balance. Typically, the dusty plasma crystal is only a few
layers thick, but can extend for many (~ 100) lattice spacings in the transverse directions.
Because the grains charge negatively to relatively large values, where e is the
electron charge, the coupling parameter can be very large,

In this paper we present some preliminary calculations of  plasma crystal formation using
molecular dynamics (MD) methods. A Yukawa potential is used to model the interaction
of the charged grains shielded by the plasma, while an external potential is added to model
effects imposed by the discharge. The external potential is based on the forces (electric,
ion drag, gravity) experienced by charged grains in the trap region5 and is modeled as a
(asymmetric) Morse potential in the direction (x) normal to the electrode. This is in contrast
to the model of  Totsuji et al.,

6

 who assume a parabolic potential. At present, our calculations
do not include the effect of shielding due to ions streaming toward the electrodes. This process
has been shown via particle orbit studies2 and crystal formation simulations that include ion
dynamics3 to be a potentially important effect to explain the observed crystalline structure.
Some preliminary studies of  this effect are described below.

MD SIMULATIONS

We assume the parameters of a typical rf discharge (plasma density electron
and ion temperatures, and and rf voltage ~ 100 V) to calculate profiles
for the density, temperature, and electric field across the steady-state discharge. Given these
profiles, we then calculate5 the profiles of the electric, ion drag, and gravitational forces and
the resulting potential U(x) acting on an individual dust grain, assumed to have a radius of

and a (constant) charge of The gravitational and ion drag forces push the dust
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grain toward the electrode (x = 0), while the electric force pushes the the negatively charge
grain away from the electrode, leading to a minimum in the potential near  from the
electrode.

Some idea of the steady state configuration in the trap potential can be gotten from MD
simulations neglecting the angular dependence due to ion streaming effects and using pure
Yukawa potentials of the form,

for the pair-wise interaction between charged dust particles. We have taken  correspond-
ing to using the electron Debye screening length. The initial nearest neighbor separation is
denoted by and Both of these quantities are determined from the tempera-
ture and where is the Wigner-Seitz radius for the dust particles. In
these calculations we have taken The external potential is modeled with a Morse
potential of the form:

with and has been adjusted so that the interplanar spacing is
We have taken a computational volume which is periodic in the transverse directions and
started from a (thermodynamically unstable) cubic lattice of 1024 particles at temperature

A Nosé-Hoover thermostat was used to keep the global temperature equal
to this value on average. Yukawa systems have a marked tendency toward planar ordering7

and we find that after a time of order 100 – 200 a planar order appears perpendicular to
the x-axis. Here, where m is the dust particle mass. The order within the
planes is hexagonal but defective with dislocations. The structure of  the planes becomes very
diffusive as distance increases outward from the minimum of the Morse potential. These
effects are shown in Fig. 1 and Fig 2. Consistent with this change from two-dimensional
planes to a disordered three-dimensional outer cloud are changes in the local distribution
of kinetic energy. We have divided our system into four Lagrangian volumes containing
256 particles each, extending outward from the electrode. The average position the
out-of-plane temperature and the in-plane temperature as defined by

, are plotted in Fig 3. The out-of-plane temperature is lower than
the in-plane temperature, consisistent with the defective planar order, and these approach
each other linearly with distance from the electrode as the diffuse region is approached.

ION SHIELDING

We have also studied the uniformity of the dust particle charge including ion flow. The
charging of a dust particle immersed in an ambient plasma is studied with the CELESTE-2D
particle in cell code. The electrons and ions are governed by the Vlasov–Poisson model and
interact with the dust surface. To model accurately a dielectric dust particle, the electrons and
ions that hit the surface are captured locally on the exact point where they hit; this effect can
lead to nonuniform charge distributions over the dust surface.8 Figure 4 shows the equilibrium

potential around a dust particle. The electrons (ions) are distributed initially
according to a nondrifting (drifting) Maxwellian. The plasma parameters are:

where is the linearized Debye length
and a is the dust radius. Note that the nonuniformity of the surface charge and of the surface
potential is important.
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Figure 1. The configuration at (a) view parallel to the electrode (with the electrode at the bottom),
(b) in plane view of one of the hexagonal planes.

Figure 2. The configuration at (a) view parallel to the electrode (with the electrode at the bottom),
(b) in plane view of one of the hexagonal planes.

Figure 3. Normal and transverse temperature distribution at
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Figure 4. Electrostatic potential around a dust particle at The ion drift velocity, toward positive x,
is where  is the Bohm velocity. The electron drift speed is zero.
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INTRODUCTION

The possibility of the dust crystal formation in plasmas have been predicted by Ukezi1

in 1986. In the experiments it was observed practically simultaneously in a magnetron2 and
radio frequency discharges3–5 only in 1994. It is well known that in a low temperature plasma
the microparticles attain the large negative charge  and arrange the ordered
structure. In a radio frequency discharge the crystal of the microparticles locates into the
sheath over the bottom electrode, where the gravity acting on the negatively charged particles
is balanced by the electrical field. The microparticles arrange the extended crystalline lattice
of 100 × 100 elementary cells in the radial plane. Along the longitude direction the crystal
has usually a few layers.

As shown in the first observations the dust crystal behavior exhibits at least two pecu-
liarities which can not be explained in the framework of the classical theory of  the Coulomb
systems. First, the dust crystal might be close packed, as well as with vertical alignment,
where the particles of the lower layer are situated just under the particles of the upper layer.
As followed from the experimental study6 of the structure composed by growing particles in
an ethylene plasma the transition from bcc type of the lattice to the aligned structure happens
with increasing the particle size. Note, that the theory of the Coulomb systems and Ukawa
ones gives only the energetically preferable close packed structures the type of which changes
depending on the interlayer distance. As pointed in the several works7–10 the reason of the
alignment is the occurrence of  the enhanced ion density  just behind the upper stream particles.
These ion clouds appear due to focusing action of the negatively charged particles on the ion
flux and attract the particles of  the lower layer.

Another unexpected property of the dust crystal is observed either with lowering the
pressure or with increasing the discharge power, when the multi-layer crystal begins to
melt. Some parameter G measuring the electrostatic energy of the particle interaction in
their thermal energy (where is the particle temperature,

Strongly Coupled Coulomb Systems
Edited by Kalman et al., Plenum Press, New York, 1998 241



for 2D and 3D cases, respectively, n is the particle density) characterizes
the state of the system. As followed from the theory of one component plasma the transition
from liquid to solid state takes place at G = 130 ÷ 140 and at for 2D and 3D cases,
respectively. Under conditions of the our experiment the crystalline state of  the dust structure
should be realized,4 since G = 10000 ÷ 20000. However, the experimental study11 of the
particle motion shows that at the pressure less than some critical magnitude the multi-layer
crystal becomes unstable. It has been found that depending on the pressure oscillations of
the particles increasing in time can either be stabilized or lead to the melting transition. It is
interesting to notice the single layer crystal stability is unaffected by changing of  the pressure.

An explanation of the instability of the multi-layer crystal have been given in our
works9, 10 and concludes in acting of ion clouds. The dust crystal in the sheath is the open
system in which the energy of the directed ion flux transforms to the energy of the particle
oscillations. In previous works9, 10 on the base of the linear analysis we obtained the main
characteristics of the unstable two layer crystal such as the critical pressure, the frequency of
the oscillations and the phase shift between the particles of the lower and upper layers which
agree qualitatively with the experimental data.

In this work we present the results of  non- linear analysis of the dust crystal instability
obtained with Langevin molecular dynamics method. For the cases of the Coulomb interaction
and screened one we revealed the change of  the mean particle energy, the velocity distribution
function and the velocity autocorrelation function for the different pressures. We studied the
solid–liquid phase transition and calculated numerically the particle temperature which is
close to the measured one.

MODEL

The infinite in the radial plane two layer crystal is considered. Using the periodical
boundary conditions, we simulate a fragment of the crystal (224 particles in each layer). The
particles are aligned in the vertical direction. The Newton equations for the particle motion
are

where is the i-particle coordinate. is the electrostatic forces acting between the particles,
and is the friction constant. The seconds term is the force of friction. Third term is
the Langevin force. The force includes the particle–particle interaction and particles-
positive charge interaction. These effective ion charges are obtained in our works9, 10 with
using Monte-Carlo simulations of the ions flowing through sheath containing the dust crystal.
The interparticle potential U is supposed to be either Coulomb or screened with

Under conditions of the experiment v = 0.29P, the characteristic dust crystal frequency is
(below v is normalized with the particle charge is Z = 1300e,

the interlayer distance is d = 0.8a.

PARTICLE MOTION SIMULATION

Our model allows to follow the motion of all particles in the crystal fragment. The
particle trajectories show the increase of the amplitude of oscillations (and, consequently, the
kinetic energy) with lowering the pressure. It is possible to separate three different regimes
of particle motion depending on the friction constant (pressure). The mean kinetic energy of
the particles of the upper and lower layers as a function of friction is plotted in Fig. 1, where
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Figure 1. The particle temperature via friction for the screened potential, 1, 2 refer to the lower and upper
layers (calculation), 3- for the upper layer (experiment).

all regimes (I,II,III) are pointed. In the regime I, the particles oscillate with small amplitudes
and the system remains crystalline with time. This regime is realized at the friction constant
larger than some critical value, (P=49 Pa). With decreasing pressure
at unstable modes arise in the oscillation spectrum. In the linear analysis9, 10 this
critical friction denotes the beginning of an exponential growth of the amplitudes followed
by melting. Unlike in the linear analysis, the present non-linear consideration shows the
existence of an intermediate regime II. In spite of the presence of the unstable modes, the
particle amplitude of oscillations tends to some value which may be rather large, but limited.
Then the particle motion is stabilized. Below some friction the
increase of the amplitude becomes unlimited and the particle motion transforms into a gas
like one. It is regime III in which the self- excited oscillations of particles result the melting
transition. In the experiment and simulations the oscillation of  particles in the lower layer is
shown to be more prominent. It should be noted that the agreement between the theoretical
and measured temperature of the particles is comparably good in regimes II and III, Fig. 1,
but in regime I essentially differs. This fact may be explained by the occurrence of the defects
in an real hexagonal lattice in the experiment which enhance the oscillation process.

As seen in Fig. 1 the transition between regimes I and II specifying the crystalline
state and the vibration one is accompanied by quick rise of the particle temperature. But
the point of the solid state-liquid phase transition is not marked with some essential
temperature change. This point of the phase transition can be defined with using the modified
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Figure 2. The spectrum of the velocity autocorrelation function at the different friction constants

Lindeman criterion, calculating numerically the parameter L which characterizes the degree
of the structure disorder. As seen from numerical results at I increases quickly,
marking clearly the point melting transition.

The velocity autocorrelation function particles was calculated for the different regimes.
Using the Fourie transformation, we have revealed the excitation spectrum of this autocor-
relation function, Fig. 2. The system exhibits usual for the hexagonal structure the wide
excitation spectrum of the eigen-modes for in the crystalline state, Fig. 2(a). At
friction some less than (v = 0.16) the spectrum is established to have a sharp and narrow
shape referring to the frequency Fig. 2(b). With lowering the friction constant,
the spectrum becomes wider, Fig. 2 ( c). It is asymmetrical and restricted with
on the side of the high frequencies. At the spectrum demonstrates the
presence zero-frequency, and the system behaves like liquid, Fig. 2(d).

In this work on the base of the proposed model we have modeled the development of
the instability, the melting transition, and explained the reasons of its arising. The calculated
rise of the particle temperature with decreasing the gas pressure agrees with the experimental
data. We have established the existence the vibration regime within some range of pressure in
which the particle oscillations first develop with time, then achieve some large amplitude and
stabilize. The existence of some resonance regime where the particles exhibits the harmonical
behavior has been found.
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The experimental and theoretical determination of the real (bare) values of the charge-
number Z of  the macroparticles in dusty plasmas as a function of  the plasma parameters, is an
important and far from trivial problem. In many interesting situations the Coulomb coupling
parameters between electrons, ions, and between these subsystems,  are small,
whereas all interactions with participation of dust particles are strong. This means that, if we
are interested in the equilibrium value of the charge Ze, we can use the generalized integral
form of the nonlinear Poisson–Boltzmann equation for the distributions of electrons and ions

Figure 1. Nonlinear potential versus r/a. Solid line: Z = 104,  Dashed line:
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Figure 2. Nonlinear charge distribution  ρ(r) versus r/a. Solid line: Dashed
line:

Figure 3. (a) The dependence of (b) The dependence of
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Figure 4. (a) The dependence (b) The dependence

around a dust particle with some fixed value of  Z:

Here a is the radius of the spherical dusty particle, are the inverse

For electrons we have For simplicity we also take The system of  nonlinear
equations (1)–(4) can be solved iteratively to get the potential together with the density
profiles of electrons and ions around the dust grain. Therefore one can define and calculate
the effective charge-number of the dust particle by

On the other hand the effective charge-number can also be determined from the equation
of  balance for the electron and ion currents on the surface of  the dust particle. In the stationary
case this balance takes the form

temperatures of  electrons and ions, e is the magnitude of the electron charge,  and are
the average densities of ions and electrons, connected by the electroneutrality condition:

Thereby, for  the fixed parameters and the set of equations (6),(7) completely
determines the bare and effective charges of the dust particle. It is worth noting that the
effects of absorption of the electrons and ions were taken into account in Refs. [2–4]. In
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case of orbital motion (bound particles) additional terms and should be taken
into account on the left hand sides of Eqs. (3), (4). For the limiting case
(as proposed in [6]), when can be assumed, these terms have a  asymptotic
behavior. This leads to a divergence of  the integrals in Eqs. (1) and (6). Therefore a more
accurate investigation of the physics of absorption is a matter of our future investigations.

In the present work the following set of experimental parameters7 is considered:
and varying on some interval

The results of the calculations are shown in Figures 1–4.
The nonlinear potentials         obtained from Eqs. (l)–(4) by an iteration scheme, are

shown in Figure 1. Note that the bigger the bare charge of the dust particle, the stronger the
screening of its potential. This also follows from Figure 2, where the corresponding curves
of the normalized charge distribution,  are presented.

In figures 3a,b the solid curves correspond to Z*(Z) as solutions to Eq. (6) for fixed
n0. The dashed lines correspond to Z*(Z) as solutions to Eq. (7) (balance of currents). The
crossing point of these curves determines the real bare charge of the dust particle, The
full dependence of the bare and effective charges on is illustrated in Figures 4a,b.

Further dependences of  Z on other plasma parameters will be part of our future
investigations.
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INTRODUCTION

White dwarfs are the final remnants of  low and intermediate mass stars. Their evolution
is essentially a cooling process that lasts for ~ 10 Gyr. Since the study of   white dwarfs allows
to obtain information about the age of  the Galaxy, it is important to identify all the sources of
energy as well as the mechanisms that control its outflow.

The vast majority of white dwarfs are made of a mixture of carbon, oxygen and some
impurities coming from the metal content of the parent star. The most important of these
impurities is 22Ne, which results from He-burning of the ashes of the CNO cycle, and reaches
~ 2% by mass in Population I stars, followed by 56Fe which abundance can be as high
as ~ 0.1%. Since during the cooling process the star experiences a phase transition, it is
natural to wonder if a change of miscibility at the onset of crystallization can provide an extra
source of energy.2, 6, 7, 11 Although the importance of the mechanical and thermodynamical
consequences of the solidification of alloys has been recognized in Geophysics, this is not
the case in Astrophysics and very often this phenomenon is either completely ignored or
sometimes, misinterpreted. In this paper we examine the role that the redistribution of  the
chemical elements during the crystallization process can play in the cooling of white dwarfs.

THE PHYSICS OF CRYSTALLIZATION

Crystallization introduces two sources of energy: latent heat release and gravitational
energy release related to sedimentation. In the case of  Coulomb plasmas, the latent heat is of
the order of per nuclei, where k is the Boltzmann constant and  is the temperature of
solidification.

During the crystallization process, the equilibrium chemical composition of the solid
and liquid plasmas are not equal. Therefore, if the resulting solid is denser than the liquid
mixture, it sinks towards the central region. If it is lighter, it rises upwards and melts when
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the solidification temperature, which depends on the density, becomes equal to that of the
isothermal core. The net effect is a migration of the heavier elements towards the central
regions with the subsequent release of gravitational energy. Of course, the efficiency of the
process depends on the detailed chemical composition profile.

If there is a change in the chemical composition, the local energy budget of the white
dwarf can be written as:

where E is the internal energy per unit mass and V = 1/ρ .
Integrating over all the star we obtain:3

The first term is the well known contribution of the heat capacity to the total luminosity.5

The second term represents the contribution to the luminosity of the change of  volume. It is
in general small

4, 10
 except when the white dwarf enters into the Debye regime.1 The third

term contains two contributions. One represents the contribution of the latent heat to the
total luminosity at freezing, The other, represents the energy released by the chemical
readjustment of  the star.3 This last term is usually negligible in normal stars, since it is much
smaller than the energy released by nuclear reactions, but it must be taken into account when
all other energy sources are small. It can be written as:

where is the mixing region.

CONSEQUENCES ON THE WHITE DWARF COOLING

Ségretain and Chabrier8 and Ségretain et al.9 computed phase diagrams for arbitrary
binary mixtures in terms of  the modern density-functional theory of freezing. They showed
that the shape of the phase diagram was completely characterized by the charge ratio of the
mixture, Their diagrams evolve from the spindle form for into an
azeotropic form for  and finally into an eutectic form for
Isern et al2 and Ségretain et al.9 approximated the ternary mixtures, C/O/Ne and C/O/Fe by
effective binary mixtures where N nuclei mimic the behavior of an homogeneous mixture of
C/O nuclei.

Table 1 displays the energy released near the center of  the white dwarf at the beginning
of the solidification process for three binary mixtures. In the case of the C/O mixture it
iss assumed, for simplicity, that the white dwarf is made of an homogeneous 50:50 (by
mass) mixture of carbon and oxygen while in the case of “N”/Ne and “N”/Fe mixtures the
abundances were taken as solar. It is important to note that as the process of sedimentation
proceeds, the energy released per unit mass decreases. The total energies,  released by
these processes are also shown. The limited influence of iron as compared to that of neon
is due to its smaller abundance, its larger solidification temperature and its larger number of
electrons per barion.
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Figure 1. Delay introduced by solidification versus the luminosity of the white dwarf. The C+O curve displays
the delay introduced by the sedimentation of  a pure carbon–oxygen mixture. The N+Ne and the N+Fe curves
display the delay introduced by these impurities if the binary C+O mixture behaves like an average nucleus
called N. The C+O+Ne curve displays the delay introduced by sedimentation in the case of a ternary mixture.

Since, to a good approximation, the luminosity of a white dwarf can be considered to be
a function of the temperature of its nearly isothermal core, it is possible to estimate the
delay introduced by the solidification as:

where is the core temperature when the crystallization front is located at m. Of course,
the total delay essentially depends on the transparency of the envelope. Any change in
one sense or another can amplify or damp the influence of solidification in the cooling of
white dwarfs and for the moment there are not completely reliable envelope models at low
luminosities. Here we have adopted the same envelope as in Ségretain et al.9 Table 1 displays
the total delays introduced in the cooling by the different cases considered here and Figure 1
the delay as a function of the luminosity.

Although the use of an effective binary mixture is justified in the case of impurities
of very high atomic number, it cannot be applied to Ne since C/Ne mixtures display an
azeotropic behavior and O/Ne a spindle one.8 Recently, Ségretain (1996) has shown that

253



when the abundance of oxygen is small enough, 22Ne sees the C/O mixture as if it was pure
carbon and it displays its azeotropic behavior. Therefore, its influence is very small,
Gyr, as it can be seen in Figure 1.

CONCLUSIONS

Sedimentation of heavy chemical species upon crystallization represents a major source
of energy for cool white dwarfs. The delay introduced by the C+O separation amounts 1 to
2 Gyr, depending on the chemical profile. Minor species are the main source of uncertainty
since neon can introduce a delay in the range of 0.5 to 9 Gyr, while iron can introduce an
additional delay of 1 Gyr. Therefore, it is of  the highest importance to understand the behavior
of the minor species.

Acknowledgements

This work has been supported by the DGICYT grants PB94–0111, PB94–0827–C02–02,
by the CIRIT grant GRQ94–8001 and by the AIHF95-335.

REFERENCES

[1]
[2]

[3]

[4]

[5]

[6]
[7]
[8]

[9]

[10]
[11]

D’Antona, F., Mazzitelli, I., 1990, Cooling of white dwarfs, Ann. Rev. Astron. Astrophys. 28: 139.
Isern, J., Mochkovitch, R., García-Berro, E., Hernanz, M., 1991, The role of  the minor chemical species
in the cooling of white dwarfs, Astron. Astrophys. 241: L29
Isern, J., Mochkovitch, R., García-Berro, E., Hernanz, M., 1997, The physics of crystallizing white dwarfs,
Astrophys. J. 485: 308.
Lamb, D. Q., Van Horn, H. M., 1975, Evolution of crystallizing pure white dwarfs, Astrophys. J. 200:
306.
Mestel, L., 1952, On the theory of white dwarf stars. I. The energy sources of  white dwarfs, MNRAS 112:
583.
Mochkovitch, R., 1983, Freezing of a carbon–oxygen white dwarf, Astron. Astrophys. 122: 212.
Schatzman, E. 1958, in “Hdb. d. Phys.” Vol. 51, S. Flüge editor, (Berlin: SpringerVerlag)
Ségretain, L., Chabrier, G., 1993, Crystallization of  binary ionic mixtures in dense stellar plasmas, Astron.
Astrophys. 271: L13.
Ségretain, L., Chabrier, G., Hernanz, M., García-Berro, E., Isern, J., Mochkovitch, R., 1994, Cooling
theory of crystallized white dwarfs, Astrophys. J. 434: 641.
Shaviv, G., Kovetz, A., 1976, The cooling of carbon–oxygen white dwarfs, Astron. Astrophys 51: 383.
Stevenson, D. J., 1980, A eutectic in carbon–oxygen white dwarfs, J. Phys. Suppl. No 3, 41: C2–53.

254



THE DYNAMIC EFFECT IN THE SCREENING OF NUCLEAR REACTIONS IN
STELLAR PLASMAS

Giora Shaviv1 and Nir J. Shaviv2

1Department of Physics & Asher Space Research Institute
Israel Institute of Technology
Haifa, 32000, Israel

2Theoretical Astrophysics
California Institute of Technology
Pasadena, CA

INTRODUCTION AND MOTIVATION

The basic problem arises from the fact that the particles participating in the nuclear
reactions in stars are those in the Gamow peak. This peak is usually at energies much
higher than the particles mean kinetic energy and hence are in the far tail of the distribution.
Slower particles just have a much too small probability to penetrate through the potential
barrier while there are too few particles more energetic particles (which do not have the
problem of penetration through the potential barrier). The basic problem at hand can be
stated as follows: Do these particles have the same properties as the thermal ones vis-a-vis
the electrostatic energy that they feel? If the answer to this question is negative then the
following question emerges: how to treat these particles. In particular, does the conventional
statistical mechanics treatment which handles the average particles over a long time hold in
this case? As we shall see, the reply to this question affects the treatment of screening as a
thermodynamic treatment or kinetic.

IS THERE A DYNAMIC EFFECT IN STATISTICAL EQUILIBRIUM?

The classical treatment of the electrostatic field around a fast moving particle assumes
the particle to be a test particle that is not in statistical equilibrium with the rest of the particles.
On the other hand the particles in the Gamow peak are part of the system and hence are in
equilibrium with the system. Consequently, there are claims that the dynamic screening of
the test particles does not apply to the particles in the Gamow peak and the properties of the
particles in the Gamow peak are identical to the mean properties of the plasma particles. We
will try to explain why this is not the case and argue that CSK are correct. Note that the claim
is on the electrostatic energy though the terminology used is screening.

The basic claim that the screening is not a function of the kinetic energy of the particle
is based on the fact that when the binary interaction potential depends only on the
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space coordinates, the ensemble average of the potential interaction does not depend on the
momentum of the particles. All particles, irrespective of their momentum (energy) have the
same mean potential energy. Consider the distribution function of the canonical ensemble,
namely,

(1)

with obvious notation. This distribution function is separable. In other words, averages over
the configuration space at a given time do not depend on the energies of the particles.

To demonstrate this fact define an operator O as

where

is the single particle operator and

(2)

is the function, is the kinetic energy of particle i and and  are the Gamow peak
energy and the width of the peak respectively. The operators are designed to extract those
particles with kinetic energy in the range of the Gamow peak. The first term in the operator
O considers the possibility that a single particle is inside the Gamow peak, the second term
considers the possibility that two particles are in this state and so on.

According to the statistical mechanics ensemble average, the potential energy U felt by
a particle with kinetic energy in the Gamow peak is therefore:

(3)

It is readily seen that according to this definition of the ensemble average that:

(4)

where is the ensemble average without any condition. Hence the fast particles feel
at time the same potential energy as the thermal ones and hence there should be no
dynamic screening. This is so because the operator O depends only on the kinetic energy.
Note that in the ensemble average we do not know the identity of the fast particle and hence
we do not know who are the fast particles at time

There are other ways to find the statistical average of a given quantity. Suppose we
are interested in the long time average of the potential energy of a given known particle.
Prescription 3 is not the right one to use since it does not distinguish between particles let
alone our chosen one. The proper way is the following: let be the time dependent
potential felt by particle i as a function of time. Define the long time average of the particle’s
potential as:

(5)

Here is the potential energy as a function of time as the particle moves through the
plasma. According to the weak ergodic theorem:4

(6)
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where the index means the time average and the index s implies the ensemble average. Note
that the index i appears on the left but disappears on the right, namely the long time average
of all particles is the same. The meaning of this result is that for long times the time average
of a given property of a particle is likely to be very close to the expectation of this property
calculated with the equilibrium probabilities. This is so because any particle (including our
selected one) goes over all possible states, sometimes it is fast, in other times it is slow and on
the average over a long time it goes through all states and it experiences the mean equilibrium
values. The ergodic theorem does not say that the value of the particular averaged quantity of
the particle is always and at all times equal to the mean value, nor does it say what the mean
value is if additional conditions are imposed.4,6

The nuclear reactions do not take place between thermal particles but between very
special fast particles. Consequently, what one is interested in the case of the screening is not
what an average ion feels over a long time but what the fast one feels or what a given particle
feels only when it happens to be fast. In other words, we are interested in

(7)

The index i refers to a specific particle, namely the contributions to the integral are added
only when the energy of particle i is within the Gamow peak and the periods of time are
those periods in which the kinetic energy of the particle is within the Gamow peak. Said
differently, the contributions to the long time average are added only over periods in which
the kinetic energy of our selected particle is within the Gamow peak. We are interested in
time of the order of  and not in the long time scale which is the thermodynamic one. There is
no ergodic theorem about this conditional limit. In this case one considers special conditions
for contributions to the time average: instead of averaging the potential energy over all the
phase space, it is averaged only over a certain small well defined part of it. In other words,
for the ensemble average to be equivalent to the time average, each particle has to go through
all states, not only through a special specified state. The time for going through all states is
the time needed to obtain the equivalence between the two methods to obtain the average.
Thermodynamics exists only in the limit of times which are sufficiently long to allow each
particle to go through many energy states. On shorter times one must use kinetic equations
(and not equilibrium thermodynamics).

It is surprising that the electrostatic potential, which does not depend on the velocity,
appears to be ‘velocity dependent’ and that the ensemble average fails to ‘see’ it. As for
the ensemble average, clearly on the long run, when the particle goes through all possible
energy states the average given by the ensemble is velocity independent. More accurately,
it is averaged over all possible velocities of the particle This is exactly what Krainov et al.7

did. As to the time average, one averages only over selected domains in the phase space
namely, only when the particles are fast. There are however, two small differences between
the calculation of a fast test particle and fast particles in an ensemble. The first one is that in
the calculation of the test particles one assumes that it moves at a constant speed (as if it had
an infinite mass) for a sufficiently long time to establish an equilibrium distribution around
it. On the other hand, the particles in the ensemble are scattered into this energy state and
must establish a new charge cloud distribution around them. This process takes time. Also,
the particles do not stay forever in the high energy state. We have estimated this time and
found that the fast particles do have time to establish a relaxed distribution. The details of the
estimates and calculations will be reported elsewhere.
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FLUCTUATIONS

As first suggested by Shaviv & Shaviv,5 another problem in plasma screening is evident
when considering the number of particles within a Debye sphere:

(8)

At the center of the Sun for example, we find that Hence, the fluctuation in the
potential energy which is proportional to  may be non-negligible. The small number of
particles in the Debye sphere casts doubts about the validity of a relaxed particle distribution
around any particular ion, yet to estimate the effect we assume that the distribution is relaxed.

Assume that the screening energies  have a Gaussian distribution given by
with a width of and a mean value The formal form will be:

(9)

For a given screening energy the reaction rate is increased approximately by a factor
(Clayton 1968):

(10)

Thus, for our given distribution, the rate of the reaction is enhanced by a factor of:

(11)

where and
We can now integrate and find:

It is therefore apparent that for  the average screening correction is compa-
rable to the correction due to fluctuations in the screening energy.

HOW TO CALCULATE THE SCREENING EFFECT

Since the number of particles in the Debye sphere is so small, the close approach of one
particle to the another changes significantly the electrostatic field around it and leads to large
deviations from the mean field (which is obtained after a long time of averaging). Hence,
instead of evaluating the enhancement from the mean field as is usually done, one has to find
the field when the two particles are very close to one another. This type of calculations is
now under way.
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SUMMARY AND CONCLUSIONS

• Ensemble average is not the proper average for the screening problem. The proper
average to use is the conditional time average over a single particle time history. The
basic ergodic theorem is not applicable in this case.

• There is a dynamic effect on the potential energy of a particle. The effect is to reduce
the enhancement of the reaction rate due to the screening.

• As a consequence we conclude that simple thermodynamic arguments cannot be used
to infer the rate of the nuclear reaction. The Helmholtz free energy formalism when
applied to the screening2 is a prescription to approximate the screening potential as-
suming that the screening potential does not depend on the energy of the reacting ions
(among other assumptions). The effect of the plasma on the rate of the nuclear reaction
must be derived from kinetic arguments.

• The contribution of the fluctuations does not average out to zero due to the non linearity
of the screening correction as a function of the screening energy. Moreover, the
fluctuation width can be estimated in the weak screening limit and is found to enhance
the rates by a factor as large as the screening correction itself and hence plays an
important role in various circumstances.
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INTRODUCTION

It is most appropriate to represent plasma non-ideality domain in terms of the
diagram, where and are electron density and temperature, respectively. The straight line

separates two regions in this diagram. Ignoring quantum effects and particle
degeneration, one can see that the area above the line corresponds to an ideal plasma, wheras
the area below the line corresponds to a non-ideal plasma. Sometimes the value

is also used as a parameter of the non-ideality. Its value equals to the
number of charged particles inside Debye sphere. Formally speaking, the difference between

and is in the definition of potential energy. For the value of the later is defined as the
energy of the Coulomb interaction at the Debye radius whereas for the value of the mean
distance between particles, is used. The line is a straight line in the vs.
diagram which is parallel to the line The density for the curve is three orders of
value lower than that corresponding to In the domain between these two lines the Debye
screening approximation is not valid. At the same time, the non-ideal corrections to
thermodynamic equation of state are small yet so that the ideal gas approximation still gives
reasonable results. Usually plasma is described as a non-ideal one if or

It is shown in this paper that for a wide range of plasma parameters the dynamic
descreening increases the screening radius by a factor of about 10, in comparison with the
static Debye screening,. Hence, if one substitute the dynamic screening radius into parameter

instead of using the static screening radius the value becomes the same order of
magnitude as the value of Thus, the line coincides with line under this condition,
and is the relevant boundary of the plasma non-ideality in the vs. diagram.
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THE POTENTIAL OF A MOVING CHARGE IN A PLASMA

As it was shown by Montgomery,1 if a free charged particle and the polarization cloud
it produces moves the lowest-order multipole moment which appears is quadrupole, and it
vanishes only when the velocity of the free charge equals zero. Outside of the polarization
cloud the potential of the system falls off in inverse proportion to the cube of the distance.
The present work is aimed at investigating the behavior of the dynamic screening -- for the
non-relativistic motion -- for both the particles of the equilibrium plasma itself and for the
free charges moving in it. The most suitable quantity for describing this situation is the
effective charge of a particle. Numerical calculations reveal that dynamic screening differs
significantly from static ones; this is seen in the transition that takes place at the extremities of
the polarization cloud as the velocity of the charge increases, when the Debye potential turns
into the Coulomb potential, and also in a change in the sign of the effective charge, whose
magnitude can exceed that of the original charge. The present work supplements papers,2,3

where there was used the exact dispersion relation for a Maxwellian plasma, and represents a
natural continuation of the work.4,5 Although the general expressions for the time-
independent electric field of a point charge moving in an isotropic plasma with constant
velocity are well known,6-8 until recently numerical calculations have been performed only
with a model dispersion relation.9,10 Here we consider a fully ionized Maxwellian plasma
consisting of singly charged ions and electrons (although in fact all the calculations can be
extended to other types of plasma after simple modifications). Assume that a unit free charge
is moving in the plasma with some velocity u. According to Refs.[6-8], the electric potential
of a moving charge in a plasma  has the form

(1)

where the longitudinal part  of the permitivity takes the form:11

(2)

Here a is the Debye radius, the function F(x) is determined from the integral:

(3)

where the first term is defined in the sense of principal value. After inverting the Fourier
transform one has:6-8

(4)

Here the notation R=r-ut is introduced so that in the coordinate system moving with the
charge the electric field distribution is independent of time.

CONDITIONS FOR APPLICABILITY OF THE SOLUTION

The approximation in which the motion of the free charge is prescribed is only valid if
we can neglect the feedback between total electric field and the charge. As is well known [6],
in an isotropic plasma the longitudinal waves can have such small velocities that they can be
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produced by Cherenkov emission when the resonance condition is satisfied. Hence
expression (4) is actually valid for times large enough for the polarization clouds to
develop but small enough so that their energy losses through Cherenkov radiation can be
regarded as small. If we extrapolate the results of Ref.[4] then the first condition becomes

where is the plasma frequency. On the other hand, this time must be short
enough that the energy losses of the free charge through Cherenkov emission of plasma
waves are small in comparison with its kinetic energy. Based on the results of work12 the

second condition becomes here M is the mass of a free

charge and      is its charge.

NON-EXPONENTIAL DECAY OF THE POTENTIAL AS A FUNCTION OF
DISTANCE

The screening of a moving free charge by the plasma differs substantially from the
Debye screening of a charge at rest. This is seen in the non-exponential decay of the potential
(4) as a function of distance R. Expanding (4) to first order in the velocity u (<<v) of the
charge and, assuming that from (3) we have and we find the
following result:

(5)

This was obtained first by Cooper.13 Thus, at distances large in comparison with the Debye
radius the potential of a moving charge falls off as the inverse cube of distance and has a
strong angular dependence. The first term in (5) can be neglected in comparison with the
second. Then in the rear hemisphere relative to the direction of particle motion the effective
charge of the moving particle is reversed, i.e., a moving electron repels electrons located
ahead of it and drags electrons behind it.

SCREENING OF THE FIELD OF THE PLASMA PARTICLES

Thus far we have been talking about an individual free charge moving in a Maxwellian
plasma. Here we turn to an aggregate of plasma charges. If we consider the simplest fully
ionized hydrogenous plasma, then we are concerned with the motion of the ions and
electrons. As regards the ions in the isothermal case, because of their large mass their
thermal velocity is much less than the electron thermal velocity, which is responsible for the
Debye screening. Hence the potential produced by ions in this case is almost purely Debye-
like, since we can treat them as though they were at rest. The situation is different, e.g., for
the plasma electrons. In order to demonstrate this fact, let us find the mean potential for an
ensemble of particles with thermal velocity Now we separate the Coulomb contribution in
(4) and integrate with respect to one of the angular variables and average the potential found
above with a Maxwellian distribution at time t=0. The average is carried out over both the
velocity u of the ensemble particles and over the angle (angles between the direction of the
radius vector R and the direction of the velocity u of the particle), on which the Maxwellian
distribution does not depend. It is more convenient to start by averaging expression (1) for
the Fourier component of the potential of the moving charge over the Maxwellian
distribution. We find

(6)
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Inverting the Fourier transform and integrating over the angles of the vector k we find

(7)

Using expression (2) and making a change of variables, we can perform the integral with
respect to k. We finally obtain

(8)

Here we have introduced the dimensionless variables and the
notation The results of the
numerical calculation shows that the inclusion of electron motion weakens the Debye
screening, as one would expect.. Thus, the dynamic descreening increases the screening
radius by a factor of about 10, in comparison with the Debye screening, for a wide range of
plasma parameters.
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INTRODUCTION

For astrophysical applications, e.g., stellar evolution or astroseismological investigations,
it is necessary to determine a set of thermodynamic functions over a wide range of densities
and temperatures. This concerns the pressure P (i.e., the equation of state), the internal energy
U, the isothermal compressibility (or the density exponent  resp.), the generalized
Grüneisen coefficient (or the temperature exponent resp.) and the isochoric specific heat

(or the isobaric specific heat resp.). We present for some of these quantities and
further relevant parameters for astrophysical applications, as, e.g., the adiabatic gradient
a semirelativistically analytical description being valid for and any density.
Nonideal effects due to the correlations between electrons and z-charged ions are included
by Padé Approximants which cover a wide range of degeneracy and Coulomb coupling.
Numerical studies and comparisons are given for fully ionized plasmas consisting of light
(He) and heavy (C) elements, respectively.

THERMODYNAMIC RELATIONS

We summarize briefly some standard relations, which are frequently used to provide
the thermodynamics for astrophysical applications. We have to determine all the first and
second-order quantities which are related by

(1)

with the specific heats and The thermal expansion coefficient can be expressed by

(2)
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with the generalized Grüneisen coefficient

(3)

the inverse isothermal compressibility and the coefficient of strain

(4)

and are the “density and temperature exponents” in the equation of state.
The adiabatic temperature gradient defined by (S denotes the

entropy) is given by

(5)

Starting with the Helmholtz free energy and by means of  and we are able to
calculate by Eq. (5).

THEORY AND NUMERICAL STUDIES

The Helmholtz free energy F for a fully ionized plasma is given by

(6)

with being the ideal free energy of species a and representing the Coulomb interac-
tion contribution. We consider for the Coulomb contribution the following parts:

(7)

where x and c denote the exchange and the correlation term, resp. and correspond
to the electron and the ion plasma including gaseous, fluid and solid phases.  describes
the effect of the screening between interacting ions and electrons and considers ionic
quantum corrections. The electronic idealness and exchange are described by relativistic
effects

(8)

(9)

(10)

(11)

Electronic idealness and exchange are considered by the approximations1,2

1. arbitrary degeneracy and weak relativity

2. strong degeneracy and arbitrary relativity
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Figure 1. Contributions of the isochoric specific heat in units of ionic density, k: Boltzmann const.)
for helium at log(T/K) = 6. The lines refer to the ideal electrons (solid) and ions (short-dashed dotted), the
electronic exchange (long-dashed), the electronic correlation (dashed), the ionic correlation (short dashed), the
ionic quantum correction (dotted), and the sum of those (long-dashed dotted). The discontinuity in the the
ionic correlation is caused on the fluid–solid phase transition4 at

Figure 2. Isobaric specific heat for helium at log(T/K) = 6 compared with the ideal behavior (dashed line).
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Figure 3. Adiabatic gradient for helium at log(T/K) = 6 compared with the results from Rogers et
al.5(dots), Saumon et al.6(dotted line), Straniero7(dashed line), and Fontaine et al.8(dashed-dotted line). The
low-density limiting value  refers to the inclusion of the photon contribution in Eq. (6). The
discontinuity in our curve (solid) is caused on the fluid–solid phase transition4 at

Figure 4. Adiabatic gradient for carbon at log(T/K ) = 6 compared with the results from
Straniero7(dashed line), Fontaine et al.8(dashed-dotted line), and Lamb9(crosses).
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The correlations and are taken into account by Padé Approximants2 which
correspond to analytical results of the perturbation theory for the weakly coupled system and
to Monte-Carlo (MC) calculations for the strongly coupled plasmas.

(12)

(13)

For the ion–ion correlation we construct our Padé formula from the analytical OCP result
from Cohen and Murphy3 and the MC-fit from Stringfellow et al.4

(14)

(15)

The ionic quantum effects, which dominates in the dense liquid and solid plasma phases are
described by [10]

(16)

where is the Debye integral and is the ionic quantum parameter, and
and are constants. Note, that the last term in Eq. (16) refers to the ideal ionic

contribution and to the dominant part of the thermal energy in the solid phase, which is
already included in Eq. (6) and Eq. (14). We derived successively the Coulomb interaction
contributions as given in Eq. (7) for the first- and second-order thermodynamic quantities
listed in Eqs. (l)–(5). Note, all quantities are given by analytical expressions. In Figs.
1–4 are illustrated the specific heats and the adiabatic temperature gradient for astrophysical
plasma parameter. The adiabatic temperature gradient        is a particularly interesting quantity
for astrophysical applications since it determines essentially the Schwarzschild criterion for
convective instability in stellar objects. The adiabatic gradient is a highly sensitive quantity,
because it depends on first and second-order derivatives of the Helmholtz free energy (see
Eq. (5)). Saumon et al.6 remark that their adiabatic temperature gradient is not smooth in
the regime of the fully ionized plasma (see e.g., Fig. 3). Our analytical description generates
a behavior without discontinuities. The high-density limit of the adiabatic gradient in this
model converges on which can be shown in analytical manner11 based on the

result from Eq. (14) and the expansion from Eq. (16).
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DFT CALCULATIONS FOR COMPRESSED ALUMINUM: (I) K-EDGE SPECTRA
OF AL FROM SOLID TO LIQUID TO PLASMA; (II) ENERGY RELAXATION IN
A TWO-TEMPERATURE Al-PLASMA
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E-mail: chandre@cml.phy.nrc.ca

INTRODUCTION

Short-pulse lasers have extended the study of materials to regimes which were not
accessible by shock-wave techniques. The shock technique heats the ions to high temperatures
while the electrons remain relatively cool due to the slow transfer of energy from the ions
to the electrons. On the other hand, the laser heats the electrons while the ion subsystem
remains cool for many electronic time scales. If the laser-pulse rate is slow, the electrons and
ions equilibriate (within pico-second time scales) to a hot compressed phase which may be a
solid, liquid or plasma depending on the amount of energy dumped into the material from the
laser. Thus these experiments can test the theory of both equilibrium and non-equilibrium
(non Eq.) systems.

Density function theory (DFT) provides a first-principles method for equilibrium sys-
tems. A computationally convenient form is obtained using the local density approxima-
tion(LDA) for constructing the Kohn–Sham potentials that appear in the coupled equations
for the ions and the electrons.1,2 The detailed thermodynamic description of an equilibrium
system from first principles is itself a very formidable problem since the atomic physics for
a mixture of ionization states of ions in plasmas has to be carried out self-consistently, deter-
mining the bound states, ionization balance, equilibrium correlation functions, etc. We have
recently presented such a first-principles study of the equilibrium equation of state (EOS) of
Al from relatively low temperature conditions to those of high temperatures and high compres-
sions.2 It turns out that those methods can be extended to systems having two temperatures

and providing us a “quasi” equation of state (QEOS) for such non-Eq. systems. These
are of course not new problems;3,4 and the “modern” approaches are given in Martin and
Schwinger5 and Zubarev.6 We have verified our results using the Martin–Schwinger–Keldysh
technique, Zubarev technique as well as the Fermi-golden rule applied within a Kohn–Sham
basis.

In the experiments studied here, to a very good approximation, there are just two
subsystems, i.e., electrons and one kind of ion  Two topics are studied:

1. the shift of the K-edge (i.e, 1s continuum transition) for an Al-target passing from
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solid liquid plasma for the equilibrium case where

2. the energy relaxation rate of the two-temperature non-equilibrium system,

In discussing the topic (i) we refer to sample calculations for more controlled sys-
tems (e.g., from semi-conductor physics and liquid-state physics, where more accurate
experiments are possible) as benchmarks of the quality of our calculational methods.

THE K-EDGE OF AS A FUNCTION OF THE COMPRESSION

If an electron occupying a bound state with energy transits to an energy state the
transition energy is measurable. This line position shifts as a function of the density
and temperature. Such “chemical shifts” are well known in condensed matter physics, and
first-principles calculations of shifts are used to identify atoms in different environments.
Thus Ref. [7] discusses the observed 2p-core-level spectra of an S atom on a semi-conductor
surface and another type of S atom (ina different density environment) just below the top
surface. The agreement between experiment and theory is excellent. Another example bench
marking our calculational methods is given in Ref. [8] where the ion- structure factor of liquid
Ge is compared with neutron scattering data. Again the agreement is excellent and recovers
the Kohn anomaly at in a liquid structure.

However, the plasma physicists have debated whether energy levels in plasmas are shifted
(blue or red), or not shifted at all. Plasma spectral lines have large linewidths which prevent
the accurate determination of such shifts. The more popular theoretical efforts have used
unacceptably simple models of screening, self-energy corrections, “continuum lowering”
(i.e, changes in the electron-chemical potential), etc. The classic “X-ray edge” problem at
T=0 was treated by by Mahan, Nozière, de Dominicis, Combosquet (MNDC) and others.9

MNDC addressed the power-law structure of the X-ray edge profile but did not consider the
“position” of the edge, and do not include interactions in the particle–particle (or hole–hole)
channels.

In our approach we do NOT need to evaluate the many-body corrections to the excitation
energies. In the K-edge problem the the edge position inclusive of many-body effects can
be calculated as a difference between the total energies of the final state and the initial state.
This method was used by us to obtain the chemical shifts of the 2p-ionization of the sulphur
atoms on InP(001 )-S,7 and for the 1s-ionization (K-edge) in compressed Al. Figure 1 displays
experimental results of Ng et al,,12 as well as the calculations by Liberman(L), McMahon
and Ross(MR) and ourselves (PD). The K-edge shifts to the red from its absolute value at
the normal temperature 273K and density 2.7g of Al/cc (NTD). The absolute value of the
K-edge at NTD (experiment) is 1560 eV, while our theoretical value is 1560.2 0.5 eV.
K-edge spectral profiles calculated using the Fermi golden rule applied between the initial
and final Kohn–Sham states of the transition agree with experiment where experimental data
are available.13

Now we turn to the “Kohn–Sham bonus.” In the K–S method the Hartree term is exactly
treated and the continuum is exactly orthogonal to the core. This is not so in most (e.g,
diagrammatic) many-body calculations. Even small errors in the Hartree problem and in
orthogonality can lead to large errors in energy-shift predictions.

ENERGY RELAXATION IN A TWO-TEMPERATURE Al-PLASMA

Here we assume a two temperature system at and Using the quasi-equilibrium
system parameters as inputs we calculate:
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Figure 1. Calculated and experimental12 K-edge shift from the value at normal density and temperature for Al
as a function of compression. The large boxes define the experimental error bars. Our calculation is marked
PD and the details are given in Ref. [10].

1. the energy relaxation using Fokker–Planck methods,

2. from the Fermi golden rule approach.

In the latter energy relaxation occurs from the normal modes of the hot subsystem to the
normal modes of the cold subsystem, (rather than from encounters between hot and cold
particles). Thus the calculation of the dynamic structure factors of
the two subsystems becomes an essential step. We apply DFT to the hot electron system at its
temperature to determine the pseudopotentials, scattering cross sections etc., as in normal
finite-T equilibrium DFT. The correlation functions of the ion subsystem are obtained from
the DFT theory of the ions at its initial temperature since the ion-time scales are too long
for these to evolve appreciably. The DFT-theory for the ions reduces to HNC theory ofan
approximate Kohn–Sham ion-correlation potential, as shown in our publications.2

Fokker–Planck type simplified approaches

In the single particle (non-quantum) approach we consider the kinetic energy w of a test
particle, viz., Its rate of change, for a “Brownian-like” time scale is the
mean change arising from the velocity change during the time interval The
velocity changes arise from collisions and can be expressed via the friction coefficient F(v)
and the diffusion coefficient D(v). Thus,

(1)

(2)

The friction coefficient F(v) and the diffusion-coefficient D(v) can be expressed in terms
of a dielectric tensor.14 When these expressions are averaged over the particle distributions,
they yield an energy relaxation rate for a system of electrons (test particles) and ions (field
particles). In the high temperature limit, the result due to Spitzer is recovered.3 Here we give
a form inclusive of degeneracy effects:

(3)
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Figure 2. The energy relaxation rate calculated from various models is plotted as a coupling constant g in
Watts/Kelvin/cubic meter. The curve labeled FGR is the Fermi Golden rule calculation, Eq. 4. The
coupled-mode calculation is labeled CM. The Spitzer–Brysk type curve is based on Eq. 3. The value of the
effective ionic charge Z applicable to various regimes is also indicated.

In these and other equations, are in energy units. are the ion charge and mass
respectively. The Coulomb logarithm involves the ratio of the average closest distance
of approach, i.e., and a Debye-type screening length and  is the Fermi integral.
We shall use the above equations as representative of Spitzer–Brysk type calculation of

Fermi Golden Rule Approach

In the classical Fokker–Planck approach (and in quantum self-energy approaches) the
damping of a single test-particle was calculated first and then an average over the test-
particle distribution was used to obtain an estimate of the overall relaxation rate. However,
quantum mechanically, the energy relaxation rate of a subsystem with the Hamiltonian
is essentially and this is given by the commutator mean value  where H is the
total Hamiltonian. Once quasiequilibrium conditions are assumed the state functions of each
subsystem (at its quasiequilibrium density and temperature) are easily calculated. Then the
lowest order evaluation of reduces to a Fermi Golden Rule (FGR) calculation of
the energy exchange rate between the two subsystems. The diagrammatic content and the
Keldysh method of the calculation are as in Ref. [17] Here we display only the final result:

(4)

Here is the ion–electron pseudopotential, and the spectral functions are related to the
response functions and the dynamic structure factors in the usual manner. They are
calculated as in Ref. [15]. When the electrons are hot, the  is the energy loss rate from
electrons, and corresponds to This type of formula is well known in the theory of hot
electrons in semiconductors.16,17 Thus if the spectral function is restricted to a single mode,
e.g, an LO-phonon in a solid, then it describes the energy exchange between electrons and
phonon mode of energy and reduces to Kogan’s formula.16

Figure 2 displays the energy relaxation rates calculated from these equations as a function
of electron temperature while the ion temperature remains fixed at the m.pt. of liquid
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Al. The FGR result is about an order of magnitude smaller than the estimate from the
Spitzer–Brysk approach. We have also included a curve marked “cm” (coupled-mode) which
goes beyond the simplest Fermi–Golden rule.17 If the time scales are such that coupled-mode
formation could play a role in the energy relaxation, then the relaxation rates are further
suppressed by another order of magnitude. Some of the recently available experimental
results seem to favor relaxation-rate constants which are about an order of magnitude smaller
than those obtained from simple theories.18, 19 These new results on slower energy relaxation
have great significance in regard to energy relaxation in ICF-targets and other high-energy
density systems.
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ENSEMBLE DENSITY FUNCTIONAL APPROACH TO INHOMOGENEOUS
QUANTUM HALL SYSTEMS

O. Heinonen*

Department of Physics
University of Central Florida
Orlando, FL

The quantum Hall effect (QHE) occurs in a two-dimensional electron gas (2DEG) in
a strong magnetic field oriented perpendicular to the plane of the electrons.1 In a transport
measurement it is noted that at certain strengths B*(n), which depend on the density n of
the 2DEG, current can flow without any dissipation. At the same time, the Hall voltage
attains a quantized value for a small range of magnetic field. The effect is understood to be
the result of an excitation gap in the spectrum of an infinite 2DEG at these magnetic fields.
In general, the magnetic field strengths B*(n) at which the quantum Hall effect is observed
are related to the density through the filling factor with the
magnetic length. The integer occurs at integer filling factors Here,
disorder dominates the electron–electron interactions, and the the energy gap is the kinetic
energy gap The fractional is observed at certain rational filling
factors of the form with p and q relative primes, and q odd. In this case, electron–
electron interactions dominate disorder and are the cause of the excitation gap.4 Therefore, any
computational approach to the fractional QHE must accurately treat the electron correlations.

It is important to note that the energy gaps are only for excitations in the bulk of
the system. When a system is bounded there must be gapless excitations located at the
boundaries of the system.5 Since all experimental systems are finite and inhomogeneous,
the low-energy properties probed by experiments are often determined by the gapless edge
excitations. Moreover, advances in semiconductor nanofabrication technologies have lead to
the possibility of manufacturing systems which are extremely inhomogeneous, and in practice
dominated by edges.

The spin–orbit coupling in the GaAs conduction band and the low effective mass conspire
to reduce the ratio of Zeeman energy to cyclotron energy to about 0.02. As a consequence,
the electron spin becomes an important dynamical variable governed by the electron–electron
interactions, rather than by the Zeeman energy. Near some QHE filling factors, this also
leads to rather exotic spin-charge textured excitations, called ‘skyrmions’.6 According to
calculations by Kivelson et al.,7 charge-spin textures may also appear at the edges of QHE
systems.

In order to accurately understand the experiments and inhomogeneous QHE systems in
general, we must have a way of accurately calculating their properties, including electron–
*Work done in collaboration with M. I. Lubin, M. D. Johnson, and J. M. Kinaret
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electron correlations and the spin degree of freedoms and which can handle inhomogeneous
systems with on the order of electrons. One such approach which is in principle
valid for any interacting electron system is density functional theory (DFT).8–10 We have
developed for inhomogeneous QHE systems an ensemble DFT11–13 scheme within the local
density approximation (LDA), and have applied it to circularly symmetric quantum dots.
Our calculations show that the exchange and correlation effects of the QHE are very well
represented by the LDA and that our approach provides a computational scheme to model
large inhomogeneous QHE systems. Recently, we have generalized our DFT approach to
include spin degrees of freedom.13

In typical DFT calculations of systems of electrons, the Kohn–Sham (KS) scheme is
implemented, in which the particle density n(r) is expressed in terms of a Slater determinant
of   KS orbitals, These obey an effective single-particle Schrödinger equation

which is solved self-consistently by occupying the KS orbitals with the
lowest eigenvalues and iterating. This scheme works well in practice for systems for which
the true electron density can be represented by a single Slater determinant of KS orbitals.
However, when the KS orbitals are degenerate at the Fermi energy there is an ambiguity in
how to occupy these degenerate orbitals. This is in fact the case for general inhomogeneous
QHE systems, so the KS scheme cannot be used. There exists an extension called ensemble
DFT which is formally able to deal with this situation.9, 10 In it, the density of the system
is represented by an ensemble of Slater determinants of KS orbitals. In practical ensemble
DFT calculations one introduces as in the KS scheme an auxiliary non-interacting system
which has a ground state density identical to the interacting system at hand. A variational
principle again yields9 the KS equations. However, the density for N electrons is now given by

with the occupation numbers in the interval
One obtains fractional occupancies only when the corresponding KS eigenvalues are
degenerate and equal to the Fermi energy (If then However, there has
not been available a practical computational scheme for ensemble density functional theory.
A significant aspect of our work is that we have developed an ensemble scheme which is
practical and useful for the study of inhomogeneous QHE systems.

To construct our LDA, we write the exchange-correlation energy per particle of a uniform
electron gas in a constant magnetic field as Here the term is
a smooth interpolation of the ground state energy per particle at certain rational fillings of a
QHE system14, 15 The second one, contains the cusps in the ground state energy which
cause the fractional QHE.

As an example, we have self-consistently solved the KS equations

for a spin-polarized quantum dot in a parabolic external potential, by
expanding the KS orbitals in the eigenstates of The use of our LDA-
DFT scheme is illustrated by a study of the edge reconstruction of the quantum dot as a function
of magnetic field strength. As is known from Hartree–Fock and exact diagonalizations,16–19

for strong confinement the quantum dot forms a maximum density droplet in which the
density is uniform at in the interior, and falls off  rapidly to zero at As
the magnetic field strength increases, a ‘lump’ of  density breaks off, leaving a ‘hole’ or deficit
at about As B is further increased, the correlations will cause incompressible strips
with densities to appear19, 20 on the edges, and incompressible droplets to form in
the bulk at densities Figure 1 depicts various stages of edge reconstruction obtained
by us as the magnetic field strength is increased.
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Figure 1. Edge reconstruction of a quantum dot as the magnetic field strength is increased. Plotted here is the
local filling factor for a parabolic quantum dot with  and 40 electrons. For
magnetic field strengths B < 2.5 T the dot forms a maximum density droplet, and for  an exchange
hole is formed. For stronger magnetic fields, incompressible regions form, separated by compressible strips.

We have begun to generalize our ensemble density functional approach to include the
spin degree of freedom. In general,21 spin density functional theory has to be based on
the single-particle density matrix where is the annihilation
operator for an electron of spin at position r. However, in the presence of a uniform
external magnetic field the z-component of total electron spin, commutes with the
Hamiltonian, and it is a reasonable approximation to take to be diagonal in the spin
indices, with the up- and down-spin densities. To construct a LDA,
the exchange-correlation energy per particle in a homogeneous system with a filling factor

and polarization now has to be approximated. Except for a few data points obtained
by small system numerical diagonalizations,22 this quantity is largely unknown. In order to
obtain a useful approximation, we start by considering only the exchange energy
We can correctly interpolate between a fully polarized systems and a completely
un-polarized one by writing

where

in two dimensions. We then use the same interpolation for the correlation energy (excluding
here the cusps for simplicity), and write The function

can the be obtained by calculating the energy difference between polarized and un-
polarized systems using data obtained from small system numerical diagonalizations.22

We have applied this spin ensemble DFT to study the phase diagram of a maximum
density droplet. For large values of the Landé g-factor, the maximum density droplet is
fully polarized, and as the magnetic field is increased, there is an instability to forming a
spin-polarized exchange-hole. But for small values of  g, the instability is towards forming a
spin structure at the edge. The value of g separating the spin-polarized and spin-structured
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instabilities, is consistent with the value found in numerical diago-
nalizations.23

Preliminary results using an extension of the spin ensemble DFT which allows for non-
collinear spin show that this phase diagram changes when the spin are allowed to rumble. The
instability which occurs with decreasing g is now an instability in which the spin quantization
axis tumbles gently as the edge is approached from the center of the droplet. This is in
qualitative agreement with the results of Karlhede et al.7 and gives further evidence that the
edges of QHE systems are more complicated than thought previously. The QHE continues
to surprise and fascinate!

The authors would like to thank M. Ferconi, M. Geller and G. Vignale for helpful
discussions, and W. Kohn, K. Burke and E. K. U Gross for useful comments about the DFT.
O. H. would like to thank Chalmers Institute of  Technology, where part of the work was done.
This work was supported by the NSF through grant DMR96-32141.
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LOCAL AND SEMI-LOCAL DENSITY FUNCTIONAL APPROXIMATIONS FOR
EXCHANGE AND CORRELATION: WHY DO THEY WORK, AND DO THEY
WORK BEST AT ZERO TEMPERATURE?

John P. Perdew and Stefan Kurth

Department of  Physics and Quantum Theory Group
Tulane University
New Orleans, LA

INTRODUCTION

In 1965, Kohn and Sham1 derived exact self-consistent field equations for the ground-
state (T = 0) energy E and electron spin densities of  N electrons in an external
potential

All equations are in atomic units So long as the external potential is
spin-independent, only the total density

is formally necessary, but approximations to the exchange-correlation energy functional
are more successfully constructed from the separate spin densities. The chemical potential
of  Eq. (2) must be adjusted to make

Kohn and Sham1 also proposed the local spin density (LSD) approximation,
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where is the accurately-known exchange-correlation energy per particle of the
uniform electron gas.2 LSD is exact for densities that vary slowly over space, and is still
widely and successfully used in solid state physics.3,4 The second-order gradient expansion
approximation (GEA),

is almost never used, but the generalized gradient approximation (GGA)5, 6

has been enthusiastically adopted in quantum chemistry3, 4 (and to some extent solid state
physics) since 1990. GGA reduces the errors of LSD atomization energies by about a factor
of five.

Simple local (Eq. (7)) and semi-local (Eq. (9)) approximations have worked beyond all
expectation. This article will summarize some old and new explanations for this success, and
suggest that the high accuracy of these approximations at zero temperature may not carry
over to non-zero temperature.

EXPLANATION FOR THE SUCCESS OF LOCAL AND SEMI-LOCAL
APPROXIMATIONS AT ZERO TEMPERATURE

The LSD approximation of  Eq. (7) is exact for densities that vary slowly over space, but
the densities of real atoms, molecules, and solids are not slowly varying. If they were, the
GEA of Eq. (8) would work better than LSD, but in fact it works less well.

Physical insight into the exchange-correlation energy is provided by the coupling-
constant integration.7, 8 Imagine a Hamiltonian  depending upon a parameter

The external potential is adjusted to keep the ground-state spin densities
independent of At describes the real interacting system, while at it
describes the Kohn–Sham non-interacting system.

From the ground-state wavefunction one can find the pair density defined
so that is the joint probability to find an electron in and another in
If these two events were independent (as they typically are not), the pair density would factor
as Instead

where is the density at of the exchange-correlation hole about an electron at r.
Then

where
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The coupling-constant average in Eq. (13) is a trick to include the kinetic energy of correlation
in a form that “looks like” a potential energy. The exchange hole in Eq. (13) is the integrand
in the non-interacting or limit. Note that electron conservation

implies the sum rule

The local spin density approximation to the hole is clearly

where is the hole density in an electron gas with uniform spin densities
Because this is a possible physical system, its hole respects many of the same conditions

as the exact hole of  the real system:

(a) LSD obeys the sum rules

which constrain8 the integral of  Eq. (12) to reasonable values.

(b) LSD respects9 the negativity of  the exact exchange hole,

(c) The LSD “on-top” exchange hole density is exact.10 This is why accurate
approximations for require the spin densities  and

(d) The LSD “on-top” correlation hole density is not exact,11 but is still very
accurate11 and provides the “missing link” between real systems and the uniform
electron gas. Because is accurate in LSD, so is the Coulomb cusp of

The second-order density-gradient expansion (GEA) for the hole density improves upon LSD
for small but gives unphysical results for large Because the GEA hole is a
truncated expansion, and not the hole of any physical system, it violates conditions (a) and
(b) above.

A non-empirical derivation of  the generalized gradient approximation12 of Eq. (9) starts
from the gradient expansion of the hole density, then cuts off its spurious large-
contribution to restore conditions (a) and (b). Essentially the same4

has been derived more simply6 from general constraints on without appeal to the
hole.

A hierarchy of equations which starts with LSD and proceeds through GGA will probably
be completed by some fully-nonlocal approximation of high accuracy. The hole constraints
(a) - (d) may find a “last hurrah” in the construction of such an approximation.

In summary, LSD and GGA work well outside their formal domain of validity because
they are “conserving approximations” which retain important features of the exact exchange-
correlation energy.
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NON-ZERO TEMPERATURES AND OPEN SYSTEMS

Formal Kohn–Sham theory1 was extended to open systems at non-zero temperatures by
Mermin.13 The basic structure of Eqs. (1) - (10) is preserved, with a few changes:

1. Within the grand-canonical ensemble in the absence of an external magnetic field,
 and the exact ensemble or infinite-time average

of the spin magnetization is zero even for a spontaneously-magnetized system like iron.
For such a system, the LSD or GGA on-top hole density, evaluated in the infinite-time-
averaged spin densities will be less accurate for the ensemble than for the pure-state
density functional theory.

2. The occupation numbers become Fermi functions

3. Inputs such as now depend14, 15 upon  the temperature T. Interesting applications
of this formalism to metallic clusters,16 liquid metals,17 and plasmas17 have been made.

The LSD (Eq. (7)) and GGA (Eq. (9)) approximations should not be expected to work so
well at non-zero T as they do at T = 0, because of the on-top hole problem mentioned above
and because exact constraints like condition (a) of the previous section are no longer satisfied.
(Partial compensation for this loss may arise from the fact that the exchange and correlation
holes become more short-ranged as the temperature increases - a favorable development for
LSD and GGA.)

At non-zero temperature, expectation values are taken not over a single pure state but
over an ensemble of states with probabilities The
ensemble pair density is

where If the exchange-correlation hole density for the en-
semble were the same as the ensemble average of  the hole density

then conditions (a) and (b) of the previous section would be respected. But in fact

where

The sum rule (24) was derived in Ref. 18. The corresponding sum rule for the energetically-
important system-averaged hole is
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The last term of  Eq. (25) is positive for a system with fluctuating electron number, such as an
ion in a plasma. The softness depends upon the energy-level structure of
is therefore not predicted exactly by LSD or GGA, and equals
for a non-interacting uniform electron gas of density n in the limit

Eq. (25) also holds for a classical liquid (see Eqs. (2.28) and (2.29) of Ref. 19), and for
a Bose system (see Eqs. (5.76) of Ref. 20).
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THE AVERAGE ATOM MODEL AND THE DENSITY FUNCTIONAL THEORY
USING FUNCTIONAL INTEGRALS

G. Faussurier

Commissariat à l’Energie Atomique
94195 Villeneuve St Georges Cedex
France

INTRODUCTION

Functional integrals (Negele and Orland, 1988) and the notion of Legendre
transformation can be used to formulate the average-atom model (Rozsnyai, 1972) and the
density functional theory (Dreizler and Gross, 1990) in the same formalism, stressing their
common theoretical base. The integral representation is not unique and a large variety of
models can be generated like the Hartree, Fock, or Hartree-Fock average-atom models.
Particularly, the Kohn and Sham equations are proven to appear naturally by performing a
saddle-point evaluation of a specific functional integral.

THE AVERAGE-ATOM MODEL

Using coherent states, the grand canonical partition function of a
nonrelativistic atomic system can be written (with self-explanatory compact notations) as a

functional integral

m, e, Z, and v are respectively the mass and the charge of the electron, the nuclear
number, the chemical potential, and an additional external potential to the electron system.

By introducing an auxiliary bosonic field, can be eliminated and the

integration over the Grassmann variables performed:

where is the partition function of an

independent-electron gas in the external potential U and The saddle-
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point evaluation of becomes then possible. By considering only time-independent
solutions, the stationnary condition on S[U] reduces to the finite-temperature Hartree

equations where is the inverse temperature):

These mean-field equations, which have to be solved self-consistently,
constitute a generalization of the screened-hydrogenic average-atom equations (Faussurier
et al., 1997). The flexibility concerning the choice of the functional-integral representation
can be used to generate a large variety of mean-field expansion (Hartree, Fock, Hartree-
Fock, ...). The functional-integral technique is equivalent to the operator formalism (Fetter,
1971; Le Bellac, 1996); it offers perhaps a clearer insight of the problem and of the
selected approximations.

THE DENSITY FUNCTIONAL THEORY (DFT)

The DFT is one of the most commonly used methods in studying various
many-particle systems. In this formalism, the ground-state energy of the system at zero
temperature (or the grand canonical potential at finite temperature) is written as a
functional of the density. For a N-particle system, the particle density n(x) and its
associated calculational scheme is preferred to the complicated wave-function
and the associated Schroedinger-equation. The connection of the DFT with other many-
body methods (like the average-atom model) can be stressed by formulating it in terms of
Legendre transformation and functional integrals (Fukuda et al., 1994). Only finite
temperature case is presented in this paper.

Let us introduce a time-independent source J in the general expression of

By functionally deriving with respect to J , the particle density n is equal to

Since n appears to be a functional of J , a Legendre transformation is

performed in order to express the quantities of interest with respect to n :

It is then straightforward to show that the physical density n is solution of
the equation

An explicit expression of can be found by noting that is more
precisely a functional of Consequently, and

can thus be rewritten as
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F[n] is a universal functional of n which does not depend on the external potential
The key problem is the inversion of the functional relation

In order to avoid this complicated inversion to extract n by minimizing
the method of auxiliary field and saddle-point method is very convenient (Valiev et

al., 1996). Moreover, it allows to clearly connect the aforementioned average-atom model
and the DFT. Introducing a bosonic auxiliary field as was done in the previous chapter,

can be expressed as where

As long as the term source is equal to zero, and W[J ] describes the same physics.

For instance,

By estimating with the saddle-point method and keeping only the
dominant term, it is easy to get a first approximate expression of the physical particle
density n in terms of the one-electron wave-functions of the Hartree average-atom
equations, namely

The Kohn and Sham equations can be found in the same spirit. By
suppressing the source term, performing a translation in order to integrate on the deviation
with respect to n , and rescaling the variable of integration, reduces to

The last step consists in developping the term by choosing a
reference potential in order to cancel the linear term in the functional integral. By

introducing which is the inverse operator of we get an

exact expression of the grand canonical potential as a functional of the true particle density

with
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and

This shows the deep connection between the density functional theory and the average-
atom model. Exact formula for the grand potential at finite temperature (and the ground
state energy at zero temperature) can be obtained in terms of the density n without
explicitly inverting the functional relation between and n. The exchange-
correlation potential plays the role of a trial one-body potential to start the saddle-point
expansion of It has the specific property to express the true density of the interacting
many-particle system of interest in terms of the density of a noninteracting particle system.

CONCLUSION

In LTE, the average-atom model and the density functional theory can be
expressed in the framework of functional integrals. Both models can be obtain by
expanding the grand canonical partition function of the system of interest with the saddle-
point method. The next step is to compare this method to a variational principle (Feynman,
1972; Balian et al., 1981) that can also be used to obtain self-consistent mean-field
equations. It could be interesting to extend them to treat NLTE situations, as yet be done
by considering a screened-hydrogenic model (Mirone et al., 1997; Dallot et al., 1997).
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DENSITY FUNCTIONAL THEORY FOR STRICTLY CORRELATED
ELECTRONS:
AN EXACT FUNCTIONAL FOR SPHERICALLY SYMMETRIC
TWO-ELECTRON SYSTEMS

Michael Seidl

Department of Physics and Quantum Theory Group
Tulane University, New Orleans, LA

1. INTRODUCTION

We introduce the concept of strictly correlated electrons to model the limit of infinitely
strong interaction. In density functional theory (DFT),1 this limit provides important in-
formation for the ground-state energies of realistic electron systems. Resulting from the
Hellman–Feynman theorem,2 the coupling-constant integration formula3

is an exact relation for the explicitly unknown functional of the exchange-correlation
energy.1 is the operator of the realistic electron–electron interaction and

is the Hartree–Coulomb energy. is the wave function which minimizes the total energy
of a fictive electron system with interaction subject to the constraint that it has the
ground-state density of the realistic system with coupling-constant Since exact
properties of the integrand function are known, Eq. (1) can be utilized to improve an
approximate value of

Fig. 1 shows a model for for the ground-state density of the Helium atom. At
0, where the interaction is completely turned off, is the ground-state wave function
of non-interacting electrons in the external potential of the Kohn–Sham (KS) equations.1, 4

Therefore, is the exchange-energy functional of DFT, explicitly given
by the Fock integral with the KS orbitals. Thus, for any density which has been obtained
as a solution of the KS equations, is known accurately. According to Görling–Levy
perturbation theory,6 also the initial slope of the function
can be evaluated in terms of the KS orbitals and eigenvalues

The function always starting out with a negative slope at ap-
proaches asymptotically a constant value as see Fig. 1. To account for the
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resulting curvature of we need to know the numerical value of In section 2, we
model the strong-interacting limit by the concept of strictly correlated electrons (see).
The resulting functional for is employed in section 3 to predict by Eq. (1) accurate
exchange-correlation energies for realistic two-electron ions. In contrast to earlier work,5 the
present approach requires information on only for the non-interacting and the
infinitely-strong interaction limits.

2. STRICTLY CORRELATED SPHERICAL TWO-ELECTRON SYSTEMS

In the strong-interaction limit of DFT, electrons are expected to be strongly correlated.
We solve here the problem of two strictly correlated electrons with a given spherical density
distribution By “strict correlation” we mean that the position of the second electron
is completely fixed by the position of the first one,

According to the spherical symmetry, the vectorá in (2) has the opposite direction of Thus,
the angle between the electrons is always 180° and is a certain function of

Since the electrons are identical particles, we also have
Therefore, the function f has the property f(f(r)) = r or This implies that
either or f is monotonically decreasing. We exclude the choice which
would allow the strongly interacting electrons to come infinitely close to each other at r = 0.
The graph of the function y = f(x) is always symmetric with respect to the diagonal line
y=x.

2.1. The correlation function f(r)

We will now show that the “correlation” function f(r) is fixed by the given spherical
density Since f(r) is monotonically decreasing, the probability to find electron 1 inside
the sphere with radius r is equal to the probability that electron 2 is outside the sphere with
radius f(r):

If these integrals can be evaluated explicitly, we obtain an analytic equation for  f (r). Differ-
entiating (3) with respect to r yields the non-linear first-order differential equation

for f (r). The starting condition for numerical integration of (4) is where, due to
(3), is obtained from

According to the differential equation (4), in conjunction with the starting condition
the function f(r) is completely determined by the given density Note that f(r) does
not depend on the particular form of the electronic repulsion Our results are valid for
fermions with any kind of repulsive interaction
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2.2. The interaction-energy functional

In these strictly correlated systems, the distance between the two electrons is
r + f(r), where Averaging over the position of the first electron with the correctly
normalized probability distribution we find

for the expectation value Since the function f(r) is fixed by the density Eq. (6)
is the exact density functional for the interaction energy of strictly correlated, spherical
two-electron systems.

Subtracting the Hartree energy we explicitly obtain the exact density functional

which is a model for the functional in Eq. (1) in the limit of infinitely strong
interaction.

3. APPLICATION TO REALISTIC TWO-ELECTRON SYSTEMS

For an accurate ground-state density  of  the He atom,10 we have solved the differential
equation (4) for the correlation function f (r). Evaluating the functional (7) yields the estimate
(in hartrees)

This asymptotic value is represented by the horizontal dashed line in Fig. 1. For large
we expect the asymptotic behavior for the unknown integrand in
Eq. (1). Therefore, we model by the interpolation formula

using the result (8) for the asymptotic value of this function. For the initial value at
we use the exact exchange energy of the He atom. For the initial slope,
we employ the accurate value from Görling–Levy perturbation theory for
Helium.

The resulting function (9) is plotted as solid curve in Fig. 1. Performing the coupling-
constant integration (1) over this function, we easily obtain the accurate approximation

for the exact xc energy of the He atom.
Ignoring the information (8) on the asymptotic value of we find by linear extrapolation
the less accurate approximation Table 1 summarizes our
results for the He atom and the two-electron ions and We have employed the
accurate Hartree–Fock densities of  Ref. [10]. In column 3,  is the exact
slope13 for any exponential two-electron density It is a good approximation
to the exact densities of heavy two-electron ions, where the Kohn–Sham orbitals are expected
to become hydrogen-like wave functions.

Our result for the He atom is very satisfying. For which is still similar to He, we
expect the exact slope to be more negative than the value -0.093326 for an exponential
density. For the heavier ion however, this value for the slope appears to be quite a
good approximation. A generalization of  the present approach to systems with more than two
electrons and/or with less than spherical symmetry is under preparation.
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Figure 1. The approximation (9) (solid line) to the integrand   of  Eq. (1) for the ground-state density
of  the Helium atom, plotted (in hartrees) versus the coupling constant  approaches the

asymptotic value which is modelled here by the value (8) from the theory of strictly correlated
electrons.
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INTRODUCTION

Thermodynamics and equation of state (EOS) of strongly compressed plasmas are of
great interest for understanding of processes in inertial confinement fusion, astrophysics and
many other applications. The last of decade shock-wave experiments on metals gave many
new results [1]. Now experimental data covers a wide area of phase diagram, which can be
quite interesting for theoretical study. For example this area lies in the region where metal-
dielectric transition is known to occur. One of well-known approaches to investigation of
strongly interacted systems is chemical model [2]. As a rule, this approach is used for gas-
like plasma with weak or moderate coupling [3-9]. In this work we will extrapolate chemical
model to the region of expanded metals to compare
calculated data with shock-wave experiments and to study different plasma effects on EOS of
shock-compressed metals. Fig. 1 demonstrates the region of phase diagram under interest,
which is covered by shock-wave experiments.

THERMODYNAMIC MODEL

In accordance with the chemical picture [2], we consider multi-component strongly
coupled plasmas as a mixture of electrons, atoms and ions of different charges interacting
with one another. In terms of chemical model free energy of such a system is splitted into
two parts: the ideal-gas contribution of atoms, ions and electrons and term responsible for
inter-particle interactions:

Atoms and ions obey Boltzmann statistics and their contribution takes the well-known form:
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where - Boltzmann constant, - thermal de-Broglie wave length and - internal
partition function of atoms and ions. In this work we set all partition functions to be equal to
the weight of their ground states.

Figure 1. diagram of Nickel. Solid Figure 2. Energy level shifts vs. radius of
lines are isotherms. Dotted line and dashed spherical cell for ground states of Cu atom
line are curves where coupling parameter and ions  Hartree-Fock
and degeneracy parameter are constant. calculation [8]
Circles - experimental results [1].

ELECTRON DEGENERACY

We consider electrons as a partially degenerated ideal Fermi-gas:

where electron density and chemical potential are connected by relation

Effects of degeneracy are quite important in this region of the phase diagram because the
degeneracy parameter can become large.

COULOMB INTERACTION

Debye approximation in the Grand canonical ensemble [10] for multy-stage ionisation
is used for description of Coulomb interaction:

with coupling parameter determined from the equation:
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where is the screening radius. The coupling parameter differs from the usual Debye
parameter This approximation is equivalent to the Debye-Hückel
value at the limit and thermodynamically stable at any coupling (the matrix

is positive definite).

SHORT RANGE ATOM-ATOM, ATOM-ION, ION-ION REPULSION

The effect of overlapping of electron shells of atoms and ions leading to short range
repulsion of heavy particles is described in terms of the Mansoory formula [5]:

This corresponds to contributions in pressure, internal energy and chemical potential:

To determine atomic and ionic radii we use two procedures. The first one uses
confined atom model [3] in which atom (or ion) is placed in a spherical cell with hard walls;
using Hartree-Fock method [8], electron structure is calculated for various cell radii. In Fig.2
calculations of atomic energy shifts as functions of atomic cell radius are represented for
ground states of several ions of copper. Determination of particle radii is based on simple
formula where is ground state energy shift,   - ionization potential
and radius of atomic cell. More simple procedure uses the notion that atom (ion) is
hydrogen-like structure. In this case radius can be determined from relation

where - radius and ionization potential for atom, the same for ion and - charge of
ion. In reality, procedures considered above are used only to fix the ratio between atomic and
ionic radii. Atomic radius is determined from Ashcroft-Leckner’s rule [11], in which hard-
sphere size at normal density corresponds to fix value of packing fraction

This corresponds to the best coincide of the position of the first
maximum of  pair correlation function of hard-sphere system with experimentally determined
correlation function.

ADDITIONAL ATTRACTION

Calculations in the approximations (1-11) demonstrate reasonable agreement between
calculated and experimental data at higher intensities of shock waves. In doing so, short
range repulsion is quite important and essentially improves this agreement, but there is
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restricted area of phase diagram where none of the set describe experimental data in the
approximations (1-11). This is because the relations (1-11) do not contain the mechanism for
taking into account for the binding energy, responsible for the existence of the condensed
state. We are accounting this effect with an additional attraction that we consider in the form:

The correction (12) does not depend on temperature. The summing in (12) is over all heavy
particles. These corrections don’t shift the ionization equilibrium. Notice that
corresponds to the van der Waals approximation. In accordance with the reference [12],

is appropriate to metallic kinds of binding that, in particular, are valid for expanded
metals near critical point. In this approximation, A is determined from a condition that for
metal at normal density and T =  0  its internal energy coincides with the tabulated value.

RESULTS FOR FOAM NICKEL AND IRON HUGONIOTS

Results of calculations of Hugoniots of foam nickel are represented in Fig.3. On the
base of the approximation (1-12) calculations of shock compressed foam iron were carried
out. Results of comparison between calculation results and new experimental data [15] are
demonstrated in Fig.4.

Figure 3. Nickel Hugoniots for different Figure 4. Iron Hugoniots for different
1 - calculation of this work. 1 - calculation of this work; 2 –

Squares, triangles and circles - experiment results of previous experiments (see [1] and
[1] (see [13] and references herein).                references herein); 3 – new experimental

data [15].

One can see that the approximations (1-12) being rather simple nevertheless makes it
possible to give reasonable agreement between calculations and experiment for all shock-
wave compressions and different  beginning from highest ones up to continuous
mater. Fig.4 demonstrates influence of different plasma effects on final thermodynamic
results. It is seen that hard-sphere repulsion is very important for position of Hugoniots in

plane over wide range of pressures, as well as the additional attraction (12) at lower
compressions.
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CONCLUSIONS

For the example of shock compressed nickel and iron, one can see that the chemical
model can provide satisfactory description of strongly coupled plasma of expanded metals.
The same agreement with experimental data was achieved for copper and lead [13,14].
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DISORDERED SYSTEMS WITH A VIRTUAL ATOMIC STRUCTURE

A. A. Likalter

Center of Applied Problems of  Electrodynamics
Institute for High Temperatures, Russian Academy of Sciences
Izhorskaya 13/19, Moscow 127412, Russia

INTRODUCTION

Metals with nearly-free valence electrons do not reveal an atomic-like structure. Such
a structure appears in the vicinity of the metal–insulator transition where virtual atoms
overlap by the classically accessible spheres of partially-free valence electrons. A virtual
atomic structure is typical of expanded fluid metals, donors in heavy doped semiconductors,
and metals in concentrated ammonia solutions.1 Similarly, there are virtual molecules in
compressed metallic hydrogen. Though the nature of these systems is quite different, the
electronic properties behave analogously.

MIXED STATES OF ATOMS

Generally, atoms confine a screening electron charge within a classically accessible
radius

where e is the electron charge, is the dielectric constant of a host system, and I is the
ionization potential. Since classically accessible spheres overlap in percolation clusters,
the atomic screening is partially collective. Otherwise, valence electrons partially move in
atomic-like screened potentials, i.e., they are partially free.

According to a quantum-mechanical variational principle, the low bound of the internal
energy is the free atom ground level –I. Then, a free-motion energy corresponding to the
asymptotic momentum p is the excitation. An internal energy of virtual atoms is

where m is the electron mass. A density matrix, which describes admixture of asymptotically
free motion to the ground state giving spectrum Eq. 2, is determined by equations

According to Eq. 3 the higher excitation, the more must be admixture of the free-motion state.
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Figure 1. Electric conductivity of dense fluid hydrogen in the insulator–metal transition range. The estimated
insulator–metal transition point is shown by arrow.

LOCALIZATION FACTOR

Before the transition to a neighboring ion, an electron can be found in a free-motion
sphere around a screened ion with the radius

where is the mean free-motion velocity, is a transition time. In second Eq. 4 the
free-motion radius is related to the Wigner–Seitz radius by a localization factor

with the minimal free-path time

For strong localization the free-motion radius considerably exceeds the Wigner–Seitz
radius, i.e., the free-motion spheres in neighboring atoms strongly overlap.

The volume of the free-motion sphere is

where is the ion number density. The density of mixed atomic states is then
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where is the degeneracy of the ground state. Hence, a Fermi momentum of the mixed
states

For strong localization the Fermi momentum and energy of mixed states are considerably
lower than those of  free electrons. Thus, the localization of the mixed electron states strongly
extends the limits of Boltzmann statistics.

The localization factor determines the mean electron mobility

which is smaller than a minimal gas-kinetic mobility of free electrons in Boltzmann case.
However, for degenerated electrons the localization factor drops out in product therefore
the minimal gas-kinetic mobility remains in force.

SCALING FUNCTION

We determine the localization factor by a scaling function of the excitation energy

where is the critical exponent of the correlation length,  is a mobility gap, is
the width of a soft gap. The and excitations, which enlarge the classically accessible
radius up to the percolation radius and the Wigner–Seitz radius, respectively, are

where is the volume fraction of the overlapping spheres at the percolation threshold,  is
the close packing fraction.

The localization factor is

where brackets denote the averaging over the energies. On the dielectric side of the transition
the localization factor describes an activation temperature dependence

where the activation energy goes to zero at the insulator–metal transition point.
On the metallic side of the transition the localization factor describes excitations of

electrons within the soft mobility gap

As the localization factor goes to unity, one gets a strong scattering regime with a
minimal Ioffe–Regel free-path length

where is the momentum uncertainty. Assuming the uncertainty equal to the mean thermal
momentum we get

The last Eq. 17 extrapolates the Boltzmann minimal free-path length into a weak degeneracy
range. In case of strong degeneracy Eq. 16 gives a minimal free path equal a few interatomic
distances.
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INSULATOR–METAL TRANSITION

The theory rather successfully describes metal–insulator transitions in expanded metals,1

doped semiconductors2 and metal–ammonia solutions.3 Here we discuss an insulator–Metal
transition in superdense fluid hydrogen. Hydrogen molecules have a nearly ellipsoidal
classically accessible domain which is not too far from the sphere. A maximal percolation
threshold corresponding to parallel molecular axis coincides with that of the sphere problem.
Because of strong intermolecular correlations in a multiple compressed liquid the percolation
threshold is close to a random close packing fraction,

This magnitude reasonably agree with the transition point determined experimentally by
disappearance of the activation energy.4 While data are still lacking, the theory yields the
electric conductivity in qualitative agreement with the experiment (Fig. 1).
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DIMENSIONAL CROSS-OVER, CLOSE-PACKED CONFIGURATIONS,
SYMMETRY BREAKING, AND FREEZING IN DENSITY FUNCTIONAL
THEORY

Yaakov Rosenfeld

Nuclear Research Center Negev
P. O. Box 9001, Beer-Sheva 84190, Israel

The theory of nonuniform classical fluids has made continuous progress in the last two
decades, along with the development of important approximations and model Helmholtz free
energy functionals, for a inhomogeneous density distribution,  The density
functional theory should eventually provide a unified description of classical systems, includ-
ing the bulk liquid of uniform density, the bulk solid of narrow density peaks at lattice sites,
and the crystallization of a fluid as a strong self-sustained inhomogeneity. The geometrical
character of the hard-sphere interactions, which is one of the main reasons for their long
standing central role in the microscopic theory of classical fluids,2 also simplifies the con-
struction of model functionals.3 Good results for the equation of state of  the fcc solid and the
freezing transition have been obtained by many approaches for the hard spheres with non-
local dependence on the density through weight functions.1,3 The direct extension of these
functionals to continuous (“soft”) potentials brought mixed success and results of sometimes
questionable quality.4 In turn, standard perturbation expansions around the hard-sphere (HS)
reference density functional proved successful for both bcc and fcc classical solids with simple
soft interactions.5 In either case, however, elementary properties like the analytic connection
of the density functional theory to basic standard models of simple classical solids (notably
the free-volume cell model, or the harmonic approximation!) have not been demonstrated,
mainly due to the intrinsic limitations of the functionals that were employed. On the other
hand, several very recent analyses6–10 of the geometrically-based so called fundamental mea-
sure functionals (FMFs)11–13 revealed that they have many of the basic physical properties
expected from the exact (but unknown!) free-energy functional when applied to densely
packed hard-spheres. Moreover, these properties are important also for applications to con-
tinuous (“soft”) potentials in general, and to charged-particle systems (including plasmas)
in particular. These are distinguishing features of the FMF’s, shared by none of the other
functionals that were proposed in the literature. In particular, in order to describe correctly
densely packed configurations for soft interactions, the hard-sphere functional must feature
a true divergence of the equation of state at configurations of close packing. The singular-
ity which they possess, and their unique geometrically-based structure, enable the FMFs to
achieve this as well as other important properties.

Configurations of densely packed hard spheres, confined in different effective dimensions
D, provide the ultimate test for model free energy functionals. The exact functional exhibits

Strongly Coupled Coulomb Systems
Edited by Kalman et al., Plenum Press, New York, 1998 307



correct dimensional crossover, namely the description of bulk systems of reduced dimension
as strongly inhomogeneous density distributions in a larger dimension, e.g., the functional
for (D – 1) should come out from the functional for D when the density profile is a Dirac
delta function along one of the coordinates. Solid–solid transitions for confined hard-spheres
are dictated by considerations of the close-packed density for each different configuration.14

The functional must include a mechanism for locating these configurations of close packing,
where the equation of state diverges. For correct description of densely packed hard-spheres,
the solid in particular, when each particle can be viewed as confined in a fluctuating cage of its
nearest neighbors, the free energy functional should provide reliable results for the “0D limit”
corresponding to a cavity that cannot hold more than one particle.6 Correct 0D limit is also
required in order to predict the vacancy concentration in the solid.6 Finally, the cell-theory
free-volume picture is the physically accepted (yet not proven rigorously) behavior of the
exact functional near situations of close-packing,15–17 with average packing fraction
The free-volume cell-theory result,15 with the pressure diverging as  is the
exact equation of state for D = 1, and numerical simulations indicate15–17 that it is correct
near any configuration of close-packing at also in D = 2, 3.

The free energy functional is composed of two terms,
The ideal-gas free energy functional is given by the exact relation

where is the de Broglie wave-length, and T is the temperature. For the
single component system of hard-spheres of radius R in D-dimensions, the Fundamental-
Measure Functionals6, 10, 11 have the following form for the excess free energy,

 where is a function of weighted densities,
The weight functions, are characteristic functions for the geometry of a

sphere, like its volume, or its surface,
where and are the Heaviside and Dirac functions, respectively. In
particular, is a local packing fraction equal (e.g.,) to for the
uniform (bulk) 3D fluid of N spheres in a volume V with average density These
weighted densities have the property that if the total density is composed of an arbitrary
configuration of localized peaks then the FMF excess free energy contributions from each site
are completely independent of the others. In particular, if every localized peak is normalized

then the excess free-energy contribution of every such peak corresponds

to the 0D limit, for which the exact result is known: If is the average occupation
(packing fraction) of the cavity, then the exact 0D excess (over ideal gas contribution) free
energy is given by independent of
the detailed structure of the cavity. Recent studies revealed9, 10 that the correct 0D crossover
can be systematically imposed, and the function depends on by a linear
combination of the derivatives, which are singular at In

1D the FMF is exact18 and features the logarithmic form, In In 3D several FMFs
where derived,6,11,12 featuring also the and terms, which yield
the Percus–Yevick19 - scaled-particle20 description of the bulk fluid. The most important
feature of the FMF’s is their singularity at As detailed in [7,11] this singularity
enables the FMFs in general to have the mechanism for locating configurations of hard-sphere
close packing, and for “symmetry breaking” that separates solid-like and liquid-like solutions
for the density profile equation from the free-energy minimization. Improved forms10 have
correct crossover to 0D for almost arbitrary 0D distribution, and yield the exact 1D functional
for With correct 0D forms the FMF’s agree well with simulations for
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hard spheres confined in cavities.21 FMFs for parallel hard cubes were derived very recently9

with completely correct dimensional crossover.
With new forms regularized in the 0D limit, the FMFs give6 accurate results for the

3D fluid–solid transition (predicting for the first time the correct vacancy concentration
of the solid), for the equation of state of both the fcc and bcc crystals all the way from
freezing to near close packing, and they become generally reliable in situations of extreme
confinements. The FMF excess contribution for configurations of highly localized and densely
packed spheres of nearest neighbor distance d, corresponds to the uncorrelated cell model,
where each cell contribution is equal to the excess free energy in the 0D limit of a singly
occupied cavity,6 which is equal to What is usually called
the configurational free energy15 is dominated by the ideal – gas part of the free energy
functional that gives rise to the free-volume pressure, while the
excess (non-ideal) FMF pressure is zero near close packing, and is relatively very small
even near melting. Defining the small parameter the FMFs give the same free-
volume type form for the free energy near any configuration of close packing characterized
by namely The corresponding equation of
state, with the pressure diverging as is in agreement with all the available
simulation results15–17 for D = 2, 3, while the FMF is exact for D = 1. Some of the previous
functionals23 exhibit a sharp (but finite!) rise in the region of closest fcc packing, and good
agreement with the free-volume equation of state, but they do not contain a true divergence
at close-packing, they do not feature the cell picture, they do not have the mechanisms for
symmetry breaking and for dimensional cross-over, which are distinguishing    features of  the
FMFs that are important for soft interactions not less than for the hard-spheres.

The exact thermodynamic perturbation theory divides the interaction potential,
and free energy, into reference and

perturbation parts, where is the functional for the reference system.5 To first order

in the where is

obtained by averaging the pair distribution function of the reference system,
In the fluid,  and the structural information is produced by
the pair correlation function g(r). For the solid, when the density is dominated by localized
peaks at the lattice sites, previous calculations5 assumed,
where the product almost exhausts the structural information, and where the
main purpose of for hard-spheres (HS) is to produce the correlation hole of pair
exclusion between two spheres of radius R: This result is obtained
automatically in the uncorrelated cell model picture, which is the exact limit of the FMFs near
any close packing. The reference system parameters are still at our disposal, and we make the
variational choice: the optimal (“effective”) hard-sphere radius is obtained from
the variation equation, The variational method24

proved successful for the fluid and the solid,26 and it can be treated analytically in certain
important cases.27

Adopting the Gaussian-peaks picture for a densely packed configuration of hard spheres,
and using standard expressions for the uncorrelated cell model24 it was found25 that the first
order variational perturbation functional for soft-potential solids, which is based on a FMF
for the reference hard-sphere system, features the harmonic potential energy,

as the leading terms in the asymptotic high density expansion, where
is the Static-lattice Madelung energy. This result is general for all D (for D = 1

it is exact !) and applies equally well to (e.g.,) the Lennard-Jones potential and to the
one component Coulomb plasma. The general quality of this perturbation theory can be
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gleaned also from the predominantly harmonic behavior of simple classical solids even
near melting. The FMF for the D = 3 hard-sphere fluid features the Percus–Yevick19 pair
correlation function and the scaled-particle20 equation of state, so that the present variational
perturbation theory belongs to a well studied generic analytic form.26, 27 Following that
analysis it was found25 that the first order variational perturbation functional for soft-potential
fluids yields the following D = 3 high density fluid potential energy expansion,

The temperature independent leading part of the
potential energy, termed the fluid Madelung energy, is evaluated in the bulk

limit of the functional (which in D = 3 is the limit of the Percus–Yevick
equation for hard-spheres27). The leading term for the excess heat capacity behaves like

The available simulation data for simple fluids is in good agreement26 with
the prediction of the variational perturbation theory of which present model is one variant.
In particular, for the repulsive inverse power potentials, when is subtracted from
the simulation energies28 they follow very well the predicted behavior for temperatures
up to many times the melting temperature. It was predicted25 that to within the accuracy of
the relative density change upon freezing, which is very small for these potentials (< 4%),
the melting densities follow a new universal (independent of potential) approximate relation,

This relation is obeyed by all available simulation results
for repulsive soft interactions. Thus, with a fundamental-measure hard-sphere reference
functional we obtain a unified analytic description of classical bulk solids and fluids, predicting
correctly major features of their equations of state and freezing parameters as obtained by
simulations. Moreover, the fundamentally different fluid and solid asymptotic high density
expansions for the potential energy, featuring a static-lattice Madelung term and the harmonic

correction, on one hand, and a fluid Madelung energy with a thermal energy
correction, on the other, both originate  from the same singularity in the hard – sphere free
energy functional.

It is possible to improve upon the first order perturbation theory functional.11 The
fundamental measure functional provides explicit simple expressions11, 29 for the bridge
functional, which represents the sum of all terms beyond second order in the functional
Taylor expansion around some reference density. The ansatz of universality of the bridge
functional,11, 29 which is approximated by that for the hard-spheres, enables to apply the hard-
sphere functional for fluids with arbitrary interactions. With the bridge functional derived
from the FMF’s, accurate results were obtained for the bulk pair correlation functions for a
large variety of potentials, for both one component systems and mixtures,11,29,30 including
bulk multi-component plasmas.29 The FMF hard-sphere “universal” bridge-functionals has
been tested (directly and implicitly) very successfully also for a variety of inhomogeneous
systems of particles, in slab geometry, for hard and soft pair interactions and different external
potentials.11 Particularly striking tests are provided by strong electrolytes near a charged
electrode, and by the plasma of point charges near a wall. This approximation was also
used for an accurate solution of the classical “inverse” scattering problem, namely obtaining
the pair potential from scattering data for both liquefied rare-gases and liquid metals,30 for
one component systems and mixtures. It appears from these many investigations that, by
capturing the correct geometrical features, the fundamental-measure hard-sphere functional
leads to accurate description of the structure of the inhomogeneous simple fluid under various
confinement conditions.
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ELECTRICAL CONDUCTIVITY OF DENSE COPPER PLASMAS

A. W. DeSilva1 and J. D. Katsouros2

1 Institute for Plasma Research
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INTRODUCTION

Measurements are reported of the electrical conductivity of dense copper and aluminum
plasmas in the temperature range 10–30 kK, in a density range from about 1/5 solid density
down to 0.02 Plasmas were created by rapid vaporization of metal wires in a water
bath. As density decreases from the highest values measured, the conductivity falls roughly
as the cube of density, reaches a minimum, and subsequently rises to approach the Spitzer
prediction at low density. These results are compared with several theoretical predictions.

In a previous paper,1 we presented measurements of the electrical conductivity of  copper
plasmas having densities ranging from about 0.3 to 3 and temperatures in the range
8,000–30,000 K. Data for that report were obtained by measuring the resistance of plasma
created by vaporizing copper wires inside glass capillaries. In the present paper, we have
extended these measurements to lower densities. We have departed from the use of glass
capillaries to confine the plasma during the measurement period, and have instead utilized
water as the confining medium for the vaporized metal wires, a method that offers a significant
advantage in interpretation, while restricting somewhat the high density limit of measurement.

In order to make a measurement of the DC electrical conductivity of a metal plasma,
we create a cylindrical plasma by vaporizing, with a burst of current, a metal wire embedded
in water. The resulting plasma column expands radially, compressing the surrounding water
and causing a cylindrical shockwave to move radially outwards in the water. The plasma
is observed to remain quite stable during this expansion, and very little diffusion of energy
occurs between the plasma and water on the short timescale of the observation.

DATA ANALYSIS

In interpreting the data we assume uniformity of the plasma column. To support this
assumption we estimate the thickness of  the boundary layer that forms at the interface
between water and plasma. A scale length for the thickness of this boundary layer
is obtained by equating the heat flow in the temperature gradient across the layer to that
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required to raise the temperature of a layer of that thickness in a time  The result is

where is the thermal conductivity,  is the mass density, and C is the specific heat. Inserting
parameters appropriate for water, utilizing the thermal conductivity for compressed heated
water,2 and taking for the timescale the observation time of about one microsecond, we find
the scale length for the boundary layer thickness to be about one micrometer. Applying the
same formula to the parameters appropriate to the plasma, utilizing the Wiedemann–Franz
relation to deduce the thermal conductivity from our measured electrical conductivity, we
find that the scale thickness of the boundary layer is about 2 micrometers. We conclude that
boundary layer at the plasma-water interface is thin enough to be ignored in our calculations
of the conductivity.

Determination of the resistance R(t) of the column is straightforward, as both the current
and voltage across the column may be measured. As the wire vaporizes, the pressure rises
rapidly, and the surrounding water is compressed, sending a shock wave radially outwards.
The diameter d(t) of  the plasma may be determined from measurements of a streak photo of
the expanding plasma, and the conductivity then follows simply from

The density is now calculated making use of the assumption that the mass of wire initially
present now fills the plasma volume uniformly, and ignoring any edge effects.

A satisfactory method to measure the plasma temperature has not been found. Owing to
the high plasma density, the optical depth is very small, of order microns, so one would expect
that light radiated from the plasma would be Planckian, but representative of the plasma at a
depth that lies only in the boundary layer. We are forced, therefore, to use an indirect means
of finding the bulk plasma temperature.

To do this, we make use of the LANL SESAME equation of state tables for the metal
under study to relate the measured input energy to the changes in temperature and pressure.3

We need, in addition, a model for the growth of the column diameter due to the plasma
pressure. A one-dimensional cylindrical fluid code, following the model of Plooster,4 is used
to describe the compression wave that propagates into the water. It shows the compression of
the water by the expanding copper vapor and the shock wave generated by this compression.
Equation of state data of water for use in this code are taken from Rice and Walsh.5

The plasma column diameter computed as above may be compared with the column
diameter observed by streak photography. Figure 1 shows this comparison. The time
correspondence for this comparison was made using the spark marker described above,
thus there are no adjustable parameters. The close correspondence between calculated and
observed diameter gives confidence that the calculations yield a valid picture of the plasma
expansion and of the temperature.

As the plasma column expands due to the high internal pressure, the density falls,
providing us with a simple means to measure conductivities at a variety of densities. Variation
of the charge voltage on the capacitor and of the external series impedance in the circuit allows
some control over the temperature vs. density profile. Figure 2 shows time traces of measured
current and voltage, and the results of the calculation for pressure, density, temperature, and
conductivity.
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Figure 1. Comparison of computed plasma radius with streak picture. Lines are loci of grid points of
calculation. Points are from streak picture.

Figure 2. Computed time traces of current (solid line), ohmic voltage (dotted line), pressure, mass density,
temperature, and conductivity for the shot of Fig. 1.
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Figure 3. a) Electrical conductivity of copper plasma at four temperatures. The dashed lines are theory from
the book by Ebeling et al. and the solid lines are theory of Lee and More. b) Electrical conductivity of
aluminum plasma at four temperatures. Theory lines as in Fig. 3a.

RESULTS

Several hundred shots were made, using 99.9% purity 125 micron diameter copper wire
as the specimen, and using a variety of charge voltages and external series impedances in the
discharge circuit. For each shot, the time history of the measured and calculated parameters
were recorded. Data at times when the calculated temperature was within ±3% of selected
temperatures (in 2000 K steps) were then extracted for plotting in Fig. 3a.

For a temperature of 10,000 K one sees that as density decreases, the conductivity
falls steeply, varying at the highest densities approximately as with density. At about
0.1 conductivity goes through a minimum, and subsequently rises with falling den-
sity. Such behavior has been predicted in dense hydrogen plasmas by Reinholz, Redmer and
Nagel,6 and has been seen in measurements on mercury plasmas.7 The conductivity must
rise from the minimum as density falls if it is to connect at very low density with the Spitzer
formula. For higher temperatures, the minimum becomes less pronounced.

A similar set of data were taken with 99.9% pure aluminum wires. Resultant conductivity
data plotted as a function of mass density are shown in Fig. 3b. In Figs. 4a and 4b, we display
the data for both aluminum and copper plotted vs. electron density, for two temperatures.
The ionization state for conversion of mass density to electron density was taken from a
Thomas–Fermi model of  More.8

DISCUSSION

The conductivity at fixed temperature seen in the present work falls more steeply with
decreasing density than that reported in I, which was derived from the glass capillary shots.
The two sets of data agree only at the highest densities. We suggest that the data taken in water
bath are more reliable, and that the discrepancy is in part due to the finite time required for
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Figure 4. Comparison of copper and aluminum conductivities, plotted versus electron density, at a)
T = 10,000 K; b) T = 20,000 K. Diamonds:copper; X:aluminum.
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the metal vapor to fully fill the glass capillary after vaporization begins as pressure is building
up. Typically this takes 300 or more nanoseconds. Previous low temperature data were
derived from results during this interval, and thus may have been influenced by nonuniform
density or even incompletely vaporized material in the plasma volume. In case of the water
shots, the plasma is bounded by water from the beginning, and there is no such period of
uncertainty about density. A further criticism of glass confinement stems from the less-than-
ideal cylindrical boundary formed by the glass. We observed in streak camera pictures in I
that the glass fractured close behind the cylindrical shock wave. This would have formed
fissures in the glass into which plasma could seep, causing the density to depart from that
computed with the one dimensional compression model.
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MEASURING THE EOS OF A DENSE, STRONGLY COUPLED PLASMA:
DESCRIPTION OF THE TECHNIQUE*

John F. Benage, Jr., George Kyrala, Jonathan Workman, and Thomas Tierney
IV

Los Alamos National Lab
Los Alamos, NM

INTRODUCTION

One of the most fundamental properties of materials is the relation between thermody-
namic variables as a function of the material state, designated the equation of state(EOS).
For most materials under many conditions, this relation is fairly well known, and there has
been much experimental work to determine this relation. One region of parameter space that
is not well known is the strongly coupled plasma regime. In this regime the EOS physics is
quite complicated due to the strong interaction of individual particles with each other. Many
theories attempt to calculate the EOS of a dense plasma, from one component plasma models
and density functional models to the standard Thomas–Fermi models which are widely used
to produce EOS tables. A lack of experimental data prevents a determination of the accuracy
of these models in the dense plasma regime.

This paper describes a new experimental design which we believe can produce reasonably
accurate data for the EOS of a dense plasma. This design takes advantage of the standard
shock technique used for determining the high pressure EOS of solids. It also utilizes recently
developed experimental techniques for producing dense, strongly coupled plasmas1,2 as well
as new diagnostic techniques3 for measuring the properties of these plasmas. The results
should be able to distinguish among theoretical models for plasmas at just under solid density
and temperatures of 10’s of eV.

DESCRIPTION OF THE TECHNIQUE

The standard shock technique for measuring the EOS of a material consists of producing
a steady shock in a solid by colliding a flyer plate at high velocity with a solid sample of
the material of interest. The flyer plate velocity and the shock velocity are the variables
measured in the experiment. If the flyer plate and the sample are the same material, the
material velocity behind the shock can be determined using the conservation of momentum.
These two measurements along with the equations for conservation of mass, momentum,

*Work performed under the auspices of  the Dept. of Energy.
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and energy across the shock allow one to determine the pressure, density, and energy of
the shocked material. The locus of points produced by a set of such experiments is called
the standard Hugoniot, where the variable changed is simply the flyer plate velocity. This
technique has been the major source of EOS data in the high energy density regime.

When using the shock technique for determining the EOS of a material, the conservation
equations across the shock interface must be utilized. These are written as

where and  are the densities ahead and behind the shock, is the velocity of the shock,
is the velocity of the material behind the shock,  and P are the pressures ahead and behind
the shock, and and  are the internal energies ahead and behind the shock. These equations
are applicable at the shock interface but only apply to the entire sample if the shock produced
is planar and steady in time. Here we have three equations and eight unknowns. If the initial
pressure and internal energy are very small compared to the final, then approximating them
as zero reduces the number of unknowns to six. In the case of solids, the initial density is
known. Then one only needs to measure two variables to determine the other three. If the
initial density is not known, then three variables must be measured to determine the rest.
Such is the case for this experiment and we will measure and and use the equations
above to determine the pressure and internal energy of the material behind the shock.

Using the shock technique on materials initially in the solid state is not very useful for
studying dense plasma effects on EOS. This is because the physics issues that dominate the
EOS of materials along the standard Hugoniot are issues of solid state physics, not dense
plasma physics. One would therefore like to do experiments in a region of parameter space
where the strong coulomb coupling plays a more significant role. This region of parameter
space lies in densities less than solid but at temperatures of a few eV. One way to reach these
types of conditions is to start off with lower density material not in the solid state. This is
what we will attempt to do.

A schematic of our experiment is shown in Fig. 1. In this experiment, we create a uniform
dense plasma by electrically heating an aluminum wire to a temperature of ~4eV and allow
this plasma to expand into the vacuum through a rectangular slit. The slit is removed from the
end of the wire a few wire diameters to allow the expanding plasma flowing through it to be
uniform. This should produce a plasma at densities of a few percent solid and temperatures
of ~ 1 eV. We will use a high power laser incident on this plasma plume from the side to
launch a shock into the plasma. This laser will deposit its energy at the critical surface,
producing a hot, high pressure plasma which drives a shock into the plume. By increasing
the intensity of the laser and therefore the pressure, we can obtain EOS measurements along
a Hugoniot starting from initial conditions much different than the standard Hugoniot. This
should provide some of the first EOS measurements of a dense, strongly coupled plasma.

To measure the material conditions, we will use two variations of the same technique.
This technique involves using a short pulse laser incident on a solid target to produce a hot
plasma source of x-rays. If  the intensity of the laser on target is set to the appropriate value, a
significant amount of  k-shell lines will be produced. By measuring the absorption of these x-
rays through the plasma along with the spatial extent of  the plasma, we can determine the mass
density, assuming we know the absorption cross section. To insure we are confident of this
cross section value, we will use a specific high energy line for this absorption measurement.
In our case, we plan to use the 4.7 keV line from TixxI. The production of this line requires
an intensity on target of Also, the absorption of photons at this energy
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Figure 1. Experimental arrangement for high-density plasma measurements. Included are x-ray and optical
diagnostics.

through aluminum should not be affected due to the low ionization state of aluminum at these
conditions.

The same x-ray absorption technique can be used to measure the propagation of the
shock through the plasma. In this case a longer pulse of x-rays must be used along with a
streak camera to obtain a time history of the shock position in the plasma. The line need not
be Ti in this case since an absolute absorption number is not required. Thus, we intend to
use the 1.3 keV line from MgxII for this measurement. Production of this line only requires
an intensity of but since it is needed for a much longer time, the energy in
the laser is similar. Both cases require accurate measurements and therefore we need very
high spatial resolution when imaging the x-ray absorption through the plasma. To make
these measurements, two x-ray microscopes are being constructed. These microscopes will
produce a spatial resolution of  at the plasma. This spatial resolution should provide
sufficient accuracy in our measurements to determine the density within 5% and the energy
and pressure within 15%.

The initial conditions we expect to produce in the plasma plume are aluminum densities
of at a temperature of ~ 1 eV. The laser intensity available to produce a
shock in this plasma will be producing aluminum densities of ~

and temperatures of ~ 25 eV. The for these plasmas, which is the ratio of the average
potential energy between ions to their temperature, will be of order 10. At similar conditions
for Be the theory of Perrot4 differs from the Thomas–Fermi model5 by 25% in energy. This
difference should be outside the error bars of our experiment, therefore determining which
EOS theory is most accurate in this regime.

Presently we are completing work on the pulsed power machine being used for heating
the aluminum wires. Soon production of the aluminum plasma plumes will begin with
subsequent measurements of their spatial extent, expansion rate, and temperature using a
visible framing camera. The construction of the x-ray microscopes for imaging the plume
and measuring the density has begun and should be completed shortly. This will be used
to measure the density of the plasma plume and determine when the conditions we seek are

321



produced in this plasma. Subsequently we will complete the construction of the laser for
driving the shock in the plasma along with the construction of the second x-ray microscope.
This will enable us to begin the EOS measurements in earnest.
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FISSION-FRAGMENT INDUCED DAMAGE OF SURFACES: A
QUASICLASSICAL TRAJECTORY CALCULATION

K. J. LaGattuta

Los Alamos National Laboratory
Los Alamos, NM

INTRODUCTION

The subject of fission-fragment (FF) propagation through solids is rather old. Never-
theless, present understanding is still limited at the microscopic level to a simple picture
of peripheral ion–atom inelastic scattering; i.e., ionization induced by long range Coulomb
interaction.1 Even though this picture enables one to compute the range of a FF reliably in a
variety of materials, the extent and type of lasting damage induced in materials can hardly be
predicted.

A typical FF carries an equilibrium net positive charge of 20 < Z < 25, and moves with
a speed of 3 < v < 5 a.u. A flux of ionized electrons is emitted along a FF track, exposing
a cylindrically shaped volume of positively charged ion (lattice) cores. The initial charge
of ions along the track depends on the number of valence (loosely bound) electrons of the
material. Heavier elements tend to have more loosely bound electrons than lighter elements,
so their charges tend to be greater.

The ion cores experience a large mutual Coulomb repulsion, causing them to move out
from the track. As they move, they are subject to electrical neutralization, either through
three-body recombination with continuum electrons, or by electron pickup reactions with
lattice atoms. The time required to neutralize can be expected to depend strongly on details
of continuum electron density and effective temperature, as well as the type of material.
However, simple estimates suggest that the time required to neutralize will be of  the order of
1psec or less, for an ion moving with a few eV of kinetic energy, through a solid material. In
this case, one expects ion cores to travel ten or so lattice spacings before neutralizing.

There has been considerable speculation that this highly energetic, albeit utterly micro-
scopic process of rapid ionization followed by ion motion and rapid recombination, can give
rise to a shock-wave, which could conceivably propagate over distances of microns.2,3 If this
shock-wave were to encounter a surface, then reflection at the surface and “unloading” of
the wave could result in spall damage to the surface, and ejection of surface material into the
vacuum.

Past experiments,4,5 have indicated that numbers of atoms can indeed be emitted from a
surface, if and when a FF emerges from that surface. There is little agreement, however, on
what these numbers are, and published measurements vary over many orders of magnitude.
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For these fragments, several mechanisms for producing surface damage have been suggested;
e.g., the “displacement spike” theory6 for insulators, and “melt motion”7 for metals impacted
by very low energy ions. The mechanisms relevant to FF’s might well all be grouped under
the heading of Coulomb explosion phenomena.

None of these hypotheses have much to recommend them, however, other than an air of
plausibility. Therefore, in an attempt to gain heuristic knowledge of the physical mechanisms
operating here, we have chosen to embark upon a program of calculations based on a new
variation of the classical trajectory method.

THE QUASICLASSICAL METHOD

The classical trajectory method has had much success in elucidating the connection
between microscopic and macroscopic behaviors in solids.8 However, the classical trajectory
method cannot cope with the ionization and recombination of many-electron atoms in any
direct way. The reason for this is simply that classical atoms with two or more electrons are
dynamically unstable.9

Recently, a method has been created for stabilizing multi-electron atoms, within the
confines of Hamiltonian mechanics. We refer to this as the quasiclassical method; it has also
been called Fermion Molecular Dynamics.10 In this approach, two momentum dependent
potentials are added to the many-particle Hamiltonian: One potential accounts for the effect
of the Heisenberg uncertainty principle and the other potential for the Pauli exclusion
principle Both of these potentials are repulsive and short range; acts between all pairs
of oppositely charged particles, while acts between all pairs of electrons with the same
“spin.” In this method, electrons are deemed to possess two spin degrees of freedom, and are
labelled either spin-up or spin-down.

With the addition of these two types of potential to the many-particle Hamiltonian, a
system of  a nucleus with charge Z, and Z electrons, half with spin-up and half with spin-down,
forms a dynamically stable electrically neutral atom. It is observed that for any
this scheme results in stable atoms with reasonably good values of the ionization energy, and
possessing a shell structure.11 This is the model that we have adopted for foils of uranium
metal by fission fragments, our many-atom calculations.

PRELIMINARY RESULTS

We performed a 2D simulation with a lattice of helium atoms. The initial lattice chosen
was square, 6x6 with a lattice spacing 6.6a.u. The projectile had a charge a speed

and passed through the precise center of of the lattice, moving in its plane and
parallel to one side.

Immediately following the projectile’s exit from the lattice a burst of ionized electrons is
emitted from the neighborhood of the track, predominantly into the projectile’s wake. These
are so-called convoy electrons.12 At this time, approximately 3/4 of the atoms along the track
are found to be singly ionized. There is no other prompt ionization.

The lattice is left with two parallel lines of ions in its interior, separated by just
one lattice spacing. The two lines of ions then expand outward. Over the duration of the
simulation, which was 0.07psec, no ion neutralization was observed; i.e., due to collisions
with lattice atoms. The ions at or near to the center of the lattice are observed to move almost
perpendicular to the projectile track; the ions at a lattice edge are observed to move almost
parallel to the projectile track. Absent collisions, the actual path traveled by any given ion
is determined entirely by its location inside the line of charges. One can estimate the angle
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Figure 1. 6x6 (2D) lattice of helium atoms struck by projectile of  charge and speed
projectile traveled from bottom to top, in-plane and along the lattice midline; lattice ion positions (circles) are
plotted every 4f sec.

relative to the projectile track at which a given ion moves by computing the initial value
of the electric field at its position, due to all of the other ions; see Fig. 1. Similarly, one
can compute the total repulsive potential energy possessed by the ions immediately following
their creation. After separation, this potential should translate into  of  kinetic energy,
on the average. This value is consistent with the length of the ion tracks recorded.

Although the paths followed by individual electrons are complex, the paths seem
to be simple; i.e., nearly straight. However, this simplicity is somewhat misleading, since
for the very small lattice size considered above, no neutralization of a moving ion was
observed to occur. This accords with estimates of the mean free path for neutralization under
the conditions of our simulation, which is ten or more lattice spacings. Larger lattices are
required, therefore, in order to reveal the full complexity of heavy particle motion.

The behavior exhibited in this simulation seems typical of the (hypothetical) response
of an electrical insulator, when struck by a fast moving, highly charged projectile (heavy
cosmic ray particle). Namely, that response known as the “ion-explosion spike,”6 in which a
persistent cylindrical volume of rubble (highly disordered lattice material interspersed with
voids) is created by the passing projectile.

SUMMARY

We have investigated the dynamics of a small or “minimal” lattice of helium atoms
with FMD. The lattice was struck by a fast, highly charged projectile, and a burst of convoy
electrons was emitted. The lattice then disassembled due to the mutual Coulomb repulsion of
the ion cores. The FMD method has enabled a calculation in which ionization, recombination,
and ion kinetic motion could all be followed simultaneously.

An interesting correlated motion of  lattice ion cores, following their creation by a rapidly
moving projectile, was observed. It is not clear to what extent this correlated motion is affected
strongly by the choice of projectile velocity; i.e., its orientation with respect to the lattice
principal axes. Recombination of ion cores was not observed, since the lattice employed was
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too small. Such motions may also be more nearly typical of behavior in insulators, rather
than conductors in which recombination is probably much more rapid.6

The code now being proven out, future work will focus on simulating the responses of
larger lattices to fast moving, highly charged projectiles. Lattice atoms with more electrons
will also be employed. At very slightly higher material densities, when valence shells of
adjacent atoms in the initial lattice are allowed to overlap, we expect to be able to see the
difference in responses between electrically insulating and conducting materials.
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THE SUN: STRONG CONSTRAINTS ON A WEAKLY-COUPLED PLASMA
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INTRODUCTION

The equation of state is one of  the three fundamental ingredients used to construct stellar
models.5 The other two are opacity and nuclear energy reaction rates. One star - the Sun
- is very special in two respects. First, the methods of helioseismology allow us to obtain
very accurate experimental data of the solar interior (in particular, sound speed and density).
Second, in the solar convection zone, helioseismology presents an opportunity to isolate the
question of the equation of state from opacity and nuclear reaction rates, since the stratification
is essentially adiabatic and thus determined by thermodynamics.3

The plasma of the interiors of “normal” stars, such as the Sun, is only slightly non-ideal.
One would therefore think that at least for such stars finding a good equation of state is not
too difficult. Indeed, simple models of the equation of state have been quite successful in
many aspects of stellar structure and evolution. However, the extraordinary accuracy of the
helioseismological data led to the further refinement of the idea what a “good” equation of
state for the Sun should be. This has been recognized in the early 80s and models with
improved equations of state were used in helioseismic studies (for a review see Ref. [3]).

Several discrepancies between the experimental data and models with simple equations
of state have been successfully identified as the signatures of various non-ideal phenomena.
The most obvious of these phenomena deal with the Coulomb interaction between charged
particles, pressure ionization, and the effects of the internal partition functions of bound
systems on the thermodynamical properties of the solar plasma. Though these phenomena are
only small corrections in such a weakly coupled system, they clearly surpass the uncertainty
of the experimental data.2 Helioseismology can therefore be used to test the validity of the
different nonideal correction terms implemented in the various equations of state.

Such analyses involving several popular equations of state have shown on the one hand
the necessity to include the leading Coulomb correction (expressed by the Debye–Hückel
approximation) in order to meet the helioseismological constraints.2,4 On the other hand,
even those equations of state that do include the leading Coulomb correction differ from the
solar data by more than the observational uncertainty. They also differ discernibly among
themselves, thus revealing the importance of the treatment of the nonideal effects beyond
the leading Coulomb term. Thus, though the solar plasma looks conceptually much simpler
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than a strongly coupled many-body system, the necessity to compute the solar plasma so
accurately requires a substantial effort, comparable to the studies of more strongly-coupled
plasmas. With this, helioseismology can make a contribution to the study of thermodynamic
properties of Coulomb systems under conditions unattainable on Earth.

RECENT PROGRESS IN THE EQUATION OF STATE

Equations of state with helioseismic accuracy

There are two basic approaches to realize nonideal equations of state: the so-called
chemical and physical pictures. In the chemical picture one assumes that the notion of atoms
and ions still makes sense, and ionization is treated like a chemical reaction. One of the
more recent realizations of helioseismic accuracy is the Mihalas–Hummer–Däppen (MHD)
equation of state,6,8,9 in which modifications of atomic states are expressed in a heuristic and
intuitive way, by the probability that the state is occupied as a function of the parameters of
the surrounding plasma.

The physical picture provides a systematic method to include nonideal effects (see
Ref. [7]). An example used in helioseismology is the OPAL equation of state.11,12 OPAL
starts out from the grand canonical ensemble of a system of the basic constituents (electrons
and nuclei), interacting through the Coulomb potential. Configurations corresponding to
bound combinations of electrons and nuclei, such as ions, atoms, and molecules, arise in this
ensemble naturally as terms in cluster expansions. Any effects of the plasma environment on
the internal states are obtained directly from the statistical-mechanical analysis, rather than
by assertion as in the chemical picture.

Bound-state energies and the position of the continuum

Arndt et al.1 have examined the consequence of shifts in bound-state energies and the
position of the continuum for thermodynamic quantities. A simple free-energy model was
used to examine the thermodynamic consequences of the results of a quantum statistical
calculations of two-particle properties in a plasma using Green-function technique.13 A
comparison with data inferred from helioseismology has shown that such an interdisciplinary
procedure works very well for lower-level approximations, such as the static screening in the
effective two-particle wave equation. However, in the case of dynamic screening in the wave
equation, the resulting thermodynamic quantities became inconsistent with observations.

This might have been due to an inadequacy of our method to compute the thermodynamic
quantities, or due to an inappropriate treatment of the ion contribution to the electronic self
energy corresponding to the dielectric function used in random-phase approximation (RPA).
In any case, such results superbly demonstrate the power of helioseismology to test models
of basic plasma physics.

Effect of the internal partition function

A recent study on the effect of different internal partition functions on a complete
set of three thermodynamical quantities10 has revealed interesting features about excited
states and their treatment in the equation of state. Fig. 1 shows a typical result, the quantity

for temperatures and densities corresponding to the hydrogen-ionization
zone of the Sun. The figure is for the simplest case, a pure hydrogen mixture. Further figures,
for other thermodynamic quantities and for a solar-type hydrogen–helium mixture, can be
found in the paper by Nayfonov & Däppen.10 In Fig. 1, results for five different equations of
state (eos) are displayed:
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Figure 1. for the temperatures and densities of a typical solar model, for various equations of state with
different internal partition functions. See text for line style and further details.

• MHD (asterisks): eos with standard MHD occupation probabilities,

• (dashed line): eos with the standard MHD internal partition function of
hydrogen truncated to the ground state (GS) term,

• OPAL (solid line): eos of OPAL tables (version of  November 1996),

• (dotted-dashed line): eos with the standard MHD internal partition function
of hydrogen replaced by the Planck–Larkin partition function (see Refs. [7,14]).

• (dotted): same as but with partition function truncated to the
ground state term.

The MHD equation of state with its specific, density-dependent occupation probabilities8

is causing a characteristic wiggle in the thermodynamic quantities. We point out that the
presence of excited states is crucial, because  still has a density-dependent occupation
probability of the ground state, but the wiggle does not show up. We also point out that the
wiggle, which is a genuine neutral-hydrogen effect, is present despite the fact that most of
hydrogen is already ionized. Indeed, in the range of  the wiggle (log T = 4.7–5.2), the fraction
of ionized hydrogen increases from 90–97%.

When measured relative to the overall ionization-induced change of a thermodynamic
quantity, the signature of  the excited states has been found to be most prominent in the quantity

and less in and (s being
specific entropy). The opposite could have been expected. After all, and contain, in
contrast to temperature derivatives. One might think that temperature derivatives would
cause the highest sensitivity to fine details of the internal partition function because of its
Boltzmann factors. However, our results show that the most important effect is coming from
the density dependence of the occupation probabilities.
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Regarding the helioseismic relevance of the effect of the excited states, we mention that
it is also present in (and therefore in sound speed), and this with the same magnitude as
in Direct helioseismic inversions for should therefore be able to reveal the effect
of the internal partition function even with present observational data. Recent analyses
have demonstrated that the size of the excited-states effect is well within the power of
helioseismology.2

CONCLUSIONS

Progress in the solar equation of state serves two purposes. For solar physicists on the
one hand, a better equation of state will lead to a smaller uncertainty in solar models, which
thus turn into a more reliable astrophysical tool, for instance, to tackle the solar neutrino
problem. Plasma physicists on the other hand will recognize that a better equation of state
can be found by an astrophysical experiment in a domain where there is not much laboratory
competition.
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INTRODUCTION

In order to investigate hydrogen over a wide range of conditions, we have developed
two distinct quantum molecular dynamics(QMD) simulation approaches. The more sophis-
ticated1 relies on explicit diagonalization prescriptions at each time step within a density
functional(DF) scheme. The approach compares well to another ab initio molecular dy-
namics(AIMD) method (Car–Parrinello2) and to path integral Monte Carlo(PIMC).3 The
computational intensity of these methods limits sample sizes and simulation times to fairly
small values. To extend these limits, a more empirical tight-binding(TB)4,5 method has
evolved. The latter includes direct, exchange, and correlation electronic effects although at a
more approximate level than the AIMD; however, these TB models can effectively represent
the major mechanisms in a dense fluid: dissociation, ionization, and detachment and their
inverse processes. Since we have extensively reviewed these methods elsewhere,1,4–6 we
shall give only a brief description below.

QUANTUM MOLECULAR DYNAMICS

The basic unit of the molecular dynamics simulation consists of a cubic cell of length
L containing equal numbers of electrons and A periodic replication
of this cell throughout space represents the bulk nature of the fluid. We invoke the Born–
Oppenheimer approximation and treat the electrons quantum mechanically and the nuclei
classically. In this case, a simple two-step procedure suffices to evolve the system in time.
First, at a given time step for a fixed configuration of the nuclei, we solve the
Schrödinger equation, within a periodically replicated reference cell (supercell) and with
a single k-point (the point) sampling of the electronic Brillouin zone, for the quantum
mechanical force on each ion. Second, the ions are advanced temporally by solving the
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classical equations of motion. Repeating this two-step process evolves the system in time
by determining positions, velocities, forces, and electronic properties at each step. From the
trajectories, we can determine both static and dynamical properties such as pressure, diffusion
coefficients, and electrical conductivities.

Our AIMD approach centers on a finite-temperature DF procedure,7 based upon the
Mermin functional, which provides a highly accurate determination of the forces. Minimizing
this functional with respect to variations of the density leads to a set of equations for the
electron orbitals of the Kohn–Sham(KS) form. We operate within the local density
approximation(LDA) with a free electron gas form for the exchange contribution and the
Perdew–Zunger parameterization8 for the correlation contribution. In determining the forces,
we assume local thermodynamic equilibrium(LTE).

We solve the KS equations for the eigenenergies and associated electron orbitals
in terms of a plane-wave basis. The truncation of the plane-wave expansion at a fixed

energy cut-off produces a matrix of finite size, which we diagonalize by iterative techniques.9

Employing the Troullier–Martins pseudopotential10 with a small cut-off radius, typically of
the order less than half the average interatomic separation, considerably reduces the size of
the basis and the computational effort at each time step.

We have also developed TB models4,5 that accurately represent hydrogen over an exten-
sive range of temperatures and pressures. The total TB energy has the form:

where is the occupation number based on a Fermi–Dirac(FD) distribution at temperature T,
is an effective pair potential, is an eigenvalue of  with H and S, the hamiltonian

and overlap matrices respectively. A nonlinear least-squares fit yields the optimal form of
the terms in Eq. (1) that best reproduce a set of ab initio results. We have developed two
complementary tight-binding models: 1) a single s-type nonorthogonal basis(TBs)5 for low
temperatures(< 3eV) and moderate  and 2) a double s-type orthogonal

for higher temperatures and densities.
The frequency-dependent electrical conductivity derived from the Kubo–Greenwood

[KG] formulation11 has the form

where is the atomic volume, the frequency, and the velocity dipole matrix element
between states i and j. The eigenenergies and eigenstates used to construct come from
the KS diagonalization at a given time step.

Since our TB model does not explicitly contain spatial electron orbitals, we cannot
calculate the dipole matrix elements required in the KG formulas. However, we can still
determine the dc electrical conductivity using approximations to the KG formula due
to Mott.12 These approximations apply mainly at low temperatures at which the difference
between the FD distribution functions becomes strongly peaked around the Fermi energy, and
the dipole matrix elements depend only weakly on the energy. For these conditions, Eq. (2)
becomes:

with aM representing an average nearest-neighbor distance within the fluid. The TB model
does produce an energy from the diagonalization, permitting the construction of
the density of states N(E). We report a trajectory-averaged electrical conductivity by averaging
over the above single time-step formulae.
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Figure 1. Resistivity as a function of  temperature and density for TBs(solid lines); experimental results13

(triangles).

Figure 2. Pressure as a function of temperature at a fixed  for H. TBs MD, 250 atoms (dashed
line). AIMD, 54 atoms (open circles). AIMD, 128 atoms (open triangles). PIMC (solid line).
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SIMULATIONS

Our applications of the above QMD methods have ranged over a wide variety of sys-
tems and physical environments including hydrogen, liquid alkali metals near melt, isotopic
hydrogenic mixtures at high densities and elevated temperatures, rare gas solids under high
compression, impurities in hydrogen plasmas, and polymers. We describe here several new
developments on dense hydrogen at low to moderate temperatures.

Recent gas gun experiments at Livermore,13 which compressed cryogenically-cooled
deuterium to densities approaching at temperatures of a few thousand K, have shown
a marked increase in the electrical conductivity with compression. The peak
2000/ohm-cm) corresponds closely to the liquid alkali metals or semiconductors while the
low temperature indicates a predominantly molecular fluid. Our earlier simulations,5 using
the TBs model for sample sizes ranging up to 1000 atoms, found several interesting trends: 1)
the fluid even at the highest densities remained largely molecular(> 80%); 2) the conductivity
scaled as the square of the monomer fraction; and 3) the electronic states around the Fermi
level had a large monomer component(> 50%). Since at these temperatures, the principal
contribution to the conductivity arises from those electronic states near the Fermi level, the
third finding indicates that the electron mobility critically depends on the monomer states.
Thus, even though the monomers comprise but a small fraction of the sample, they make a
substantial contribution to the states that most determine the conductivity. More elaborate
AIMD simulations confirm these basic findings. We have performed further calculations with
these models to gain a more quantitative comparison with experiment. In Fig. 1, we display
the resistivity as a function of pressure(density) for several temperatures. The basic
trends consistently match those of the experiment, within the error bounds, for the lower
temperatures. In addition, the MD calculations portray a highly transient system with the
lifetimes of the molecular bonds on the order of only a few vibrational periods. Therefore,
the dynamical interplay of the various constituents of the fluid plays an important role in
representing the nature of the system.

Recent experiments14 with the NOVA laser have called into question equation-of-state
models for hydrogen by indicating a large swing-out in the shock Hugoniot. Calculations
using the TB approaches5 described above do not show this excursion and lie closer to the
results predicted by older EOS models.15 To further explore this regime, we have performed
additional simulations with the TBs model (250 atoms) as well as with AIMD using sample
sizes of 54 and 128 atoms at a representative density. The results appear in Fig. 2 and
are compared with the PIMC. Two k-point sampling (not shown) yielded similar pressures
compared to the point sampling (Fig. 2) for 54 atoms with AIMD. In neither the TBs or
AIMD cases do we observe the rapid pressure rise at low temperatures (negative
attributed to a plasma phase transition.3
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INTRODUCTION

Hydrogen is the most abundant element in nature and has the simplest composition.
Despite considerable research, many aspects of its phases and structure remain unclear. In
particular, when dense hydrogen is compressed or heated, it is not obvious whether molecular
dissociation proceeds via a first order transition or a continuous transformation. Second,
at high density, it is uncertain whether the molecular fluid transforms directly to an ionized
plasma or into an intermediate atomic phase.1 Recent advances have allowed experimentalists
to probe the relevant region,2,3 but these issues remain unresolved. In this paper, we use a
fully interacting quantum many body method, restricted path integral Monte Carlo (PIMC),4

to model dense hydrogen at finite temperature and address these issues.

METHOD

We modeled hydrogen and deuterium as a neutral, spin zero system of electrons and
nuclei at temperature interacting with Coulomb potentials in a periodically repeated
cube. The quantum statistical mechanics of the system was incorporated via Feynman’s path
integral formulation,5 which expresses the low temperature physics of the system in terms of
its high temperature physics, given by the density matrix,

Once the density matrix is known, operators are computed as
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The sum is taken over all permutations of spin like electrons* with odd permutations
yielding a negative contribution. The negative sign is problematic for Monte Carlo methods
and is eliminated using the fixed node approximation.6 In this approximate formulation,
the domain of integration is limited to the positive domain of a trial density matrix, and
permutations are restricted to even exchange cycles. The observable expression then becomes

with and denoting all even permutations and the positive domain, respectively.
The Coulomb potential is first broken into long- and short- range pieces using an

optimized Ewald breakup. The many-body high-temperature density matrix, is then con-
structed from a product of two-body short-range density matrices and a long range many-body
correction. The density matrix is constructed to become exact as the time step, vanishes;

is chosen sufficiently small to provide a reasonable tradeoff between computational effort
and accuracy. Simulation temperatures ranged from 5000 K. to 125 000 K with
yielding the number of  ‘time slices,’ in the range of eight to two hundred.

The resulting high-dimensional path integral is evaluated using a generalized Metropolis
Monte Carlo method.6,7 Many details of the computational techniques employed may be
found in Refs. [6,8,9].

MOLECULAR FORMATION AND DISSOCIATION

Figure 1 provides an overview of the simulations at several temperatures and densities.
At the lowest density, molecules begin to appear near 15 625 K. Molecular formation
is essentially complete at 5000 K.10 It is apparent from the figure that dP/dT < 0 for the region
separating the plasma from the molecular fluid. This behavior is expected, since dissociation
can be separately achieved from any molecular state point by heating or compression. In
fact, as reported in Ref. [11], we find a region of dP/dT < 0 at constant density for
which we interpret as coexistence of  two phases. This region is the manifestation, at constant
volume, of a density discontinuity at constant pressure. Similar results are obtained for
deuterium.

While the cooler phase is clearly a molecular fluid, the hotter phase is not a plasma, but
rather a partially ionized atomic fluid. This can be seen from Figure 2, which exhibits the

T = 12 500 K) electron–proton pair correlation, This function shows
the radial redistribution, relative to free particles, of electrons in the presence of protons. The
maximum density is achieved near one Bohr radius, as expected for an atomic-like phase.
Further, a broad minimum exists near 3 Bohr, indicating the electrons localize near protons
long enough to exclude other electrons, even when very few molecules are present. This
feature disappears around 30000K, as hydrogen begins to ionize into a plasma.10

Figure 3 shows the electron exchange probability versus density and temperature. In the
plasma phase above 100 000 K, there is very little probability for an electron to be involved in
a quantum exchange. As temperature is lowered, however, the exchange probability grows
and peaks at the phase line, near 10000K. At constant temperature, exchange increases
with density. It is suppressed somewhat as molecules form but remains substantial well into

*Proton exchange is negligible at the conditions we considered and, so, was not considered.
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Figure 1. Proton–proton pair correlations,

Figure 2. The proton–electron radial correlation function,
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Figure 3. Probability of an electron participating in an exchange.

the molecular phase. Spin-like electrons form long, directed exchange cycles that span the
simulation cell. Since electrons of opposite spin occupy each molecular bond, these electron
exchanges are inter-molecular. In liquid helium, exchange cycles of this type are directly
related to superfluidity,9 so it seems likely that electronic exchange is related to electrical
conductivity. The electrons, then, would be in an unusual state in which they simultaneously
provide molecular bonding and contribute to the conductivity. This may explain the recent
experimental finding2 that shock-compressed hydrogen metallizes before the molecular state
is substantially dissociated.
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Hydrogen, being composed of the simplest atom, is a material whose properties have
attracted attention since long. It was as early as 1935 that the existence of a metallic phase at
high pressures has been postulated.1 Since then this problem has been intensely studied, not
only as a basic challenge in many-body physics but also because of important astrophysical
implications.2

Recent experiments with multiple shock waves show a remarked increase of the con-
ductivity by four orders of magnitude for pressures between 93 and 180 In these
experiments neither the density nor the temperature have been measured independently. In-
stead they were calculated by computationally simulating each measurement using a standard
equation of state for hydrogen in the molecular fluid phase.4 Relating the resistivity to a
density-dependent band gap and to the temperature, the data have thus been interpreted in
terms of  a continuous transition from a semiconducting to a metallic diatomic fluid at 140 GPa
and 3000 K.

However, this view does not comply with several theoretical investigations using different
advanced many-body methods which all predict a first-order phase transition. A chemical
picture has been employed in [5] where hydrogen is described as a mixture of H2, H, H+

and free electrons where the properties of molecules, atoms and ions change with increasing
density because of the polarization due to strong coupling. Hierarchical schemes based
on the hypernetted chain (HNC) equations allow to account for both long- and short-range
correlations in fluids6 and these have been applied to the hydrogen problem.7 Using the
equation of state emerging therefrom and corresponding models for the conductivity,8 the
results of the multiple shock wave experiments3 have been interpreted as a first-order transition
between molecular and metallic phases. This view is supported by path-integral Monte Carlo
(PIMC) studies of hydrogen9 which show a decreasing pressure P(T) as the temperature is
raised between 5000 K and 10000 K at densities around This drop in
pressure is due to the decrease in electron kinetic energy density upon the breaking of the
molecular bonds during the dissociation of the H2 molecules. A tight binding calculation10

shows no such drop in pressure, on the other hand.
Here we investigate the problem of a phase transition in hydrogen at high pressures on

the basis of extensive numerical simulations of the equation of state, pair correlation functions
and charge transport coefficients. To this end, we employ an efficient quantum mechanical
simulation scheme, the wave-packet molecular dynamics (WPMD). The technical simplifi-
cations of the scheme allow to use much larger samples which, in turn, help to pin down
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the structural changes more precisely. The WPMD was developed for simulations of dense
two-component plasmas where quantum effects play a crucial role to guarantee the stability
of the system.11 It aims to combine the simplicity of classical MD simulations with the es-
sential quantum features of the dynamics. As usually done in molecular physics, the ions are
treated classically while the electrons are described by quantum mechanical wavefunctions.
The dynamics of both constituents is carried through simultaneously without recurring to any
adiabatic approximation. That is a formidable task. The simplifications consist in describing
each electronic wavefunction by a Gaussian wave packet whose position, momentum and
(complex) width remain as free dynamical parameters. As a further approximation, antisym-
metrization is expanded into a hierarchy of exchanges and the hierarchy is cut at the order
of pairwise exchange. Exchange correction remains small for delocalized electron states at
temperatures down to one tenth of the Fermi temperature   (where
m is the electron mass). The approximation holds to even lower temperatures for localized
molecular states. The method has been checked by comparison with density-functional meth-
ods12 and applied successfully to various situations in plasma physics.11,13 The ansatz with
Gaussian wave packets and the approximative treatment of exchange yield a very efficient
scheme which allows to treat large samples. And large samples are particularly important in
studying phase transitions.

The actual WPMD-simulations reported here have been done with N = 256 or N = 2048
electrons and the same number of protons in a periodically continued box. For purposes of
comparison we note that the number density n of either protons or electrons is related to
the Wigner–Seitz radius a by Introducing with the Bohr radius

one obtains for the number density and the
mass density for hydrogen is

An important tool to analyze the structure of a hydrogen system is the proton–proton
correlation function In Figs. 1 and 2 we compare the WPMD result14 for with
N = 2048 electrons with the dissociation model7 for      At the lower
temperature T = 2000 K (Fig. 1), both treatments show a strong molecular peak near the
bond length of the molecule at and a broader peak due to next-neighbor molecules
near The sharp minimum around indicates the low degree of dissociation under
these conditions, it is 0.07% in the dissociation model. As shown in Fig. 2 the WPMD and
the dissociation model agree also very well at a higher temperature T = 5000 K. Here the
dissociation model yields 5.9% for the degree of dissociation, and the minimum near
becomes less pronounced. The pair correlation from the tight binding model10 is even less
structured while the PIMC result9 with 32 electrons yields an even sharper structure with a
shift towards smaller bond lengths. It must be kept in mind in this context, that this PIMC
simulation involves a high-temperature approximation, as the nodes of the density matrix
are taken from free particles. One may expect that this assumption becomes progressively
questionable in a regime dominated by molecules.

In the upper part of Fig. 3 we show for the same density the
pressure as a function of the temperature. As stated above the free-node approximation9

becomes increasingly unreliable for while the WPMD agrees nicely with an earlier
PIMC result for the groundstate, obtained by introducing Slater–Jastrow correlations into the
trial density,15 as indicated by the arrow in Fig. 3. Both the PIMC (with 32 electrons) and the
WPMD results (with 256 electrons) agree in that they show a drop in pressure around 8500 K
which is due to the angular delocalization of the electrons upon the breaking of the molecular
bonds. Beyond that temperature drops are forming in the WPMD in which the local density
exceeds the limits where the restriction to pairwise exchange is acceptable.

The experimental results suggest that the transition near 8500 K is distinguished by a
jump in the conductivity. To that end we have computed the electronic conductivity which
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Figure 1. Proton–proton pair distribution at T = 2000 K and The WPMD result
for 2048 electrons (data points) is compared with the dissociation model7 (full curve).

Figure 2. Proton–proton pair distribution at T = 5000K and The WPMD result
for 2048 electrons (data points) is compared with the dissociation model7 (full curve), the PIMC simulation
with 32 electrons9 (dashed curve) and the tight binding calculation of Ref. [10] (dotted curve).
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Figure 3. Pressure (upper part) and conductivity (lower part) as a function of  temperature at
WPMD results for 256 electrons as data points connected by solid curve for

T < 8500 K and dotted curve for T > 8500 K. PIMC results9 as data points connected by dashed curve for
T > 8500 K and dotted curve for T < 8500 K. The arrow in the upper part indicates the ground state pressure
from Ref. [15].
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carries the dominant fraction of the total conductivity. By virtue of the fluctuation–dissipation
theorem  and the diffusivity is obtained from the velocity autocorrelation
function   The VAF is easily calculated in the true
dynamics of the WPMD. The resulting conductivity is shown in the lower part of Fig. 3. We
see a distinct rise through two orders of magnitude from low conductivity at lower densities
to large conductivity at high densities.

At this stage it appears that the PIMC and the WPMD complement each other in the
sense that the PIMC with fixed nodes is better suited to describe delocalized states while the
WPMD with only pairwise exchange superiorly describes the localized molecular states. In
Fig. 3 we therefore dotted the curves joining the PIMC data for T < 8500 K and the WPMD
data for T > 8500K.

Our results tend support an interpretation in terms of a first-order phase transition in
high-density hydrogen. The calculations at fixed density  show a sudden
drop of the pressure in a temperature interval between 8000 K and 9000 K. These values
comply with the experimental results of Weir et al.3 The transition can be interpreted as a
transition from molecular hydrogen to a metallic fluid.

The work has been supported by grants from the Bundesministerium für Bildung und
Forschung (BMBF, 06 ER 830 2), and the Gesellschaft für Schwerionenforschung (GSI, ER
TOT).
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INTRODUCTION

Due to the long-range character of the Coulomb interaction, many-particle effects play
an important role in strongly coupled plasmas. We will study here the effects of screening
beyond the Debye–Hückel theory on the transport properties of strongly coupled hydrogen
plasma. In previous papers,1,2 an effective two-body potential has been derived that takes into
account three-particle correlations. This potential was obtained on the basis of a sequential
solution of Bogolyubov’s chain equations and can be given in analytical form as [1]

Here we used the definitions and where is
the Debye screening length. The potential is expressed in terms of the thermal energy,

 and is a nonideal plasma parameter. is a correction
coefficient for different values of

In the present paper, we present an improved evaluation of the plasma transport quan-
tities and perform quantum mechanical calculation of the scattering cross sections by means
of scattering phase shifts for the effective potential (1) solving Schrödinger equation nu-
merically. For comparison, the analytical expression for the differential cross section in
Born approximation is also determined for the effective potential (1). The plasma parameters
considered here are and  With the calculated
transport cross sections, the electrical conductivity of fully ionized, strongly coupled hydro-
gen plasma is determined within the frame of the Chapman–Enskog method. Comparison
with available experimental data as well as with results of other theoretical approaches is
performed.
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SCATTERING CROSS SECTIONS

The various cross sections for the scattering between charged particles in a plasma are
related to the scattering phase shifts In order to calculate scattering phase shifts
the radial Schrödinger equation for the relevant scattering process is considered,

where is the interaction potential between the particles. We solve Eq. (2) by means of
the amplitude–phase method.3  The wave function is presented as,

where is the amplitude function. After inserting this expression into the Schrödinger
equation (2), the so-called Calogero differential equation for the scattering phase shifts
is derived:3

Here, and are the Rikkati–Bessel functions which are associated with the Bessel and
Neumann functions of fractional order and, therefore, can be given by recurrence relations.3,6

The SPS are obtained from the phase functions for large distances,

Therefore, the calculation of the SPS reduces to the solution of a non-linear differential
equation with the initial condition (Cauchy problem). In this paper, Eq. (4) is
solved numerically by means of the Runge–Kutta method in fourth order, using the effective
potential (1). Considering that the Rikkati—Bessel functions as well as the effective
potential (1) are singular at the integration of Eq. (4) has to start at a finite distance

with respective boundary condition. With increasing distance r, the SPS
tends to a constant value which defines the phase shift via (5). We have determined  at a
distance, where the absolute value of the effective potential (1) becomes less than

For large orbital quantum numbers  the SPS can be calculated in the quasi-
classical (WKB) approximation,4

where and are the roots of the first and second integrands, respectively. is the cutoff
radius, where The maximum value of l for the calculations of the
cross sections can be obtained from the condition

which leads to denotes the integer part of  x.
The numerical calculation of SPS by means of the Calogero equation (4) is time

consuming. Furthermore, for higher / values, the evaluation of the functions and
becomes complicated. Therefore, we apply the following procedure for the calculation of the
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Figure 1. Scattering phase shifts as function of the orbital quantum number l for  different  Dashed
line: partial wave expansion; full line: WKB approximation.

cross sections. The SPS for  are obtained from the Calogero equation (4), whereas
the remaining SPS are evaluated within the WKB approximation (6). This procedure is
checked by comparing the WKB SPS and the correct numerical ones; if the relative deviation
is less than the higher SPS are calculated by means of the WKB approximation.

In Fig. 1 the numerical results for the SPS solving Eq. (4) and utilizing the WKB
approximation are shown for  and - Bohr radius).
For the WKB approximation can be used instead of the numerical solution of
the Calogero equation (4). In the high-energy region, the scattering potential may
be considered as a weak perturbation and the Born approximation becomes valid. Also, we
obtain explicit results for the different cross sections in the plasma in the Born approximation.

Fig. 2 show the TCS for electron–proton scattering as function of the wave number for
in comparison with the Born approximation and the TCS for the Debye potential. With

increasing nonideal parameter  remarkable deviations between the TCS occur at low and
moderate energies. At higher energies, the agreement is better.

ELECTRICAL CONDUCTIVITY

We consider now the electrical conductivity of a classical, fully ionized, strongly coupled
hydrogen plasma where the electrons are not degenerate, i.e.,

is the Fermi energy of electrons. For instance, for and
we have whereas for and a value of is derived.

The plasma conductivity can be treated within the frame of standard kinetic theory, namely
the Chapman–Enskog method.9,10 As shown in [11–13], the linear response theory yields
identical results for the conductivity in the non-degenerate case and, furthermore, the second-
order approximation of the Chapman–Enskog method gives already convergent results.

The expression for the electrical conductivity in second-order approximation within the
Chapman–Enskog method accounts for electron–proton and electron–electron scattering and
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Figure 2. Transport cross sections for electron–proton scattering. Full line: partial wave
expansion; dashed line: Born approximation; dash-pointed line: TCS for the Debye potential.

can be written as [9,10]:

is the collision integral in first-order approximation, is the expression for the second-
order approximation which consists of various combinations of integrals, b is the impact
parameter, and the dimensionless relative velocity.

The reduced electrical conductivity can be given as follows:

where

In Fig. 3 the reduced electrical conductivity (10) is given as function of the plasma
non-ideal parameter Available experimental data,14–16 the standard Spitzer curve,17 and
results from other quantum statistical models based on the T matrix approach13,18 and the
Ziman formula19 are also given for comparison.

The electrical conductivity obtained within the present approach is in reasonable agree-
ment with the Spitzer theory for and the available experimental data in that region.
We consider here the model of a fully ionized plasma, whereas in the experiments a partially
ionized plasma is realized so that the Coulomb term of the conductivity has to be extracted.
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Figure 3. Reduced electrical conductivity as function of the plasma non-ideal parameter Full
line: present two-momentum approximation; dash-pointed line: one-momentum approximation; long dashed
line: Born approximation; dashed line: results according to the Spitzer theory;17 dotted line: T matrix results
for the Debye potential;13,18  results of Ichimaru et al.19 Experiments are shown for comparison:
open box from [14,15]; full box, from [16],

The discrepancies to the other theoretical approaches in that region are probably caused by
the utilization of different interaction potentials.
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MONTE CARLO SIMULATION OF THE EQUILIBRIUM PROPERTIES OF A
STRONGLY COUPLED HYDROGEN PLASMA

F. B. Baimbetov, M. A. Bekenov, T. S. Ramazanov, and N. N. Izteleuov

Department of Physics, Al Farabi Kazakh State National University
Tole bi 96, Almaty, 480012, Republic of Kazakhstan

INTRODUCTION

The thermodynamical properties of a strongly coupled plasma (SCP) play a important
role in the study of astrophysical objects (neutron star crusts, the interiors of white dwarfs,
giant planets etc.)

In the statistical physics of many-particle systems the equilibrium properties can be
studied within various theoretical methods (Green functions, path integral methods, integral
equation, virial expansion methods etc.)

Usually this methods are being used at (weakly coupled plasma) and at
100 (fully generate plasma). In the intermediate region between these limiting cases the
thermodynamical properties of a SCP can be studied within computer simulation methods
(Monte Carlo or molecular dynamics calculations). Where is coupling parameter (see
below).

In present work the thermodynamical properties (radial distribution functions and equa-
tion of state) of a SCP are calculated by Monte Carlo simulation method. We consider a
fully ionized, strongly coupled hydrogen plasma. The number density is considered in the
range and the temperature domain is
Dimensionless variables are used. The coupling parameter  is defined by

where is Boltzmann constant; e is the electrical charge; is the Wigner–
Seitz radius (average distance between the particles). Here the values of are changed
in the range between 1 and 10. The dimensionless density parameter is used
(where is the Bohr radius). The degeneracy parameter for the
electrons is defined by the ratio between the thermal energy · T and the Fermi energy

In this case and we have a fully ionized, strongly coupled hydrogen plasma and
electrons are degenerate.
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Figure 1. Effective electron–proton potential for dense hydrogen plasma at  and  (solid line).
Triangles denote the numerical solution of Eq. (3) for a dense, classical plasma2 which accounts for
higher-order screening effects. The dashed line denotes potential (5) which shows quantum corrections at short
distances. The dot-dashed line: DH potential.

INTERACTION MODEL AND COMPUTATIONAL RESULTS

In present work we utilize a semiclassical effective potential1 which accounts long-
range, many-particle screening effects2,8 and short-range, quantum-mechanical diffraction
and symmetry effects.3,4 The many-particle screening effects have been accounted using the
equation for the effective potential:5,6

with the boundary conditions

The effective potential (pseudopotential) is expressed in units of is
the Laplace operator.

The quantum-mechanical diffraction and symmetry effects can be accounted by effective
potential:3,4

The effective semiclassical potential was obtained as follows. A spline interpolation
between the potential (5) and the numerical solution of equation (3) with the boundary
conditions (4) was performed at the intersection point. In figure 1 we can show the effective
electron–proton potential for and

The Monte Carlo simulation results (for the radial distribution functions) are illustrated
in the figure 2. We observe that as the coupling parameter (or density) decreases the electron–
electron and proton–proton correlation functions are developed a local extremums (minimums
and maximums). For example, electron–electron distribution function have a pronounced
peak (see Fig. 2). Similar dependence has been found in [7] by Path Integral Monte Carlo
simulation and interpreted as an formation of bound states.
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Figure 2. Radial distribution functions between electrons at

This work was supported partially by the Science Foundation of Kazakhstan under Grant
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FERMIONIC PATH INTEGRAL SIMULATION OF DENSE HYDROGEN

Burkhard Militzer1, William Magro2, and David Ceperley1

1Department of Physics, University of Illinois
Urbana, IL

2Department of Physics and Theory Center, Cornell University
Ithaca, NY

INTRODUCTION

Recent laser shock wave experiments by Da Silva et al.1 have raised new interest in
hydrogen and its isotopes at high pressure. Those are the first measurements in a region
of pressure where hydrogen has been predicted to undergo a plasma-phase transition. The
existence and the properties of this transition are topic of current discussions.2,3 In this paper,
we report path-integral Monte Carlo (PIMC) simulations4 and compare with the experimental
results for the equation of state. Further, we identify the number molecules, atoms, and free
particles in hydrogen using cluster analysis, which can be compared with chemical models.3,5

At high densities, the analysis provides information on the nature of the phase transition.
Path-integral simulations are a powerful tool to determine the static thermodynamic

properties of a fully interacting quantum system. It is based on the density matrix, which can
be expressed as a product of high temperature density matrices with

This becomes a path-integral, which can be evaluated using a multi-stage Metropolis
algorithm.4 The well-known Fermion sign problem is treated by introducing a nodal restriction
on the paths. In the simulation, we use the nodes of the free-particle density matrix.6

COMPARISON WITH SHOCK WAVE EXPERIMENTS

The Nova laser shock wave experiments by Da Silva et al.1 provided the first direct
measurements of the equation of state of Deuterium in the pressure region of 0.25 Mbar

Mbar at temperatures above 1000K. In these experiments, a shock wave propa-
gates through a sample of precompressed liquid deuterium characterized by its initial state,

Assuming an ideal shock front, the variables of the shocked material
satisfy the Hugoniot relation7

The initial conditions in the experiment were T = 19.6 K and We set
Ha per molecule8 and
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Figure 1. Comparison of Hugoniots from theory and experiment

Theoretical and experimental Hugoniots are shown in Figure 1. Experimentally, one
sees a significantly increased compressibility in the range 0.7 Mbar to 2.1 Mbar. This differs
substantially from the widely used Sesame data base. Comparing PIMC simulations and the
experiment one finds reasonable agreement up to P=0.7 Mbar. In the region from 1.0 Mbar
to 2.1 Mbar, however, they differ considerably. The PIMC becomes increasingly reliable as
temperature increases. Hence, the discrepancy at pressures above 1.0 Mbar is a fundamental
problem. According to PIMC, this region is associated with temperatures above 10 000 K as
shown. By 15 000 K, almost all molecules are dissociated. At 50 000 K, approximately 60%
of the atoms are ionized. These findings cast doubt upon the explanation of the experimental
results given in [1], where they were interpreted as effects of dissociation of molecules. Since
the ionized phase is not negligible one must also question the explanation in terms of Ross’s
molecular dissociation model.9 We also compare with the tight binding model in Ref. [10].
If 1 eV per atom is added to that model, one finds good agreement with the PIMC above
0.5 Mbar. Finally, we compare with the ideal plasma model,5 in which one considers a gas
of free molecules, atoms, ions, and electrons. We find that some of the measured data points
lie at higher densities than predicted by this simple model.

CLUSTER ANALYSIS

Although our calculations describe hydrogen directly as electrons and protons, it is
also useful to study the system in the chemical picture,5 in which hydrogen is composed of
chemical species such as H atoms, H2 molecules, and the ions  etc. In the following
cluster analysis, we will identify the concentration of those compound particles from PIMC
simulations.

Clusters Defined by Cutoff Radii

In this analysis, we identify clusters by studying the distances between the electrons and
protons using the path centroids. We consider two protons as belonging to one cluster if they
are less than 1Å apart. An electron belongs to one particular cluster if it is less than 0.75Å
away from any proton in the cluster. The two cutoff radii were chosen from the molecular
and atomic ground state distribution. This approach is adaptable to other systems and can
give a cluster of any size. Studying hydrogen in the range of density from  and

358



and temperature from 5000 K to 167 000 K, we found a significant number of many different
species including The numbers of these particles are shown in
Table 1 as a function of temperature at denotes the total clusters with one proton

stands for and
The proposed analysis shows qualitatively the expected temperature behavior of hydro-

gen. Around 10 000 K, many of the molecules are dissociated. The atoms ionize as the
temperature is increased further, yielding an increase in the number of free electrons and
protons. This analysis still shows some molecules and atoms at temperatures larger than
100 000 K where no stable compound particles can exist. This effect is caused by instanta-
neous particle collisions, which cannot be distinguished from bound states by a method based
only on distances. Therefore, it leads to a significant overcounting of compound particles.
This problem is partially overcome by an improved analysis described in the next section.

Cluster Analysis Based on Pair Correlation Functions

One can improve the analysis by replacing the criterion for a cluster. Instead of using
two fixed cutoff radii, one can study the proton–proton and proton–electron pair correlation
functions. We consider two limiting cases, the molecular gas at low temperature and ionized
plasma at high temperature, and make a fit for any intermediate temperature,

We determined the degree of dissociation by fitting Similarly, we calculated the
degree of ionization by fitting We found it advantageous to consider only the nearest
neighbor distribution function, because it falls off rapidly within the simulation box and still
contains the relevant information.

In our analysis, we use pair correlation functions from our simulations at 5000 K and at
166 667 K as low and high temperature limits. We assume that the first is purely molecular
and the latter is completely ionized and that the pair correlation functions for any species
have little temperature dependence. We neglect compounds like and which
is questionable because of results of our previous analysis. We determine the number of
protons, which are bound in molecules forming an atom and
are free protons The results are shown in figure 2 for two different densities. At
the lower density of one finds a gradual dissociation occurring around T = 10 000 K
and a smooth ionization process with at T = 50 000 K. In the high density case at

one finds a rapid change in the number of molecules around T = 8000 K, and the
resulting atoms can also exist in a small temperature interval before ionization takes place.
We interpret these drastic changes as a first order plasma-phase transition described in [2,11 ].
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Figure 2. Cumulative plot of proportions of chemical species in the hydrogen plasma: The dash-dot line
indicates the number the dashed line  the number of and H whereas area above gives the number of
protons in
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INTRODUCTION

The equation of state for strongly coupled plasmas plays a crucial role in the study of
astrophysical objects and inertial confinement fusion plasmas (see, for instance,l–6).

The equilibrium properties of dense, strongly coupled plasmas can be studied within
various approaches such as Greens functions, path integral methods, computer simulations
as Monte Carlo calculations or molecular dynamics, as well as integral equation methods.
To investigate high-density effects, we solve the Ornstein–Zernike (OZ) integral equation in
hypernetted chain (HNC) approximation.7–9, 11

We consider here a fully ionized, strongly coupled hydrogen plasma. The number
density considered is in the range and the temperature
domain is Dimensionless variables are used. The coupling parameter

is defined by where is the Boltzmann constant and e is the electrical
charge. is the average distance between the particles (Wigner–Seitz radius).
The dimensionless density parameter is given in terms of  the Bohr radius

The degeneracy parameter for the electrons is defined by the ratio
between the thermal energy and the Fermi energy

We can separate some regions in the temperature-density plane for charged particle
systems. For example, at high temperature we have an almost classical
plasma. Contrary, for low temperatures we have a fully degenerate, strongly
coupled plasma. In the intermediate region between these limiting cases, the system is strongly
coupled and the electrons are partially degenerate. In this case
13.6 eV, and we have the fully ionized, strongly coupled hydrogen plasma. This region will
be considered in the following.

In this work we utilize a semiclassical effective potential12 which accounts for the short-
range, quantum diffraction and symmetry effects13 as well as the long-range, many-particle
effects of screening of the charge carriers14 (for more details, see [19]).
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ORNSTEIN–ZERNIKE EQUATION IN HNC APPROXIMATION

In the statistical theory for equilibrium states, the Ornstein–Zernike (OZ) integral equa-
tion relates the total correlation function to the direct correlation function  via

The HNC relation for the direct correlation functions in a two-component system can be
written in terms of  the interaction potentials between the particles,20

where and for electrons and ions. is the particle number
density.

The simplest method for solving Eqs. (1) and (2) is their direct iteration: an initial
estimate for is used in Eq. (2) to calculate which is then utilized in Eq. (1) to
obtain a new function Iteration is continued until convergence is achieved.
However, for dense systems this simple iteration method may not lead to convergent results
in any case. Based on the direct iteration and the Newton method, a very fast and efficient
scheme has been proposed by Gillan.8, l5 There, the function is decomposed into a
“coarse” and a “fine” part.

Another rapidly converging method has been derived for simple systems from an expan-
sion of the function A numerical solution of  Eqs. (1) and (2) can be obtained
via direct iteration with the Fourier transform of the OZ equation.l6 This method is employed
in this work.

The Fourier transform of the OZ equation (1) is given by

where

Again, dimensionless variables are used, i.e., R = r / a and
For hydrogen plasma, the OZ equations for the different components can be written in

dimensionless form, i.e., giving and in units of  where q = ka and

For a numerical solution of the coupled equations (4) and (5), the functions are repre-
sented in coordinate space by their values on a set of  N mesh points  and
in q-space on the N mesh points Using the Mayer function as a
starting value for the direct correlation function we calculate

After the inverse Fourier transformation a new estimate for
can be obtained from Eq. (4). Again, the Fourier transform is inserted in Eq. (5) etc.

until convergence of this iteration scheme is achieved. We find that for  a
good convergence of  the computational procedure is obtained within 2–30 iterations.
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Figure 1. Radial distribution functions between ions at Solid line: dashed line:
point-dashed line: Circles are results from Ref. [16] for

EQUILIBRIUM PROPERTIES

The resulting ion–ion radial distribution functions  are shown
in Fig. 1 for various parameters of and Notice, that we have a reasonable agreement
between the molecular dynamic data of Hansen and McDonald10 and our present results
for small values of the coupling parameter Fig. 1 also illustrates the fact that the
probability of  finding a particle at distance R increases as the coupling parameter (or density
parameter) increases.

From the radial distribution functions, the equation of  state can be derived.
The corresponding results are shown in Fig. 2 for

We compare our results for the excess pressure with the standard DH theory, with the
extended virial expansions of Alastuey and Kraeft and with the interpolation
formula of Ichimaru The results of recent path integral Monte Carlo (PIMC)
simulations of  Pierleoni of semiclassical model calculations of Hansen  and
of density functional molecular dynamic (DFMD) calculations of  Penman are also
shown.

In the weak coupling limit we have good agreement with the DH theory. The
results of  the extended virial expansions agree with our results for  we
have a good coincidence with the semiclassical model, the interpolation formula of Ichimaru
et al., the PIMC and DFMD results. Finally, up to the present results lie between the
data of the DFMD and the semiclassical models for and we have good agreement with
the DFMD data for

Our results for the equation of state are thus in reasonable agreement with computer
simulations for different regions of the density–temperature domain. This underlines the fact
that the effective, semiclassical, screened potential as derived in [12] and utilized here gives
an appropriate description of  the equilibrium properties of  strongly coupled hydrogen plasma.

This work was supported by the German Academic Exchange Service (DAAD) under
Grant No. A/96/09574.
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Figure 2. Excess pressure with respect to the ideal quantum system at Filled circles are our numerical
results; the dashed line denotes the DH theory; the point-dashed line corresponds to an extended virial
expansion;2, 5 open squares are results of recent path integral Monte Carlo simulations;3 the solid line is an
interpolation formula derived by Ichimaru et al.;11, 17 the crosses indicate the results of  semiclassical model
calculations;10, l8 triangles and rhombs are obtained from density functional molecular dynamics calculations.4

REFERENCES

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

W. Ebeling, W. Richert, Phys. Stat. Sol. B 128 (1985) 467; Phys. Lett. A 108, (1985) 80.
A. Alastuey, A. Perez, Europhys. Lett. 20 (1992) 19.
C. Pierleoni, D. M. Ceperley, B. Bernu, W. R. Magro, Phys. Rev. Lett. 73, (1994) 2145.
J. I. Penman, J. G. Clerouin, P. G. Zerah, Phys. Rev. E 51, (1995) R5224.
J. Riemann, M. Schlanges, H. E. DeWitt, W. D. Kraeft, Physica A 219, (1995) 423.
H. Reinholz, R. Redmer, S. Nagel, Phys. Rev. E 52, (1995) 5368.
J. P. Hansen, I. R. McDonald, The Theory of  Simple Liquids (Academic Press, New York, 1976).
G. M. Abernethy, M. J. Gillan, Mol. Phys. 39, (1980) 839.
S. Labik, A. Malijevsky, P. Vonka, Mol. Phys. 56, (1985) 709.
J. P. Hansen, I. R. McDonald, Phys. Rev. A 23, (1981) 2041.
S. Ichimaru, H. lyetomi, S. Tanaka, Phys. Rep. 149, (1987) 91.
F. B. Baimbetov, M. A. Bekenov, T. S. Ramazanov, Phys. Lett. A 197, (1995) 157.
C. Deutsch, M. M. Gombert, H. Minoo, Phys. Rev. A 23, (1981) 924.
F. B. Baimbetov, Kh. T. Nurekenov, T. S. Ramazanov, Phys. Lett. A 202, (1995) 211.
M. J. Gillan, Mol. Phys. 38, (1979) 1781.
L. Verlet, Mol. Phys. 41, (1980) 183.
X.-Z. Van, S. Tsai, S. Ichimaru, Phys. Rev. A 43, (1991) 3057.
B. Bernu, J. P. Hansen, R. Mazighi, Phys. Lett. A 100, (1984) 28.
F. B. Baimbetov e.a. Monte Carlo simulation of  the equilibrium properties of  a strongly coupled hydrogen
plasma. Proc. Int. Conference on SCCS. Boston. USA. 1997. (in this book).
C. A. Croxton. Liquid State Physics. (Cambridge University Press, 1974).

364



EQUATION OF STATE AND METAL–NONMETAL TRANSITION IN DENSE
HYDROGEN FLUID

Alex Bunker,1 Stefan Nagel,2 Ronald Redmer,2 and Gerd Röpke2

1University of  Georgia, Department of  Physics and Astronomy
Athens, GA

2Fachbereich Physik, Universität Rostock
Universitätsplatz 3, D-18051 Rostock, Germany

INTRODUCTION

The first direct evidence for the metallization of fluid hydrogen was obtained recently at
For higher pressures, the electrical conductivity saturates at a value

of about which is typical for liquid metals. In order to compare with available
experimental data for shock-compressed fluid hydrogen, already the strong correlations in
the neutral molecular state have to be considered with high precision. First, we take into
account pressure dissociation of molecules via the dissociation equilibrium
The equation of state (EOS) is derived from the pair distribution functions  between the
different constituents H and The proton–proton pair distribution function is extracted and
compared with results from computer simulations. Second, also the ionization equilibrium

 is treated. Finally, the electrical conductivity of the dense fluid is calculated
and a transition from nonmetallic to metallic behavior is found. Comparison with available
experiments1, 2 is performed.

EQUATION OF STATE

We apply fluid variational theory the modified hypernetted chain (MHNC)
scheme for solving the Ornstein–Zernike equation, and Monte Carlo (MC) simulations to
calculate the EOS of  fluid hydrogen up to Mbar pressures.4,5 We take dense fluid hydrogen to
be a mixture of molecules and H atoms with a dissociation degree
The molecules and atoms interact via effective two-body potentials which approximate the
effects of  the real many-body interactions. The exponential-six potential was used to model the
interactions between hydrogen molecules in shock-compression experiments,3

where and In order to avoid unphysical behavior
in the limit of low distances we replace the potential by an exponential function for
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the inflection point, and parameters set to insure continuity. The potential form
(1) is also adapted for the other interaction potentials The parameters for
the atom–atom interaction (HH: v = 2) were proposed by
and The parameters for the atom–molecule interaction are
derived from the Berthelot mixing rule: and

The MC simulations have been performed using these potentials where a finite size box
with periodic boundary conditions was initialized with a certain fixed number of  molecules
and H atoms at random positions. The degree of dissociation and the density of particles
are thus input variables and fixed for the simulation. A simple Metropolis procedure was
used to obtain equilibrium configurations at the desired temperatures from which the pair
distribution functions were extracted.

The fraction of dissociated molecules is determined from the dissociation equilibrium
The correlation contributions to the chemical potentials, derived from FVT, lead

to a reduction of the effective dissociation energy with increasing density.4 For pressures
below 10 GPa, i.e., for conditions reached in the single shock experiments,2 the dissociation
degree is less than 1%. For the higher pressures reached in the multiple shock experiments,1

the dissociation degree reaches 19% at 140 GPa. These values are somewhat higher than
those derived from an alternative dissociation model7,8 which treats dense hydrogen fluid as
an ideal mixture of atoms and molecules, and the free energy is minimized with respect to
the dissociation degree A good agreement with the pressures measured in the shock wave
experiments can be stated.5

PROTON–PROTON PAIR DISTRIBUTION FUNCTION

The proton–proton pair distribution function is determined from the calculated partial
distribution functions and in order to compare with results of computer
simulations. For instance, the formation of  molecular hydrogen gas from a neutral system of
protons and electrons at a temperature of  5000 K has been described with path-integral Monte
Carlo (PIMC) simulations9,10 and features of a first-order phase transition were obtained
for densities higher than Quantum molecular dynamics  and wave
packet molecular dynamics (WPMD) simulations15,16 have also been performed for hydrogen
in the range which indicate that the dense fluid has still a molecular structure
but drastic changes in molecular ordering occur with increasing compression.

To calculate the proton–proton pair distribution function we need the proton dis-
tribution in the molecule for a given temperature. For isolated molecules in the
singlet state, this distribution is very well known from the solution of the Schrödinger

For simplicity, we neglect in-medium corrections to the molecular structure such as
the vibron-shift or a variation of  the binding length.

The proton–proton pair distribution function is given by four terms representing the
possible cases of finding a neighboring proton:

The total number of protons is The first term in (2) describes the
internal proton–proton distribution in the molecule and the second one the proton–proton
distribution of the H–H contribution. The third term represents the and the fourth one
the distribution. Utilizing the calculated distributions for and the
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Figure 1. Proton–proton pair distribution function for T = 5000 K. and derived from the
present dissociation model (full line) compared with WPMD results of  Ref. 16 (dashed line), PIMC
simulations of  Ref. 10 (dotted line), and QMD simulations of  Ref. 14 (long-dashed line).

proton–proton pair distribution function is shown for, e.g., T = 5000 K and
(rs = 2) in Fig. 1. The strong first peak at the binding length of  the molecule at 1.4 aB
is due to the weak dissociation of  6% at these conditions. The second, broader peak around

follows from the proton distribution of the and interactions. The H–H
interaction gives only a small contribution. A reasonable agreement can be stated with the
QMD14 and WPMD16 results, whereas the proton–proton pair distribution function derived
from the PIMC method10 is sharper peaked. There, the maximum of  the first peak occurs at
a smaller value than the proton–proton distance in the isolated molecule.

ELECTRICAL CONDUCTIVITY

Having obtained a remarkable fraction of monomers in the dense fluid at high pressures
due to dissociation, also ionization processes have to be treated in a next step. From the corre-
sponding ionization equilibrium the ionization degree is
determined taking into account again the correlation contributions to the chemical potentials.
Furthermore, the electrical conductivity of  such a partially ionized plasma (PIP) consisting of

dimers, H monomers, electrons and protons is calculated within linear response theory.18

The cross sections for the scattering of electrons at ions and atoms embedded in a polarizable
medium of   molecules are derived from a phase shift analysis (t matrix). The proton–proton
structure factor is considered. We compare with the available experimental conductivities1,2

in Fig. 2.
The present PIP model reproduces the strong increase of  the conductivity with the density

as observed experimentally. At high densities around the theoretical EOS
shows an instability which produces a jump in the degree of ionization between a branch
with low ionization and another one with almost complete ionization — a precursor of the
so far hypothetical plasma phase transition. The respective conductivity passes over from a
nonmetallic to a metallic behavior, the latter characterized by the Ziman formula. Notice, that
the location of  the instability region depends strongly on the various correlation contributions
to the EOS. More detailed studies of  this high-density region are in progress.
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Figure 2. Conductivity of hydrogen fluid for T = 3000 K as function of the total proton density calculated
within the PIP model of  Ref. 18 (solid lines) compared with single (full boxes, Ref. 2) and multiple shock
experiments (full circles, Ref. 1). A nonmetal-to-metal transition occurs around  where the
conductivity passes over to the Ziman formula valid for the fully ionized fluid.
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INTRODUCTION

Since its inception in 1991,1 the idea of combining Molecular Dynamics (MD) for the
ions with a simplified density functional without orbitals for the electrons, has proven very
useful. As usual in density functional theory,2 the electronic energy is expressed as sum of
several terms: the kinetic energy the Hartree energy the exchange-correlation
energy and external energy

In the Kohn–Sham realization of the HK formalism, the electronic kinetic energy is
calculated as the kinetic energy of a non-interacting electron gas, thus introducing a set of

occupied electronic orbitals

In the orbital free approach the electronic kinetic energy must be computed by a func-
tional of  the sole electronic density Being the exact kinetic energy for a homogeneous
system, the Thomas–Fermi theory (TF) provides a starting point of a whole family of func-
tionals:

with By adding the Dirac exchange term, we obtain the Thomas–Fermi
Dirac functional (TFD). To account for the inhomogeneity of the system, this functional
can be expanded in terms of gradient of the electronic density, but such an expansion is
practically limited to second order in density fluctuations, leading to the von-Weiszäcker
correction, which, combined with the Dirac exchange energy, gives the TFDW functional. In
order to include the Lindhard response, responsible for the Friedel oscillations in the case of
metals, Perrot has proposed a functional which is exact not only in the linear response regime,
but for all perturbations in the limit of  large q. This functional has been applied successfully
to sodium.3 More sophisticated functionals has been devised by Wang4 to account for the
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shell structure which is missing in the original functional and applied to aluminum.5,6 More
generally, the orbital free approach have been applied to silicon,7,8 metal-salt solutions,9

clusters10 and also hydrogen adsorbed on silicon surfaces.11

Unfortunately, in the case of a hydrogen plasma, such functionals based on a linear
response approach are no longer suitable due to the strongly non linear behavior of the
electronic density in the vicinity of protons.12 If we accept to give up binding properties
by considering only the very high density regime TF, TFD and TFDW
functionals are more appropriate to describe the strong electronic response. It is the goal of
this talk (see also [13]) to compare the predictions of  this functionals with more sophisticated
descriptions such as conventional Car–Parrinello (CP), Tight Binding (TB),14 or Path Integral
Monte Carlo (PIMC).15

METHOD

The method, Thomas Fermi Molecular Dynamics (TFMD), has been described in details
in preceding papers.1,16,17 We just mention here that we start from a Lagrangian which
includes the ionic and the electronic degrees of  freedom:

The free energy is expressed as a sum of  the electron kinetic free energy (which
in the original method requires orbitals), the exchange free energy, whose finite temperature
expression can also be found in [18], and the usual coulombic contributions:

Details on driving the electronic density and preconditioning the fake masses are
given in [3]. The external potential is the Coulomb potential, except for small distances

where the potential is regularized by an ad-hoc homogeneous smearing of the
nucleus leading to a parabolic core for the potential. We have checked1 that, provided
stays smaller than a, this procedure yields no significant differences on collectives properties
compared with the bare Coulomb potential. Yet, this procedure precludes exact energies
calculations and a static correction must to be introduced when calculating the pressure.17

RESULTS

The pair distribution function g(r) computed from a simulation of a system of 250 ions
at and different temperatures is compared with CP simulations performed
using a Bachelet Hamman Schluter pseudo-potential, and also with PIMC simulations when
the temperature was too high to allow for CP simulations. Our CP simulations where checked
by comparing our results with low temperature CP simulations of Kohanoff et al. in the same
regime.19 At low temperature T=3000 K, the agreement between TFDW and CP simulation is
not very satisfactory. Surprisingly, the TFD gives better results, but still indicating a too low
screening effect. At T=7300 K, the agreement between TFD and CP simulations becomes
very good (Fig. 1) and is even excellent at T=29000 K when compared to PIMC. The same
features are also observed from the comparison of the velocities autocorrelation functions. It
is interesting to note that at T=3000 K the frequencies of  the oscillations of  Z(t) are almost the
same for CP and TFD, but more pronounced for TFD, leading to a lower diffusion constant.
Again at T=11600 K the agreement between CP and TFD is excellent (Fig. 2).
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Figure 1. Proton–proton pair distribution function for  7300 K and Long dashed curve is the OCP
result, full curve with filled circles: Car–Parrinello simulations (CP); open circles: TFD simulations; full line:
TFDW simulations.

Figure 2. Velocity autocorrelation functions for T=3000 K and Full curve with filled circles:
Car–Parrinello simulations (CP); open circles: TFD simulations and full line: TFDW simulations.
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From the integration of Z(t), we have extracted the diffusion coefficients in order to
compare with CP and with recent TB calculations using the non-orthogonal Tight-Binding
model20 (the One Component Plasma result is given for comparison). As shown in Table 1,
the TFD diffusion coefficients are in fairly agreement with quantum estimations. We have
also computed the dynamical structure factor from which we have estimated a sound
velocity corresponding to the upper range of  pressures encountered in Jupiter.21

CONCLUSION

For high density hydrogen an orbital free model such as TFMD in
the finite temperature version TFD is able to reproduce some features such as the equation of
state, screening properties (through the pair distribution function) or diffusion in a very good
agreement with results obtained with much more expansive quantum calculations.
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RESCATTERING OF RADIATION IN DENSE PLASMAS WITH MULTIPLY
CHARGED IONS

The photon frequency redistribution function is the joint probability that a
photon absorbed at frequency is reemitted at frequency This function enters in the
expressions of emission and absorption coefficients in the equations of radiative transfer.

In comparison with the pure collisional redistribution in the astrophysical applications the
effects of strong coupling in dense plasmas may appear even at rather low values of electron
and ion coupling parameters via a strong interaction of the radiator quantum system with
plasma ionic microfields. This strong interaction brings about so called  Nonlinear Interference
Effects (NIEF), which stem from coupling of population kinetics and various polarizations
of the radiating ion in the presence of the plasma microfield.1 Also the contribution of NIEF
is greatly enhanced with increasing the charge of the radiator. These phenomena may be
important for plasma conditions with the coupling constant for ionic interaction smaller than
unity as well, thus widening the notion of Strongly Coupled Coulomb Systems (SCCS).

For a resonance spectral line, contains two types of contributions, correspond-
ing to coherent and incoherent photon scattering. When perturbing particles of  the medium
interact via collisions with the emitting atom (collisional broadening), the ratio of coherent
to incoherent rescattering mechanisms contributions is determined by where A is the
probability of a radiative decay from the excited state (unaccompanied by frequency redistri-
bution) and is the rate of  line-broadening collisions. Thus, coherent scattering, which in the
center of rest system of the atom corresponds to a function relation between the
frequencies (when the lower level is a ground state), dominates for Note that the
Doppler effect in the laboratory frame leads to Doppler frequency redistribution as a result of
the difference in propagation directions of the absorbed and emitted photons. For
the scattering becomes completely incoherent, and the photon absorption and emission events
turn out to be independent, so that the rescattering function factors into the product

of  independent absorption and emission probabilities described by the line profile
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which is determined by all broadening mechanisms. This is known as the complete
frequency redistribution limit (CR) which is widely used in radiative transfer theory.

The problems of the resonance-radiation transfer have garnered new interest in terms
of their relation to hot dense plasma containing multiply charged ions in studies of inertial
confinement thermonuclear fusion and x-ray lasers. The peculiarities of line radiation redis-
tribution in a plasma of multiply charged ions relate to the sensitive dependence of  on
ion charge Z. For example, is proportional to for hydrogenic ions, where is
the electron density.

A fundamental aspect of calculations of the function in a dense plasma is
connected with plasma ionic microfield, which leads to Stark broadening of  the ionic emission
lines. In a dense plasma the photon frequency redistribution in the rest frame of  the emitter
results from fast “shaking” of the atomic states by electrons and slow shifts of the states
by the ions. The action of the electrons can be taken into account through that or another
type of  collisional integral, whereas numerical evolutionary calculations are required to take
into account the effect of the ions. This is because a large number of ions participate
simultaneously in the interaction, and this makes the dynamics of the ionic microfield
complicated. Two classes of problems arise in the calculation of 1) modeling of  the
many particle microfield of the ions, and 2) calculation of  the evolution of the atomic
states under the action of  this field.

For a static ionic field the problem can be solved analytically for a model three-
level system that describes the advent of  forbidden components in the emission spectrum of
helium-like ions employed for diagnostics of  the plasma parameters. In so doing it has been
demonstrated that NIEF are important in the formation of the emission spectra and
These effects are due to the interference of  the atomic states in an external field, which in
a plasma with multiply-charged ions leads to a strongly nonequilibrium distribution of the
population over the atomic sublevels. The function is most sensitive to these effects.
Indeed, firstly if NIEF are neglected, may be not positive definite at least in quasistatic
region.1 Secondly, even for when the contribution of the coherent component is
negligibly small, does not reduce to a product of independent profiles (absence
of CR). The latter circumstance is not reduced simply to a trivial discrepancy between the
microfield averaged product of the profiles and the product of the averages, rather, it reflects
the interference of atomic states that results from NIEF.

The next step in the calculation of is to take into account the nonstationary
ionic field generated by the thermal motion of the ions (ion dynamics). In the present work
the rescattering function was calculated for the line of  hydrogenic ions, taking
into account both nonlinear interference effects and the ion dynamics. A fundamental point
here is the extent to which the ion dynamics affects the relationship between the coherent and
incoherent components of  the rescattering function.

Recent calculations of which consider the ion dynamics in the Model Microfield
Method- MMM for helium-like transitions of in three-level systems and include con-
tributions from NIEF are also presented in this volume.3 The absence of the CR regime also
was found, that is important while interpreting measurements of line-radiation yield from
impurities added to the compressed thermonuclear target.

REDISTRIBUTION FUNCTION FOR LINE IN FLUCTUATING ION
MICROFIELD

Results for rescattering of resonance radiation presented are obtained by the compound
density matrix method for the system: the “atom (ion) + spontaneous electromagnetic fields”
(the fields describe the absorbed photon with frequency and the emitted photon with
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Figure 1. The redistribution function for of  ArXVIII at a temperature of 1 keV and electron density
in the approximation of  a static ionic microfield. The frequencies are given in eV.

frequency These equations are solved in the second order perturbation expansion with
respect to the interaction with the incident radiation and in the first order perturbation expan-
sion with respect to the interaction with the scattered radiation,1,2 including the interaction
with ion microfields in the all orders of the perturbation. The coherent and incoherent con-
tributions are carefully separated by special procedures. The population of the ground state
assumed constant while others are put to zero. In this way the rescattering problem equations
are solved for each value of  the incident frequency individually. The redistribution function
is calculated through the general expression for the power due to the scattered field:

where is the non-diagonal element of the density matrix,
defines the complex conjugated amplitude of the scattered radiation, denotes averaging
over the ensemble of perturbing plasma ions. The time dependent solutions of density matrix
equations in temporally dependent ion microfields are obtained and averaged with the help
of Molecular Dynamics Method ( MD) details of which may be found elsewhere.2 After the
redistribution function is averaged over the angles of the absorbed and emitted photons and
the velocity of  the radiator.

Figure 1–2 shows results of  MD calculations of the redistribution function for the
line of the Ar XVIII ion in a hydrogen plasma for the electron density in
comparison with results obtained in the quasistatic approximation for the ion microfield.
The radical influence of ion dynamics is quite evident. The role of ion dynamics effects
is enhanced with the density increasing as well as the role of the incoherent scattering -
the ratio of and is highly suppressed by the ion motion. For these conditions the
function obviously differs from the result of the CR approximation because of  NIEF,
although the influence of ion dynamics usually soften conditions for a practical realization of
this approximation.

Thus, in the present work the rescattering function for resonance radiation in the Ly-
spectral line of a multiply-charged ion in hot dense plasma is systematically calculated

taking into account nonlinear interference effects and ion dynamics. It differs from CR
approximation even at high densities, which may have an important influence on the interpre-
tation of diagnostics involving radiation from impurities in fusion targets. The ion dynamics
strongly influences (in contrast to the emission profiles) the ratio of coherent and incoherent
components of  rescattering, even at comparatively low plasma densities.2
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Figure 2. The redistribution function for of ArXVIII at temperature 1 keV and electron density 1024

taking ion dynamics into account within Molecular Dynamics Method. The frequencies are given in eV.
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INTRODUCTION

In a first approximation, Stark profiles of  H-like ions are symmetrical. Eventual asym-
metries in optically thin media are attributed to different physical processes. One of them is
the effect of the quadrupolar interaction with the spatial gradient of  the plasma microfield and
the monopolar interaction with its divergence. We investigate here the effects of  the microfield
gradients on the line asymmetry for highly correlated plasmas using Monte Carlo simula-
tions for the plasma relevant properties and Model Microfield Method for the description of
the microfield dynamics. Comparative calculations are performed at various values of the
plasma coupling, with alternative choices for the statistics of  the plasma microfield (Nearest
Neighbor, Holtsmark, Baranger–Mozer, APEX formalisms). The results illustrate the high
sensitivity of  the line asymmetry to the ion dynamic effects and to the plasma statistics.

THEORETICAL BACKGROUND

The interaction potential between the bound electron of  the hydrogenic system (dipole
quadrupole and distance to the nucleus r) and the plasma is equal to [1]

In this expression, is the electric microfield, is the component of the traceless non-
uniformity tensor (rank 2) and is the divergence (rank 0), given by
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They are respectively the sum of all the elementary microfields, gradients and divergencies
due to the surrounding plasma ions.

Hereafter we neglect the contribution of the Laplacian of the potential which
will be discussed in a following paper. Assuming static electric microfields, the line shape
expression is given in terms of the joint distribution function of the field and its
non-uniformity tensor by

Even if  the electric microfield is chosen along the quantization axis Oz, this intensity is very
difficult to calculate, as it should be averaged over six independent variables This
difficulty may be avoided by replacing the field gradient by its conditional average at the fixed
value of the microfield

where and is the mean interelectronic distance.
Like the microfield distribution function the functions and (Demura and

Stehlé, 1995), introduced in this expression, are a manifestation of the many-body nature of
the microfield. (Note that the function enters in the expression of the conditional average
of the Laplacian to the value of the field

Choosing the electric microfield along the z axis, the plasma-radiator interaction potential
is written as,

and the expression of the static line intensity (3) reduces to

RESULTS

The line profile calculations have been performed for the  line of two species
of hydrogen-like ions at various values of the plasma coupling. Doppler
and monopolar effects are not included. Ion dynamics effects (Gilles and Stehlé, 1995) are
included using the Model Microfield Method (Stehlé, 1994).

The line asymmetry is defined by the ratio

where refers to the frequency (wavelength) detuning from the unperturbed
transition. The relevant data for this asymmetry are the microfield distribution and the

functions, obtained either with MC (Monte-Carlo), considered as reference results,
APEX (Murillo et al, 1997) or BM (Baranger-Mozer up to second order), the latter having
the more restricted validity range for the plasma conditions.

The first case (pure plasma, electronic density equal to
corresponds to a relatively low correlated plasma. There is no discrepancy between the
results of   and obtained by the three previous formalisms. As expected for these
conditions, ion dynamics effects are important (they reduce the asymmetry by a factor 2) in
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Figure 1. (a) and (b) asymmetry of  the line for a pure plasma, kT = 800 eV,
(c) and (d) same as (a) and (b) at
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the core of the line. The electronic screening affects more the line intensity (factor 2) than
the asymmetry, as proved by the difference between Holstmark and BM results (Demura et
al., 1996).

For more correlated plasmas and heavier emitters relevant to ICF experiments, the
discrepancies between BM, APEX and MC results may be important (Demura et al 1995),
specially for the most probable values of the microfield, which give the main contributions
to the center and near line wings of the profile. We investigate below the sensitivity of the
line asymmetry to the choice of the statistics included in the calculation of  P and for a
dense plasma of ions at 800 eV, and an electronic density between and

For these conditions BM is invalid. Nevertheless results have been reported for the
less dense case to illustrate the sensitivity of the asymmetry to the data. The very simple
two-body Nearest-Neighbor approximation, which is valid only for high field values, is also
reported to illustrate the importance of the many-body effects.
The results for the functions and the line asymmetry for the case are given in
figure 1 (a and b). The variations with have been plotted for values of the reduced field
up to 8. For higher values only MC results converge to the OCP-NN limit  but
the large discrepancies between the other theoretical results have negligible influence on the
asymmetry, due to the rapid decrease of the microfield distribution.

This last conclusion also applies for the densest case for which functions
and the line asymmetry are given on figure 1 (c and d). The APEX and MC results differ
slightly in the reported results. Even for this high density and the heavy emitter the ion
dynamics effects reduce the asymmetry. The line asymmetry calculated using the OCP-NN
approximation for and exact microfield distribution is also reported for comparison.

CONCLUSION

These results illustrate the high sensitivity of the line asymmetry to the ion dynamics
effects and to the plasma statistics of the function. Moreover the main contribution of
field inhomogeneity to the line asymmetry, comes from the most probable values of the
microfield distribution function. This explains the little difference between APEX and MC
line asymmetries at high densities. Concerning the functions, the deviation from the
Nearest Neighbor results illustrates the influence of the N-body effects. For larger plasma
densities than studied in this paper, the electronic correlations are important and the simple
Debye–Hückel screening, which was used here for simplicity, becomes questionable (Gilles
and Peyrusse, 1995).
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INTRODUCTION

A goal-oriented experiment to the quest and research for specific manifestation of inter-
particle interactions in optical spectra of non-ideal hydrogen plasma has been realized. The
emission and absorption spectra in Balmer region have been studied at temperatures near
20000 K and electron densities about   This density is the highest one achieved
in the labs for pure hydrogen. Spectral distribution may be either conventional1 according
to which a disappearance of spectral series highest members is totally compensated by con-
tinuum enlargement in the same spectral region, or with a “clearing-up” effect,2 when this
compensation does not happen. The effect may be caused by collective modes and plasma
microfields action on atoms under strong Coulomb correlations between free charges in a
dense plasma.

EXPERIMENT

Plasma clearing-up was revealed previously in air and noble gases,3 but all attempts
to get this in hydrogen plasma suffered a reverse.4 A main problem was the creation of the
pure hydrogen plasma with high density and well-diagnosed parameters. In this work we
succeeded in getting it due to use of specially constructed plasma source based on the pulse
discharge in closed quartz capillary.5 The plasma obtained by this discharge is quasi-stationary
and fairly homogeneous in volume. To avoid the wall ablation we reduce pulse duration to 3

Capillaries of square cross section   and length 10 mm are used in experiment.
Small transversal size of capillary provided the optical plasma transparency sufficient for
direct transmission measurements in visible spectral region. All optical measurements are
made at the temperature pulse maximum with time resolution of  Spectra are recorded
by optical multichannel analyzer coupled with a spectrograph giving a spectral resolution of
0.6 nm. For standardization deuterium and tungsten ribbon lamps are used.
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Figure 1. Emission from the two pulse discharges with T = 18000 K,   and T = 23000 K,
in the hot inner area.

Figure 2. Absorption coefficient for T = 18000 K,   at the capillary axis.

Figure 3. Absorption coefficient for T = 23000 K, at the capillary axis.
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Plasma temperature T is evaluated from independent measurements of brightness  and
transparency at wavelength corresponding to the generation
line of He–Ne laser. Transversal profiles of and with spatial resolution of 0.1 mm
are used to obtain the temperature profile. According to the spatial resolution we divide the
capillary volume into five regions from axis to wall (each of 0.1 mm). The temperature is
fairly homogeneous within hot near-axis zone having the width of
The relative error in the definition of plasma temperature in this zone is estimated as 3%. The
radial distribution of plasma neutral density N is found in the five-region approximation (in
each region T, N, and  are assumed constant) from the temperature profile and from the
conditions5 for invariance of  the mass and the constancy of the pressure over cross section.
The electron concentration is calculated from Saha equation at the known T and N.

METHOD OF CALCULATION

In the spectral range investigated the main contribution to the emission (absorption)
comes from the Balmer spectrum. The line intensities are calculated taking into account
the dissolution due to destruction of the bound states under the influence of the quasi-static
plasma microfields. The probability W that the state is still bound, is defined as the integral of
the quasi-static microfield distribution function from zero to the critical value of the field
for which the state is found at the top of the potential barrier formed by the microfield and the
atomic core Coulomb field. In the calculation we use the distributions for a neutral point by
Hooper6 and critical values corresponding to the approximation of uniform microfield on the
atomic scale. Profiles of and are calculated according to Griem,7 while the following
Balmer lines are almost completely dissolved and their profiles are not important. The Balmer
photoionization cross section is calculated from the exact quantum mechanical equations.8

Other photoionization and inverse bremsstrahlung cross sections are calculated in the Kramers
approximation with the corresponding Gaunt factors.9, 10 The Balmer photoionization cross
section is continued over the long-wavelength threshold with the factor  assuming
that the total (lines and continuum) density of oscillator strengths is conserved (the loss in
the line oscillator strengths is compensated by the continuum extension). For the calculation
of the radiation intensity from the capillary we have considered the problem of the radiative
transfer in the approximation of five regions.

RESULTS AND DISCUSSION

Spectral emission intensity for two experimental conditions are presented in Fig. 1. Ab-
sorption spectra obtained from plasma emission by Kirchhoff–Planck equation are presented
in Figs. 2 and 3 in comparison with the absorption coefficient calculated for the inner zone
of the capillary. The relative experimental error is about of  7%. In Fig. 3 we present two ex-
perimental curves for different discharges under the same conditions. Analysis of the results
shows that deviation of experimental data from calculated ones starts for hydrogen plasma
at and can be interpreted as the manifestation of essential perturbation of
density of oscillator strengths in comparison with isolated atom picture. It is characterized by
relative “clearing up” of hydrogen plasma as the density grows. Note, that the data presented
in Fig. 3 correspond to maximal value of   achieved up to now.4, 11 However the five-region
approximation may be too crude for exact determination of the density, so this effect may
be quantitatively reduced with improvement of the spatial resolution. The effect observed
now at first for hydrogen reliably has been discussed during last two decades as well as the
“transparency windows” for plasmas of complex elements.2, 4,11
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INTRODUCTION

The topic of the magnitude, and even the direction of plasma induced line shifts has
been a controversial topic for a number of years.1–5 In this paper, we sketch the relevant Stark
broadening theory, and compare new calculations with recent experimental data.

STARK BROADENING THEORY

The shapes of the spectral lines emitted by a plasma form a useful, non-interfering probe
of the plasma environment.6 For a given line, the lineshape can be written

where is the probability distribution function for the electric field at the radiator due to
the plasma ions, and is the plasma–electron perturbed lineshape emitted by radiators
experiencing that plasma ion microfield. The form of is most pedagogical in the
approximation that the ions are static during the radiative lifetime of the transition:

In this expression, is the dipole moment operator for the radiator, is the
frequency separation from the (ion-perturbed) location of the transition, and is a
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Figure 1. The density dependence of the line, at a fixed temperature of l000eV (top), and the
temperature dependence of the shifts of the angular momentum components of  the  and
at a fixed density of (bottom).

complex, many-body operator accounting for the effects of  the perturbing plasma electrons.
The imaginary part of is the electron broadening operator, while the real part is the
shift operator with which this article is primarily concerned. In general, this shift operator
must be calculated to all orders in the plasma electron-radiator interaction.1 However, for
the transitions, temperatures and densities we consider in the next section, it is sufficient
to keep only the terms up to second order in this interaction. For higher densities, lower
temperatures, or transitions originating from higher principal quantum numbers, this second
order approximation would be suspect, and we are currently implementing an all-order semi-
classical approximation. For the highly stripped Ar ions of interest, the dominant term in the
shift operator is the first order term, a mean field average of the interaction. We emphasize
that the important work of  Reference 2 presented an example of shift calculations for neutral
radiators, in which this mean field term is zero, and that the results of that paper in no way
conflict with the results presented here.

In Figure 1, we display the temperature sensitivity of the shifts of the transitions in
the first few members of the Ar He-like Rydberg series at a fixed density, and the density
sensitivity of the line at fixed temperature. As the individual angular momentum
components making up the lines shift differently, the lines not only shift, they distort. Note
also that the amount of shifting and distortion depends strongly on principal quantum number.
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Figure 2. Time history of Nova shot 26031209 as recorded by a streaked survey spectrometer, and fits to a
detail of lineout “e” calculated for  and kT = 1125eV.

EXPERIMENTS AND ANALYSIS

The strong dependence of the shift on principal and angular-momentum quantum num-
bers, and a fortunate near coincidence of some spectral lines of highly stripped Ar ions, lead
to a spectral region where the shift of several lines is easily observed using spectrometers of
moderate resolution The unshifted  line lies at 3936eV, flanked by the

(3877eV) and (3966eV). The second order shift theory predicts that the aver-
age shifts of the and lines at l000eV and are approximately-7eV,
and -19eV, respectively. Thus, the relative shifting of these lines should be easily observable.
Unfortunately, the is so broad at this density that it serves to only slightly modify
the blue wing of the lines. However, the and lines are prominent, and
their narrow spectral range serves as an appropriate region to look for the effects of plasma
induced line shifts.

In Figures 2 and 3, we show time resolved spectra from two microballoon implosions,
one performed on the Nova laser system using indirect drive, and and one performed on the
Omega laser system using direct drive, along with detailed fits to the spectral range from
3750eV to 4000eV. The reduction of the data (an image on film of the streaked spectrum)
to the form used here (time resolved lineouts) included a correction due to the curvature of
isotemporal lines inherent in streak cameras. The dispersion relationship was determined by
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Figure 3. Time history of Omega shot 7016 as recorded by a (different) streaked survey spectrometer, and fits
to a detail of  lineout “d” calculated for and kT = 1050eV.

identifying the positions of the Ar resonance lines at early times, when the densities were
sufficiently low so that any shifts were negligible. One benefit of using the and
lines is that their proximity in the image minimizes the effects of  the varying magnification
across the image.

The calculated spectra include the three resonance lines, and two He-like satellites of
the and three Li-like satellites of the The lineshapes included the effects of ion
dynamics, opacity,7 and the ion quadrupole effect.8 Doppler and appropriate instrumental
broadening were also included. The relative intensities of  the lines were calculated using a
NLTE kinetics model, with the effect of radiative transfer approximated by the use of escape
factors7, 9

CONCLUSIONS

It appears that the theoretical lines shifted according to calculations provide substantially
better fits than the theoretical line shapes which exclude line shifts. The differing principal
quantum numbers associated with the and  lead to significantly differing shifts.
Thus, the use of unshifted lines, shifted arbitrarily, en masse, would not lead to the same
quality of fit observed when using the lineshapes shifted according to calculation.
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REDISTRIBUTION OF RADIATION AND DENSE PLASMAS ION DYNAMICS IN
MMM

Besides the usual plasma correlation effects, described in terms of coupling parameters,
the spectral characteristics of Coulomb systems may exhibit strong coupling effects between
quantum dynamics and kinetics of the various radiator quantum levels, induced by microfields
of  perturbing charges.1 Similar phenomena were called Nonlinear Interference Effects (NIEF)
in laser physics and this term was adopted for the study of these effects in the Stark broadening.
In the present work the influence of NIEF on the redistribution function of resonance radiation
is investigated in the framework of the atomic density matrix formalism with simultaneous
account for the ion motion within the Model Microfield Method (MMM).

The redistribution function is defined as the joint probability of the absorption
of a photon with the frequency and the emission of a photon with the frequency  Here

is considered in the radiator rest frame thus avoiding the averaging over polarizations
and wave vectors of absorbed and emitted photons.

The effects of the ion plasma microfield are essential in the calculation of  for
multicharged ions radiation in dense plasmas. The slowly varying ion microfield induces
coherences of radiating atomic states (ie the non-diagonal elements of the atomic density
matrix become different from zero). This microfield strongly couples kinetics of level
populations and coherences in the system of the radiator quantum levels, which makes the
essence of NIEF. It should be stressed that the inclusion of NIEF is essential, hence its
omission may lead to non physical negative values of

The thermal plasma ion motions (ion dynamics) also influences the radiative redistribu-
tion in hot dense plasmas, as it is illustrated in [1] for  of  a hydrogen-like ion within
the Molecular Dynamics Method (MD).
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The aim of  this paper is to study the influence of  both NIEF and ion dynamics on
of the resonance radiation in hot dense Al plasmas for
lines of helium-like multicharged ions. This study may be of interest for applications
to the radiative transfer in the inertial confinement fusion plasmas (ICF or LF) and for X-ray
lasers. Line shapes of Al He-like ions have been recently calculated under these conditions.
It has been shown that the account of both NIEF and ion dynamics is important in frequency
regions near intensity maxima as well as in the nearest wings for low densities.3

The complete redistribution approximation (CR) is often used in the theory of the
radiative transfer. Within this approximation, the redistribution function  is equal to

where is the normalized line shape calculated according to the standard
theory. The results obtained for line1 show that the complete redistribution is not
reached. In this paper this question is again studied for the lines of helium-like multicharged
ions.

The radiating ion is modelled by the traditional three-level system, relevant for the
formulation of the problem of forbidden component of the helium-like ions spectra.3 The
radiative decay rate of the excited state 2 is denoted by  while radiative decay rates of the
metastable state 3 and the ground state 1 are assumed to be zero. The transition 2–1 is an
allowed dipole transition, while the transition 3–1 is a dipole forbidden transition. The levels
3 and 2 are separated by the interval energy

The ion dynamics is included by a step-wise stochastic Kangaroo process (MMM).4 This
approximation models the time statistics of the ion microfield by supposing that the field is
constant on time intervals. The jump times follow a Poisson statistics with the jump frequency
v(E) which depends on the value of the field before the jump. The Fourier transform at of
the mean evolution operator is expressed in terms of the evolution operators in
a static ion field E averaged over the appropriate microfield distribution function P(E) as

where I is the unit operator, v is the jump frequency of the MMM Kangaroo process,
is the Laplace transform at of the static evolution operator and

denotes the averaged operators.
To apply the formalism to the case of the redistribution, it is necessary to remove from

the equations describing the system evolution all the explicit time dependences due to the
interaction of   an atomic system with the absorbed and scattered radiation. This has been made
by separating contributions from a fluorescence and a Rayleigh scattering and expressing the
resulting equations through the appropriate Fourier transforms of the evolution operators.

PARTIAL REDISTRIBUTION WITHIN MMM

The formalism of atomic density matrix is used (see [1, 3]). The equations for the
radiating atomic states coherences are considered on the same level as those for the diag-
onal matrix elements defining level populations. The interaction of the radiator with the
temporarily varying ion microfield, which mixes both the forbidden and allowed transitions,
the electronic and radiative dampings are included in the Hamiltonian in zero order in the
amplitudes of the absorbed and scattered radiation in the interaction representation. In the
present case the incoherent pumping is put to zero. The initial population of the ground state
is equal to unity, while initial populations of other levels are put to zero. The result of the
perturbation approach in the first order of the scattered radiation and up to the second order in
the incident radiation amplitudes may be expressed within MMM analytically through values
defined in the quasistatic approximation for ions. This allows to exhibit in the form
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Figure 1. The section of the incoherent part of the redistribution function at the fixed frequency of the absorbed
radiation of the doublet  of the ion at

T = 350 eV: a) without NIEF (full curve), with NIEF (dotted curve), NIEF contribution (dashed curve);
b) within the static ion field approximation (full curve), including ion dynamics effects (dashed curve).

where is the non-diagonal element of the density
matrix, G* defines the complex conjugated amplitude of the scattered radiation, denotes
averaging over the ensemble of perturbing plasma ions.

The calculations have been performed for the spectral doublet
of helium-like ion The states correspond

respectively to the states 2, 3, 1 of the three level-model system. The radiative decay rate
is equal to The transition frequency between radiating states 3

and 2 is equal to The electron inelastic collisional decay rate is given by
(units are eV). The results obtained for an electron

density will be briefly reported here.
The ion dynamics have a large influence on the coherent and incoherent parts of the

redistribution function. The value of the characteristic frequency of the ion microfield
variation is large compared with the other relevant characteristic
frequencies of the problem. The coherent part of the line shape is small in the centers of the
allowed and forbidden components and also in the nearest wings. This may be attributed to
the large electron relaxation rate compared with the radiative decay rate at these conditions. It
follows that the CR approximation is invalid for this case despite the large electron relaxation
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rate compared to the radiative decay rate. The contributions from NIEF and ion motions
effects are very large. The coherent contribution to the line profile becomes more essential
when the plasma density is decreased. In the centers of the allowed and forbidden components,
the coherent part is small but as the frequency deviation is increased the coherent contribution
to the line shape increases.

The dependence of the incoherent part of on the frequency of the scattered
radiation at a fixed frequency of the absorbed radiation (close to the value of the
forbidden transition ) is shown in Figs. 1 a and b. One can see from Fig. 1a that
the account of NIEF leads to the increase of the intensity of the forbidden component by
approximately a factor two, while the influence of NIEF on the allowed component is not
essential (approximately 10%). In Fig. 1b one can see that ion dynamics strongly influences
the redistribution function, especially in the wings.
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INTRODUCTION

Liquid state theories like the MSA and the HNC can be derived as variational problems
of the free energy functional, which is written in terms of the Ornstein–Zernike (OZ) direct
correlation function and interpolate between the low coupling Mayer and high coupling
Onsager limits. This view as recently taken by Rosenfeld and one of us,1–3 for systems of
charged hard spheres. However, these theories, do not satisfy the high coupling but low
density limits. In this limit, ions with charge 1 that form dimers should behave as ions of
charge 2, the Debye–Hückel parameter should be twice for the fully dimerized case. This
does not happen for theories based on closures of the normal OZ do not give this result. The
new Wertheim OZ (WOZ) equation4, 5 does satisfy this limit for neutral particles, and, as we
will show it in this paper, for charged particles in the mean spherical approximation.

In the solution of the MSA of associating spheres given in the present work the Onsager
high density limits are satisfied. In the limit of low density and total association the exact
asymptotic limits are recovered for dimers, using a two body closure, and for any length chain
when three body interactions are included.

One remarkable property of the MSA is that the full solution depends on a single
screening parameter which also gives the excess full thermodynamics (internal energy
and entropy ) computed via the Guntelberg charging process. In the case of polymer chains
we get

where

where is Boltzmann’s constant and is the MSA screening constant is obtained in every
case.
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In this communication we discuss the results of previous work, and in particular those
of [8] (and references cited therein). We will use also the notation and symbols of that paper.

THE MSA IN THE WERTHEIM ORNSTEIN ZERNIKE FORMALISM

The WOZ formalism was shown to be very successful for ionic systems, both in the
HNC approximation and A solution of the restricted linear polymer MSA has
been given by Kalyuzhnyi and Stell.12 A similar and very nice discussion was recently given
by Jiang et al.13 The full analytical solution of the electrostatic part given in terms of the
screening parameter of the binding MSA for dimer association was discussed elsewhere

In this paper we discuss explicitly the linear polymer case in the BIMSA-
EXP approximation, using the results of our earlier work.8, 15 As in this work, we consider a
system with an arbitrary number of components with number density charge

(e is the elementary charge) and hard core diameter The solvent is a continuum with
dielectric constant The temperature of the system is T, Boltzmann’s constant is and
we use throughout. Our system is neutral:

We get for the screening parameter

There is a second nonlinear equation for the parameter which in general will depend
strongly on the closure approximation for the single density matrix. However, if  the binding
probabilities are assumed to be uncorrelated, then only the dissociation probabilities  are
needed, and the formal result for is model independent.

THE FLEXIBLE FIXED LENGTH LINEAR POLYMER MODEL

Consider the model of a fixed length flexible polymer chain: The individual bead has
two different sites, A and B, and we allow only bonds between A and B, and only between
particles that have contiguous indices. The interactions are such that only linear chains can
be formed.8 The density parameters are related to the densities of a-bonded particles

by

However we shall use the convenient notation

for the density parameters. One assumption is to neglect the site-site interactions
also implies that the probability of both empty sites on a molecule is the product of having
site A empty by that of having site B empty:
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If only nearest neighbor interactions are allowed then

The closure relation is obtained from equation (4)as a function of

Thermodynamic Properties

From the standard expression for the excess energy per unit volume, is6 , 7 we get6, 14 as
a function of the set of the

with

THE RESTRICTED CASE OF EQUAL DIAMETER MONOMERS

Consider the case where all the diameters and interactions are equal. Then, for arbitrary
length polymers with equal charged beads

Two interesting can be discussed: The monomers that form the polymer are either of equal
or alternating charge. In the first case the chain is neutralized by the counterions c of charge

density and the same diameter In the other case unassociated counterions may exist.
The general expression derived from Eq. (9) In this case the equation for

In the case of a fully associated polyelectrolyte and this equation can be transformed to

where
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where the positive sign corresponds to equal charge monomers, and the minus to the alternating
charge case. The infinite dilution limit is obtained when and Then

This equation satisfies the infinite dilution limit for n=2 (dimers) exactly, since then
or 0. When n = 3 then As n increases the limiting relation is For
the dimer case this is the only theory that yields the exact association limit.

If the equilibrium equations are modified to include exact 3-body hard core exclusion,
then for the case of  the chain of equal charges and diameters

and the low density limit is verified for any length polymer, since It is also
straightforward to see that the excess entropy is simply
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ELECTRONIC PROPERTIES AND MECHANISM OF SUPERIONIC
CONDUCTIVITY IN SOLID ELECTROLYTES

Hideaki Kikuchi,1 Hiroshi Iyetomi,2 and Akira Hasegawa2

1Graduate School of Science and Technology
2Department of Physics
Niigata University
Ikarashi, Niigata 950-21, Japan

INTRODUCTION

Superionic conductors1 such as AgI, CuI, and silver chalcogenides consist of a sta-
ble, ordered lattice of anions and a fluid of cations diffusing through the sublattice. Such
fascinating ionic compounds exhibit ionic conductivity comparable to those of electrolyte
solutions well below the melting temperatures. Since the moving ions are highly correlated
to each other through Coulombic interactions, complex strongly-coupled Coulomb systems
are materialized in the superionic conductors.

Silver ions often exhibit particularly fast diffusivity in haloid and chalcogenide matrices.
However, steric size of Ag ions used in molecular dynamics (MD) simulations2 for the
superionic conductors is remarkably small as compared with the representative ionic radius
due to Pauling,3 who fruitfully replaced ions by charged hard spheres to discuss structural
stability of ionic compounds. Such a fundamental issue as originating from the electronic
properties of superionic conductors is out of scope of the MD simulations. Hybridization
between Ag 4d states and p states of host atoms forming the sublattices may be a clue to the
superionic conduction of Ag ions.4

Having such underlying ideas in our mind, we try to shed light on the mechanism of the
superionic conductivity through electronic structure calculations in the present paper. The
systems studied here are and (M = Li, Na, K) with the antifluorite
structure as displayed in Fig. 1.  in the phase a typical
superionic conductor, takes basically the antifluorite form as an averaged crystalline structure.5

We pay special attention to difference in the closed shells between the noble-metal ions (d-
shell) and the alkali ions (sp-shell) embedded in the Te sublattice with valence bands consisting
of p states. Comparison of  the results  for and enables us to discuss possible
effects of the p-d hybridization on the appearance of  the superionic conductivity.
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Figure 1. with the antifluorite structure (a) and the crystal structure (b); the designations T and O
in the panel (a) refer to the tetrahedral and octahedral sites in the FCC structure, respectively.

Figure 2. Experimental and theoretical lattice constants of  the tellurides with the antifluorite structure versus
those predicted using Pauling’s ionic radii.

POLARIZABILITY OF THE D SHELL

We have executed fully self-consistent solutions of the Kohn–Sham equation6 with a lin-
earized augmented-plane-wave (APW) method; the exchange-correlation effects of electrons
were treated in the local density approximation. For details of the band-structure calculations
we refer the readers to Ref. [7]. The lattice constants in equilibrium were thereby obtained
through minimization of the total energy. In Fig. 2 those results are successfully compared
with the experimental values5, 8 together with the corresponding lattice constants predicted
using Pauling’s ionic radii. We observe that and  shrink substantially in refer-
ence to Pauling’s predictions, while the lattice constants of the alkali tellurides are explained
fairly well by his idea. Such peculiar shrinking of and indicates the noble-metal
ions with the d shell are remarkably polarizable as compared with the alkali ions with the
sp-shell.
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Figure 3. Electronic band structures for  and with the antifluorite structure in common.
The thick curves are bands originating from the d electrons in the noble-metal atoms and the dashed curves,
bands from the p electrons in the Te atoms.

THE P-D HYBRIDIZATION

Figure 3 shows the band structures of and at the equilibrium lattice
constants. We first remark that the relative positions of the d and p bands are interchanged
between and and the d states in are significantly localized as compared
with those in The theoretical calculation correctly reproduces the semiconducting
nature of  with a band gap of  0.2 eV which is in good agreement with the experimental
value of around 0.1 eV.9 We also confirmed7 that the effective masses of electrons and holes
near the band gap and the density of states agree well with experimental results. The band-
structure calculations for the alkali tellurides show the essential features of the p bands
remain unchanged irrespective of the absence of  the d bands, indicating the p-d hybridization
in is weak.

The strength of coupling between the Ag d-band and Te p-band is then elucidated by
selectively shifting the d-band downward. In Fig. 4 we see that the band characteristics
weakly depend on the shift of the d-band and hence those two bands are well separated in

In sharp contrast, gives rise to strong p-d hybridization.

ACTIVATION ENERGY FOR IONIC DIFFUSION

To estimate the activation energy for the Ag diffusion in we adopted the
antifluorite structure as the ground state and a crystal structure with space group
(See Fig. 1) as a transition state in the diffusion process. Combination of the diffraction
experiments5 and the MD simulations10 justifies this estimation; Ag ions migrate among
the adjacent tetrahedral sites via the octahedral sites. We replaced the activation energy by
difference of the total energies per Ag ion between the ground and transition states. The
activation energies for the other ions were calculated in the same way. The computational
results in Table 1 show the activation energy in is significantly smaller than the
energies in the alkaline counterparts and even smaller than that in the cuprate. This coincides
with the experimental facts.11, 12 Although Cu ions also have d electrons and smaller steric
size than Ag ions, Cu ions in are less mobile than Ag ions in This can be
traced back to the strong p-d hybridization taking place in
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Figure 4. The left panel shows actual shift  versus given shift  in the APW resonance condition for the d
bands in or for the p bands in The right panel shows the effective hole mass (circles) and the
band width W (squares) for the p bands in (filled symbols) or for the d bands in (open symbols)
as functions of

CONCLUDING REMARKS

From the electronic analyses on the tellurides, we infer that interplay of the polarizability
of the d shell and the weakness of the p-d hybridization in  plays a primary role in
giving rise to the superionic conductivity of Ag ions. The activation energies for the ionic
diffusion were estimated in good agreement with the experiments.
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POLARIZATION OF COUNTERIONS IN A STRONGLY
COUPLED COULOMBIC SYSTEM: DNA

Udayan Mohanty

Eugene F. Merkert Chemistry Center
Boston College, Chestnut Hill, MA 02158

INTRODUCTION

Stellwagen1, Elias and Eden2 and Diekmann et al.3 have used transient electric
birefringence and electric dichroism to analyze the characteristics of DNA fragments as a
function of salt concentrations and field strengths. At low field strengths, the Kerr law is
satisfied, and for short fragments the polarizability is proportional to the square of the length
of DNA.1 Elias and Eden find the polarizability to scale, instead, as the chain length cubed.2
Diekmann et al. find that for small numbers of base-pairs, the orientation can be explained
by an induced dipole moment mechanism, and in low fields, the polarizability goes as L2.3

To describe the orientation data for larger DNA fragments, a constant dipole moment
mechanism is needed.3

Experimental data on the polarization of DNA is usually interpreted via a classic model
due to Mandel.4 In this approach, a DNA is viewed as a charged cylinder with counterions
bound to it. The charges come from the phosphate groups only. Electrostatic interactions
between the counterions and between the counterions and the negative phosphate charges are
assumed negligible. The fluctuations of the bound counterions and the phenomenon of
counterion condensation have been taken into account by Oosawa5 and Manning,6

respectively. As a result of the external field, the counterions along the contour length of the
DNA are not distributed in a homogeneous way.6 This was implemented based on the
assumption that the total number of counterions that are bound to the DNA does not change
with variations in the electric field. However, the response of the counterions and the DNA
due to the Debye atmosphere was ignored. In both models, the dipole moment is
proportional to at low fields.5 Fixman-Jagannathan analyzed the effects due to the ion
atmosphere and the hydrodynamic interactions on the polarizability of short rods.7, 8 The
analysis shows that the polarized counterions lead to relaxation of the Debye atmosphere.7, 8

By solving a steady state non-linear diffusion equation with an approximate coupling
between the Debye atmosphere and the delocalized condensed counterions, Rau and Charney
argued that the dipole moment attains a maximum and then decreases with increasing electric
field.9
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POLARIZATION OF DNA

For simplicity of presentation, we model the polyion as an array of N charged sites on
a cylinder of total length L, which is immersed in an univalent salt solution. The solvent is
described by a uniform dielectric constant e. When an external electric field is applied to the
polyion, the counterions vary inhomogeneously along the helical backbone of the DNA.
Thus, the average counterion density r depends on the distance being measured along the
length of the DNA, x. Consequently, the free-energy F[r(x)] is a functional of the
counterions density. 10,11

Here, u(x) is an effective potential

and is expressed in terms of the chemical potential and an external potential, V(x). The
grand-potential is W[u]. The maximum in Eq. (1) is over variations of the effective potential
by holding the average density fixed.10, 11

We define a quantity which is such that on minimizing it with respect to
variations in the density, one obtains the grand-potential.10, 11

The importance of is that one can express it in terms of the correlation functions of
the polyion-counterion system in the absence of the external field.10,11 This leads to an
explicit expression for the average density of the counterions.10,11

The effective potential is expressed in terms of the direct correlation function c(x) - a
quantity that is either obtained from neutron or x-ray scattering experiments or from
polyelectrolyte theories of the liquid state10, 11, 12

where is the density of the reference system. For the case at hand, is
independent of x since we have an homogeneous counterion phase in the absence of an
electric field. The external potential V(x) is where z is the valency of the
counterion and is a reference point.

The counterion density in low electric fields is expanded as
where m is a constant. The dipole moment is calculated from the first moment of the
counterion density.10, 6

However, we can evaluate the slope m directly from the density profile given by Eqs.
(4)-(5). On substituting the expression for the density in Eq. (6), one obtains the
polarizability p of the polyion in terms of the direct correlation function.10
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In Eq. (7), is a scaled distance. The saturated dipole agrees with Mandel-
Manning theories at high fields.6, 10

Let us denote by the quantity in the second term of the denominator in Eq.
(7). Clearly, is a function of salt concentration, the Manning linear charge density
parameter defined as the ratio of the Bjerrum length to the distance between the phosphate
charges, and the contour length of the DNA. If the quantity the polarizability
scales as L2. This is in agreement with experimental data.10, 1-3 In this case, either both

and L are large or L is small with g large. On the other hand, if the quantity
the polarizability is proportional to L3.10 Let us recollect at this point that

the Mandel-Manning theories predict an dependence of the polarizability at low fields.4, 6

The commencement of saturation behavior is expected to be determined by polyelectrolyte
effects through the direct correlation function.10

DISCUSSION.

The importance of our result is three-fold. First, the polarizability has been reduced to
the evaluation of the direct correlation function. Second, the direct correlation function is
readily obtained from integral- equation theories of liquids. 12 Third, both attractive and
repulsive interactions between the counterions and the polyion have been taken into
account. 10

The model can be improved along two lines of thought. First, for oligomers less than
thirty base pairs or so, there is a substantial reduction in the surface concentration of the
counterions. This must be taken into account since the so-called electrostatic “end effect” has
been verified by both grand canonical Monte Carlo simulations and by longitudinal 23Na
NMR.13,14 Secondly, the polarizability of rod-like polyions from the condensed
counterions increases as L2N, while the corresponding contribution from the Debye
atmosphere is proportional to the length, provided Lκ is larger than ten or so.6,15 Thus, the
polarization of the Debye atmosphere must be accounted for in the proposed model.
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THEORY OF COLLOIDAL PLASMAS
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INTRODUCTION

Charged Colloidal System (CCS) consists of

• macroions with negative charge –ze (z of the order to and a radius R of 10 up
to 300 nm and density of order up to

•  one or more species of counterions, we consider here only one species with positive
charge e and radius Because of electroneutraliry the density is given by

• liquid, e.g., water, with relative dielectric constant

Peculiarities of CCS:

• strong charge asymmetry,  z >> 1.

• possibility of  Colloidal Crystal (CC) and crystal waves.

Parameters of  Coulomb interactions:

Usually we have:

Strong macroion–macroion interaction. Of course we also have a short range (hard sphere)
part of  M – M interaction. In the case we are able to develop an analytical theory,
in the case numerical simulations are required. Even if the are all small,
the system is not one of only weak interactions because of the hard cores. We try to obtain a
quasi one-component system. In general1 the effective macroion interaction (EMI) involves
not only pair but also many-particle interactions. This aspect is lost when the EMI is defined
in terms of the pair distribution function:

(3)
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Such EMI is then determined from the Ornstein–Zernike equations and Percus–Yevick or
hypernetted chain approximations.2 We adopt here a “microscopic” EMI and derive it from
first principles.

A usual EMI is the Derjaguin–Landau–Verwey–Overbeek (DLVO) one3

This result is found from the solution of the linearized Poisson–Boltzmann equation for the
electric potential around a macro-ion with charge number z surrounded by counterions with
density and a negative background of density representing the
other macroions. This simple model is only qualitative and needs statistical justification and
possibly correction.

THE EFFECTIVE MACROION INTERACTION AND THE MINIMAL CHARGE
FOR CRYSTALLIZATION

Partition function of classical CCS:

or

with

The potential energies are:

with

The free energy of (7) is due to indirect interaction.
By means of an expansion in multiplicities of Mayer factors it is possible to find

For a system of only two macroions an exact result follows. Numerical calculations have
been performed by D’Amico and Loewen4 and Allahyarov et al.5 by MC and MD resp. The
results of [5] for the derivative

are presented in Figure 1. The EMI is to be distinguished from the energy of
counterions in the field of macroions. It is given by
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Figure 1. Molecular dynamic simulation for the full energy of a pair 1
and for the derivative of the effective potential, Eq. (10)-curve 2, as a function of the distance

Z =  280,  T  =  293 K.

Figure 2. The EMI versus distance r/R, z = 200, density, radius and temperature are the same as in Figure 1.
The curve 1. is based on [7], the curve 2 on numerical calculation without expansion in

This is also shown in Figure 1 for the case of 2 macroions. It is necessary to underline that
in [4,5] only electrical forces have been included. From our point of view in numerical
simulations of pair (and many macroions) interaction the bombarding forces, connected with
direct transfer of momentum from counterions to macroions, can play an essential role.
Namely these forces can provide the effective attraction of macroions, predicted analytically
in [6–8] for small distances and considerable C-M interaction. In the case of many macroions
the pair EMI is found by expansion of in degrees of multiplicity of Mayer factors. For low
density of counterions this leads to familiar Debye-like results.6

If   the potential has been calculated in [7]. In Figure 2 we see for z = 200
curve 1 representing the result of [7] and curve 2 for numerical result without expansion w.r.t.

Figure 3 is similar for z = 280. We see the appearance of attraction. The presence of
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Figure 3. The same as Figure 2, but with charge number  z = 280.

Figure 4. The melting curve The arrow shows the calculated charge number for the experiment.10

Figure 5. The co-existence curve in the coordinates and 1-numerical calculations,11 2-Eq. (16).
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attraction in the many-, macroion pair EMI has not yet been solved conclusively.
Under some conditions CCS crystallizes to bcc or fee lattice. Following8 we consider

here the conditions for melting of a bcc lattice. Lindeman Criterion:

where is the mean square deviation of the macroion position from the equilibrium
position and is the Lindeman constant, which we take to be equal to 0.19. We use the
Einstein model for the frequencies of the macroions with the correction factor from [9]
to take account of the more realistic Debye-type model of frequencies in a crystal. Then we
have:

The function has a deep minimum for each as a function of This implies the
existence of a minimal charge for crystallization. For small volume fractions,
corresponding to experiments10 we find the melting curve of  Figure 4 and

In order to find the bare charge we rewrite (16) as

For the fixed experimental values of [10], and we find
z = 371. The experimental value is z = 360. It is also seen that for a given  the
crystal exists only in a restricted region of (or temperature). We present our melting curve
in Figure 5 as a plot in terms of the dimensionless variables  and defined as [11] the
thermal energy normalized by the potential energy of  two macroions at the average particle

It takes the form

The difference between curve 1 of the numerical calculations of [11] and curve 2 of our
analytical result is due to the difference in the eigenfrequencies for bcc and fee.

CONCLUSIONS

A general determination of the effective microscopic macroion–macroion interaction
(EMI) has been performed. The Lindeman melting criterion leads to a minimal charge as a
necessary condition for crystallization.
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INTRODUCTION
Recent experiments concerning the nature of criticality in electrolyte solutions

(see, e.g., the reviews [1]) have been puzzling. Consequently, the gas-liquid tran-
sition in simple, classical ionic models (which may, here, be identified with the
“plasma transition” [2]) has been of current interest [1, 3-7]. The central model —
the restricted primitive model (RPM) — consists of equisized
hard spheres of diameter a carrying charges in a medium of dielectric constant
D (to approximate the solvent in real electrolytes). This precise model was, of
course, first treated successfully by Debye and Huckel (DH) in 1923 [8]; much later,
the mean spherical approximation (MSA) [9] became fashionable for treating the
RPM [5,6]. In particular, Ebeling and Grigo [10], following Bjerrum’s ion-pairing
proposal (Bj) [11], combined the MSA with a “chemical association picture.” More
recently, Stell and coworkers [7] have proposed a rather different set of “pairing
mean spherical approximations”: PMSA1, -2, and -3.

On the other hand, Levin and Fisher [3,4] used the full (i.e., including the ex-
plicit hard core, a > 0) DH theory as a basis for introducing ion pairing; however,
they supplemented the original Bj approach by (i) including the dipole-ion salva-
tion free energy (DI), (ii) using an improved association constant, due
to Ebeling (see [3,4,10]), and (iii) allowing for hard-core excluded volume effects.
These DHBjDI theories [1,3,4] have proved significantly more successful in pre-
dicting the RPM critical temperature

(see [1]) than theories based on the MSA [4-7,10] despite the encomiums that
approximation has received (see, e.g., [12]). Thus the MSA-based theories yield

while those based on the DH approach (where the original theory
gave yield They have also proved effective
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in deriving charge and density correlation functions [13]. (Incidentally, it should
be emphasized that the HNC approximation, also much beloved, fails entirely
throughout the putative two-phase and expected critical region: see, e.g., [14]).

In these circumstances, it is natural to seek criteria less heuristic than the
more-or-less subjective appeal of the various physical and statistical mechanical
approximations introduced in the different approaches. Specifically, it would be
helpful to distinguish on some uniform grounds between the DH- and MSA-based
theories, none of which can, for example, currently claim a variational basis (as
may the standard mean-field theories for magnetic transitions in lattice models).

To this end we have [15] called upon (i) Totsuji’s lower bound [16] on the
internal energy, which states

(which improves on Onsager’s bound where 0.960 is replaced by unity); (ii) Gillan’s
upper bound [17] on the Helmholtz free energy, which specifically em-
bodies a reduction of the free energy at low temperatures arising from (+,–)-
ion pairing; and (iii) the standard thermal stability requirements (see, e.g., [18])
which enforce the positivity of the configurational, constant-volume specific heat,

where

COMPARATIVE RESULTS
We may summarize the results found in our study [15] under the following

headings:

Energy Bound Violations
The original (“pure”) DH and MSA expressions for entail

only the variable

Despite contrary claims [12], the original DH theory and versions allowing for
excluded volume effects [3,4,15] never violate Totsuji’s bound (although, not sur-
prisingly, the truncated DH limiting law is in violation for Conversely,
again contrary to claims [12], the MSA internal energy violates Totsuji’s bound
for (and lies below the bcc crystal value for Even
when ion-pairing is included, most of the MSA-based theories still violate Totsuji’s
bound for

Free Energy Violation of DH and MSA Theories
Both the original DH approximation and the MSA violate Gillan’s bound in

a region of the plane of shape roughly mirroring the predicted coexistence
curves but lying higher than (with and enclosing the predicted
critical points [15]. The gaseous sides of the coexistence curves are also encom-
passed while the densities of violation reach to and 0.09 in the MSA
and DH critical regions, respectively. The results are insensitive to the presence
and nature of excluded-volume contributions.

Inclusion of Ion-pairing and Free-ion Depletion avoids Violation
The violation of Gillan’s free energy bound is totally avoided if, starting with

DH theory or the MSA, one allows (a) for ion-pairing with the density of pairs,
determined via an association constant with sensible behavior as  T  0 [3, 4,

10, 11] and, correspondingly, (b) one recognizes depletion of the residual density,
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of free ions determined via (since each neutral dipolar pair binds
two ions). In particular, in expressions for the inverse screening length, [see (3)],
the total density, must be replaced by The inclusion of dipolar-ionic-fluid
solvation (DI) terms in both theories [4] does not change these results (although it
serves to remove the unphysical, “banana” coexistence curve of the original pure
DHBj theory [3,4]).

Omission of Free-ion Depletion leads to Violations
The PMSA theories advanced more recently by Zhou, Yeh, and Stell [7] ex-

plicitly do not allow for depletion (retaining in expressions for rather than
substituting This yields analytically simpler formulations but leads to vi-

olations of Gillan’s bound on the low-density side of the coexistence curves for
in all variants of the theory [15]. It is difficult, there-

fore, to regard the PMSA theories as competitive with the previous DH and MSA
pairing theories.

Pairing Theories and Negative Specific Heats
The original DH and MSA theories (with or without excluded volume terms)

respect thermal stability requirements so that is always positive. It
transpires, however, that all the theories with ion pairing lead to violations of
thermal stability by predicting negative in regions of the plane
[15]. At those densities of principal interest for the gas-liquid transition, say

(noting that lies in the range 0.03-0.08 [1]), these viola-
tions arise only above (or higher in the PMSA theories)
and they disappear at higher temperatures (roughly when
Nevertheless, the behavior is disturbing!

The defect turns out to be a direct consequence of the artificiality of the Bjerrum
and Ebeling forms for the association constant, K(T), at temperatures exceeding

(as already noticed in 1934, in a critique of the Bj theory [19]). Indeed,
for many of the theories this also leads to violations of the energy bounds when

The problem can be repaired in an ad hoc way that does not
impair accuracy for by replacing the T-dependent cutoff, in
Bjerrum’s definition of K(T), by a fixed cutoff: proves optimal [15].
However, this and similar remedies lead to serious inaccuracies in the representation
of the RPM free energy at higher temperatures. To do better requires a more
careful study of the general implications of the “chemical picture” and improved
strategies for its implementation [20].
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The investigation of front edge instability during spreading of some suspension over
arbitrary surface is interesting both as in view of suspension mechanics science and in
practice, because the instability of front edge is a reason of formation of some
inhomogenities during forming of any covering. There are the investigations in which the
analysis of stability of film surface are made for the case of Newtonian fluid spreading. But
in reality the most part of covering is forming by non-Newtonian fluids so that charged
suspensions, multicomponent polymer suspensions, polymer solutions, various lacquers
and so on. In this work the problem of non-Newtonian fluid edge stability is studied. The
fluid is spreading down inclined plane and over rotating disk.

The quasistationary equation for front edge non-Newtonian liquid film which spread
down wet inclined surface in lubrication approximation is written as (Baturin, Pavlov, 1996)

where y is a non-dimensional thickness of film, x- a non-dimensional variable,
coincided with the direction of motion, b is a constant characterized the thickness of
precursion film. The equation (1) is obtained for rheology low:  where
is shear stress (for Newtonian fluid n=l), v is fluid velocity, A boundary conditions
are:
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So that the equation ( 1 ) do not keep a variable x immediately the third boundary condition
do not necessary and solution of equation (1) is a function of  b. Equation (1) may be written
in the form:

where F(y) is obvious from ( 1 ); ( 3 ) is third-order nonlinear differential equation. Solution
of ( 3 ) was reduced to Cauchy problem, instead of boundary problem (1) – (2). With the
purpose the probe function

was used, the probe function constants were adapted to give the right boundary condition in
(2). The fourth-order Runge-Kutta method for solving (3) was used. So, the problem (1) –
(2) was investigated for various values of  n > 1, b > 0.

As follows from analysis the profile y(x) is characterized by a “hump” in the transition
region to precursion film. The hump intensity is determined by precursion film thickness and
rheology properties of fluids.

The other aim of the work was the study of instabilities of film surface near the front
edge. Used film thickness continuity equation, after substitution profile thickness in the form

( where is quasistationary front edge form ), linearization and some
transformations, we have (Baturin, Pavlov, 1996) :

Equation ( 4 ) was obtained for the case, when  must be solved with taking into
account the front edge disturbance in the form is
so called “finger” which is growing at Here is dimensionless longitudinal
variable, s-dimensionless transverse variable, q - dimensionless wave vector. So can be
defined as:

The boundary conditions for are: at  It is investigated in
longwavelength limit the stability of  front edge. Substitution ( 5 ) in ( 4 ) gives only even q
power, therefore the following functions G,  decomposition are used:

After substitution this expression in ( 5 ), ( 4 ) in zero order q we find:
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In the Newtonian fluid case when  and to take into account (1) (when
In the non-Newtonian case  can be > 0. So, in the latter case the

function at

Front edge of non-Newtonian suspension film linear instability analysis was carried
out for disturbance in ( 5 ) form by the following equation:

The preliminary numerical investigation spectrum of this equation was shown in the
typical case that function has maximum, which corresponds the most increased
disturbances and profile depends on parameters The most increased
disturbances determine the form of film front edge in the early stage instability development.

For experimental checking of our results it is necessary to take into account the nature
of film fluid; non-Newtonian liquid can be described by several rheology laws (Bird et al,
1987) and film front edge governing equations may be others than ( 1 ), ( 4 ).
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BEAMS
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INTRODUCTION

Crystalline-like order in ion clouds can be generated in ion traps by means of strong
laser cooling as has been demonstrated in the last decade.1 Similar phenomena are expected
also in cooled highly-charged ion beams in storage rings.2 A first experimental indication of
ordering effects in electron cooled proton beams was reported already in 1980.3, 4

The Experimental Storage Ring ESR5 in combination with the heavy ion linac UNILAC
and the 18 Tm-synchrotron SIS is well suited for experimental studies of electron cooled
heavy ion beams over a wide range of ion species and specific kinetic energies. After
injection to the ESR at a few hundred MeV/u the beams are cooled by means of merging
them with a velocity matched, cold electron beam covering approximately 2 % of the ring
circumference. After a few seconds an equilibrium state in the ion beam is obtained, which
depends on the mass-to-charge ratio of the ion A / Z (or A / q for partially stripped ions), on
the number of stored ions N, and on the electron density in the cooler device. Experimental
results of systematic investigations of these dependencies are presented together with a brief
interpretation.

COOLING AND DIAGNOSIS OF ION BEAMS

Main characteristics of  the ESR, a ring of 108.3 m circumference and of maximum bend-
ing power of 10 Tm, are large transverse and momentum acceptances, which are used
for injection and cooling of “hot” secondary beams (nuclear fragments) and many different
beam manipulations. A flexible lattice design in connection with numerous independently
controlled power supplies for focusing and orbit correction magnets makes the ring a versatile
instrument for many different applications.

The effectively 2 m long electron cooling device6, 7 is capable to cool ion beams at
specific energies between 10 and 450 MeV/u. At the low average vacuum pressure of

mbar the beam life is determined by radiative recombination of ions with cooler
electrons rather than by collisions with residual gas atoms. But, even for highest ionic charge
states q, beam life times of many hours are attained by applying moderate electron beam
currents.
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Figure 1. Frequency analyzer spectrum of an electron cooled  circulating at 350 MeV/u in the
ESR. The Schottky signals were taken from the stochastic cooling pickups installed in the gap of  an
ESR-dipole. In the case of an uncooled beam, the Schottky bands would be much wider and hardly be visible,
nevertheless, useful for generating correction signals for the kicker electrodes of  the stochastic cooling system.

Various — mostly non-destructive — techniques of beam observation are applied at
the ESR: a DC beam current transformer for beam currents position and phase
monitors for bunched beams, a residual gas ion beam profile monitor, and position sensitive
particle detectors for measurements of rates and transverse distributions of ions after radiative
recombination (RR) or dielectronic recombination (DR) with cooler electrons. Mechanical
beam scrapers around the ring are used to measure beam radii and positions with an accuracy
of about 0.1 mm.

Measurement and frequency analysis of  beam (Schottky) noise turned out to be the most
powerful tool for the diagnosis of cooled, highly-charged ion beams. The beam noise signal
picked up by electrode plates near the beam (pickups) comprises all harmonics of the mean
revolution frequency of beam particles up to 120 MHz. The amplified noise is analyzed
either directly by means of a frequency analyzer (see Fig. 1) or — after demodulation to
the baseband of 100 kHz or 200 kHz — by applying fast Fourier transformation to digitised
signals.8

The relative width of the Schottky band at an arbitrary harmonic is a measure for
the relative spread in longitudinal momenta of beam particles given by the relation

The frequency dispersion factor  introduces both the influence
of the kinetic energy of ions by the Lorentz-factor being the ion velocity
in units of the light velocity in vacuum) and that of the special focusing properties of the ring
lattice by the transition energy being the momentum compaction factor of the
ring).

The sensitivity of the Schottky diagnosis is extremely high especially in the case of
highly-charged ions. As the integral Schottky power at a given harmonic of the revolution
frequency increases it is applicable — after calibration with current transformer
signal at high N — to determine N down to lowest values as seen in figure 2. Even single
ions can be detected easily.

RESULTS OF COOLING EXPERIMENTS

The main objective of the experiments reported here was to investigate the dependency
of equilibrium ion beam temperatures, i.e., of  longitudinal momentum spread and transverse
emittances, on N down to lowest N. In order to exclude influences of collective beam
oscillations on Schottky spectra, the beam intensity was measured as a function of time, using
both the beam transformer at higher N and the Schottky power from highest to lowest N.

In the equilibrium state the ion beam temperatures, represented by longitudinal mo-
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Figure 2. Schottky noise power and momentum spread (FWHM) during decrease of beam intensity due to
recombination losses.

mentum spread and transverse emittances, are determined by the balance between electron
cooling and heating by intra-beam scattering (IBS). For larger numbers of stored ions, e.g.,

the dependence of the ion beam temperatures on N is quite universal for all ion
beams. The momentum spread shows a whereas the emittances increase

typically.9 In the IBS dominated regime  the relative momentum spread in
beams of highly-charged ions is in the order of On the other hand,
for some critical N between and the momentum spread drops below If we
extrapolate from the IBS dominated regime the observed extremely low momentum spreads
would be expected at N as low as 10.

For example, ions at 360 MeV/u were injected cooled with an
electron current of 0.25 A. corresponding Starting with approximately ions the
Schottky noise at the 35th harmonic of the revolution frequency was averaged every 10
minutes over a 30 s time interval. The noise power integral at this harmonic and the derived
momentum spread are shown in Fig. 2. The decrease of the Schottky noise power with a
time constant over the whole intensity range agrees well with that for the beam
transformer measurements. The noise power at the end of the measurement (t = 330 min)
corresponds to particles.

First decreases as expected for the IBS dominated regime. At N of about
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Figure 3. Momentum spread versus number of stored particles for various species of bare ions. Ail ions were
cooled with an electron current of  0.25 A.
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4000 a strong discontinuity is observed, where is reduced by a factor of about ten and
stays at a constant level of This minimum value is obviously caused by the
variations of the magnet excitation current. Experiments with short averaging times showed
that the true momentum spread is considerably smaller, typically Therefore
the spectra measured with record times in the order of minutes give only an upper limit.10

Similar investigations with several other fully stripped ion species are summarized in
Fig. 3. Only for ions with the described “jump” in is not visible, A systematic
dependence on the ion species is not seen, however the reduction factor for is evidently
larger for heavier ions. This may be explained by stronger intrabeam scattering above the
transition point. Transverse beam emittances of low intensity beams were investigated for a
few ion species by the method of mechanical beam scraping. An upper limit of  the rms beam
radius at the scraper position of   could be evaluated at

INTERPRETATION OF RESULTS AND CONCLUSION

The measured beam parameters can be interpreted in terms of beam temperatures ob-
served from the reference frame of a particle moving with the ion velocity. The longitudinal
beam temperature can be determined directly from the measured
FWHM momentum spread with The transverse beam tem-
perature can be calculated from mean transverse beam
divergences and being the rest mass of the ion.

For the case study we deduce longitudinal beam temperatures of
0.5 eV above and below the transition point. Some measurements with
short average times for the Schottky spectra indicated even a true beam temperature far below
1 meV. The transverse temperature for a rms beam size of at the scraper is derived
by means of the local beam envelope function at the scraper. Taking into account the mean
envelope amplitude we get an upper limit of However, from the intensity
dependence of emittances mentioned we can extrapolate about 0.3 eV.

The properties of a one-component plasma are usually described by the ratio of  potential
energy U to thermal energy kT. The plasma parameter with
the average particle distance a characterizes the state of the plasma. For a finite one-
dimensional plasma a phase transition from gas to liquid is expected for We get
for the longitudinal potential energy for N particles equally spaced
along the ring circumference C. The transverse potential energy refers
to the potential energy between two ions approaching each other to the average beam radius

From experimental results for 4000 Au-ions we estimate and

In the experiments with electron cooled, highly-charged ions a discontinuous reduction
of the longitudinal ion beam temperature by up to two orders of magnitude is observed, when
the number of stored ions decreases below This behavior may be interpreted as beginning
order. The estimated plasma parameters in the longitudinal and transverse phase planes are
close to unity. This might be understood as a phase transition from gaseous to liquid state of
the beam.

REFERENCES

[1]
[2]
[3]

F. Diedrich, E. Peik, J. M. Chen, W. Quint and H. Walther, Phys. Rev. Lett., 59 2935 (1987)
J. P. Schiffer and P. Kienle, 2. Phys. A321, 181 (1985)
V. V. Parkhomchuk and D. V. Pestrikov, Sov. Phys. Tech. Phys., 25(7) 818 (1980)

427



[4]

[5]
[6]

[7]

[8]

[9]

[10]

E. N. Dementev, N. S. Dikansky, A. S. Medvedko, V. V. Parkhomchuk and D. V. Pestrikov, Sov. Phys.
Tech. Phys. 25(8), 1001 (1980)
B. Franzke, Nucl. Instr. Methods B 24/25, 18 (1985)
N. Angert, W. Bourgeois, H. Emig, B. Franzke, B. Langenbeck, K. D. Leible, T. Odenweller, H. Poth,
H. Schulte, P. Spädtke, B. Wolf, Proc. 2nd Europ. Part. Accel. Conf., Nice, 1990, P. Marin and P. Mandrillon
eds. (Edition Frontieres, Gif-sur-Yvette, France, 1990) p. 1374
M. Steck, K. Beckert, H. Eickhoff, B. Franzke, F. Nolden and P. Spädtke, Proc. 1993 Part. Acc. Conf.,
Washington D. C., 1993, (IEEE, Catalogue No. 93CH3279-7, 1993) p. 1738
K. Beckert, S. Cocher, B. Franzke, U. Schaaf, Proc. 2nd Europ. Part. Accel. Conf., Nice, 1990, P. Marin
and P. Mandrillon eds.(Edition Frontieres, Gif-sur-Yvette, France, 1990) p. 777
M. Steck, K. Beckert, F. Bosch, H. Eickhoff, B. Franzke, O. Klepper, R. Moshammer, F. Nolden, P. Spädtke
and T. Winkler, Proc. 4th Europ. Part. Acc. Conf., London, 1994, V. Suller and Ch. Petit-Jean-Genaz
eds.(World Scientific, Singapore, 1994) p. 1197
M. Steck, K. Beckert, H. Eickhoff, B. Franzke, F. Nolden, H. Reich, B. Schlitt, T. Winkler, Phys. Rev.
Letters 77, 3803(1996)

428



FORMATION AND CONTROL OF COULOMB CRYSTALS IN TRAPPED ION
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INTRODUCTION

Trapped non-neutral plasmas consisting of one charged particle species provide an
experimental realization of a classical one-component plasma (OCP).1 In Penning traps,
which use static electric and magnetic fields for confinement, trapped plasmas can relax to a
global thermal equilibrium which undergoes a rigid-body rotation about the magnetic field
axis.2 In a frame rotating with the plasma, there arises an induced electric field which takes
the place of the field from the uniform neutralizing background in the OCP model. Active
control of the rotation frequency prevents plasmas from spinning down under the ambient
drag from static field errors and background neutral molecules, and allows variation of the
plasma density and shape.2, 3

With Doppler laser cooling, pure ion plasmas with density greater than and
temperature T less than 5 mK can be routinely obtained,2 resulting in a Coulomb coupling
parameter greater than 200. Here, e is the ion charge and
is the Wigner–Seitz radius defined by   A classical, infinite OCP freezes
into a bcc lattice at However, this result does not strictly apply to the trapped
plasmas because of the surface effects associated with their finite size. Both simulations5 and
experiments6 show that a structure of concentric shells forms for nearly spherical plasmas
with to ions. For plasmas with ions or time-averaged Bragg
scattering patterns are consistent with bcc crystals (presumably located near the plasma
center),7 in agreement with a theoretical estimate.8 But this measurement can not determine
whether the Bragg patterns come from single crystals or polycrystals.

In this report, we demonstrate that azimuthally asymmetric electric fields rotating in the
same sense as the plasma can phase-lock the rotation of crystallized plasmas without slip,
therefore precisely controlling the plasma rotation frequency, density, and surface shape.9 We
synchronize the detection of  Bragg-scattered light either with this active rotation control or
using the time dependence of  the scattered light itself measured by a fast photomultiplier tube.
Time-resolved (stroboscopic) Bragg diffraction patterns are obtained, effectively removing
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Figure 1. Schematic of the experimental setup.

the plasma rotation.10 Patterns from single bcc lattices are observed most of the time in
these plasmas,10 in agreement with the theoretically predicted bulk structure of a solid one-
component plasma.4 In addition, some preferred crystal orientations with respect to the axial
laser beam are also seen. With phase-locked rotation, the lattice and its orientation can be
stable for longer than 30 min, compared to an observed ~ 1 min lifetime without the active
rotation control.

EXPERIMENTAL SETUP

Figure 1 shows the apparatus and the asymmetric rotating field. The trap consists of a
127 mm long stack of cylindrical electrodes at room temperature with an inner diameter of
40.6 mm, enclosed in a Pa vacuum chamber. An axisymmetric potential

is generated by biasing the central electrodes to  giving axial particle confinement.
A uniform magnetic field from a superconducting magnet is aligned parallel to
the trap axis, resulting in global rotation and radial trapping. As shown in the inset, a
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Figure 2. Bragg diffraction from a plasma phase-locked to the rotating field
(a) 1 s time-averaged pattern. The long rectangular shadow is from the beam deflector;

four dashed line shadows that form a square are due to a wire mesh, (b) Time-resolved pattern obtained by
strobing the camera with the rotating field (integration time For a bcc crystal, a spot is predicted
at each intersection of the rectangular grid lines whose separations are not adjusted.

rotating quadrupole field (rotation frequency with a potential
is generated by applying properly phased sinusoidal voltages to the 6-fold

azimuthal sectors of the compensation electrodes.3, 9

We create plasmas by ionizing neutral Be atoms in a separate trap (not shown) and
transferring the ions to the main trap for experimentation. This procedure can be repeated
several times to accumulate up to ions. The trapped ions are then cooled to
temperatures T somewhat higher than the limit of 0.5 mK by a laser beam propagating
parallel to at wavelength In thermal equilibrium, the plasma takes the
shape of a spheroid with uniform density and a rigid-body rotation frequency The density
and aspect ratio of the spheroid are determined by for given and An f/5 imaging
system detects resonantly scattered photons from the axial cooling beam (diameter
power to produce a side-view image of the plasma, from which we measure
(and with an uncertainty 5 %. Bragg-scattered light is detected by a CCD camera with
a gateable image intensifier near the forward-scattering direction (< 5.4°) since
Time-resolved Bragg diffraction patterns are obtained by strobing the camera with either one
of  the two timing signals.10

RESULTS AND DISCUSSIONS

Figure 2(a) shows a time-averaged diffraction pattern of concentric rings from a nearly
spherical plasma with 7.5 ×         When the pattern is time-averaged, even single crystals
produce rings because of the plasma rotation about the axial laser beam.7 With the rotating
field controlling the plasma rotation, we trigger the intensifier synchronously with the rotating
field to open the camera for 50 ns each period. This enables the camera to record
the diffraction pattern in the frame rotating with the quadrupole field. Figure 2(b) shows
such a time-resolved pattern taken nearly simultaneously with Fig. 2(a) and accumulated
over plasma rotations. The well-defined rectangular dot pattern demonstrates that the
crystal is phase-locked to the rotating field with With this phase-locked rotation,
the crystalline lattice and its orientation with respect to the laser beam can last longer than
30 min rotations).

The diffraction pattern in Fig. 2 corresponds to a single bcc crystal with a axis
aligned with the laser beam. The theoretically predicted pattern agrees well with the obser-
vation within about 1 %. This rectangular grid pattern is essentially a plane of the reciprocal
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lattice, as can be seen from the Ewald construction in the forward-scattering limit.10 From the
widths and intensities of the Bragg peaks, we estimate that the crystals consist of at least 10
lattice planes.7 Single bcc crystals with many orientations including  and

have also been observed,10 with and being the most frequently observed
orientations.

In the future, we plan to investigate the experimental reasons for these preferred orien-
tations. We will also attempt to directly image individual ions in crystallized plasmas with
phase-locked rotation. Finally, with the improved stability of the crystal lattices obtained by
the rotating field, we hope to observe the melting phase transition of  the system.

We thank D. Dubin, T. O’Neil, B. King, C. Wood, M. Young, M. Lombardi, and
D. Sullivan for discussions and comments. This work is supported by the Office of Naval
Research.
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PLASMA PARAMETER IN THE QUASI-CLASSICAL REGIME

Due to the long-range nature of Coulomb forces, the regime of quasi-classical behavior
of plasmas is different from that of van der Waals gases. We consider here a two-component
plasma (TCP) consisting of electrons of density and ions of density with  the charges –e
or +e respectively, in equilibrium at the temperature T. The quasi-classical regime is defined
by the conditions

by using the characteristic length parameters

Under these conditions, the free charges in a plasma may be treated by quasi-classical
methods, while the bound states must always be treated quantum-mechanically. This concept
was already developed by Planck and Brillouin.1

QUASI-CLASSICAL PLASMA MODELS

A first description is provided by the Debye–Hückel theory in combination with a mass-
action law on the basis of the Planck–Brillouin–Larkin partition function and an appropriate
choice of the the effective diameter of  the charges.2, 3 The interaction energy per particle reads
in this model

In the quasi-classical regime, this model is consistent with the exact quantum-statistical
calculations up to the order A special property of this model is the existence of a
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plasma-phase transition, which can be determined analytically.2 The critical point is located
at and

Another widely used model for quasi-classical plasmas is based on the non-singular
potential,4–7

By generalizing an early work by Kramers, Berlin and Montroll8 were able to derive the exact
free energy density as a function of under the assumption that
In our earlier papers,9, 10 we used the model of gauss-distributed charges. This relatively
simple model can be derived from the method of wave packet dynamics (WPD).11 Under the
assumption that the charge  is gauss-distributed with radius R i, we obtain the interaction
potential

For this potential, one can find a lower bound for the energy per charge that corresponds to a
configuration, in which the Gaussian charges are surrounded by screening clouds of opposite
charge concentrated around a common center. This leads to

In our quasi classical WPD simulations,9, 10 we used the effective radii

Our results can be approximated by the semi-empirical Debye–Hückel-type equation for the
interaction energy per charge

An even simpler quasi-classical model was treated by Norman et al.17 on the basis of   molecular
dynamics.

COMPARISON WITH PATH-INTEGRAL SIMULATIONS

Already in [9], we could show for the OCP that quasi-classical WPD simulations with the
potential (5) yield good agreement with the interaction energy obtained in the classical QMC
work by Ceperley and Alder.12 Now we will to compare results of our WPD simulations10

for mass-symmetrical TCP with new path-integral Monte Carlo calculations (PIMC). PIMC
simulations13–16 have been proven to be a powerful and accurate technique to study the static
properties of quantum systems. The comparison was performed in order to advance a dynamic
simulations model, which can reproduce the essential PIMC results with a reasonable accuracy
and which then can be used to study dynamic plasma properties. The interaction energies
for two densities and and several temperatures are shown
in figure 1, in which denotes the degeneration parameter We also included
results from analytical approximations by means of  Padé formulae18 and the chemical picture
(PACH).3, 18 The comparison shows a satisfactory agreement between the PIMC results and
the PACH approximations. The WPD simulations shows qualitatively agreement with the
other methods but the quantitative agreement is still not sufficing. This is partly caused
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Figure 1. Interaction energy of the electron–positron plasma per pair of particles from wave packet dynamics
simulations (dashed line), from path-integral Monte Carlo simulations (solid line) and Padé approximations in
the chemical picture (dot-dash line) are compared at the two densities  and

as a function of

Figure 2. The pair correlation functions (solid line), (dotted line) and (dashed line) are
shown for two different densities and  values.

435



Figure 3. The direct radial electron–positron correlation function is shown for two different
densities at (dashed line), (solid line) and  (dot-dash line). The strong peak in the left
graphs corresponds to the population of  ground state

by a too strong interaction potential Eq. (5,7). Hence, the agreement can be improved by
adjusting the length parameter In particular, this is true for the region where
corresponding to rather low densities and high temperatures. This point however needs a
more careful investigation.

The pair correlation function for PIMC simulation are shown in figure 2. Comparing
the correlation function for electrons with parallel and anti-parallel spins, one can study the
effects of the Pauli exclusion principle, which is realized in PIMC by introducing nodal
surfaces.14 It leads to a stronger repulsion of electrons in the same spin state.

From the peak structure in the electron–positron correlation function in figure 2, one can
deduce the existence of    bound states.15, 16 The population of  the ground state can be evaluated
by studying the radial direct correlation function which is plotted in figure 3.
The height of the peak is a direct measure of the number of bound electron–positron pairs.
They dominate the structure in the left graph of figure 3 for the lower density, whereas the
minor peak in the high density case is caused by the attraction of free electrons and positrons,
which leads to Debye screening but not to binding. The effect of thermal ionization can be
seen in the left graph of figure 3. The pressure ionization can be studied by comparing the
low at high density graph. The reader should keep in mind that we compare at constant
and not at constant temperature.

In conclusion, we state that the symmetrical two-component plasmas are a fairly useful
system for testing the accuracy of analytical theories and numerical simulations. On the basis
of our comparison, we deduce that the WPD method needs further improvements in order to
achieve a level of correctness, which already has been reached for the electron gas.
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INTRODUCTION

A test charge in a three-dimensional electron gas is screened at large distances.1 The
screened potential exhibits Friedel oscillations.2 It was argued that many-body effects, de-
scribed by the local-field correction (LFC), strongly modify the screening properties of a
two-dimensional electron gas at low density and enhance Friedel oscillations.3 The possi-
bility of a Coulomb interaction induced attraction in the electron gas between two equally
charged particles was suggested in the literature for a short-range interaction potential.4 It
was shown that for a negative test charge many-body effects give rise to bound states in the
low density range of the two-dimensional5–7 and three-dimensional7, 8 electron gas. In this
review we restrict our discussion to test charges with charge and no spin. We study
the test-charge–test-charge interaction5, 6, 8 and the test-charge–electron interaction.7

MODEL AND THEORY

The model is a d-dimensional electron gas (d = 2,3) with a parabolic dispersion and
density Distances are expressed in units of the effective Bohr radius with
the Planck constant is the effective mass and is the dielectric constant of the
background. Energy values are given in units of the effective Rydberg  The
density parameter is given by for d = 3 and by for
d = 2. is the Wigner–Seitz radius. is the electron density
in d = 3 (d = 2) and is the Fermi wave number.

The Coulomb interaction potential in the Fourier space between two negative test
charges (tt) is repulsive and given by Vtt (q) = V(q) with in d = 3
and in d = 2. The screened interaction potential  is written as

The dielectric function calculated within the RPA and in-
cluding the LFC, is given9 by
is the Lindhard function of the free electron gas.1
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For the interaction between a negatively charged test particle and an electron (te) the
potential is given by The screened interaction potential is expressed
as with accounts for
the indistinguishability of the electrons in the case of the test-charge–electron interaction
potential.9

In our calculation we use for the LFC the sum-rule approximation,10 taking into account
the compressibility sum rule,11 of the Singwi, Tosi, Land and Sjölander (STLS) approach.12

The LFC is parameterized by three coefficients (i = 1, 2, 3) and has a similar form
as within the Hubbard approximation,1 where only exchange effects are taken into account.
Finally, we note that the sum-rule approach is in reasonable agreement with recent Monte-
Carlo calculations.13, 14 As far as exchange and correlation effects are included in the LFC,
the specific form used for G(q) in the calculation is not essential for our results.

In order to study bound states we used the matrix diagonalization method of the
Schrödinger equation in the momentum space. We also use a variational method. The
variational ground-state wave function is given by with the
normalization constant A and the variational parameters k1 and α . The two methods give
similar results; however, the binding energies found within the matrix diagonalization method
are somewhat larger than those found with the variational method. The differences increase
for small binding energies. The bound state energies are classified by a radial quantum
number and the angular momentum quantum number l. In this paper we only give results
for the ground state with and l = 0.

RESULTS

The inverse dielectric functions and versus q are shown in Fig. 1
for and d = 2. Note that is negative for small wave numbers and this is
called overscreening. It is this non trivial q-dependence which leads to the strong attractive
parts in Within the RPA and for the test-charge–electron interaction the inverse
dielectric function is always positive. It is clear from Fig. 1 that the LFC strongly modifies
the screening function compared to the RPA. For in the three-dimensional electron
gas and comparison with Monte-Carlo calculations, see Ref. 11.

The screened potential and versus interparticle distance r is shown
in Fig. 2 for and d = 2. Note that the attractive part of the test-charge–test-charge
interaction is much larger than for the test-charge–electron interaction. For large interparticle
distances one finds Friedel oscillations. At small distances the potential is strongly repulsive.

and increase with increasing  The variational wave function
shows a maximum at The bound states are very extended in space due
to the repulsion at small distances: see the large value of  found for the minimum of the
screened potential in Fig. 2 and we find

Our results for the binding energy of the ground state in the test-charge–test-charge
interaction potential versus are shown in Fig. 3 for d = 3 and d = 2. For a finite
bound state energy is found and for d = 2 is much smaller than for d = 3. Many excited
bound states have been studied; we refer the interested reader to Refs. 6,7,8.

The results for the binding energy of the ground state in the test-charge–electron interac-
tion potential versus  are shown in Fig. 4 for d = 3 and d = 2. for the test-charge–electron
interaction is much larger than for the test-charge-test-charge interaction. We also have stud-
ied bound-state energies within the RPA6, 7 and found much smaller binding energies than for
the test-charge–test-charge interaction or the test-charge–electron interaction. We mention
that the generally believed argument, namely that in d = 2 a bound state always exists if the
potential is attractive, is only true for a short-range potential. Our results shown in Fig. 3 and
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Figure 1. Inverse dielectric function  and versus wave number q in d = 2 for
with G(q) = 0 is shown as the dashed line.

Figure 2. Screened potential (a) and  (b) versus interparticle distance r for  in d = 2.
The RPA is shown as the dashed line. The unscreened potential  is also shown. Note the
different energy scales for  and
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Figure 3. Bound state energies for the screened repulsive test-charge–test-charge interaction found by matrix
diagonalization versus for d = 2 and d = 3 as solid dots. The variational results are shown as solid lines.
Note the different energy scales for d = 3 and d = 2.

Fig. 4 confirm that in d = 2 a finite attractive part in the screened potential is present (Friedel
oscillations) while no bound states exist for

DISCUSSION

For the test-charge–electron interaction let us discuss the origin of the attractive part in
three dimensions assuming that is the density of states at the Fermi energy

This approximation represents the Thomas–Fermi (TF) approximation. For the screened
potential we find an attractive part because the screened potential in momentum space has
the form The finite G(q) is responsible for the attractive part. With
G(q) = 0 one obtains for large distances an exponentially screened potential. The strength of
the attractive part depends on G(q) and For the test-charge–test-charge interaction the
attractive part is mainly given by G(q). The attraction is larger in two-dimensional systems.
A similar attraction occurs in quasi-one-dimensional systems and the results can be found in
Ref. 15. Finally, we would like to indicate that we have also studied bound states between a
positive and a negative test charge and we refer the interested reader to the original articles.6–8

For d = 3 it was recently argued16 that Coulomb interaction induced superconductivity
should not occur for This is in qualitative agreement with our calculation of
the test-charge–test-charge interaction for three dimensions. For a study of the effective
electron–electron interaction spin effects have to be taken into account10 and the LFC for
spin-density fluctuations has to be known. For the two-dimensional electron gas the effective
electron–electron interaction potential including spin effects has been discussed within the
Hartree–Fock approximation.3

CLASSICAL PLASMA

Until now we described the screening due to a quantum liquid. From our discussion
above it follows that in a classical one-component plasma, when many-body effects via a
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Figure 4. Bound state energies for the screened repulsive test-charge–electron interaction found by matrix
diagonalization versus    for d = 2 and d = 3 as solid dots. The variational results are shown as solid lines.
Note the different energy scales for d = 3 and d = 2.

LFC in the screening function are included, attractive parts are also expected in the screened
potential between two equally charged particles. The LFC takes into account correlation
effects and can be calculated following the STLS-approach.17 Of course, classical particles
are distinguishable and enters the theory. The Lindhard function for temperature

between the Coulomb energy and the thermal energy. In the classical plasma the degeneracy
parameter  is large, For d = 2 one  finds  In the DH-
theory the dielectric function is given by in d = 3 and by
in d = 2. Within the STLS-approach one gets in d = 3 and

in d = 2.
In order to specify the parameter we must fix and Using a simple form of the

LFC in we find an attractive part in the screened potential, but much weaker than
for the quantum case. For we observe that the attractive part weakens and increases
with increasing corresponding to an increase of and an increase of For we
get for  for and

for We conclude that the attractive part is strongest
in the quantum case and weakens with increasing temperature. In three dimensions and
we did not found an attractive part in the screened potential. More details concerning classical
plasmas will be published elsewhere.19

CONCLUSION

Our calculations of  bound-states between equally charged particles and screened by an
electron gas might indicate that paired electrons are possible. We conclude from our results
for the binding energy and that in d = 2 the attraction between equally charged particles,
induced by many-body effects, should occur at higher electron density than in d = 3. A finite
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temperature weakens the attraction.
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INTRODUCTION

For nearly a century the electron gas has been studied as a model for free-electron
metals in the ground state. The basic parameter of this model is whose values have a
range of 2-5 for metals. If the properties of the electron gas are determined largely
by its kinetic energy, i.e., zero-point motion. It is a regime that is applicable to dense matter,
e.g., white dwarf stars. If the properties of the electron gas are determined largely
by the potential or Coulombic interaction energy. It is a regime that is applicable to
nonmetallic solids and other novel systems such as electrons confined to the surface of liquid
He. When the values of are very small or very large, there are perturbative techniques
which are known to work very well. When the values of fall in the metallic regime, these
approximation techniques are generally not satisfactory. In particular when dynamical
properties are calculated by these techniques, one finds notable disagreement between theory
and experiment. Perhaps the most notable is in the dynamic structure factor where
k and are respectively the wave vector and frequency. It would thus be significant
progress in both technique and understanding if one could find some kind of exact dynamical
solution.

The recurrence relations method,1 developed at the University of Georgia over the past
15 years, has been demonstrated that it can yield exact solutions to frequency dependent
problems.2 It does not rely on the usual perturbative ideas. It is based on certain geometric
notions about Hilbert spaces. When this method is applied to the electron gas, it has been
shown that an asymptotically exact solution for the dynamic structure factor can be
obtained,3 which is valid at approximately and where is the Fermi
wave vector. This solution is summarized in this work. What is interesting is that this
solution can be extended in such a way to study the dynamic structure factors of liquids
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He – 3 and He – 4 at very deep inelastic scattering regimes. The experimental studies of
very deep inelastic scattering from these quantum fluids have been spurred by the impulse
approximation (IA) theory of the many-body problem.4 According to this theory, the single-
particle momentum distribution can be deduced from deep inelastic scattering data. This idea
has not been fully realized owing to scatter in the experimental data. But we shall see that the
dynamic structure factors that the recurrence relations method yields for large momentum
transfers show very good agreement with these data. Hence the physical idea behind the IA
can be put to test by our solutions.

GENERAL THEORY

In the ground state the dynamic structure factor of the density may be used to define
the frequency moments,

where and for example represent the susceptibility and f sum rules, respectively. It
should be noted that the above sum rules (1) do not depend on statistics and hence they are
applicable to both Fermi and Bose systems. The moments are also calculable by the
actions of the Liouville operator L on the density

where the inner product means the Kubo scalar product. Since and
H = T+ V , both the kinetic and interaction energies contribute to the moments. One may
assume that for some problems these moments can be calculated to any desired order. One
may thus ask: Given all the moments, can one obtain From the point of view of
(1) it becomes then an inverse problem.

The above inverse problem is solvable by Kubo's linear response theory and our
recurrence relations method. If the relaxation function, where we
have suppressed the k index for simplicity, according to Kubo,

where and

where the rhs of (4) means a continued fraction and the deltas are functions of
Thus given this set of the deltas, known as the recurrants, i.e.,

ratios of the moments, one can solve the inverse problem by going from (4) to (3).

APPLICATION TO THE ELECTRON GAS

For the electron gas at it is possible to give the ratios of the moments an

expansion in powers of k: To order
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where the coefficients of A and B have a nonlinear dependence on n, while A  and B
themselves depend on only. Thus even as the recurrants are known, the inverse problem
is not doable owing to the nonlinear coefficients. But if A = B = 0 simultaneously at some
value of then the problem is in a sense linear and solvable. At the ideal limit
A = 0.1 and B = 0.36. Hence it is not necessarily obvious a priori that A = B = 0 at some

and even if it were so, such a value would be interesting physically. We shall
nevertheless take as our ansatz that A = B = 0 at a unique value of say, and obtain
by (2-5)

where and and all of which are
at and only the leading orders in k are shown. The dynamic structure factor at this
value of and has a “skewed” Gaussian form. It also has a quadratic maximum at

which is the recoil frequency since it becomes

Using (6),together with the kinetic energy sum rules and Kimball's relation, one can
now justify the ansatz ex post facto.3 A numerical analysis shows that which is
close to that of The experimental structure facot of Li at is very
accurately reproduced by (6).3

The following static properties of the electron gas at are obtained in

dimensionless units: which are to
be compared with those for respectively, 0.6, 0428, 0.5, and 0.

APPLICATION TO DEEP INELASTIC SCATTERING

In recent experiments of inelastic neutron scattering from liquid    He – 3, k /  kF have
attained high values, e.g., greater than 15.5  Where the momentum transfers have such high
values may be termed very deep inelastic scattering. There is considerable scatter in the
measured structure factors, but they have been fitted reasonably well with a simple Gaussian
with one parameter--the kinetic energy x. There is of course no theoretical basis for this
fitting.

If by deep inelastic scattering we mean then the dynamic structure factor for it
is already given by (6). When the nonlinear terms drop out as if by the ansatzs.
There is however a subsidiary condition still retained, i.e., Observe that the
asymptotically exact structure factor is a "skewed" Gaussian of x =< T >. This is the reason
why the experimental structure factors could be approximately fitted by a simple Gaussian.
The best fit of measurements of Sokol et al.5 by (6) is obtained for x = 8.1 °k.

We have similarly examined the measured structure factors for liquid He – 4, obtained
roughly in the same regime, by Mook et al.6 They are remarkably similar to those of liquid
He – 3 in spite of the different statistics involved. The best fit for the Bose system is given
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by x = 12 °k , larger than the Fermi value. That the dynamic structure factors show no
special statistics dependence bears the idea of asymptotic freedom.

The interest in obtaining very deep inelastic neutron scattering appears to have been
kindled by the theoretical predictions based on the IA theory. In particular the single particle
momentum function, according to this theory, is relatable to the structure factor obtained in
very deep inelastic scattering.4 As mentioned, the scatter in the measurements has prevented
from realizing this goal. There are however indications that the predicted momentum
function may not be observed. Since our theoretical structure factor is asymptotically exact
and since it agrees extremely well with the measured ones, it may be used to test the IA
ideas. Because of the space limitation, we can make only a few remarks.

The IA theory says that the momentum function n(p) is obtained by the slope of

and that if hence n(p) by (6). Since (6) is not symmetric about
there are two branches of n(p), but similar enough to ignore the differences. They together
satisfy the number sum rule. For He – 3, n(p) is smooth with no break at and
n(0) = 0.642. Lam et al.7 give a discontinuous n(p) with n(0) = 0.62 but with an 8%
violation of the sum rule. For He – 4, it is also smooth and n(0) = 0.584. McMillan8 gives
a smooth n(p) with n(0) = 0.75, but not accurate for Our results indicate that the
IA theory fails to yield the expected behavior of the quantum fluids.
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RIGOROUS BOUNDS TO COULOMB ENERGY FUNCTIONALS I:
ATOM–POSITRON BOUND STATES

Rajeev K. Pathak
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Maharashtra, India

1. INTRODUCTION

In the study of atom-positron interactions, an intriguing question that has hitherto not
been conclusively answered is whether a positron forms a ( transient) bound state with the
atom (or ion) prior to the annihilation of the former with an atomic electron.1–3 Employing an
adiabatic like approximation to Coulomb interactions, Gertler, Snodgrass and Spruch1 derived
a necessary condition for the existence of such bound states for a number of systems, including
those for an atom and a positron. Gertler, Snodgrass, and Spruch, using Schwinger’s4, 5

criterion for existence of a bound state, concluded that a He and  bound state is impossible,
and further conjectured that under purely Coulomb interactions, an system will also
be unbound, a conclusion in agreement with that of Aronson, Klienman and Spruch2 and
Golden and Epstein.3 Golden and Epstein, within a different kind of adiabatic approximation,
proved that He, N, and Ne in their ground states will be incapable of  binding positrons, but
also pointed out that binding of positrons to H, O, Ar, and Kr was not precluded within in
their approximation.

Some very accurate variational(not involving any adiabatic approximation) calculations
by Clary6 suggest that a neutral atom and a positron bound state indeed exist for the species(in
the notation of Ref. [6]) and but noticeably, the variational wave
functions had to incorporate the electron–positron distance to give rise to a bound state.
That the atom and bound state crucially depends on the polarization (i.e., deviation from
spherical symmetry) of the electron density was also emphasized by the Patrick and Cade.7

It is the purpose of this paper to obtain a rigorous necessary criterion for atom-positron
binding and further to demonstrate that for binding of positrons to neutral atoms, it is im-
perative to have a non-spherical (around the nucleus) joint electron–positron number distri-
bution(see below). The present derivation closely parallels Lieb’s8 remarkable maximum
negative ionicity theorem.8–10 We shall examine here atom-positron and not ion-positronium
states.
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2. BINDING CRITERION

We consider a non-relativistic quantum-mechanical system of N negative charges (fer-
mions or bosons or an admixture of both) in the field of a
nucleus of charge and an extra, delocalized (this is crucial) positive charge
With exclusively the Coulomb interactions, the (spin-free) Hamiltonian H for such a system
is given by

with

and

Here, is the jth electron kinetic energy operator, with denoting the masses of the
negative charges; and  M being the mass of a delocalized
positive charge, in particular, that of a positron. The coordinates refer to those of  the
electrons while R denotes the location of the positron. Evidently, refers to the atomic
Hamiltonian, with the positron absent. Let be the many-particle ground
state energy eigenfunction of the system with E being the ground state energy
of the atom and positron system. (The spin degrees of freedom may also be incorporated
in For a stable bound state of such a system, one must have where  is the
atomic ground state energy with the positron absent. We also assume that E is below the
lowest continuum threshold of the system. The variational principle, as applied to the atomic
system, readily gives inequality

with treated as the trial function for the atomic system; the interior integration being
carried out for a fixed (This “fixed  ” is only for bounding the integral and does not involve
any adiabatic approximation.) Thus, one obtains

a result analogous to Lieb’s inequality in Ref. [8]. We may take to be real, in view of the
reality of H. Now, we have the following string of arguments:

whence

since One thus finds that
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to Lieb’s proof leads to

for any real g(R) that is not identically zero(such as the present one). Therefore, a strict
inequality emerges, viz.:

Simultaneous validity of the inequalities (8) and (10) demands that

where we have canceled the common factor without altering the above strict in-
equality. The inequality (11) gives a rigorous necessary condition for the existence of a
bound state, in addition to the square-integrability of Further, employing a normalized
and specializing to electrons and noting the antisymmetry
of (hence symmetry of  under an interchange of two electron coordinates, the above
inequality simplifies to

where the joint electron–positron  number density distribution is
identified with

Here is the magnitude of the “classical” electron–positron attractive potential at
The inequality (12) thus gives the desired necessary condition, which is a rigorous one and
should be contrasted against the “adiabatic approximation” conditions of Refs. [1–3]. This
condition may be used as a test for binding: only the electron–positron attractive potential
derived from an optimal variational wave function is needed here, bringing out a reduction
from a multivariate problem to a three dimensional one.

From the definition of D, the following connections emerge:
and where p and n are respectively, the positron and electron number
densities. The conjecture of Patrick and Cade,7 Golden and Epstein3 and such other inde-
pendent particle models12 that a neutral S-state atom and an S–state positron will not always
bind together may now escalated to a more rigorous footing. For a zero-angular momentum
state of the positron, and in particular, when D depends only on the distances of its arguments
from the nucleus, it is demonstrable that a neutral atom-positron binding is impossible. Thus
if then

where we have used, in the second integral  (cf. Ref. [13]). Thus from the inequality
(12) it follows that binding necessitates Z < N, which immediately rules out binding of a
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positron to neutral atoms under the above premise. The same conclusion is also arrived at
through the following:

Thus, in fact it suffices to have the function D to be spherically symmetric in either the
positron or the electron coordinate. Similar arguments hold good in that case.

It is gratifying that a necessary condition for atom-positron bound state is derivable
in terms of the first moment of a one-particle quantity which has a direct physical
interpretation as the magnitude of the electron–positron attractive potential. Further, for a
zero-angular momentum atom or a positron, neutral atom-positron bound states are impossi-
ble.

3. EXACT DIFFERENTIAL EQUATION FOR THE POSITRON DENSITY

To this end, in the spirit of Levy we construct a function with the prescription

Notice that incorporates a parametric dependence on the positron coordinate. By con-
struction,  for every where the integration is performed over the configuration
space of the electrons. We now have

where is the ground state energy of the N-electron system (with the positron
absent). Premultiplying this equation by throughout and integrating over the elec-
tronic degrees of freedom, and simplifying, one arrives at

Here, is identified with In view of the time-
reversal-invariance of     assuming to be real, so that invoking

and one obtains the desired equation

which is an exact differential equation satisfied by the positron density. Note that the second,
fourth and fifth terms bracketed on the left side of Eq. (17) pose a non-negative contribution
to the total “effective potential.” The asymptotic behavior of the positron density is now
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derivable by taking the extreme limit, In this event, the function merges
into the N-electron ground state (or into a degenerate linear combination of ground
states with the same energy so that all the “effective potential” terms of Eq. (17) vanish,
leading to

whence, for s-state positrons in an atomic or ionic (single center) situation,

implying an exponential asymptotic decay. Note that in the foregoing analysis, we have
tacitly assumed that the positron has formed a bound state, giving
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A degenerate hole layer in GaAs is a strongly interacting two dimensional fermion
system. The large hole mass leads to large values, of the ratio

being the average interparticle coulomb energy at

density p , and the fermi energy ). The low temperature behavior of this system is
therefore dominated by interaction induced quantum correlations which are close to the value
predicted for wigner crystallization,

We describe here a measurement of the inverse thermodynamic density of states
(ITDOS),   of a two dimensional hole layer in which the temperature is varied from
values lower than the fermi energy up to temperatures higher than the interaction energy (and
consequently more than an order of magnitude higher than the degeneracy temperature). The
behavior of the system correspondingly crosses over from that of a strongly interacting
degenerate system to that of an ideal classical layer and agrees with the theoretical predictions
for these two regimes. This work focuses on the crossover between these two limits. While
heretofore, no theoretical or experimental studies of this regime have been conducted, we
find it to display a rich number of features. At low temperatures the ITDOS is negative and
temperature independent. At temperature dependence commences abruptly for all

densities.   turning less negative with a slope similar to
that of an ideal gas. The ITDOS reverses sign simultaneously at all densities. We find this
behavior similar to that of the specific heat in other strongly correlated systems.2

At temperatures comparable to the interaction energy the slope of with respect
to p is enhanced as the layer crosses over to an ideal classical gas. A classical gas is attained
at temperatures more than an order of magnitude larger than the fermi temperature.
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Fig 1: Typical n,p data at low temperatures. Inset: schematic description of the system as a
four plate capacitor with the middle plates patterned as hall bars.

The devices we used in this experiment house a two dimensional hole layer adjacent to
an electronic one the layers are separated by a s =140Å (400 Å in another device) AlGaAs
barrier3. The layers are separately contacted and a conducting substrate and a gate allow the
variation of the layer densities. The structure, thus, can be effectively described as a four
plate capacitor with the electron and hole layers being represented by the middle two plates
(fig. 1, inset). The layers are patterned in the form of hall bars, thus the densities and
mobilities of both layers are monitored simultaneously.

Fig. 2: vs. T for various hole concentrations compared to the behavior of an ideal
fermion layer. The data from the thin barrier sample is limited to T< 50K due to
leakage through the barrier. The regimes marked I-IV are described in the text.
Inset: expanded low temperature data for the s=400Å barrier device.
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We measure the hole layer ITDOS via a three layer capacitive measurement.4 The
conducting substrate is utilized as a gate to vary the hole layer density. The ITDOS of the
hole layer is then measured in the following manner: an external battery sets a constant
electrochemical potential difference, between the hole layer and the adjacent “probe”
electron layer. Due to this coupling ( neglecting interlayer correlations between truly two
dimensional layers) the sum of the variation of the chemical potentials in both layers, and the
electrostatic interlayer energy, is zero:

The variation in the hole chemical potential is therefore compensated by the variation of the
interlayer electrostatic energy, and the electronic layers’ chemical potential.

Thus
where is the two dimensional screening length of the

electronic layer, and s the electron hole layers separation.
The Hartree effects due to the finite well width slightly modify this relation. They are

accounted for by calculating the total free energy of the system using the Fang Howard
variational wavefunctions.5 Requiring the total free energy to be a minimum yields equations
which link which is derived from the n, p data (fig. 1).

The resulting derived from measurement of devices with interlayer separations
s =140,400Å is presented in fig. 2. The difference in the low temperature values of
for the different barrier separations suggest the importance of interlayer correlations which
should be enhanced for adjacent electron and hole layers.6

Fig 3: Data taken at different densities of the probing electronic layer, demonstrating the
absence of dependence on these densities. Inset: temperature dependence of the
hole layer resistance, displaying a sharp change at T=17K similar to the one
displayed by the ITDOS.
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Four distinct regimes are observed ( fig. 2):

I. The low temperature regime (T<17K). The ITDOS, is negative 1,4 and its
magnitude diverges as the density diminishes. It is temperature independent throughout
although the hole layer turns non degenerate within this region (e.g. the degeneracy
temperature for a hole layer density of is about 6° K) . The negative divergence
of as is theoretically accounted for1 by exchange and quantum correlations.

II. “Intermediate” regime (T>17K). The temperature dependence begins abruptly at
T=17K for all densities. It is accompanied by a similar behavior of the hole channel
resistance (fig. 3, inset). The negative value of at low temperatures demonstrates
that in this regime the layer is interaction dominated. Nevertheless the correlated liquid we
observe displays the behavior of a classical ideal gas shifted down by the (negative) low
temperature values of an interacting layer, When
the temperature is raised, the negative sign of is reversed as it vanishes almost
simultaneously.

III. The crossover regime. The variation of with temperature is enhanced in this
regime as the correlated liquid crosses over from the “intermediate regime” behavior and
becomes an ideal classical gas. The regime is bounded within values of the classical
plasma parameter while the temperatures exceed the degeneracy
temperature by a factor of

IV. Ideal classical gas. At sufficiently high temperatures a classical ideal gas behavior is
observed. The slope of with temperature decreases and          assumes the
classical ideal gas values, The transition happens in our system at

The Fermi energy is about an order of
magnitude smaller than the temperature demonstrating that the physics is interaction
dominated.

The behavior observed in the low temperature and ideal classical gas complies with
theory.3 Regimes II, III have yet to be explored theoreticaly and their data is therefore due a
closer examination.

The temperature dependence of the ITDOS in regime II implies that the contribution of
interactions to the ITDOS is temperature independent up to temperatures which
are almost an order of magnitude higher than the fermi temperature. The linear slope with
temperature being due to entropy as in an ideal gas. The ITDOS observed for an electron gas

displays a different behavior crossing over smoothly from the low temperature
behavior to an ideal gas at around the degeneracy temperature7. While degeneracy effects
seem not to play a role8 in the strongly interacting hole system they are important in the
electronic one, although it is also found in the  regime.

The “crossing” point in regime II where the ITDOS almost simultaneously vanishes
for all densities may be an fortuitous combination of circumstances, however, we point out
that a similar effect has been observed for the temperature and pressure dependence of the
specific heat of other strongly correlated systems2 and may have a deeper origin.

The ITDOS measured for samples with two different layer separations
qualitatively display the same features. Nevertheless the magnitudes at low temperatures
differ by a factor of 3. While interlayer correlations are expected to affect the ITDOS of each
layer,6 we have tested the dependence of the measured hole ITDOS on the density of the
probing electronic layer, and have found no such effect within the range of densities
accessible in our experiment (fig. 3). The layer separation, may however enhance the overall
value of the measured ITDOS.
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In summary, the thermodynamics of a two dimensional hole layer at large numbers
was characterized by measuring the inverse thermodynamic density of states.. Four distinct
regimes have been identified in the density-temperature plane (fig. 2). At low temperatures

is negative and qualitatively agrees with theory.1,3 They are temperature independent
up to where the temperature dependence appears abruptly for all hole densities.
The dependence of on temperature is at first very similar to that of an ideal classical
gas, shifted down by a constant value. As the temperature is further
increased, reverses sign almost simultaneously at all hole densities, indicating a
metallic screening at finite densities and temperatures. At higher temperatures a crossover is
observed to an ideal classical gas which is attained at temperatures higher than the interaction
energy and almost an order of magnitude higher than the degeneracy temperature.

REFERENCES

1.
2.
3.

4.

5.
6.
7.
8.

B. Tanatar and D.M.Ceperely, Phys. Rev. B 39, 5005(1989) .
Vollhardt, Phys.Rev. Lett. 78 p 1307 (1997)
S.Shapira, U. Sivan, P.M. Solomon, E. Buchstab, M. Tischler and G. Ben Yoseph, Phys.
Rev. Lett. 77 p 3181 (1996).
J. Eisenstein , L. Pfeiffer, K. West, Phys. Rev. Lett. 68, 674 (1992); (our system is actually
four plate but the residual penetration of field to the fourth plate will actually leads to an
underestimation of the ITDOS by much less than a percent of its measured value.)
F. F. Fang and W. E. Howard, Phys. Rev. Lett. 16, 797 (1966).
L. Swierkowski, J. Szymanski, and Z.W. Gortel, Phys. Rev. Lett. 74, 3245 (1995).
I. Millard, N. Patel private communication
The T=17K transition is density independent.

459



This page intentionally left blank 
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INTRODUCTION

The so-called STLS theory of Singwi et al.l gave a central role to the local structure of
the electron gas and to its consistency with dynamical structure. The accuracy of the STLS
predictions for the ground state energy as a function of the coupling strength was verified
by the Quantum Monte Carlo (QMC) work of Ceperley and Alder2 (see Table 1). With
regard to the density-fluctuation spectrum the STLS theory predicted strong renormalization
of the plasmon dispersion and of the electron–hole pair continuum from short-range corre-
lations. These predictions have been confirmed by electron-energy-loss-3 and inelastic X-ray
scattering4 experiments.

Recent developments in Density Functional Theory5 (DFT) for treating the dynami-
cal properties of inhomogeneous electron systems beyond the adiabatic local density ap-
proximation (ALDA) provide motive for a quantitative study of the excitation spectrum of
long-wavelength density fluctuations in the electron gas6 and for its extension to the spec-
trum of transverse current fluctuations.7 The main excitation process in these spectra at long
wavelengths is associated with the creation of two correlated electron–hole pairs.

EXCHANGE-CORRELATION POTENTIALS

In brief, the work of Vignale and Kohn5 shows that the evolution of the density n(r, t) in
an inhomogeneous electron system subject to a time-dependent scalar external potential can
be studied by single-particle equations! in a local approximation for exchange and correlation
(xc), provided that these are described through a vector potential For slowly varying
densities, known symmetries and conservation laws allow one to express exactly in
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terms of long-wavelength xc potentials  for the homogeneous electron gas. These are
defined as the k 0 limit of

Here, is the current–current longitudinal (transverse) response of the electron gas at
density is the equivalent ideal-gas quantity,  and
The longitudinal xc potential is related to the frequency-dependent local field factor
introduced in the STLS theory by Terms beyond the ALDA
correspond to complex, frequency-dependent viscoelasticity coefficients.8

In our calculations of the dynamic xc potentials6,7 we use the equation of motion for the
current density operator to find the exact relation

for the current–current response function. The first term on the RHS fixes the high frequency
limit, which is related to the leading spectral moments. We approximately decouple the
four-point response function in Eq. (2) into products of two-point response functions, thus
including by construction the processes of excitation of two electron–hole pairs. The result
for the longitudinal (transverse) spectrum is:

with  and The real part  is then obtained via
the Kramers–Kronig relation. The expression for the longitudinal part in Eq. (3) is equivalent
to that obtained by Hasegawa and Watabe9 by diagrammatic means. In our calculations the
expression (3) was modified by a frequency-dependent factor to enforce the compressibility
sum rule and to allow for final-state exchange processes, which in perturbative treatments
reduce the total two-pair spectral weight by a factor of  2 at high frequency. The high-frequency
form of our final results then agrees with that given by Glick and Long10 for the longitudinal
term.

In our calculations we find that the shapes of the longitudinal and transverse xc spectra
are very similar. In fact, the xc transverse spectrum is accurately reproduced at all frequencies
by setting whereas for the real part there is an additional shift due
to the different asymptotic values.7

The spectral structure of the xc potentials emerges from Eq. (3) when one uses the RPA
for the response functions in the RHS. The RPA longitudinal response contains contributions
from the single-pair continuum and from the sharp plasmon excitation. In turn this leads
to structure in the xc potentials from a threshold for the two-plasmon channel at twice the
plasma frequency. As we are neglecting retardation the transverse response contains only a
broad continuum and is dominant at low frequency. The analysis of the longitudinal spectrum
into its various channels is shown in Figure 1.

Our curves for exhibit a sharp minimum at which corresponds to the threshold
found in Its physical origin lies in the large spectral strength of the plasmon excitation
as compared to single-pair excitations, which accumulates the strength of two-pair processes
near This structure becomes sharper with increasing When exchange and short-
rrt-range correlations are included in the response functions in the RHS of Eq. (3), the
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Figure 1. Channels of paired modes (c=single-pair continuum, p=plasmon, t=transverse) contributing to the
longitudinal spectrum in an RPA calculation at

structure associated with the two-plasmon contribution becomes much sharper as the plasmon
dispersion curve flattens out with increasing This is seen from Figure 2, comparing
and as obtained from RPA and from STLS response functions at The smooth
interpolation proposed by Gross and Kohn11 (GK) is also shown in Figure 2.

SUMMARY AND CONCLUDING REMARKS

In summary, we have presented a model for the longitudinal and transverse xc potentials
of the homogeneous electron gas. Our results have been fitted7 to analytic expressions to
facilitate their use as input for DFT calculations in the linearized long-wavelength regime.

Similar calculations of the xc potentials in a two-dimensional electron gas with
interactions show spectral structure and non-monotonic behavior in  even though in
2D the plasma frequency vanishes at long wavelengths.12 Earlier calculations were done by
Holas and Singwi.13

Available data on the plasmon dispersion coefficient in alkali metals3 indicate strong
deviations from RPA with increasing coupling strength. Although band-structure effects play
a significant role in a quantitative comparison, the dynamic correction indicated by our results
for improves the agreement with the experimental data. The spectral structure at
may possibly be observable in electron-energy-loss experiments on a metal such as Rb, in
which the plasmon dispersion curve is almost flat.
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Figure 2. Longitudinal xc potential at from RPA and STLS calculations.
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WIGNER REPRESENTATION

Our starting point is a general operator expression for canonical ensemble averaged time
correlation function:1

Here is a Hamiltonian of the system, and  are quantum
operators of considered dynamic quantities, is partition function.
Wigner representation of the time correlation function can be written as:

where the spectral density is defined by:

and and are Well’s symbols of operators  and
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Figure 1. Momentum–momentum time correlation function versus  for temperature  for
1D case: 1 — approximation of the classical trajectories; 2 — quantum trajectories

where are matrix elements and u is the space dimension. So the problem of
numerical calculation of the canonically averaged time correlation function can be reduced to
the consideration of the evolution of the spectral density satisfying to the following integral
equation:

where

is the Dirac delta function, is defined by the expression:

while and  are pare of dy-
namic pq-trajectories for ’negative and positive time direction’ respectively and initial con-
dition at
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Figure 2. The real part of Fourie transform of the momentum–momentum time correlation function versus
for temperature  for 1D case: 1 — approximation of the classical trajectories; 2 —

quantum trajectories

Spectral density initial condition  can be
written in the form of the finite difference approximation of the path integrals:3

where is the kinetic energy operator, is the potential energy operator,
and

Let us rewrite the integral equation (1) and iteration form of its solution in symbolic form:
and

469



Here is the quantum initial density evolving classically in interval and is
operator, which describes propagation between times and The time correlation
functions are the linear functional of spectral density:

where means integration over phase spaces The possibility to convert series
(2) into the form convenient for probabilistic interpretation allow us to develop the Monte
Carlo method for its calculation.4–6 To check the basic ideas of the developed approach
we have taken the simple Gaussian form of the of electron-scatterer and scatterer–scatterer
interaction potentials with equal to each other all
constants of interaction

ELECTRICAL CONDUCTIVITY

According to quantum Kubo formulas in one electron approximation the tensor of
electrical conductivity may be written in the following form:1

where n is the electron density, is the electrical current operator,
is the component of electron velocity operator. Wigner representation of this tensor may

be written in the form:

where is the characteristic energy of the considered
quantum system, is the fixed maximum value of evolution time of the considered system
and the reciprocal wave number is determined by the ratio

The Fig. 1 presents results on diagonal elements of momentum–momentum time corre-
lation function. Curve 1 relates to calculations taking into account only one term of iteration
series (2) while curve 2 present results allowing for all terms of iteration series (2). So curve
1 have been obtained by using only the classical trajectories without momentum jumps, while
curve 2 presents momentum–momentum time correlation function obtained for dynamic tra-
jectories with momentum jumps. The momentum–momentum time correlation functions
have the traditional fast decay.

Fig. 2 demonstrates the real part of its Fourier transforms versus the dimensionless
frequency The real part of Fourier transform characterizes the Ohmic losses of
electromagnetic energy and has the physical meaning of electron conductivity. The curve 2
(quantum trajectories) on Fig. 2 is higher than the curve 1 (classical trajectories) but both
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curves is going to zero at small frequency pointing out that the static conductivity at zero
frequency is equal to zero or is very small, which is the consequence of the Anderson
localization of electrons in 1D case.

The authors are very grateful to Professors K. Singer, G. Coccotti, R. Kapral, R. Car
and D. Coker for fruitful discussions, invaluable comments and interest in the work. The
authors expresses thanks to Russian Fund for Basic Researches for financial support of this
work (grant 97-02-16572).
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INTRODUCTION

Matter in strong magnetic fields gives rise to a wide range of physical problems. The
magnetic field strength considered varies from (weak-field regime), as applied to solids,
to (strong-field regime), as can be found on the surface of neutron stars. An overview
of laboratory and cosmic plasmas with large magnetic fields is given in Weisheit.1 In this
paper we consider a one component system of point charges in a quantizing magnetic field.
The point charges interact via the Coulomb force. Using the method of Green’s function, we
calculate contributions to the correlation energy of a weakly degenerate electron gas up to the
order

First, we want to discuss some general properties of a plasma in a magnetic field. A
homogeneous magnetic field modifies the energy spectrum of a charged particle according
to The terms describe the Landau quantization, the
free motion parallel to the magnetic field and the spin Zeeman energy respectively. The
ideal pressure and the particle density are given by a sum of Fermi integrals

over all Landau levels N (the prime indicates the double
summation except for N = 0 level)

For plasmas obeying the Boltzmann distribution, the particle density becomes
with and Thus the

magnetic field increases the domain of classical behavior (z < 1) towards higher densities.
Furthermore, strong magnetic fields enlarge the non-ideal region This
can be verified by the fact that in the weakly degenerate limit for the kinetic energy
reduces monotonically to kT / 2. On the other hand, at T = 0 the ratio of the kinetic energy at
a strong field to the kinetic energy at a vanishing magnetic field is
Hence the non-ideal region is enlarged.

*Supported by the Deutsche Forschungsgemeinschaft (DFG, Germany)
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GREEN’S FUNCTION FOR THE MAGNETIC FIELD PROBLEM

In this section we consider the uncorrelated one-electron Green’s function for the mag-
netic field problem in a closed form. The Green’s function is given by the solution of the
equation of motion (using symmetric gauge):

can be expressed in terms of the correlation functions by

Both and satisfy the homogeneous counterpart of Eq. (2). According to Horing,2 for
arbitrarily chosen gauge they can be written as

The gauge dependence of the Green’s function is explicitly given in the factor Noting
that is only a function of and that it obeys the relation
this factor can be left aside in the following calculations.

CORRELATION ENERGY OF A WEAKLY DEGENERATE PLASMA

In general, the thermodynamic properties of a many-body system can be calculated by
the formula (charging process)

which gives the pressure as a function of the fugacities. Here we focus upon the low density
and high temperature region for which various methods for deter-
mining the average value of the potential energy have been developed, e.g., Slater sums,
Feynman–Kac formalism etc. The Feynman–Kac formalism was employed in Ref. [3] to
calculate the free energy of a magnetized plasma. In this work we use the method of thermo-
dynamic Green’s function. Within this framework, a systematic perturbation expansion can
be performed and diagramatically represented.4–6 Considering all diagrams up to the order

one obtains
These diagrams represent the Hartree term, the Montroll-Ward term, the Hartree–Fock

term and the exchange term respectively. The Montroll-Ward graph consists of a screened
potential line, which arises from the collective behavior of the Coulomb system. The
screened interaction potential is evaluated in the random phase approximation

For the low density region it is sufficient to replace by a stat-
ically screened potential  with The
Hartree–Fock term and the exchange term are computed using the Coulomb interaction.
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Figure 1.

In order to include the magnetic field, we replace the free particle Green’s function by
the Green’s function for the magnetic field problem (Eq. (3)). Introducing
we obtain the fugacity expansion of the pressure within the order

Using the relation we obtain the equation of state by iteration

with the square of the inverse Debye screening length The first and second
contribution refer to the Montroll-Ward graph, the third and fourth term to the Hartree–Fock
term and the exchange term respectively. The first correction to the ideal pressure is the
Debye limiting law. This result is in agreement with the Bohr–van-Leeuwen theorem7,8

stating that a magnetic field does not affect the thermodynamic properties of a classical
plasma. The following terms describe the quantum corrections. Each of these terms may
be represented by its corresponding result at zero magnetic field modified by a function f(x)
describing the influence of a magnetic field. These functions are found to depend on the ratio
of magnetic energy to kT only. A detailed analysis is carried out in [9]. We obtain the
analytical result for the Hartree–Fock term

Furthermore, we obtain integral representations for and which are explicitly
given in [9]. The results of the numerical investigation of these integrals are plotted in Fig. 1.

Moreover, we propose a fit expression for and If we define

we find the approximations (within an accuracy of about 1%)
and

where and are fitted parameters.
In Fig. 2 the pressure of a magnetized OCP using the low density expansion (Eq. (5)) is

shown. Generally, this expansion is an inappropriate description of the system at high den-
sities. However, with increasing magnetic field strength the low density expansion becomes
valid at even higher densities, as can be concluded from Fig. 2.

The interpolation between the results in the weakly degenerate limit obtained in this
work and the partially known results in the degenerate limit will be subject of a forthcoming
paper.
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Figure 2. Plot of  and

Figure 3. Plot of the pressure for various magnetic fields at T=50000 K according to Eq. (5), also included the
Debye limiting law.
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A natural approach to the investigation of static correlations in strongly coupled plasmas,
is based on the separation of electronic and ionic components of the system, so that the
interionic interactions are assumed to be screened by the electronic static dielectric function

In dense systems the latter should be treated beyond the RPA, i.e., the calculation of
involves the electronic static local field correction

There exists a number of various approaches to the computation of the  (see,
e.g.,1), but mostly they are applicable in specific realms of the system phase diagram. We
present and test a simple alternative model which it is to serve as a basis for future studies of
various properties of strongly coupled systems.

The interpolating formula for the electronic LFC suggested in Ref. [2]

incorporates both long and short wavelength asymptotic values of  is
the Fermi wave-number.

In particular,

The short-range behavior of in the low-temperature limit has been studied in the
papers of Shaw3 and Kimball4 (see also [5]). Namely, it has been shown that if T 0 in
hydrogen-like systems,

being the usual electronic radial distribution function. This result is based on the “cusp”
condition which can be obtained from the s-solution of the two-particle Schrödinger equation
at r=0 (see, e.g.,4).

On the other hand, since involves only the short-range properties of the
system, one expects the asymptotic value of Eq. (3) to be finite and the relation (4) to hold at
arbitrary values of temperature T.6

One further notices that the long-wavelength behavior of  is
responsible for the screening of a static impurity in the plasma. On the other hand, the
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parameter a is determined by the system thermodynamic properties via the compressibility
sum rule.

The most recent MC data on the OCP EOS7

(P is the system pressure) are utilized here with

and

is the system temperature in energy units.
The interpolation form (5) valid in a very wide region of values of

brought us to a simple algebraic expression for the a parameter,

No quantum effects are included in the EOS (5) and, hence, there is discrepancy between
(6) (and, thus, Eq. (2) too) and our desire to apply it to electron liquids under “quantum”
thermodynamic conditions.

To diminish the influence of this inconsistency, electronic radial distribution function
and its zero separation value (and b of Eq. (2)) were determined by a precise

self-consistent procedure. In effect, the value of was computed via a simultaneous
solution of two integral equations,

In Eq. (7) the summation is over the Matsubara frequencies,  and

as usually, the was determined by the numerical precision.
in Eq. (12) is the dimensionless polarization operator with the LFC,

included,
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Figure 1. The electronic radial distribution function for different thermodynamic conditions.

Figure 2. The zero-separation value of the pair correlation function  in the electron liquid as a function of
thee degeneracy parameter and for  (one point),   (long dashes),  (short dashes),

(dots) and (solid line). Points represents the results of the present model, the lines are drawn
to distinguish different values of the coupling parameter

The RPA dimensionless polarization operator can be calculated (for each value of
density and temperature, z and l) by simple integration (see, e.g.,1).

The results for the radial distribution function and its zero-separation value
are presented in Figs. 1 and 2 for various values of electronic density and temperature.

Where available, our results coincide with the data of [8], when the electron–ion LFC
was set to be zero.

The self-consistency procedure also permitted us to calculate the static structure factor
of electrons, these results are provided in Fig. 3 for three characteristic pairs of values of the
parameters and

Using our data for the radial distribution function we calculated the excess Coulomb
interaction energy density normalized to

with The results are given in Table 1, where we also provided the corre-
sponding values of  of Eq. (5). Both estimates are closer in less degenerate electronic
liquids.
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At certain thermodynamic conditions (below the points provided in Fig. 2), our approach
breaks down in the sense that it produces negative, unphysical, values for the  parameter.

We intended to avoid this inconsistency, introducing a correction to Eq. (2). The form
of this correction was virtually suggested in [9]: is sought as a functional of the RPA
electronic polarization operator real part of Eq. (10):

with
Some preliminary calculations were carried out on the basis of this modified model LFC.

It turned out that with of Eq. (12) one can (at least for the conditions considered) avoid
negative values for

Particularly, if one takes c ~ 3 (for and and and the
zero-separation value of the electronic radial distribution function, no longer takes
negative values, while the data of Table 1 does not change significantly.

Nevertheless, further studies of should be carried out to include low-temperature
and dynamic effects.

In addition, to improve the physical self-consistency of our approach, one needs the
quantal EOS, either theoretical or numerical (obtained, e.g., within a quantum-statistical
variant of the MC method), see, e.g.,.10
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INTRODUCTION

The insulator–metal (IM) transition and the role of electron–electron interaction in this
transition is a problem of permanent interest, both theoretical and experimental. It has been
shown1–3 that in the systems with strong disorder the interaction is in favor of delocalization
because electrons may help each other to overcome the random potential. In clean systems
the role of the interaction is opposite. It may create the so-called correlated insulator in a
system which would be metallic otherwise. The Wigner crystal (WC) is a good example of
such insulator.

WC in continuum is not an insulator itself, since it can move as the whole and carry
current. However, due to shear modulus it can be pinned by a small disorder. The ground-
state energy of the continuum WC and its zero-temperature melting was widely studied in the
recent years both with and without magnetic field.4

In contrast to the continuum case, the WC on a lattice can be an insulator without any
disorder due to the Umklapp processes in a host lattice. The WC on a lattice does not have
any sound or soft plasma modes and its excitation spectrum has a gap.

Here we report on the study of the structural and IM transitions for spinless fermions
at v = 1/2 and 1/6. To detect these transitions we use the ground-state splitting and the
flux sensitivity5, 6 respectively. The purpose of the work is to take advantage of the exact
diagonalization technique and to study the modification of the low-energy part of the spectrum
in a wide interval of the hopping amplitude J all the way from the classical WC to the free
fermion limit.

GENERAL REMARKS

We consider spinless fermions at T = 0 on the 2D square lattice described by the
following model Hamiltonian

Strongly Coupled Coulomb Systems
Edited by Kalman et al., Plenum Press, New York, 1998 483



Here  the summation is performed over the lattice sites and over the vectors
of translations s to the nearest-neighbor sites. We consider long-range (LR) Coulomb potential
V(r)= 1 /r and short-range (SR) strongly screened Coulomb potential
with in the units of lattice constant. We study rectangular clusters  with
the periodic boundary conditions. The dimensionless vector potential in the
Hamiltonian is equivalent to the twist of the boundary conditions by the flux
i = x,y. The energy spectrum is periodic in and with the period

As a basis for computations we use many-electron wave functions at J = 0 in the
coordinate representation: They can be visualized as pictures, which
we call icons. The total number of icons is where is the area of a system,
and N is the number of particles. The icon with the lowest energy is a fragment of the crystal.
The icons with higher energies represent different types of defects in WC.

The Hamiltonian Eq. (1) is translationally invariant. For each icon there are
different icons that can be obtained from it by various translations. These icons are combined
to get the wave function with total quasimomentum P:

The summation is performed over translations
For the icons with periodic structures the number of different functions is

smaller than M. For example, the icon of the WC with one electron per primitive cell
generates different values of P. Note that the total number of allowed values of P
for the WC is the property of the WC and remains finite at infinite cluster size. Contrary, an
icon representing a point defect in a WC generates all vectors P. Their total number is equal
to the volume M of the first Brillouin zone of the background lattice.

In the macroscopic system all the states generated by the WC icon form the ground state
degenerate at small J. This degeneracy appears because the effective matrix elements which
connect translated WC’s are zero in the macroscopic limit. The total energy as a function of
quasimomentum P has identical minima at all P generated by the WC icons. The spectra of
excitations in the vicinity of these minima are also identical. The lifting of the ground state
degeneracy at some critical value indicates a structural phase transition and restoration of
the host lattice symmetry.

The flux sensitivity of a macroscopic system is zero at small J. It becomes non-zero at
some finite value of J which might be different from We associate this transition with the
IM transition.5

For the finite system the following results can be obtained directly using the perturbation
theory with respect to J:

1. the ground state and the lowest excited states have a large common negative shift which
is proportional to and to the total number of particles N. This shift is the same for
all low-lying states and does not affect the excitation spectrum of the system;

2. at v = 1 /2 the splitting of the ground state appears in the N-th order and is proportional to
At other filling factors the splitting is proportional to with K being proportional

to N;

3. the flux dependence of the ground state for the flux in x-direction appears in the
order and is proportional to in 2D case. In 1D the flux dependence appears in the
N-th order and is proportional to

Thus, we conclude that both lifting of the ground-state degeneracy and appearance
of the flux sensitivity occur very sharply and they can be used as convenient criteria for
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the structural and the IM transitions respectively. Note that the correlation function is a less
sensitive criterion for small clusters7, 8 since it does not exhibit sharp behavior in the transition
region.

THE MECHANISM OF TRANSITION

Our data suggest the following mechanism of the transition. The width of the band of
the defect in the WC increases with J such that its lowest edge comes close to the energy of
the ground state.8, 9 Strong mixing between the crystalline and defect states with the same
quasimomentum occurs at this point and an avoided crossing appears between the ground
state and the states in the defect band.

One can interpret the avoided crossing in terms of the ground state which acquires a
large admixture of defect states. This interpretation reminds the idea of zero-point defectons
proposed by Andreev and Lifshitz.10

In principle, one can imagine that the state with a quasimomentum P different from
those generated by the WC icon becomes the ground state via a branch crossing. However, in
all cases we have considered, we observe the avoided crossing between the crystalline state
and the state in the defect band with the same P. Assuming that this is the case for larger
clusters, we conclude that the phase transition is not of the first order.

The proposed mechanism implies that critical value of J is determined by the energy
of the lowest defect at J = 0. Our data suggest the following simple empirical rule for

where is some number which is close to 0.5 for all 2D and 1D systems we have studied.
For the exactly soluble 1D problem with nearest-neighbor interaction11–13 is exactly

equal to 0.5. For the 1D Coulomb problem Our computations9 show
that for the Coulomb interaction Jc is between 0.17 and 0.3, which gives
Note that this result clearly contradicts to the statement by Poilblanc et al.14 that 1D Coulomb
system is metallic at all J.

We have found Eq. (3) to be extremely useful15 when applied to the 1D problem with the
nearest neighbor interaction and the next-nearest neighbor interaction This problem
has been studied16 in connection with the spin version of the Hamiltonian Eq. (1). The IM
phase diagram for this model has been studied recently in Ref.14.

In this case is a function of and so that Eq. (3) gives the IM phase diagram
in the We have found that the phase diagram obtained in such a way is
consistent with our extensive numerical simulations. It predicts the existence of metallic
phase at arbitrarily large values of interaction. The ground state in this phase represents a
mixture of two degenerate crystalline phases.

GAP AT NONZERO J

At large enough J, the excitation gap in the spectrum is determined by the confinement
quantization. On the other hand, the gap at J = 0 is the energy of defect and it has a
non-zero limit in macroscopic system. Thus, an important question arises, whether or not the
gap has a non-zero limit right after the IM transition. The non-zero gap would mean that the
state after the transition is superconducting.17

We have made a lot of computational efforts to answer this question but the results are
still inconclusive. We have found that the gap for the 4 × 8 cluster is less than for 4 × 4
cluster but the ratio is significantly larger than 0.5 as would be expected from the confinement
quantization solely.
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CONCLUSIONS

We have performed a numerical study of the structural and IM phase transitions in 2D
fermionic systems with Hamiltonian Eq. (1). We argue that the structural transition on a
lattice is not of the first order in all cases considered. We think that the origin of the transition
is an avoided crossing of the ground state and the defect states in the Wigner crystal with
the same total quasimomentum. This simple picture implies that the critical value of J is
determined by the defect with the lowest energy at J = 0. To illustrate our point the data
for 1D systems with Coulomb interaction and with next-nearest neighbor interactions are also
presented. The possibility of the delocalized phase above the transition to be superconducting
is discussed.
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The quest for possible departures from the conventional Fermi-liquid behavior, exhibited
by various kinds of strongly correlated electronic systems, became one of the mainstream
topics in the modern microscopic many-body theory.

Among the mostly studied examples are such systems as the high  materials in their
normal state known as a “strange metal” and heavy fermion compounds close to a ferro- or
antiferromagnetic T = 0 quantum critical point. Distinct NFL features observed in transport
and other measurements are now well-documented experimentally. However, the theoretical
analysis of these systems appears to be extremely involved, the reasons being a strong intrinsic
coupling between charge and spin degrees of freedom, non-spherical Fermi surface effects
(nesting, van Hove singularities), and dimensional (2D – 3D) crossovers.

On the other hand, 2DEG in GaAs/AlGaAs heterostructures provides an example of a
strictly 2D system with a nearly isotropic (bare) Fermi surface, which is governed by strong
Coulomb interactions. Moreover, in a strong magnetic field all electronic spins get polarized
which effectively decouples spin and charge degrees of freedom by simply freezing out the
former ones.

If the interaction parameter is not very large  then at zero field, all in all, the
2DEG remains a Fermi liquid. In the strong coupling (or the low density, since
where is the 2DEG density) limit the electrons are expected to eventually form a 2D
Wigner crystal at There are also indications that in the presence of disorder the
Wigner crystal might occur at much lower  although the possibility of other phases
at intermediate values of  currently remains open.

One of the conventional Fermi-liquid-like features is a reaction of the 2DEG on ap-
plied perpendicular magnetic field B. As long as the field remains classically weak (v =

the magnetoresistivity demonstrates Shubnikov–de Haas oscillations,
which are consistent with the single-particle cyclotron motion along the orbits of radius

In increasingly stronger fields, the 2DEG first enters the Integer Quantum Hall (IQH)
regime at integer filling factors lying in the interval 1 < v < 10. At v < 1 the Fractional
Quantum Hall (FQH) behavior eventually sets in at odd denominator filling fractions. Both,
IQH and FQH regimes are characterized by excitation spectra with gaps, which qualifies
them as incompressible (at T = 0) states despite the difference in their microscopic origin
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(the IQH behavior is believed to be dominated by disorder effects, whereas the FQH one is
due to Coulomb interactions).

Either behavior, however, differs drastically from that at EDFs exhibited by the strongly
correlated EDF electronic states at

The features observed at these EDFs in the surface acoustic wave and other experiments1

imply that despite the strong magnetic field, there are some fermionic quasiparticles which
propagate along straight lines until they hit an impurity or each other.

Such a rationalization of the experimental findings motivated the theoretical idea2 to
describe these states as a new kind of Fermi liquid, which is formed by spinless fermionic
quasiparticle named composite fermions (CFs). On the mean field level the CFs, regarded
as spin-polarized electrons bound to flux quanta, experience zero net field and occupy all
states with momenta below the effective CF FS. Formally, the
residual interactions of the CFs, as well as their interactions with charged impurities (remote
ionized donors sitting on a distance  apart from the 2DEG) turn out to be essentially
more singular than the original Coulomb ones. In the framework of the Chern–Simons theory
of Ref. [2] these interactions appear as gauge forces, whose strength depends on the Coulomb
electron interaction potential In turn, the Coulomb potential of randomly
distributed donors changes to that of spatially random but static magnetic
fluxes (RMF):

Conceivably, a 2D Fermi system governed by long-ranged gauge interactions of both
dynamic (exchange by gauge fluctuations) and static (RMF due to impurities and/or

= 0 gauge fluctuations at T > 0) nature, could demonstrate quite unusual properties, and
thereby provide an example of a genuine 2D NFL.

Indeed, a naive attempt to proceed beyond the mean field approximation and estimate
perturbatively the effects of gauge fluctuations on the CF spectrum reveals (even in a purely
academic case of T = 0 and no impurities) a singular self energy, which behaves as
suggesting a divergent effective mass Moreover, in a more realistic situation
with impurities present and/or T > 0 the perturbative analysis fails to yield any finite self-
energy (formally,

A non-perturbative eikonal calculation3 shows a super-exponential decay of a CF wave
packett moving along its semiclassical trajectory:

which implies a completely incoherent character of a
CF propagation, resulting in a failure of the naive “golden rule”-type estimates of  and
other gauge-non-invariant quantities.

Therefore, an impressive qualitative success of the mean field CF theory2 in explaining
the experiments,1 where CFs seem to propagate over distances of a few appears puzzling
and urging for a theoretical understanding.

It had been shown in [4] that the electrical current relaxation processes, which correspond
to smooth fluctuations of the ostensible CF FS, can be safely described by means of the
kinetic equation, where the singular self-energy and the Landau function-type terms largely
compensate each other. This implies that at small q and the electromagnetic response
functions of EDF states exhibit no singularities and can be computed within the
random phase approximation (RPA).5

We arrived at the conclusions similar to those drawn in Ref. [4] by applying to the EDF
problem the geometrical method of the 2D bosonization developed in [6]. In contrast to the
earlier versions of the 2D bosonization the procedure of Ref. [6] facilitates an account of a
finite FS curvature. The latter is crucially important for a bosonic description of D > 1 Fermi
systems, and in particular, for calculating such physical quantities as Hall conductivity  or
diffusion thermopower which simply vanish in the particle–hole symmetric limit of zero
FS curvature.
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The geometrical approach to the D > 1 bosonization starts off with a choice of a
particular basis of coherent states which are generated by operators

from the reference state corresponding to the unperturbed
circular FS of radius in order to quantize the algebra of bi-linear spinless fermionic op-
erators (2D analogue of the 1D algebraic structure known as The
orbit of the group action  can be parameterized in terms of the phase space “dis-
tribution function” f (r,p), which describes spatial fluctuations of the occupied (“Luttinger”)
volume in momentum space. Some additional analysis is required to identify all important
kinds of FS fluctuations for a given Hamiltonian H. It turns out that if one deals with small
angle scattering with transferred momenta being almost tangential to a FS (which is the
case for the Chern–Simons gauge theory of Ref. [2]) the most relevant fluctuations are those
of the FS shape, and not of its profile. If only shape fluctuations are present, then f (r, p)
amounts to a support function and a local Fermi momentum at the
FS point can be used as an unconstrained (obviously, bosonic) variable. The local density

  and current is given by the second func-

tional derivative of   are, in general,
non-linear functionals of In the presence of an external field  the equation of motion
for reads in the clean limit as

and serves as a counterpart of the kinetic equation, where a perturbation of the equilibrium
distribution function is proportional to a local FS displacement:

Thus, a construction of a kinetic-type equation describing density (current) relaxation
appears to be possible in the absence of well-defined (in the Landau sense) fermionic quasi-
particles.

In the framework of the Chern–Simons theory of Ref. [2] our method of the 2D bosoniza-
tion enables one to obtain closed integral expressions for the irreducible CF polarization

which is related to the correlator Thereby we confirm a
number of results, which were obtained earlier in the “optical regime”
and is the CF mean free path) while neglecting impurities.5, 7

For instance, the irreducible CF density polarization behaves similarly to that of free fermions
with a finite mean field mass namely:

The CF polarization still remains to be related to which requires an analogue of the
Silin’s extension of the standard Landau FL theory onto the case of long-ranged interactions.
In the problem at hand it yields the physical response functions in the RPA form.2, 5 Despite of
the absence of a small parameter, such as the RPA form of the long wavelength
response is dictated by the asymptotic Ward identities, which stem from an approximate
particle number conservation at every FS point

In particular, the dynamic structure factor has a form

The corresponding static structure factor In q has to be con-
trasted with the result  for the incompressible FQHE states.

The response, however, becomes different from the Fermi-liquid-like at large q, and the
divergence of  does show up in processes, which correspond to rough fluctuations of the
CF FS.4 Such processes are responsible for the SdH-type oscillations of
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at
In the semiclassical theory of magnetotransport can be related to a gauge field phase

factor of a single CF making k laps along its cyclotron orbit of radius

Accordingly, the experiments8 show that the corresponding Dingle plot for

exhibits such NFL features as a enveloping function at T 0 and a divergent
derived from the T-dependent part in the regime y > 1.

We also confirmed a strong enhancement of the density response at which is
another apparently NFL feature. This behavior gives rise to a strong backscattering of CFs off
impurities or other inhomogeneities. Therefore, one might expect to see its manifestations, for
instance, in processes when a CF hits an impurity and then scatters off a standing non-uniform
local exchange potential caused by the impurity itself where
characterizes the divergence of the density correlator Similar
kind of static Friedel oscillations of the exchange potential develop near the boundaries of the
CF system in constrained geometries. These effects can be in principle observed in ballistic
nanoscale devices, such as quantum wires, where they could be responsible, for instance, for
a reduction of the conductance of an otherwise perfectly transmitting wire with respect to its
naively expected value

Obviously, disorder effects are, by no means, negligible at small and q. In fact, the
remote donors, which supply electrons to the 2DEG and provide the dominating mechanism
of scattering at low densities should be treated as an intrinsic element of the
overall neutral Coulomb system.

Both the method of Ref, [4] and our 2D bosonization are well suited for a systematic
account of disorder, which can be introduced into Eq. (1) as a RMF: with a
white-noise correlator

First, we solve Eq. (1) while neglecting the residual gauge interactions among CFs.9

At the RMF problem does not feature a small parameter, which would enable one to
apply a customary Born approximation. However, under the condition one can
resort on the eikonal-type solution for In particular, this solution yields the CF

conductivity which appears to be more than twice
as large as the result of the first Born approximation.2

In the presence of a uniform field Eq. (1) yields a non-trivial negative magnetore-
sistance , This result implies that one should probably
take into account the CF gauge interactions in order to reconcile the theory with experiment,
which shows broad minima of  in the vicinity of the primary EDFs.

At T > 0.1mK it suffices to include just the first order correction to the RMF solution,
which results from quantum interference between the RMF scattering and the CF gauge
interactions.10 In the framework of the kinetic equation it stems from corrections to the non-
equilibrium CF density of states and the non-local part of the collision integral. Higher order
terms can only become relevant at very low T.

Proceeding this way, we obtain the correction to the tensor of the CF conductivity tensor

which is related to the physical one as at finite y < 1

(before the onset of the SdH oscillations):

where  for a short-range and
in the Coulomb case. These estimates are in a
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qualitative agreement with the experimental data from [11].
Compared to its zero field counterpart for ordinary electrons, the correction (2) is

enhanced and non-universal (it is larger in samples of higher mobility). It also yields a
positive contribution to the MR, which is greater than the negative RMF term. Therefore,
preceding the SdH regime, the overall MR in the vicinity of primary EDFs increases as

Also, the quantum interference corrections manifest themselves in the response of EDF
state to an applied thermal gradient. In contrast to the case of zero field, the tensor of
thermoelectric coefficients  receives a lnT contribution, and so does the low-T diffusion
thermopower (TEP)  at EDFs: Observation of this effect should
be, in principle, possible with the existing experimental techniques.

Thus, despite the fact that in the ballistic regime the density (current)
response of EDF states resembles that of a 2DEG in zero field, yet there will be observable
departures in the diffusive regime These, intrinsically NFL, features result from
interference between scattering off the impurities and the residual (gauge) CF interactions.
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INTRODUCTION

As a result of the great advances in the fabrication of nanostructures and in measurement
methods the physical properties of novel quantum dots in which few electrons (of order of
10–1000 electrons) reside are now experimentally accessible. Several recent experiments1–5

have measured the transport properties of these dots, weakly coupled to the external world
by leads. The conductance through the dot is measured as function of the gate voltage on
the dot which controls the number of electrons in the dot. The low temperature conductance
shows sharp peaks for values of the gate voltage for which a degeneracy between states of N
and N + 1 electrons in the dot exists.

One is immediately stricken by two main features of the conductance: an almost constant
spacing between the conductance peaks, and a strong variation in the peaks heights. These
features are best described by plotting the distributions of the peak spacings and the peak
heights. The distribution of the peak spacings is almost Gaussian, where the width of the
distribution is between 5%5 and 15%3 of the mean spacing value. The peak heights have
a broad distribution which peaks at zero when no magnetic field is applied, and peaks at a
non-zero value once a magnetic field is present. Moreover, the peak hight sensitivity to a
change in the magnetic field is also measured.1, 2

These features were customary interpreted in the framework of the constant interaction
picture, which neglects all correlations between the electrons. Although this theory captures
some of the features of the conductance, it fails to account for others. We show that once
short range correlations between the electrons due to electron–electron interactions are taken
into account the conductance features are better reproduced.

The importance of the short range correlations in these systems stems from the low
density of the electrons within the dot. In the leads the 2DEG (two dimensional electron gas)
density is about  and the density in the dot is probably significantly lower.
The condition for which the uncorrelated electron approximation fails is where

is the Fermi velocity. Therefore, for where n is the electron density in the
dot and is the Bohr radius, which in GaAs is ~ 100Å, one expects the constant interaction
model to fail at densities of
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CONSTANT CHARGING MODEL

Since the discovery of the Coulomb blockade phenomenon, most tunneling experiments
through a quantum dot were interpreted within the constant interaction model.6,7 In this
approximation, the ground state energy of a quantum dot populated by N electrons is expressed
as where C is the dots constant (or slowly varying) capacitance, and
are the single particle energies. In this model only the long range part of the interaction is
taken into account while the short range correlations are neglected.

Peaks in the conductivity will appear only at values of gate voltage corresponding to
(where is the capacitive coupling between the gate and the dot). Thus

the spacing between the consecutive conductance peaks denoted by  is proportional to

Since  has no significant fluctuations even in the random phase approximation,8, 9 all the
fluctuations arise from the the fluctuations in the single electron level spacing
The fluctuations in the single electron level spacings are governed by the well known random
matrix theory, which result in a non-symmetric Wigner distribution of width proportional to

These results do not agree with the experimental findings since the measured
distribution is Gaussian (symmetric) and the width for most experimental measurements
(excluding perhaps Ref. [5]) is to small considering the fact that

The distribution of the conductance peak can be calculated from the single electron wave
functions resulting in [1, 2]:

and

Here, is the normalized conductance peak height and are the modified Bessel
functions. These predictions fit the experimental distributions quite well. On the other hand,
the correlation flux, i.e., the change in flux for which the peak hight loses correlation with its
previous value, is of order is a quantum flux), while the experimental value
is larger by a factor of 3.

SHORT RANGE CORRELATIONS

As we have seen in the previous section, the constant interaction model fails to explain
some of the observed experimental behavior. This is not surprising, since as we have
previously argued the dots are in a density regime for which we don’t expect this approximation
to hold. In order to study this regime we numerically study a system of interacting electrons
modeled by a tight-binding Hamiltonian.3, 8, 10 We choose a 2D cylindrical geometry of
circumference and height This particular geometry is very convenient for the study of
the influence of a magnetic flux threading the cylinder in the direction. The Hamiltonian
is given by:

where is the energy of a site (k,j), chosen randomly between –W/2 and W/2 with
uniform probability, is the fermionic site creation operator, V is a constant hopping
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matrix element, and s is the lattice unit. The interaction Hamiltonian is given by.

* 4.

where The distance
The interaction term represents Coulomb interaction between electrons confined to a 2D
cylinder embedded in a 3D space.

The Hamiltonian matrix is numerically diagonalized and the N electron ground-state
eigenvectors and Eigenvalues are obtained. The conductance spacings can be directly
calculated from the eigenvalues (Eq. (1)), while the height  of a conductance peak is
given by [10]

The tunneling rates may be formulated in a tight-binding many particle language as

where summation is performed on sites i.e, sites adjacent to the left (right) lead.
For small values of U (corresponding to high densities) all the results of the constant

charging model are reproduced.
For higher values of U (corresponding to low densities) the following results are obtained:

1. Short range correlations between the electrons appear.8

2. A Gaussian shaped distribution of the conductance peak spacings appears. The shape
of the distribution is quite independent on the value of U (as long as the density is not
low enough for the Wigner crystallization to appear).3

3. The width of the spacing distribution is of order of 10%–20% of the average conductance
peak spacing.3

4. The distribution of the peak heights for both B = 0 and  fits rather well Eqs. (2)
and (3) over a large range of values of U.10

5. The correlation flux value increases by a factor of 4 when the value of the interaction
strength U is changed by an order of magnitude.10

COLLISIONS

As can be seen from the results summarized in the previous section, the behavior of the
Hamiltonian in the region of strong interactions for which short range correlations exist fits
the results of the experiment better than the results in the weak interaction (corresponding to
the constant interaction) regime. Especially one should note the shape of the conductance
peak spacing and the value of the correlation flux. The strong interaction behavior of these
quantum dots is the result of their low density. The fact that these quantum dots are strongly
coupled Coulomb systems can be seen from the results of recent transport measurements,
which cannot be explained in the weak interaction limit.
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Recent work toward electronic and opto-electronic devices with sub-micron dimensions
has led to Quantum Dot (QD) based single-electron transistors(QSET)1 and single-exciton
lasers (QSXL).2 Despite the word “single” in their names these devices are complex many-
body systems, with electronic “correlations” playing an important role. The electronic
properties of QSET/QSXL can be tuned with the number of free carriers N, much like
properties of atoms change drastically across the table of elements.

We review here progress toward the understanding of electronic properties of QDs using
exact diagonalization techniques(EDT) applied to electrons and/or excitons in semiconductor
quantum dots.

We consider quantum dots produced in quasi-two-dimensional systems by surface gates,
and by strain during growth of strained quantum wells.1, 3 These physically different systems
turn out to be well approximated by a simple model of quantum dots with parabolic confining
potential  and  is the effective mass. The confining potential is given
by energy which may depend on the number of particles N. Typical values for are
1 – l0meV for gated dots and 10 – l00meV for self-assembled dots.

The single particle Hamiltonian can be diagonalized exactly4, 5 and corresponds to a pair
of harmonic oscillators. The single-particle energies are

where and is the cyclotron frequency and B is the
magnetic field. The magnetic length is and the effective magnetic length in
the presence of confinement is The orbital angular momentum of
the state is m – n.

The parabolic form of the confining potential leads to dynamical symmetries. The
symmetries manifest themselves in degeneracies of the spectrum of two harmonic oscillators
whenever For example, for  i.e., there are shells of
degenerate levels whenever n + m = const.

The parabolic confinement in QDs leads to important many-particle symmetry associ-
ated with the separability of the Center-of-Mass (CM) motion.5, 6 Hence QDs poses many
properties of translationally invariant Fermi systems. Attempts have been made to incorporate
both the CM symmetry and symmetries associated with the invariance of the Hamiltonian
due to spin rotation in constructing a convenient set of many-particle wavefunctions.7–12
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Our work was based on the harmonic oscillator (HO) representation of the Hamilto-
nian.4, 5 The key to the success of the method was the introduction of generalized Jacobi
coordinates consistent with representation of the permutation group of N electrons. The
HO representation allowed us to derive the explicit form of few electron wavefunctions. The
restrictions imposed on bosonic HO states by Fermi statistics led to new statistical quantum
numbers.5 Exact diagonalization studies of N = 3 artificial atom in HO representation have
been reported in Ref. [4,5]. An experimental verification of transitions between “magic states”
can be found in recent Single Electron Capacitance (SECS)13, 14 and tunneling experiments.15

The generalized Jacobi coordinates provide a significant insight into correlations par-
ticular to parabolic QDs in a magnetic field. They are however difficult to implement for
larger number of electrons.16 One therefore resorts to standard EDT in the language of sec-
ond quantization.17–22 This method works well in strong magnetic fields which restrict the
single particle basis. Alternative methods of attack on large number of electrons include
Hartree–Fock approach,21,23,24 density functional calculations,25–27 and Composite Fermion
approach.28 QDs in strong magnetic fields have been studied experimentally using SECS,13

tunneling,15 and transport29–31 spectroscopies.
We discuss here two examples of electron correlations in QD in strong magnetic fields:

oscillations of total spin in the filling factor regime 1 < v < 2 and chiral Luttinger liquid
behavior in the fractional regime.6,12,21,22

The behavior of total spin in the regime 1 < v < 2 has been studied by Wojs et al.22

At low magnetic fields both spin down and up electrons occupy the lowest kinetic energy
single particle states. With increasing magnetic field, spin up electrons flip their spin and
move to the edge of the droplet. The ground state corresponding to well defined spin up
and down electron droplets corresponds to Hartree–Fock configurations6, 23 with maximum
total spin These configurations are surprisingly interrupted by configurations with
minimum total spin S = 0. The loss of Zeeman and exchange energy is compensated by gain
in kinetic and correlation energy. For an insight into the wavefunctions of these spin textures
see Oaknin et al.6 and references therein.

Wen21 predicted that the Hamiltonian describing edge excitations of 2DEG at fractional
filling is equivalent to the Hamiltonian describing the chiral Luttinger liquid. Kinaret et al.12

suggested that the signature of the Luttinger liquid behavior is the suppression of the density
of states at the chemical potential. This has been successfuly tested through EDT22, 33 where
it was verified that as the magnetic field increases and the droplet evolves toward fractional
occupations, the addition of an extra electron to the edge of the droplet becomes forbidden.
The suppression of the GS-GS transitions below v = 1 is a signature of the non-Fermi-liquid
behavior.

Let us now turn to electronic properties of self-assembled quantum dots (SAD). SADs
are produced without additional processing, and therefore attracted a lot of attention.2, 3, 34–39

The one-electron states in SAD can be described by the HO oscillator model.40 These dots are
characterized by large kinetic energy quantization  and have the potential
for useful room temperature devices. The electronic structure of SAD filled with electrons
has been investigated by Wojs et al.41,42 using EDT in configuration-interaction basis. The
numerical calculations established a simple picture of electronic shells consistent with Hund’s
rules. In case of partially filled shells i.e., degenerate states, the configuration with maximum
total spin and maximum angular momentum forms the ground state.

Drexler et al.43 and Fricke et al.44 reported FIR absorption measurements of electronic
excitations in SADs as a function of the number of electrons and the magnetic field. The SECS
and FIR spectra were calculated by Wojs et al.41 For an infinite parabolic confinement only
the center of mass excitations with frequencies and  (generalized Kohn’s theorem)1,45

can be measured in FIR. In SAD, a finite number of confined FD levels leads to additional
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transitions in the IR spectrum related to the magnetic field induced changes in the GS, e.g.,
spin triplet to spin singlet transition leading to a splitting of the FIR transitions. Experiments
by Fricke et al.44 indeed showed the predicted splitting, which illustrates the desired sensitivity
of the optical transitions to the number of electrons N.

Photoluminescence is the simplest probe of the electronic structure in semiconductors.
The interaction of electrons with an exciton in quantum dots4, 24, 46, 47 and the recombination
spectrum of modulation doped SADs has been studied recently.42,48 The photoluminescence
spectrum has been related to the spectral function of the hole (vacancy) created in the
correlated electron ground state. Wojs et al.42 have shown that there are oscillations and
splittings of the photoluminescence spectra, directly related to the number of electrons in the
dot. The splitting of the PL line is related to many resonant excited configurations of the
interacting system coupled by Coulomb interactions. Recent experiments by Schmidt et al.48

on modulation doped SAD appear to be consistent with theoretical predictions.
Inelastic light scattering measures the excitation spectrum of a QD49–52 and, in principle,

can provide direct evidence of the discrete nature of energy spectrum in zero-dimensional
(0D) systems. The electron–electron interactions play a significant role in determining
these excitations.49 A number of groups50–53 have undertaken the inelastic light scattering
experiments in quantum dots. Lockwood et al.51 carried out investigation of electronic
excitations in modulation doped quantum dots in a magnetic field. Their result supported the
notion of electronic shells even in dots with 100 electrons.

Recently, Potemski et al.53 carried out resonant inelastic light scattering studies of SAD.
The findings were interpreted in terms of correlations between an electron, a valence hole,
and a phonon.

To understand the operation of a quantum dot based laser one must understand the effect
of exciton–exciton interaction on optical properties of highly excited SAD. Experiments54

and calculations54, 55 were carried out for SAD which can be filled with up to 30 electrons and
holes. For most quantum dots where electrons and holes are confined in the same physical
area, the electron and hole interactions are highly symmetrical. For symmetrical interactions
in a degenerate shell, the commutator of the Hamiltonian and the interband polarization
operator can be approximated as where is an approximate exciton
binding energy. This commutation relation is a manifestation of hidden symmetry.56 One can
construct coherent N exciton states as eigenstates of Due to hidden symmetry
these coherent states are also eigenstates of the shell Hamiltonian with energies
The energy of these states is the sum of energies of noninteracting excitons.

In a QSXL one needs to add/subtract an exciton to/from a dot already filled with excitons.
Numerically calculated energy to add an exciton to N excitons indeed showed the constant
value, independent of the number of excitons, in agreement with the “hidden symmetry”
argument.

An application of the magnetic field destroys the hidden symmetry responsible for this
behavior, as demonstrated by Raymond et al.54 The blueshift of the chemical potential was
also evident in a SAD red-emitting laser structure studied by Fafard et al.2

REFERENCES

[1] For reviews and references see R. C. Ashoori, Nature 379,413 (1996), M. Kastner, Physics Today,24,
January 1993; T. Chakraborty, Comments in Cond. Matter Physics 16,35(1992);

[2] S. Fafard, K. Hinzer, S. Raymond, M. M. Dion, J. P. McCaffrey, Y. Feng, S. Charbonneau, Science 274
1350 (1996).

[3] P. M. Petroff and S. P. Denbaars, Superlattices and Microstructures 15, 15 (1994); Proceedings of Inter-
national Conference on Modulated Semiconductor Structures, Madrid, 1995, Solid State Electronics, 40
(1996).

499



[4] P. Hawrylak and D. Pfannkuche, Phys. Rev. Lett. 70, 485 (1993)
[5] P. Hawrylak, Phys. Rev. Lett. 71, 3347 (1993).
[6] J. H. Oaknin, L. Martin–Moreno, and C. Tejedor, Phys. Rev. B54, 16 850 (1996).
[7] Yu. A. Bychkov, S. V. Iordanskii, and G. M. Eliashberg, JETP Lett33,143(1981) Yu. Bychkov and

E. I. Rashba, JETP 69, 430(1989).
[8] R. B. Laughlin, Phys. Rev. B 27,3383(1983).
[9] S. M. Girvin and Terrence Jach, Phys. Rev.B 28, 4506 (1983).

[10] S. A. Trugman and S. A. Kivelson, Phys. Rev. B 31, 5280 (1985).
[11] R. W. Haase, N. F. Johnson Phys. Rev. B 49 14409 (1994).
[12] J. M. Kinaret, Y. Meir, N. S. Wingreen, P. A. Lee, and X.-G. Wen, Phys. Rev.B46, 4681 (1992).
[13] R. C. Ashoori, H. L. Stormer, J. S. Weiner, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett.

71, 613(1993).
[14] Bo Su, V. J. Goldman, and J. E. Cunningham, Science 255, 313 (1992).
[15] S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouvehoven, Phys. Rev. Lett 77, 3613

(1996).
[16] A. Wojs and P. Hawrylak, to be published
[17] P. A. Maksym, Physica B184, 385 (1993); P. A. Maksym and T. Chakraborty, Phys. Rev. Lett.65, 108

(1990); P. A. Maksym and T. Chakraborty, Phys. Rev.B45, 1947 (1992).
[18] A. H. MacDonald, S. R. Eric Yang, and M. D. Johnson, Aust. J. Phys. 46, 345 (1993).
[19] E. H. Rezayi, Phys. Rev.B36, 5454 (1987).
[20] J. J. Palacios, L. Martin–Moreno, G. Chiappe, E. Louis, and C. Tejedor, Phys. Rev.B50, 5760 (1994).
[21] X. G. Wen, Phys. Rev. B, 41, 12 838 (1990); C. de Chamon and X.-G. Wen, Phys. Rev.B49, 8227 (1994).
[22] Arkadiusz Wojs and Pawel Hawrylak, Phys. Rev. B 56, 13227 (1997).
[23] P. Hawrylak, Phys. Rev.B51, 17 708 (1995).
[24] P. Hawrylak, A. Wojs, and J. A. Brum, Solid State Commun.98, 847 (1996); Phys. Rev. B, 54, 11 397

(1996).
[25] M. W. C. Dharma-wardana, J. Phys. - Condensed Matter, 7, 4095, (1995).
[26] M. Ferconi and G. Vignale, Phys. Rev. B 56, 12108 (1997).
[27] M. J. Lubin, O. Heinonen, M. D. Johnson, Phys. Rev. B 56, 10373 (1997).
[28] J. K. Jain, T. Kawamura Europhys. Lett.29, 321 (1995); R. K. Kamilla, J. K. Jain Phys. Rev. B 52, 2798

(1995).
[29] P. L. McEuen, E. B. Foxman, J. M. Kinaret, U, Meirav, M. A. Kastner, N. S. Wingreen, and S. J. Wind,

Phys. Rev.B45, 11 419 (1992).
[30] A. Sachrajda, R. P. Taylor, C. Dharma-wardana, P. Zawadzki, J. A. Adams, and P. T. Coleridge, Phys.

Rev.B47, 6811 (1993).
[31] O. Klein, S. de Chamon, D. Tang, D. M. Abusch–Magder, U. Meirav, X.-G. Wen, M. A. Kastner, and S.

J. Wind, Phys. Rev. Lett. 74, 785 (1995).
[32] P. Hawrylak, Solid State Comm. 88, 475 (1993).
[33] J. J. Palacios and A. H. MacDonald, Phys. Rev. Lett.76, 118 (1996).
[34] N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V.

Maximov, P. S. Kop’ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, Electronics
Letters, 30, 1416 (1994); M. Grundmann, J. Christen, N. N. Ledentsov, J. Bohrer, D. Bimberg, S. S.
Ruvimov, P. Werner, U. Richter, U. Gosele, J. Heydenreich, V. M. Ustinov, A, Yu. Egorov, A. E. Zhukov,
P. S. Kop’ev, and Zh. I. Alferov, Phys. Rev. Lett., 74, 4043 (1995).

[35] J.-Y. Marzin, J.-M. Gérard, A. Izraël, D. Barrier, and G. Bastard, Phys. Rev. Lett., 73, 716 (1994).
[36] R. Notzel, J. Temmyo, and T. Tamamura, Nature, 369, 131 (1994).
[37] H. Lipsanen, M. Sopanen, and J. Ahopelto, Phys. Rev. B, 51, 13 868 (1995).
[38] S. Fafard, et. al, Appl. Phys. Lett. 65, 1388 (1994); R. Leon, et. al, Appl. Phys. Lett. 67, 521 (1995); S.

Fafard, et. al, Phys. Rev. B 52, 5752 (1995).
[39] K. H. Schmidt, G. Medeiros–Ribeiro, M. Oestreich, P. M. Petroff, and G. H. Döhler, Phys. Rev. B, 54, 11

346 (1996).
[40] A. Wojs, P. Hawrylak, S. Fafard, L. Jacak; Phys. Rev. B54, 5604 (1996).
[41] A. Wojs and P. Hawrylak, Phys. Rev. B 53, 10 841 (1996)
[42] A. Wojs and P. Hawrylak, Phys. Rev. B 55, 13066 (1997).
[43] H. Drexler, D. Leonard, W. Hansen, J. P. Kotthaus, and P. M. Petroff, Phys. Rev. Lett., 73, 2252 (1994).
[44] M. Fricke, A. Lorke, J. P. Kotthaus, G. Medeiros–Ribeiro, and P. M. Petroff, Europhys. Lett. 36, 197

(1996).
[45] W. Kohn, Phys. Rev. 123, 1242 (1961); L. Brey, N. Johnson, B. Halperin, Phys. Rev. B 40, 10 647 (1989);

P. Maksym, T. Chakraborty, Phys. Rev. Lett. 65, 108 (1990).

500



[46] S. Patel, A. S. Plaut, P. Hawrylak, H. Lage, P. Grambow, D. Heitmann, K. von Klitzing, J. P. Harbison and
L. T. Florez, Solid State Comm.101,865 (1997).

[47] A. Wojs and P. Hawrylak, Phys. Rev. B 51, 10 880 (1995).
[48] K. H. Schmidt, G. Medeiros–Ribeiro, P. M. Petroff, Physica B, in press
[49] P. Hawrylak, Solid State Commun.93, 915(1995).
[50] R. Strentz et al., Phys. Rev. Lett. 73, 3022 (1994).
[51] D. J. Lockwood, P. Hawrylak, P. D. Wang, C. M. Sotomayor–Torres, A. Pinczuk, and B. S. Dennis, Phys.

Rev. Lett.77, 354 (1996).
[52] C. Schuller, G. Biese, K. Keller, C. Steinebach, D. Heitmann, P. Grambow, K. Eberl, Phys. Rev. B54,

17304 (1996).
[53] P. Hawrylak, M. Potemski, H. Labbe, D. J. Lockwood, J. Temmyo, and J. Tamamura, “Inelastic light

scattering from self-assembled quantum disks,” Physica B, in press
[54] S. Raymond, P. Hawrylak, C. Gould, S. Fafard, A. Sachrajda, M. Potemski, A. Wojs, S. Charbonneau, D.

Leonard, P. M. Petroff, and J. L. Merz, Solid State Comm.101,883 (1997); S. Raymond, S. Fafard, P. J.
Poole, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, R. Leon, P. M. Petroff, and J. L. Merz, Phys.
Rev. B, 54,11548(1996).

[55]  A. Wojs and P. Hawrylak, Solid State Comm.100, 487 (1996); P. Hawrylak and A. Wojs, Semic. Sci. Tech.
11, 1516(1996).

[56] I. V. Lerner, Yu. E. Lozovik, Zh. Eksp. Teor. Fiz. 80, 1488 (1981) [Sov. Phys. JETP 53, 763 (1981)]; D.
Paquet, T. M. Rice, K. Ueda, Phys. Rev. B, 32, 5208 (1985); A. H. MacDonald, E. H. Rezayi, Phys. Rev.
B 42, 3224 (1990); Yu. A. Bychkov and E. I. Rashba, Phys. Rev. B, 44, 6212 (1991).

501



This page intentionally left blank 



COLLECTIVE VS INDIVIDUAL DOT RESPONSE OF QUANTUM DOT
ENSEMBLES

P. Bakshi and K. Kempa

Physics Department, Boston College,
Chestnut Hill, MA 02167, USA

Quantum dots are microscopic, essentially zero-dimensional structures, where the
confining potential can be tailored through the material parameters and the geometry of
confinement. A periodic ensemble of quantum dots is created by periodic etching1 or
periodic gating2, with the objective of creating a regular lattice of identical quantum dots. In
the case of self assembled quantum dots3, on the other hand, the individual dots may vary in
size and the interdot separations are randomly distributed. Primary experimental tools
employed to study the response of quantum dot ensembles have been the far infrared (FIR)
spectroscopy and single electron charging (capacitance) studies. Theoretical studies are by
and large based on model confining potentials (for the individual dots) and model electron-
electron interactions.

We examine in this paper the FIR response of an ensemble of quantum dots where the
individual dots may have different intrinsic FIR responses and where the interdot distances
may be randomly distributed. This is the experimental situation for the self assembled dots.
It is intuitively clear that if the interdot distances are large, the dots will respond individually
at their specific frequencies, and for an ensemble of dots that span a broad frequency range,
one should expect a correspondingly broadened line shape. When the interdot separations
are small, and the interdot interactions are strong, the possibility arises that the whole
ensemble will respond at a single (or a few) collective frequencies, with narrow line widths.
We develop here a formalism to determine the transition from the individual to the collective
behavior.

RESPONSE OF A SINGLE QUANTUM DOT

The confining potential can be created in many different ways, but in all cases, it will
have a minimum where a single electron would rest, classically, or have a localized wave
function, quantum mechanically. The curvature at the minimum defines the natural frequency
ω o for simple harmonic motion around the rest position. If the confinement is due to a
uniform sphere of jellium (distributed positive charge), the restoring force at distance r is
only due to the charge inside the sphere of radius r, where is the
charge density and the dielectric constant. This leads to the Mie frequency
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for confinement by a spherical jellium. The system is isotropic and the exact parabolic
potential continues up to the edge of the sphere. is the positive charge of the jellium
sphere. For a uniform (thin) strip of jellium, a simple symmetry argument shows that the net
force on an electron displaced from the center by a distance x is only due to the jellium of
length 2x at the opposite end of the strip, F = -kx, where R is the half length
of the strip and is the linear charge density. The corresponding frequency for small
oscillations is

For a strip, the parabolic potential is enhanced as one moves away from the center.
For a uniform disk of jellium, of radius R, and areal charge density while the
calculation4 is not as elementary as the above two cases, the result for small oscillations is the
same (note the identity of the last expression in each case),

Other modes of confinement will also produce some characteristic and a nearly
parabolic potential.

A single electron in any such confining potential will absorb FIR at frequency  by
making a transition from the ground state to the first excited state. Several noninteracting
electrons would also give a similar result. One might expect a dot filled with several
(interacting) electrons to produce a ifferent absorption pattern, and thereby reveal some
properties of the many body system, due to inter-electron interactions. It was thus a surprise
when an experiment5 showed that the absorption frequency did not depend on the electron
number (N- = 3 to 20).

This phenomenon was soon understood6, 7 in terms of the center of mass motion of all
electrons in a parabolic potential. FIR radiation, due to its long wavelength, only couples to

the total dipole strength For a parabolic potential the total Hamiltonian is
exactly separable into the center of mass and relative coordinates

The e-e interactions are in the and thus do not affect the FIR absorption. It is as
if we are dealing with a single charge (N-e) of mass M=N-m in a parabolic well of frequency

represented by in Eq. (4).
This picture remains valid even in the presence of a magnetic field 6,7. For a quantum

disk dot, the FIR response with magnetic field B produces absorption peaks at frequencies
For the parabolic potential, the separability of

and is exact and the response remains independent of the number of electrons in
the quantum dot.

RESPONSE OF A QUANTUM DOT ENSEMBLE

How would these results change for an ensemble of quantum dots? The simplest case
is that of identical dots in a regular array. The positive charges in the neighboring dots can
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now alter the restoring force in a given dot. A square array of identical dots, each with
intrinsic frequencies leads to FIR absorption at a lower (collective) frequency7,

The summation is taken over all d's, the distances of all positive charges in the other
dots measured from the center of the given dot. For a square array of lattice period a,
assuming that the size of a dot is much smaller than a, the interdot interaction leads to the
lowered (collective) frequency

with The FIR response thus changes from the characteristic individual dot
response       when a>>R, to the collective response as a is reduced. This is called
mode softening. There is only a single peak response for any a. The electron-electron
interactions do not affect this result due to the separability into a total for the whole
ensemble, and a as long as the non-parabolic terms remain small.

There were two assumptions in the discussion above: (a) identical dots and (b) a
regular array. What would be the result if these assumptions are relaxed? Consider an array
where the individual dots have different intrinsic frequencies (due to different sizes
and where they are arranged at random. (1) If the dots are far apart, each responds at its
harmonic frequency and a series of sharp absorption peaks at the set will be seen.
With other line broadening mechanisms, and closely spaced one can expect an overall
broad response, comparable to the spread in This is akin to a broad "single particle"
absorption spectrum. (2) If the dots are brought closer, strong interdot interactions may
become possible, and may eventually enforce a "collective" response from the whole
ensemble at a single frequency, producing a narrow line width. This would be the analog of
the typical collective interaction and response of any ensemble of charged particles.

It should be noted that if the spread in individual is negligible (assumption (a)), the
response will be a single peak even at large dot-separations. This is due to the degeneracy of

rather than any collective interaction. It should also be noted that by retaining assumption
(a), but relaxing assumption (b), the irregularity of distances d in Eq. (5) can lead to different
effective frequencies for different dots, thus suggesting a broadened response from a
random ensemble of identical dots.

A SIMPLE MODEL

For a quantitative analysis of these questions, we examine a simple model, which
shows the transition from the individual to the collective behavior, and which also illustrates
various methods that can be used to tackle the general problem. Consider only two dots,
with one electron in each dot. The individual confinement frequencies and are
unequal. Treating the system as quasi-one dimensional, the full Hamiltonian is

where d > 0 is the distance between the centers of the two dots, and the displacements
of the electrons from their rest positions, and the positive charge spread is considered to be
small compared to d. For small displacements, H can be simplified to

505



METHOD 1. This quadratic form can be diagonalized and made separable in normal
coordinates and by standard methods. The normal mode frequencies are given by

For the limiting case this reduces to

Thus which is the smaller frequency, corresponds to the center of

mass motion. FIR radiation only couples to and only one peak will appear, irrespective of
the strength of the interdot coupling term. The relative motion, in is not detected by FIR.

With the relevant parameters which govern the transition from individual to
collective response are and When

Eq. (9) shows and the normal coordinates approximate the

individual dot displacements, The FIR response consists of two peaks, at
the individual dot frequencies and In the strong interaction domain the

lower frequency of Eq. (9), and the response is highly asymmetric with
most of the intensity in the center of mass like mode. The transition is best characterized by
this continuous loss of intensity from the response at the higher frequency.

METHOD 2. Rewriting Eq. (7) as with

the problem is reduced to degenerate perturbation theory, where V breaks the degeneracy of
the first excited state of This Hamiltonian is separable in as well as in center of
mass or relative coordinates. Standard degenerate perturbation theory applied to the states
(1,0) and (0,1) in either representation leads to the same results as method 1. Method 2 has
the advantage of explicitly displaying both perturbations which break the degeneracy
(characterized respectively by the inhomogeneity of frequencies, and the interdot
interaction It is also applicable even when the full Coulomb interaction is retained
(Eq. (7)) instead of expanding in and (Eq. (8)), or when the confining potential in each
dot includes nonquadratic terms. The basic result is not dependent on the quadratic nature of

it is a consequence of symmetry breaking due to any V which destroys the
interchange symmetry.

GENERALIZATIONS

Both methods can be generalized to a planar ensemble of dots, and with several
electrons per dot. In Method 1, for many dots with one electron in each dot, the Hamiltonian
still remains a quadratic form as in Eq. (8) after expansion to leading order in the
displacements This form can be diagonalized to obtain the normal mode frequencies
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and the normal coordinates, and the precise coupling of FIR radiation to each mode.
Depending on the intrinsic spread of the individual dot frequencies and the randomness
of the interdot separations, one obtains a spread in the normal mode frequencies and a
broadened response to FIR radiation. Even if the intrinsic frequencies are all the same

the randomness of interdot separations can give rise to a variation in the normal
mode frequencies and a coupling of many different modes to the FIR field, yielding a
broadened spectrum with a width of the order of For the special situation where the

dots form a regular lattice, the influence of all other dots on any given dot is the same, and
then the FIR response occurs at a single frequency, downshifted from as in Eq. (5), due
to the influence of positive charges in the other dots.7 Separability of the Hamiltonian into
the center of mass and relative components is recovered and the generalized Kohn’s theorem
is then applicable.7 This single frequency response remains valid for the case of many
electrons per dot as well, provided the intrinsic individual dot frequencies are the same and
the dots form a regular lattice.

Method 2 is more general, and does not need to rely on parabolic confinement or
quadratic form expansions. Consider first a system of many dots, with one electron in each
dot, and identical but nonparabolic confining potentials. Without considering interdot
interactions, each dot has the same energy spectrum The ground state energy for the
system of N dots is and the first excited state is N-fold degenerate with energy
above the ground state. It can be shown that the total dipole operator induces a
transition from the ground state to only the fully symmetric first excited state. The remaining
(N-l) states in the subspace spanning the first excited state remain unaffected by FIR
radiation. The interdot interactions can be treated as a perturbation in this basis. If the dots
form a regular lattice, it can be shown that the interdot interactions do not break the
interchange symmetry and the total dipole operator still couples the ground state to
only the fully symmetric first excited state. The main influence of the interdot interactions is
to reduce the response frequency. If the individual dots have differing confining potentials,
or if the interdot separations are random, the interchange symmetry is broken. Then an
average potential should be constructed, and used for each dot to restore the symmetry,
treating the deviations from this average potential as the perturbation in this basis. A detailed
application of these ideas will be presented elsewhere. These considerations will be relevant
for the FIR response of randomly distributed self assembled dots with non parabolic
confinement.8

ACKNOWLEDGMENT

This work was supported in part by the U.S. Army Research Office, under Grant Nos.
DAAH04-94-G-0052 and DAAG55-97-1-0021.

REFERENCES

1. M. Reed, J.N. Randall, R. Aggarwal, R. Matyi, T. Moore and A. Wetsel, Phys. Rev. Lett.
60, 535 (1988).

2. A. Lorke, J. Kotthaus and K. Ploog, Phys. Rev. Lett. 69, 2559 (1990).
3. J.Y. Marzin et al., Phys. Rev. Lett. 73, 716 (1994); M. Grundmann et al., Phys. Rev. Lett.

74, 4043 (1995);H. Drexler, et al., Phys. Rev. Lett. 73, 2252 (1994).
4. D. Broido, K. Kempa and P. Bakshi, Phys. Rev. B 42, 11400 (1990).
5. C. Sikorski and U. Merkt, Phys. Rev. Lett. 62, 2164 (1989).
6. P. Maksym and T. Chakraborty, Phys. Rev. Lett. 65, 108 (1990).
7. P. Bakshi, D. Broido and K. Kempa, Phys. Rev. B 42 , 7416 (1990).
8. M. Fricke, A. Lorke, J. Kotthaus, G. Medeiros-Ribeiro and P. Petroff, Europhys. Letters

36, 197 (1996).

507



This page intentionally left blank 



OPTICAL STUDIES OF INDIVIDUAL INAS QUANTUM DOTS

L. Landin, M. S. Miller*, M.-E. Pistol, C. E. Pryor, and L. Samuelson,

Solid State Physics, Box 118
Lund University, S-22100 Lund, Sweden

INTRODUCTION

InAs has a 7.2 % larger lattice constant than GaAs, and only a thin layer of InAs can
be grown on a GaAs surface before the film breaks up into small islands [1]. These islands
are shaped like pyramids, having typically a height of about 4 nm and a square base with a
side length of about 9 nm. The islands are situated on a quantum well (denoted the wetting
layer) having a thickness of about 1 atomic layer. Previous optical investigations of
individual InP islands (which are larger than the InAs islands investigated here) have shown
a discrete energy levels, which were in good correspondence with calculated single-particle
energy levels [2,3]. We here report on similar investigations of individual InAs islands,
where we observe emission lines corresponding to multi-particle states.

The sample used in our experiment was grown by chemical beam epitaxy. Nearby
regions of this sample were patterned with etched grooves and holes for selective island
placement, and most of the islands grew only in patterned features [4,5]. The InAs islands
were capped with 20 nm GaAs. Growth and processing details have been reported elsewhere
[4,5]. It is the very-low island density region away from the pattern features that has been
used for photoluminescence measurements in the present study. The emission energy was
about 1.35 eV which is slightly higher than typical values for InAs islands, indicating that
our islands are slightly smaller than 4 nm in height.

The sample was mounted in an Oxford Instruments Microstate cryostat. All the
experiments were carried out at 7 K. For excitation we used a frequency-doubled YAG-laser
emitting at 532 nm. The diameter of the laser spot was kept to about 50 microns and the
excitation power density varied between 0.5 and 160 W/cm2. The emitted light from the
sample was collected by a microscope and either dispersed through a monochromator or
analyzed and imaged through a band pass interference filter. In both cases we used a CCD
camera for detection. When using the monochromator, the image of the sample was focused
through a narrow slit with the slit oriented parallel to the grating rulings. Thus, the CCD
image axis parallel to the rulings displayed the spatial position of the individual dots along
the slit, while the CCD axis perpendicular to the rulings displayed the dispersed spectrum of
each dot. The monochromator spectral resolution was typically 0.1 nm. In this way many
dots could be simultaneously measured.
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Figure 1. A micrograph of the emission from the sample, showing emission from individual
quantum dots. The emission wavelength is 960 nm and the band-pass of the
interference filter is 10 nm. In the micrograph we also show size of a 0.05 mm slit in
our optical setup.

RESULTS

An image of the photoluminescence at 960 nm (using an interference filter to select the
wavelength) is shown in Fig 1. The luminescing area is defined by the laser spot. The 20
micron diameter circular regions above and to the right of the center are concentric circular
trenches for which island luminescence energy was found to vary as a function of position
around the circles [4]. Away from the patterns, the luminescence from isolated dots can be
clearly seen. The 10 nm spectral width of this filter and the 100 meV spread of island
energies which is typical for our samples then imply a total luminescing island density of

This is the same density measured by atomic force microscopy on an otherwise
similar, but uncapped, sample. The emission spectra for four different islands are presented
in Fig. 2. At low excitation power the spectra consist of one emission line (line A), which
indicates emission from a single quantum dot. At increasing excitation power density,
emission lines appear first at higher energy (line B) and then at lower energy than the main
line. The energy separation from the main line is about 1 meV. At the highest excitation
power density we observe a continuum-like emission at an energy below the
main line. Figure 3 displays high resolution fine-structure spectra from yet two more islands.
Four peaks are shown for each island and labeled A to D, where A is the original single
peak, B is the same as in Fig. 2, C is the shoulder peak just below B, and D is the low
energy peak.

We have calculated the electronic energy levels in these quantum dots, using an eight-
band k.p-theory in conjunction with the envelope function approximation. The model
includes strain, a realistic shape of the quantum dots, and the piezo-electric potential.
Calculations of few-particle effects were included using the Hartree approximation. All of the
single-particle states found in the calculation and refered to here are doubly degenerate due to
time-reversal. Only one (doubly degenerate) electron level was obtained in the conduction
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Figure 2. Spectra at different excitation power densities for four different quantum dots, a)
and b) show the evolution of the extra line at higher energy for excitation power
densities between 0.5 and The peak around 1.343 eV in panel a) is due
to a different quantum dot. c) and d) show the evolution of the spectra for
excitation power densities between 0.5 and Additional emission peaks
appear at lower energies and at the highest excitation power density a continuum-
like emission is seen.
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Figure 3. High resolution spectra of quantum dots showing fine-structure, using an
intermediate excitation power density. Two different dots have been measured.

band. In the valence band, the hole ground state is separated from the first excited hole state
by about 25 meV. Because the lowest excited single-particle state is an order of magnitude
higher in energy than the scale of the observed fine-structure splitting, we conclude that the
additional peaks that first appear around the main peak are not due to excited hole states and
must be due to carrier-carrier interactions when there are more than two carriers in the dot.

We denote electrons by (e) and holes with (h). The calculations show that the
recombination energy of four particles, (e + e + h + h) -> (e + h), is about 2.5 meV higher
than the recombination energy of two particles (e +h). The recombination energy of the three
particle system, (e + h + h) -> (h), is 4.3 meV higher than the (e + h) transition energy and

Figure 4. Spectra of the wetting layer emission at different excitation power densities. At the
highest excitation power density a blue-shift of the emission occurs.
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the recombination energy of the three particle system, (e + e + h) -> (e), is 1.7 meV higher
than the (e + h) transition energy. The (e + h) transition energy is calculated to be about
1.193 eV for a dot height of 4.5 nm, which is slightly smaller than our experimental values.

We conclude from this calculation that few-particle interactions may indeed cause
splittings of the observed magnitude. If line A correspond to an (e + h) transition, line B
corresponds well with the calculated (e + e + h + h) -> (e + h) transition energy. From other
calculations it has been found that the details of the quantum dot is important even for the
sign of certain energy differences [6].

We refrain from a definite assigment of the peaks since we don't have enough
knowledge of the sample, e. g. we do not know the position of the Fermi-level in the vicinity
of the dots even at thermal equilibrium.

For some systems polariton effects can contribute a splitting to the fine structure
because two dots are within a wavelength of light from one another and emitting at the same
energy [7]. Polariton effects should be negligible for the present low-density sample because
within a given 1 meV range of energy, the dot-to-dot separation is much larger than the
wavelength of the emitted light. Other effects such as interference effects and phonon
coupling should not depend on excitation power density.

We propose that the continuum-like emission is due to interactions between carriers in
the quantum dot and carriers in the wetting layer. In figure 4 we show the emission spectrum
of the wetting layer for different excitation power densities. It can be seen that at the highest
excitation power density the wetting layer emission shifts to higher energy,
which is typical of state filling. This is the same excitation power density that is needed to
observe the continuum-like emission from the quantum dot. This experiment thus supports
our idea of the origin of the continuum-like emission from the quantum dots.
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ULTRAFAST RELAXATION IN STRONGLY COUPLED COULOMB SYSTEMS

Michael Bonitz, Nai-Hang Kwong, Dirk Semkat, and Dietrich Kremp

FB Physik, Universität Rostock
18051 Rostock, Universitätsplatz 3, FRG

INTRODUCTION: GENERALIZED KINETIC EQUATIONS

With the development of femtosecond lasers, one is now able to create strongly correlated
plasmas in extreme nonequilibrium and probe its behavior with high time resolution. During
the relaxation, interesting short-time phenomena occur, such as the build-up of correlations,
and the formation of bound states and of the screening cloud. As a result of the relaxation,
the plasma reaches a correlated equilibrium state.

A complete theoretical description of these processes cannot be given in terms of con-
ventional kinetic equations of the Boltzmann type, since they neglect the correlation dynamics
and do not conserve total (kinetic+potential) energy. Furthermore, the equilibrium solution
of these collision terms is that of an ideal quantum gas, i.e., a Fermi or Bose distribution.
All these deficiencies are of particular importance in strongly coupled many-particle systems
where the coupling parameter  the ratio of the mean potential energy and the
mean kinetic energy, is of the order of one or even larger. Therefore, a statistical treatment of
nonequilibrium processes in these systems requires generalized kinetic equations, see e.g.,1

where also earlier references are given. In summary, the requirements to these equations are

1. conservation of the sum of kinetic+potential energy,

2. inclusion of correlation buildup and of initial correlations and their damping,

3. relaxation towards the correlated equilibrium state,

4. consistency of the dynamics of one-particle and two-particle properties.

KADANOFF–BAYM APPROACH TO CORRELATED MANY-PARTICLE
SYSTEMS

Among the different forms of generalized (non-Markovian) kinetic equations, the
Kadanoff–Baym equations (KBE) for the two-time correlation functions have a number
of remarkable properties. While non-Markovian kinetic equations for the (one–time) Wigner
distribution have problems to fulfill all of the mentioned requirements simultaneously,1 this
is not the case for the KBE. The latter are of high internal consistency because all properties
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Figure 1. a: Initial uncorrelated and final correlated equilibrium electron distribution, b: Evolution of kinetic,
potential and total energy. Parameters are chosen for electrons in a semiconductor (bulk

Figure 2. Spectral function corresponding to Fig. 1, for two different times T. The momentum value is

and approximations are determined by a single function, the self-energy  and they can be
generalized to include arbitrary initial correlations.2,3

The KBE are equations of motion for the pair of single-particle correlation functions
and which evolve in the plane starting from a given initial state. They

contain statistical information - on the time diagonal they reduce to the Wigner distribution
and also dynamical information which is related to their behavior away

from the diagonal. The dynamical properties, and thus the correlations in the system, are
contained in the spectral function To demonstrate the
effect of correlations on the femtosecond dynamics, we start with a model case, solving
the KBE for an electron gas with self-energies in quasi-static Born approximation. Figs. 1
and 2 show the evolution starting from an uncorrelated equilibrium state (Fermi function).
At t = 0, the interaction between the carriers is “turned on.” While with conventional
Boltzmann-type kinetic equations the system would remain in the initial state, the KBE yield
the correct “evolution” towards the correlated equilibrium state, Fig. la. Due to the buildup
of correlations, potential energy increases (it is negative because we assumed a neutralizing
background). At the same time kinetic energy rises, while total energy is conserved, Fig.
1 b. The saturation of kinetic energy increase marks the end of the correlation buildup and
is an appropriate measure for the nonequilibrium correlation time.5 Detailed inside into the
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correlation dynamics is gained from the spectral function. Fig. 2 shows the evolution of
compared to the free particle case, where is the distance from the

diagonal and the macroscopic time. While in the free case, A performs
harmonic oscillations with the frequency correlations between the carriers
cause a frequency decrease and damping of the oscillations. Our approach allows to study
this effect in its time evolution, i.e., the buildup of correlations, without any additional
approximations.

FEMTOSECOND PULSE EXCITED SEMICONDUCTORS

The KB approach is readily applied to systems of practical interest, including nuclear
matter2 and solids.6 In particular, it allows for a self-consistent treatment of the plasma
excitation by a short laser pulse and the subsequent relaxation including the buildup of
correlations.

As an example, we consider a fs laser pulse which excites an electron–hole plasma in
a quasi-two-dimensional (quantum well) semiconductor. The incoming light field

is modified by the polarization P(t) of the material giving rise to an effective
field which follows from Maxwell’s equations. P depends on the time-dependent
response of the semiconductor to the field, on the relaxation processes in the system. In the
low-intensity region, this response is due to dipole transitions of electrons between the valence
(v) and conduction (c) band. The transition probability (the interband polarization)
depends on the electron momentum which in turn is determined by the laser energy in
excess of the energy gap between the two bands and yields the macroscopic polarization
according to On a fs scale, the laser is energetically broad, exciting
electron–hole pairs within a wide range of energies including their bound states (excitons).
This system has a number of remarkable features: it includes the formation of bound states
and of the screening cloud around the electrons.

Thus, the microscopic theory needs to compute Our approach is to determine
this quantity from the solution of the interband generalized KBE, i.e., coupled equations
for the band populations and which self-consistently includes the effective field

as the source of carriers and interband transitions. This allows us to include the
carrier generation process into the description leading to a well defined initial state, for details
see [7].

Fig. 3 shows results from the interband KBE including all carrier scattering effects in
quasi-static second Born approximation. The laser pulse is chosen 50fs long and generates
the carrier density (n) in the conduction (electrons) and valence band (holes), see left Fig.
part. At the same time, the pulse creates the interband polarization which, after the pulse
is gone, decays due to carrier scattering. The oscillations are due to the presence of bound
states (excitons) in the system (the frequency arises from beating between the exciton binding
energy and the laser energy in excess of the band gap). The right figure part shows the
evolution of the different energy contributions. Notice the increase of the total energy which
is due to the energy pumped into the system by the external source, i.e., the laser. On the
other hand, the division of this energy into various parts depends on the internal properties of
the semiconductor. As in the model case above, we see the build up of correlations (causing
the correlation energy to increase). In addition, here we took into account the mean field
energy (Hartree–Fock energy). Thus, here the potential energy is the sum of correlation and
mean field energy. The correlation energy is related to the build up of screening among the
laser generated carriers On the other hand, the mean field energy leads to a modification of
the energy of electron–hole pairs. It renormalizes the one-particle energies of free electrons
and holes, but also reflects the formation of bound complexes in the laser field, the excitons .
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Figure 3. Relaxation of an electron–hole plasma in a GaAs quantum well generated by a 50fs laser pulse, a:
Time evolution of density and envelope of interband polarization P in units of   pulse
envelope is shown in arbitrary units b: Relaxation of different energy contributions summed over both bands:
KE: kinetic energy, MF: mean field (Hartree–Fock) energy, CE: correlation energy and total energy
TE = KE + MF + CE.

Thus, the Kadanoff–Baym approach is well suited to consistently describe the femtosec-
ond dynamics of correlated many-body systems, including the carrier generation and the
formation of screening and bound states.
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COULOMB DRAG MEASUREMENTS OF A DOUBLE QUANTUM WELL

J. T. Nicholls, N. P. R. Hill, E. H. Linfield, M. Pepper, and D. A. Ritchie

Cavendish Laboratory, University of Cambridge
Madingley Road, Cambridge, CB3 0HE, United Kingdom

In a Coulomb drag measurement of two closely spaced, electrically isolated two-
dimensional electron gases (2DEGs), a voltage is induced in the drag layer when a
current is passed through the drive layer. Momentum is not conserved within the
individual 2DEGs, and the transresistivity

is a direct measure of the interlayer electron–electron scattering rate which is determined
by the interlayer interaction and the excitations within each layer. In this expression L is the
separation of the voltage probes, W is the width of the sample, m is effective mass of the
electron, and is the carrier density of the drive layer.

Drag measurements at low temperatures and zero magnetic field show that the interlayer
interaction is dominated by a phonon coupling.1 Here we investigate the interlayer interac-
tion and the single-particle excitations (SPEs) within each layer in two different regimes.
Firstly, the collective modes of the double two-dimensional electron gas (2DEG) system are
investigated at zero magnetic field and high temperatures, where the drag is enhanced by the
plasmon modes.2 The measurements are compared to detailed calculations with and without
intralayer correlations included in the Hubbard approximation. Secondly, the behavior in the
quantum Hall (QH) regime is investigated, and a recent prediction3 for the doubling of the
quantum oscillations in the magnetotransresistivity is tested.

The plasmon dispersion curves for a double 2DEG system consist of two branches.
The lower (upper) energy branch is the acoustic (optic) plasmon, where the charge density os-
cillations in the two layers are in antiphase (phase).4 At  the interlayer dielectric constant

is at a minimum causing an enhanced interlayer interaction,
where V(q) is the Fourier transform of the interlayer Coulomb interaction. At T = 0 K there
are no SPEs at and the plasmons do not influence the interlayer scattering. However,
at temperatures comparable to the Fermi temperature, the SPE spectrum is sufficiently
broadened to allow SPEs at and the interlayer scattering is dominated by these SPEs
due to the large interaction, Detailed calculations5,6 show a plasmon enhancement of the
scaled transresistivity starting at and peaking close to For
the strong coupling between the plasmons and the SPEs causes Landau damping of the two
modes, reducing the plasmon enhancement.
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The samples consist of two 200 Å wide modulation-doped GaAs quantum wells separated
by an As barrier of thickness t, with as-grown carrier densities and mobilities as
listed in Table 1. Details of the drag measurement are given elsewhere.7, 8

Figure 1 shows the scaled transresistivity versus for sample X at matched
carrier densities of n = 1.37 to The dashed lines in Fig. 1 show
based on RPA calculations5 of the Coulomb coupling between the layers, and do not include
the phonon exchange that is measured below For all densities the transresistivity
shows an upturn near with a maximum close to in good agreement with the
RPA calculations. However, the temperature required to excite the plasmons is lower in the
experimental traces, suggesting that the RPA overestimates the plasmon energies. The solid
lines in Fig. 1 show calculations where the intralayer exchange interactions are included in the
Hubbard approximation. The inclusion of many-body correlations lowers the plasmon energy,
thereby lowering the temperature required to excite the acoustic plasmon, and improving the
fit to the experimental data. However, differences between the theory and experiment remain.
The position of the maximum in lies at a lower temperature than the model, and the
observed decay at higher temperatures is more pronounced. Recent work9 on the coupling
of the 2DEG to optic phonons shows that the phonon interaction softens the plasmon modes,
bringing them closer to the SPE boundary. The resulting traces show a maximum shifted to a
lower temperature, with an increased magnitude and a sharper decay. The inclusion of both
of these effects may be required to model the drag measurements.

We now investigate the drag in a perpendicular magnetic field B, when the Landau level
(LL) structure dominates the properties of the 2DEG. Figure 2(a) shows for sample
Y at T = 1.5 K, together with the magnetoresistivity of the upper 2DEG (the lower
2DEG trace is similar). The same LL structure evident in  is observed in because of the
modulation of the density of states at the Fermi level, At even integer filling factors,
when shows extended minima, transport is via the edges and also shows minima.
Figure 2 shows the increased sensitivity of to the spin-splitting of the LLs; is more
pronounced minimum at and at higher odd filling factors shows clear minima when

does not. At low filling factors, shows a broad minimum resulting from
the thermally smeared fractional states; is more sensitive to this feature as evidenced by
the sharper minimum.

Figure 2(b) shows similar measurements at 8 K, a temperature sufficient to smear both
the spin and fractional features seen in at lower temperatures. However, the corresponding
features in persist, further demonstrating its greater sensitivity. Measurements of  probe
predominantly the edge properties of the sample, whereas bulk measurements similar to the
drag have also shown an enhanced sensitivity to spin splitting.

Recently Bensager predicted that will show double-peak structures in
the QH regime, originating from the interplay between the density of states and the
screening of the interlayer Coulomb interaction. At the center of a LL is peaked,
whereas the interlayer interaction is at a minimum because of the enhanced screening of the
half-filled LL. The interplay of these two competing effects may cause  to be peaked away
from the LL center, resulting in a doubling of the structure in However, we observe no
doubling in Fig. 2; the structure seen in is the same as that which is evident in

520



Figure 1. The scaled transresistivity versus the reduced temperature  of sample X, for matched
carrier densities n = 1.37, 1.80, 2.23, and The dashed (solid) lines are RPA (Hubbard)
calculations. The Hubbard approximation with zero temperature local field corrections improves the
agreement between theory and experiment in the low temperature region, but discrepancies remain at elevated
temperatures.

at a lower temperatures. Recently Rubel et al.10 have presented experimental results similar
to our own,5 but have interpreted the enhanced sensitivity to spin splitting as evidence for the
predicted doubling of the LL structure.

Bønsager et al.3 modelled the LLs as bands of extended states at the LL center; localized
states away from the LL center are assumed not to contribute to the interlayer scattering.
However, Shimshoni11 has recently shown that the low frequency hopping processes in an
Efros–Shklovskii insulator lead to an enhancement of the density fluctuations that contribute
to the drag. By analogy, a significant contribution to the interlayer scattering may result from
hopping conduction between localized states in the LL tail. Another possible influence of
these states is to screen the interlayer interaction as the density of extended states tends to
zero. The divergence in responsible for the double peaked structure may be removed by
the extra screening.

In conclusion, we have measured a plasmon enhancement of the Coulomb drag at high
temperatures, in good agreement with the predictions of Flensberg and Moreover, we
have shown the importance of the many-body corrections that lower the energies of the
coupled plasmon modes. In the QH regime the transresistivity shows a greater sensitivity to
spin splitting; a theoretical account of this effect is at present lacking.
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Figure 2. (a) Measurements of  (solid line) and  (dotted line) for sample Y at T = 1.5 K, at a
matched carrier density of  Filling factors v = 4 and v = 2 are indicated with
arrows, (b) Similar measurements at T = 8 K.
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CLASSICAL ATOMIC BILAYERS
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INTRODUCTION

In recent years, there has been considerable theoretical and experimental progress in
the study of the properties of systems consisting of a finite number of charged particles.1

These systems are atomic like structures which have interesting optical properties and may
be of interest for single electron devices. In most of the early works the quantum mechanical
problem of a small number of electrons was treated. If the number of electrons is increased
beyond 6–7 the Coulomb correlation of the electrons has to be treated in an approximate way.
In order to fully understand the physics of Coulomb correlations, we made a throughout study
of the classical system2 in which the particles are taken point-like but where no approximation
was made on the Coulomb correlation. This approach is valid for quantum dots in high
magnetic fields where the kinetic energy of the electrons is quenched or for classical systems
like ions in a radio frequency trap,3 two dimensional (2D) Coulomb clusters on the surface
of liquid He,4 colloidal particles in water drops between glass plates,5 etc. In the ground
state the charged particles are located on rings and a table of Mendeljev was constructed in
Ref. 2. Note that the present system is the 2D equivalent of the Thomson model6 which was
proposed in 1904 to explain the structure of atoms. These configurations were recovered in a
quantum calculation in the limit of large magnetic fields.7 A study of the spectral properties
of these classical systems such as the energy spectrum, the eigenmodes, and the density of
states was made in Ref. 8. Such classical confined systems have been observed in electron
dimples on liquid helium,4 in drops of colloidal suspensions5 and in confined dust particles.9

Here we extend our previous work to the case of classical artificial molecules10 which
consist of two classical 2D atoms which are laterally separated by a distance d. Intuitively, we
expect interesting behavior as function of d which governs the inter atomic interaction. This
can be seen as follows (see Fig. 1), for d = 0 we have just one 2D atom (e.g., for 2N = 8, this
is a one ring structure with one electron in the center), while for the system consists
of two independent 2D atoms with each half of the total number of particles (e.g., two atoms
each having 4 particles on one ring). This implies that as function of d structural transitions
(e.g., configurational changes) have to take place. The present molecular systems are the
classical analogues of the coupled quantum dot systems which have been studied recently in
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Figure 1. Schematic diagram of a classical artificial molecule consisting of 8 charged particles in the large d
limit and for d = 0.

Ref. 11.
In the present paper we limit ourselves to the system consisting of an even number,

2N, of charged particles which are evenly distributed over two layers separated a distance
d. In both layers, the confinement potential is centered around the z-axis and this parabolic
confinement, which is taken the same for both layers, keeps the system together in the
xy-plane. For convenience, we will refer to our charged particles as electrons, keeping in
mind that they can also be ions with charge e and mass m. The system is described by the
Hamiltonian

which is expressed in dimensionless form. The coordinates, energy and frequency are in
the following units   respectively, with

where m is the mass of the particles, the radial confinement frequency, e the
particle charge, and the dielectric constant of the medium the particles are moving in) Note
that the groundstate energy is only a function of the number of electrons, 2N, and the distance
d between the layers.

The numerical method used in the present study to obtain the groundstate configuration
is based on the Monte Carlo technique supplemented with the Newton Method in order to
increase the accuracy of the energy of the groundstate configuration. The latter technique
is outlined and compared with the Monte Carlo technique in Ref. 8 and also yields the
eigenfrequencies and the eigenmodes of the groundstate configuration.

For we recover the bilayer system which is composed of two parallel 2D
electron gases (2DEG). This system is presently studied extensively experimentally12 and
theoretically.13 Here we consider the classical behavior and investigate the melting of the
different ordered structures.

ARTIFICIAL MOLECULES

First we consider the case of a molecule consisting of eight electrons distributed over
two atoms each with four electrons. For d = 0 this is a 2D atom with 8 electrons, of which
we know the groundstate configuration,2 namely (1,7): 7 electrons on a ring and one electron
in the center of the ring. In the opposite limit, we have two independent 2D atoms,
each consisting of four electrons for which the groundstate configuration consists of one ring
containing four electrons.2 Thus, as function of d, we expect a structural transition. Using the
numerical energy minimization technique we examine how and where this transition occurs.

Fig. 2(a) shows the energy per electron of the groundstate (and the energy of the
metastable states) and its first derivative with respect to d. At d = 0.70065 the first derivative
is discontinuous and a structural transition takes place. For d < 0.70065 the groundstate
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Figure 2. (a) The energy of the ground and metastable states (plotted as dashes) and its first derivative with
respect to the lateral distance d between the two atoms constituting the artificial molecule for 2N = 8. (b) The
eigenfrequencies of the normal modes as function of d.

Figure 3. (a) The eigenfrequencies of the groundstate for the artificial molecule with two times eight electrons
as a function of d. (b) The radial distance of the different electrons from the center of the confinement potential.

configuration is (1,3)/(0,4): the configuration (1,3) in one layer (indicated by the solid dots
in Fig. 1) and (0,4) in the other layer (indicated by the open dots). As viewed from above we
have (1,7) which is the configuration of one atom consisting of eight electrons. This implies
that the inter-layer correlations are sufficiently strong to impose the one atom configuration to
the 2N = 8 electrons in the molecular structure. For d > 0.70065 the configuration is twice
(0,4), which is the configuration of two independent atoms each consisting of four electrons.

Given the groundstate configuration we make a normal mode analysis and calculate the
eigenfrequencies of the molecule which is shown in Fig. 2(b). Notice that at the first order
transition the frequencies exhibit a jump. For d > 0.70065 more modes are degenerate in
energy and in the limit of all frequencies are at least twofold degenerate. The latter is
a consequence of the fact that the electrons in one layer can vibrate in phase and out-of-phase
with respect to the electrons in the other layer. With decreasing d the inter-layer interaction
destroys this degeneracy.

As a next example, we consider the artificial molecule consisting of two times eight
electrons which is far more complex and exhibits several transitions some of which are
qualitatively different. For d = 0 this is a 2D atom with 16 electrons and the groundstate
configuration is (1, 5, 10) which exists up to d = 0.205575 where we have a first order
transition from the configuration (1, 2, 5)/(0, 3, 5) to the configuration (2, 6)/(3, 5). For
d > 0.89454 we have two independent 2D atoms, both with configuration (1,7). In between
there is an intermediate configuration (2, 6)/(2, 6) which is the lowest energy configuration
in the range 0.47558 < d < 0.89454.

A closer look reveals that there is another transition region around At the
transition points d = 0.86696 and d = 0.87862 there is no abrupt change of the configuration,
but within this small d-region the radii of the electrons change appreciably, but continuously
(Fig. 3(b)). Fig. 3(a) shows that this region is delimited by an eigenfrequency which become
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Figure 4. The first and second derivative of the groundstate energy for the system of Fig. 3 in the region of the
two second order transitions.

zero and consequently these transitions are induced by the softening of a mode. In Fig. 4 the
second derivative of the energy with respect to d is given. There are two discontinuities in
the second derivative, namely at d = 0.86696 and d = 0.87862 while the first derivative is
continuous. In the inset of Fig. 4(a) the spatial configuration is shown at d = 0.865 (circles)
and at d = 0.880 (triangles). The open and closed symbols refer to electrons belonging to
different layers. Notice that no qualitative changes of the configuration occurs at the second
order transitions.
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INTRODUCTION

As is well known, fixed-node diffusion Monte Carlo (fn–DMC) simulations1 provide to
date the most accurate tool to calculate the properties of the electron gas2–4 and more in general to
study electron correlation.5 The residual (small) inaccuracy present in the fn-DMC results can be
eliminated by allowing for nodal relaxation,2 yielding virtually exact results for given number of
particles. For extended systems such as the electron gas, a remaining issue is the extrapolation to
the thermodynamic limit of results that are actually simulated with a finite number of particles.8

The Quantum Monte Carlo method has been used to accurately study the phase diagram
of the electron gas both in three2 and two3,4 dimensions, yielding predictions of magnetic and
structural phase transitions. However, without an applied magnetic field, such transitions are
predicted only at extremely large values of  Coulomb coupling which are not yet achievable
experimentally—even though much progress has been made in two dimensions working with
heavy holes in GaAs/AlGaAs heterostructures.6,7

Restricting to two dimensions, in which case the coupling strength     is related to the areal
density  with a0 the effective Bohr radius, it has been suggested that inter-layer
correlations in an electron bilayer should stabilize the crystalline phase at densities up to 3 times
larger9 than in an isolated layer, facilitating the observation of the thus far elusive Wigner crystal
in zero magnetic field.

Motivated by the observation above we have performed extensive simulations10 of a sym-
metric electron bilayer using the fn–DMC method. In particular we have evaluated the ground
state energy for a number of phases and from these we have extracted the phase diagram that we
illustrate below. Here we shall not pause on the technical details of these simulations, referring
the interested reader elsewhere.10

PHASE DIAGRAM OF A SYMMETRIC ELECTRON BILAYER

The systematic study of the symmetric electron bilayer, at zero temperature and magnetic
field, involves sampling the two dimensional parameter space for each of the phases
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Figure 1. Phase diagram of a symmetric electron bilayer as a function of the density parameter and the
interlayer distance d. Four phases are considered: UF denotes the unpolarized fluid, PF the polarized fluid, TC
coupled triangular crystals in an AB stacking, SC coupled square crystals in an AB stacking. The triangles
(squares) are points calculated by comparing our calculated energies at fixed   as a function of

The lines are just a guide to the eye.

considered. To limit the computational burden we have restricted our investigations to four
symmetric phases: (i) the spin unpolarized (homogeneous) fluid (UF); (ii) the fully spin
polarized (homogeneous) fluid (PF); (iii) coupled triangular crystals (TC) in an AB stacking
(in which a particle in the layer above sits right in the center of a triangle in the layer below);
(iv) coupled square crystals (SC) in an AB stacking. We have performed actual simulations
at for

The phase diagram resulting from the phases that we have studied is shown in Fig. 1,
in the plane We emphasize that the parameter should be preferred to d,
as it gives a measure of the ratio between the in-layer and the inter-layer couplings. In other
words, corresponds to weakly interacting layers and vice-versa corresponds
to strongly interacting layers, as is evident from Fig. 2, which shows typical fluid correlations
in the bilayer. It is evident, in fact that at inter-layer pair correlations are almost
absent in the fluid whereas the in-layer correlations are hardly changed from
those an isolated layer.10 On the contrary, gains a lot of structure for at the
expense of in-layer correlations, which get somewhat screened by the inter-layer interactions.

Turning back to the phase diagram, it is clear that at minor changes are
found with respect to the isolated layer situation, which for convenience has been shifted to

in the figure. One can argue that the crystalline phase gets stabilized with respect
to the fluid by the inter-layer interactions, in a situation in which in the fluid inter-layer
correlations are negligible. Such a stabilization of the TC phase shifts the crystallization in
the bilayer to larger densities with decreasing the distance, as expected.9 For the
square crystal phase comes into play, being stable over an even larger range of densities,
down to This value of the in-layer coupling corresponds to a density about three
times larger than the crystallization density for the isolated layer, in agreement with earlier
estimates based on the dielectric formalism.9 The reduction of intra-layer correlation, with
the corresponding build up10 of inter-layer correlation for finally leads for small

to a melting of the crystalline layers, at least for as shown in
Fig. 1.

We stress that the prediction of phase transitions for with varying inter-layer
distance d is particularly interesting, as this region of parameter space has become accessible
in experiments with heavy holes.6,7
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Figure 2. Pair correlation functions for a symmetric electron bilayer in the homogeneous unpolarized fluid
phase, at The dashed and full curves give the inter-layer and in-layer correlation function, respectively,
for two values of the inter-layer distance, i.e.,  and For the inter-layer correlations the
curve with higher peaks correspond to whereas for the in-layer correlations the curve with higher
peaks correspond to Qualitatively similar curves are found at  and

As already mentioned above, for practical reasons we have only considered two crys-
talline structures in our investigation. In the classical limit, however, computations are much
less demanding and the full zero temperature phase diagram can be mapped out from the
comparison of  the Madelung energies of  the various structures,4,11 providing the limit
of our phase diagram. In particular it was found that, with varying the inter-layer distance d,
five crystalline structures become stable,11,12 with the boundary between TC and SC struc-
tures lying11,12 between  and We expect a richer phase diagram also
in the quantum regime, if all such phases are included. In fact, four of the five crystalline
phases mentioned above have been considered in a study, based on a rather crude density
functional scheme,13 which somewhat overestimates the region of stability of the fluid. No
investigation appears to have been made in this study of the reentrant liquid phase present at
small distances and moderate values of

SUMMARY AND CONCLUDING REMARKS

Above, we have presented results of a numerical investigation of a symmetric electron
bilayer, the simplest model mimicking the physics of  coupled quantum wells to the extent that
finite well-width and tunnelling do not play an important role. In fact, very interesting physics
should also take place when the carriers are electrons in one well and holes in the other. The
attraction between spatially separated Fermi seas, is expected to yield Bose condensation14 of
the electron–hole pairs forming across the two layers or the formation of  a BCS like state. We
are currently investigating such a system, for which our preliminary results indeed confirm
the stability of a BCS like state at  and

Our results10,15 are also relevant to the recently Hartree–Fock (HF) predicted total charge
transfer (TCT) state, whereby all the electron spontaneously jump in one layer.16 The HF
prediction16 is that TCT takes place in an unpolarized bilayer whenever On the
contrary, our fn-DMC energies show that the TCT state survives the inclusion of in-layer
correlation but is destroyed by the inter-layer correlation. In fact one may exactly show that
the TCT state is never stable15 in an ideal symmetric electron bilayer (with zero layer width
and zero tunnelling), in the absence of an applied potential bias.
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We conclude by noting that our aim here has been to show that numerical simulations
provide an effective tool to study the many-body problem, complementing more traditional
techniques as well as experimental investigations.
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INTRODUCTION

Electronic bilayers exhibit a rich pattern of behavior, both on the static and on the
dynamic level. While at high  is the Wigner–Seitz radius within a
layer, with n being the surface density) values the bilayer is expected to crystallize
(according to  and at very low values the RPA description is largely sufficient,
the most interesting behavior occurs at domain, where the system is in the liquid
state. This is the domain we focus on in this paper.

STRUCTURE

We have calculated the pair correlation functions and other related quantities through
the HNC approximation. The calculation is based on the customary model: two 2D
electron liquids separated by distance d; scattering on impurities etc. neglected; no in-
terlayer tunneling; the system is described as a binary liquid with interaction potentials

In addition, the model portrays a classical
electron liquid where exchange and other quantum effects are neglected: this approximation
is reasonable in the strong coupling domain where the particles are well localized. The
coupling is characterized by the parameter (where T is the kinetic energy per
particle); we note the equivalence The two two-body functions and

for different layer separations are given in Fig, 1. There are two remarkable features
that can be observed. 1) The peaks of the liquid and can be brought3 into
one-to-one correspondence with the lattice sites of the bilayer solid,4 displaying the same
series of structural changes as the ones observed in the solid phase, cf. Fig. 2. 2) Up to
about this indicates a perfect substitutional disorder with respect
to the two sublattices in layer 1 and layer 2. This is understandable, since for such layer
separations the energy difference between the ordered and the disordered phases is small,
while the entropy freed by the disorder is substantial.
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Figure 1. (a)Intralayer and (b) interlayer two-body functions for different layer separations.

Figure 2. Coordination numbers for shells I, II, and III as a function of layer separations. The inset shows the
different underlying structures.

DYNAMICS

The knowledge of the reliable correlation functions makes it possible to analyze the
dielectric matrix of the bilayer liquid and determine the characteristics of the collective
excitations in the system. Earlier studies of the collective mode structure of bilayers and
superlattices were done by Swierkowski et al,5 by Gold,6 by Zhang and Tzoar,7 Golden,
Kalman and collaborators8–10 and by Pathak.11 Classical bilayer and multilayer structures that
form in charged particle traps have also been studied by Dubin.12 There are two problematic
issues that make all the predictions based on these calculations less than reliable.13 Most of  the
works cited5–7,11 use methods which violate the 3rd frequency sum-rule, whose satisfaction
is well recognized to be an important criterion for providing an acceptable description of the
collective mode behavior. Second, no reliable pair correlation function (PCF) data - either
for classical or quantum bilayer systems - have been available until fairly recently: thus
predictions of the collective mode structure (which turns out to be extremely sensitive to the
behavior of the inputted PCF) have been compromised from the outset.

Here consistent calculations of the collective mode spectrum of a strongly coupled
electronic bilayer liquid show features which are qualitatively different from the weakly
coupled RPA results; they also show that earlier claims concerning the possible emergence
of a dynamical instability5,6,9,11 cannot be supported by a more consistent treatment of the
correlations. The calculation of the dielectric matrix is carried out in the Quasi
Localized Charge Approximation (QLCA), which has been applied successfully for the
description of  other strongly coupled Coulomb systems;14–16 in the QLCA becomes
a functional of the intralayer and interlayer  and or of the corresponding
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Figure 3. The four principal modes; (a): d/a = 0.3, (b): d/a = 1.0.

Figure 4. The gapped out-of-phase (acoustic) plasmon for different layer separations. Note that the roton
minimum never drops below 0.

structure functions and

the nominal plasma frequency of a single 2D layer) with [14]

In Cartesian space and similarly D(k) are reducible to longitudinal and
transverse matrices. The dispersion relation for the longitudinal modes is then
obtained from  which leads to

With the neglect of retardation effects, the dispersion relation for the transverse modes
is derived from  which yields

The results are portrayed in Figs. 3–4 and the qualitative features of the collective mode
dispersion are summarized below.

1. The spectrum of  collective modes comprises 4 modes: 2 (longitudinal and transverse)
in-phase modes and 2 (longitudinal and transverse) out-of-phase modes (corresponding
to the + and - sign in Eqs. 3 and 4, respectively).
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2. The in-phase modes (where the two layers oscillate in unison) are not qualitatively
different from the similar modes of an isolated 2D layer.15 In particular, for the
longitudinal (plasmon) mode has the typical, quasi-acoustic dispersion, while
the transverse (shear) mode is acoustic, both modes are softened by intralayer
and interlayer correlations.

3. The out-of-phase modes (where the oscillations of the two layers exhibit a 180° phase
difference) are characterized by an energy gap. The physical reason
for the existence of an energy gap for layered systems has already been discussed
elsewhere.8 The present calculation clearly shows the marked difference brought about
by the strong correlations. Since at k = 0 the isotropy of the system is unbroken, the
plasmon and the shear modes share a common gap value.

4. From Eqs. 3 and 4 the gap value can be expressed as the integral

For small layer separation approaches the value: this is expected
since when two out-of-phase uniformly (k = 0) oscillating ordered layers are brought
together, the resulting pattern is a single, double density, non-uniformly oscillating
layer with ka at the quasi-Brillouin zone boundaries and the corresponding 2D
frequency is folded back to k = 0 and appears as the gap frequency. With increasing d
and consequently decreasing interlayer correlations, shows a decreasing tendency
and it virtually vanishes for d 1.5 when the separated layers become practically
uncorrelated.3 This downward trend is, however, preceded by a slight upturn for
0.22. Although the details of this behavior are not well understood, it is most likely due
to the substitutional disorder that prevails in this region:3 the eigenfrequencies of the
localized modes in the substitutionally disordered phase are expected to be higher than
in the substitutionally ordered phase. Within the domain investigated, the dependence
of  is quite mild, but the QLCA being a strong coupling approximation, no inference
concerning the behavior of in the moderately coupled domain can be
drawn from this observation.

5. For finite k values all the four dispersion curves develop an oscillatory behavior,
generated by the similar behavior of the inputted structure functions. This behavior
has also been identified for the isolated 2D layer.15 The structure of the out-of-phase
plasmon mode is of special interest here: the first sharp roton-like minimum has
attracted attention in earlier studies5,9,11 which were based on the neglect or on a
highly approximate treatment of the interlayer correlations. It was suggested that the
minimum of may dip below or may, at least, reach the close vicinity
of The former behavior would indicate a dynamical instability (heralding
the onset of CDW-type ground state),5 a,;9 the latter has been interpreted as the onset of
a new high-k, low frequency mode5b,c. Our results show that the roton minimum never
drops below the value already reached by the dispersion curve of  2D layer: that both of
the above predictions are in fact merely the products of  the inconsistent approximations
used and do not reflect the actual behavior of the bilayer.

6. At high k-values, for a given d all the dispersion curves approach the same asymptotic
frequency value, the frequency of a localized mode, a particle oscillating in the screening
environment of the two layers: this result is, probably, only of academic interest, since
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it is unlikely that high-k modes would survive the damping mechanism due to decay
into multipair excitations.

OUTLOOK

The QLCA is not geared to describe damping processes and therefore our calculation fails
to provide information on the damping of the collective modes. However, some qualitative
statements can be made. We concentrate on the out-of-phase modes only. Landau dumping
can be easily assessed from Fig. 4, which shows the pair excitation domain: it is clear that
as long as the layer separation is not too large (d/a 1.5) both the out-of-phase plasmon
and shear modes are well outside the continuum for small k values and are thus immune to
Landau-damping.

The collective mode structure of the strongly coupled bilayer liquid presented in this
paper bears a close relationship to the phonon spectrum of the bilayer solid, recently calcu-
lated by Goldoni and Peeters.4 The four modes in the solid phase can be identified as the
transverse acoustic and the longitudinal quasi-acoustic  phonons and the transverse
and longitudinal optical phonons. The “gaps” exhibited by the latter are, in general, different
because of  the anisotropy of the lattice. In contrast, in the liquid state, there is only one single
isotropic gap, as determined in this paper. This liquid gap value is typically slightly above
the arithmetic average of the optical frequencies of the transverse and longitudinal phonons
in the solid phase.

Concerning the possible observation of the features predicted in this paper, one can
suggest three main areas that should lend themselves to direct experimental verification: 1)
the existence and the nonmonotonic d-dependence of the k = 0 energy gap; 2) the existence
of a transverse shear excitation with a high frequency and expected low damping (this is
sharp contrast to the usual scenario for the shear mode in the liquid phase, which vanishes
for the non-existence of the predicted5,6,9,16 instability or low frequency
mode in the vicinity of the first roton minimum. We note that the reported Raman scattering
experiments19 are inconclusive because of the low and relatively high k values involved.
Recently accomplished advances in fabricating high  samples20 and small layer separation
should render the suggested experiments feasible.
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INTRODUCTION

The beam–plasma interaction is one of the most important issues in the field of particle
driven inertial confinement fusion (ICF). In the scenario of indirect driven fusion, heavy ion
beams heat up an absorber layer on the shell of the fusion target which convert the kinetic
beam energy into X-rays.1 In the fast ignitor scheme, a laser produces fast electrons which
transfer the energy to the dense core of  the fusion pellet.2 In both cases, a precise knowledge
of the energy loss of the beam particles in dense plasmas is required to optimize the fusion
pellet. Due to the high densities in the absorber layer as well as in the core plasma, one has
to deal with strongly coupled plasmas. Situations with similar coupling parameters occur
in electron cooling devices of ion storage rings, too.3 Here, one has to describe the energy
transfer between beam ions and the electrons for low relative velocities.

There exist several approaches to the stopping power. Here, we want to mention the
Bethe formula,4 the dielectric theory,5 the classical binary collision approximation,6 and
the molecular dynamic simulation technique.7 But not all of  these treatments are applicable
to calculate the stopping power of dense plasmas. In this paper, the stopping power is
investigated using the quantum kinetic theory. This allows to include dense plasma effects
such as dynamic screening, strong collisions, phase space occupation (Pauli blocking), bound
states, and lowering of  the ionization energy.

EXPRESSIONS FOR THE STOPPING POWER

According to the definition of the mean value of kinetic energy, the stopping power can
be expressed in terms of  the beam particle distribution function:

This distribution function is determined by the kinetic equation;  where
is the 2-particle collision integral. The sum runs over the beam and all species of plasma
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particles, i.e., one has to solve a coupled system of equations for the beam and the plasma
particles. To reduce the effort, we use a delta function like beam particle distribution function

and assume that the plasma is in equilibrium and the beam density is low
that one can neglect correlations between beam particles.

With these assumptions and the collision integral of the Lenard–Balescu equation, the
stopping power can be written in terms of  the imaginary part of  the inverse dielectric function
which was taken in the random phase approximation (RPA):8

In the case of  high beam velocities, we get the asymptotic formula:

is the plasma frequency. This approximation scheme takes into
account effects of dynamic screening, e.g., the contribution of the collective excitation (plas-
mons). But the RPA is valid in the weak coupling limit only.

For dense plasmas, strong correlations have to be included. This can be done using the
T-matrix approximation for the collision integral. The T-matrix is closely connected to the
scattering cross section,9 and therefore, the stopping power in T-matrix approximation can be
expressed in terms of  the transport cross section:8,10

Here, the abbreviations  and are used, p
is the modulus of the momentum of relative motion, is the thermal
wave length of the plasma electrons, and is the reduced mass. The
transport cross section was calculated separately using a phase shift analysis:

sin The scattering phase shifts were computed solving
the radial Schrödinger equation with a statically screened Coulomb potential.10 Additionally,
the transport cross section was used in first Born approximation. In the latter case, one gets
the stopping power at the level of the quantum Landau equation.

While in the RPA level collective effects are included, the T-matrix level accounts for
strong multiple collisions. To combine the effects of both approximation levels, we use a
kinetic equation proposed by H. A. Gould and H. E. DeWitt.11 In terms of the collision
integrals, it can be written as: On the r.h.s., we have the Lenard-
Balescu (RPA)  the Boltzmann (T-matrix level) and the Landau (statically screened first
Born approximation) collision integrals. In this way, one gets a T-matrix which contains a
dynamically screened first Born approximation and statically screened higher ladder terms.
As the T-matrix and Landau level of the stopping power cancel each other in the case of high
beam velocities, the asymptotic behavior is given by formula (3).

In Fig. 1, the stopping power of an electron beam running into a hydrogen plasma is
plotted as a function of the beam velocity for the different approximation schemes outlined
above. For beam energies smaller than the thermal energy, there is an energy gain of the
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Figure 1. Stopping power of  an electron beam in a hydrogen plasma with and T=11747 K
versus beam velocity in units of the electron thermal velocity

beam particles in all approximation schemes. But in the case of ion beams, this energy gain
is very small. As already mentioned, the statically screened T-matrix and first Born results
coincide for high beam velocities, and therefore, the high velocity behavior is determined
by the RPA level. For intermediate velocities, one can observe a deviation of the combined
scheme from the pure RPA level as well as from the T-matrix level. Especially, the strong
correlations included in the T-matrix reduce the stopping power.

ENERGY DEPOSITION OF HIGHLY CHARGED IONS

The stopping power of  highly charged ions depends strongly on the ion charge number
Theories which account for the beam–plasma interaction in the weak coupling limit only

(e.g., dielectric theory, RPA, statically screened first Born approximation) predict an increase
of the stopping power according to a scaling law.

This behavior changes if the beam–plasma correlations become strong, as was shown
in molecular dynamic simulation7 and calculations dealing with the nonlinearized system of
Vlasow and Poisson equations.13 Using our kinetic approach, strong collisions are included
in the T-matrix approximation. The T-matrix is determined by the Lippmann–Schwinger
equation:

The Born series shows that the T-matrix is a nonlinear function of the screened ion–electron
potential, and therefore, the transport cross section shows deviations from the
behavior. For weak beam–plasma coupling, the first term of the Born series is sufficient.

Fig. 2 shows the dependence of the stopping power on the ion charge number in the
different approximation schemes discussed above. The weak coupling theories (RPA, first
Bom approximation) show the known behavior, whereas the higher correlations included
in the T-matrix level reduce the stopping power. This effect becomes stronger with increasing
ion charge number, i.e., increasing beam–plasma coupling, and therefore, the T-matrix results
show a weaker increase.
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Figure 2. Stopping power of  a ion beam with a beam velocity of  in a hydrogen plasma with
and T=58735 K versus beam ion charge number
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DISTRIBUTION FUNCTION OF CHARGED PARTICLES IN A PLASMA OF
FUSION INTEREST

C. Cereceda,1 M. de Peretti,2 and M. Sabatier2
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91405 Orsay Cedex, France
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INTRODUCTION

The non-Maxwellian distribution function of  charged particles injected into a deuterium–
tritium plasma has been found by Cozzani and Horton,1 and by Liberman and Velikovich,.2

They use an approximation3 of the collision integral in the Landau form which is valid for
charged particle velocities much smaller than the plasma electron thermal velocity and much
larger than plasma ion thermal velocity.

If the charged particles are alpha particles generated by deuterium–tritium fusion of a
plasma at temperatures in the range from 5 to 30 keV, the previous assumptions are no longer
valid. In this work, the Fokker–Planck coefficients are used following the idea suggested by
Gus’kov et al.,4,5 but without neglecting the diffusion coefficient. A second order differential
equation for the distribution function is obtained instead of a first order one of previous works.
By this way, a general solution of this equation has been found which is valid for all the range
of temperatures of fusion interest.

THEORY

The kinetic equation for the unknown distribution function f of charged particles is

where a is the Fokker–Planck friction vector and d is the Fokker–Planck diffusion tensor,
which can be written as
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with dimensionless velocity and and

is the index for the charged particle of interest and for plasma electrons and ions, and
is the injection velocity of these charged particles. Since we are looking for a steady state
distribution function of the non thermalized charged particles, the sink term s is taken to be

for with a cut-off  velocity greater than the ion thermal velocity.
After summing on i and j and neglecting collisions with plasma ions, a second order

differential equation for the distribution function is obtained instead of a first order one of
previous works.

with general solution

where Using a fractional approximation for

with we obtain the approximate solution

where B is given by the Dirac delta boundary condition

RESULTS

By this way, a general solution of  this equation has been found which is valid for all the
range of temperatures of fusion interest. In figure 1 it is shown the distribution function for
the case of  non thermal alpha particles produced by the fusion in a deuterium–tritium plasma
at a temperature of  5 keV, compared with that obtained in previous works. Both distributions
gives approximately the same steady-state density but that of this work predicts a higher
accumulation of  particles at lower velocities. On the other hand, one can see in figure 2 how
the stopping power calculated from the distribution function given by other authors recovers
ours only in the limit of velocities much smaller than the electron thermal velocity. We think
that this distribution function could be used as a first approximation for the calculation of the
distribution function of charged particles isotropically generated in a magnetized plasma like
those of the Magnetized Target Fusion approach.
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Figure 1. Distribution function for alpha particles in D-T plasma at and

Figure 2. Average stopping power for alpha particles in D-T plasma at and
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INTRODUCTION

In this paper we are considering some different aspects of dense and strongly coupled
plasmas (SCP) absorbing power for projectile particles (stopping power). The plasma ab-
sorption, dynamic transport (optical conductivity), and some stopping phenomena are self-
connected, since all of this properties initially have the dynamic (frequency dependent) char-
acter. Below we discussed some aspects of this connection, which is not obvious sometimes,
in terms of plasma dielectric function and dynamic collision frequency.

All the information on the linear dynamical properties of any media is included into
the transverse and longitudinal dielectric function and the basic optical
characteristics may be expressed in terms of these functions correspondingly. For example,
propagation of collective modes are characterized by the corresponding dispersion relations1

From Eq. 1, the important optical properties of any media are easily defined: the
refractive index the absorption coefficient the
depth of electromagnetic wave penetration into plasma (skin depth)  the high
frequency conductivity, etc.

In turn, the dielectric function is related with the dynamic electron–ion collision fre-
quency by the well-known manner1

for and
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for Eq. 3 takes into account electron–electron correlations, which are neglected
in the high-frequency case 4. Thus, the dynamic collision frequency for classical dense
plasmas are playing the key role to calculate in principle the SCP optical properties in wide
range of  frequencies.

As most of experimental informations on dense plasma dynamical properties is obtained
by diagnosing the optical properties of such plasmas, a great amount of theoretical and
experimental results have been accumulated on the corresponding quantities

and Our purpose here is to show that, due to the strong connection between
optical properties and stopping phenomena new insight in the latter can be gained from the
knowledge of these optical properties. Correspondingly, dense plasma effects in opacity,
including the role of collective modes and SCP effects (interparticle correlations) could
be included by a natural way, in depending of plasma parameters combination like
and with is the inverse temperature, Z is the ionic charge and

is the ion sphere radius, plasma
frequency (atomic units are used throughout this paper).

Looking for the ways of optimization of energy deposition, below we are attempt to
discuss qualitatively some possible features of stopping power (SP) of dense plasmas at high
and low velocity limits, which are followed from known features of SCP opacities, high
frequency and static conductivity, and the specifics of SCP collective modes.

HIGH VELOCITY STOPPING

The loss rate of the kinetic energy along the particle trajectory can be put in the form:

where is the projectile velocity,  and being the

wave number of plasma excitations. For weak coupling plasmas F has the simple
limits

corresponding to plasma resonance and binary collisions. At high velocity, the integral in 5
can be easily calculated using the f-sum rule:

giving the Bethe SP limit:2,3

with the mean excitation energy of free electrons defined by the relation
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To derive Eq. 9 we have used the identity  Therefore Eqs. 3,4,
8 and 9 give the general framework for computing high velocity plasma stopping in dense
collisional plasma. In the limit of low collision frequency, Eq. 4 and 9 give:4

Whereas for a high collision frequency Eq. 3 provides a large broadening of contributing
frequencies in Eq. 9 giving the usual average electron–ion collision frequency.
Then a good approximation for the mean excitation energy at any collision frequency could
be

However classical low density results for       cannot be applied in SCP. In particular
small and/or large yield a reduction of  the collision frequency over the classical result due
to quantum diffraction and/or strong screening. In fact it has been shown that long wavelength
modes do “survive” in spite of the collision-dominated character of  dense plasma.6 If precise
results are needed, Eqs. 3,4 and 9 has to be solved self consistently. The scheme to be used is
exactly the same that was derived for calculating reflectivity and skin depth of dense plasma,5

strong electron–ion and electron–electron coupling can be taken into account with the Three
Term Approximation (TTA) using a dynamical local field correction for the dielectric constant.

LOW VELOCITY STOPPING

The effect on the stopping power of the redistribution of optical conductivity along the
SCP spectrum is limited at high velocity because of the full use in that case of  the f-sum rule
7. However as the projectile velocity is decreasing the integration domain in Eq. 5 is reduced

Therefore, low velocity limit for SP may be more sensitive

to redistribution of SCP absorption coefficient and to coupling and degeneracy effects in
principle, as well as conductivity and opacity themselves. In fact, at low velocity, a direct
connection can be done between the stopping power and the collision frequency Using
the Born approximation, reads as [5]:

with the charge of plasma ions. Neglecting the ion–ion correlation which generally does
not play an important role and taking the low frequency limit of 5 and 12 we get the quite
simple result

with This result can also be derived writing the low velocity stopping and the
collision frequency in term of the force–force correlation function.7 Moreover, for Eq.
13 can be applied even at strong coupling. In that case, the non linear stopping expression
given in [8] is recovered by calculating in the TTA approximation. The equation 13
has a simple physical meaning: the dynamic collision frequency characterizes the damping
decrement of collective SCP modes, i.e., rate of electron subsystem scattering by ions which
are strongly correlated with electrons. Some similarity seems then likely for inverse problem
- low velocity ion stopping by electron subsystem at strong coupling. Principally, it means
that the knowledge accumulated for decrements of SCP plasma oscillations and their levels
for different combinations of and may be used to determine the low velocity limits of SP
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for different kinds of SCP. In particular, weakly nonideal classical plasmas
and dense degenerate plasmas  have rather well defined modes, low values of

and, correspondingly, the low stopping values in relative units. Meanwhile, for classical
collision-dominated SCP with poorly defined (damped) modes we may expect the
maximum of stopping for low velocity limit. The area of poorly defined modes

will play the dominant role for SP in this case.1 Probably, the direct comparison of
classical SCP plasma wave collisional decrements behavior (Fig 13 in [1]) and available MD
results of friction coefficient simulation, for example, under similar plasma
parameters may illustrate this analogy additionally. However, this symmetry needs further
analysis for different SCP.

Eq. 13 with may be rewritten in terms of static conductivity

This shows, in particular, that anomalously low transport (for example, anomalous con-
ductivity under some instabilities developed even at dense plasma) have to be
supplemented by anomalously high stopping at low velocity limit. Anomalously low static
SCP conductivity means, in particular, the manifestation of the enhanced scattering of charges
by the suprathermal collective and group fields (correspondingly, the effective collision fre-
quency is enhanced, For low velocity projectiles it provides the anomalously
high values of friction coefficient, i.e., enhanced stopping up to order of magnitude (like the
decreasing of static SCP conductivity up to anomalous one). Note that the slope SP as a
function  of will be proportional to plasma frequency
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ON THE DEPENDENCE OF CONTINUUM FACTORS ON PLASMA
PARAMETERS

Marko M. and Dragutin
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P. O. Box 57, 11001 Beograd, Yugoslavia

INTRODUCTION

Because of the importance of the continuum (Biberman and Norman1,2 )
for plasma diagnostics, factor dependence on plasma parameters (electron density and
temperature T) was discussed in a number of publications. Disagreements between different
results were found, especially for high electron densities. In this paper we give the results of
our work on the continuum radiation in the high pressure xenon pulsed arc.

In comparison to the stationary plasma sources, certain advantages are characteristic
for the quasistationary pulsed arc e.g., simple construction of the pulsed power generators,
high specific energy dissipated in the plasma, high ionization degree suitable for the studies
of Coulomb interactions etc. The results of our determination in the high pressure
xenon pulsed arc of the configuration described elsewhere3 show the similar effect as in the
shock tube experiments.4,5 Due to its construction this version of the pulsed arc enables a
number of advantages for the spectroscopic measurements.

RESULTS AND DISCUSSION

Main plasma diagnostics consist of the plasma dynamic pressure and temperature mea-
surements. Plasma temperature has been determined from the measurements of absorption
coefficient k for two different plasma lengths (optically thin Con-
ditions of local thermodynamic equilibrium (LTE) are well established in xenon pulsed arc

so that equilibrium relations and Saha equation can be used
for the calculations of plasma composition (knowing measured pressure p and temperature
T). The temperature has been determined by the method described in [3]. It consists in an
absolute measurement of the spectral intensity of a homogeneous plasma layer in dependence
of its length d. For this we inserted into the discharge tube a cylindrical auxiliary electrode
(TE in figure 1). This electrode can be moved in the tube by means of a magnet from outside
without any change of the discharge parameters. Changing the thickness of the radiating
layer (optically thin and thick) we estimated the radiation intensities at different wavelengths
and calculated from them both the temperature T and absorption coefficient k. The dynamic
discharge pressure was 15 atm.

Strongly Coupled Coulomb Systems
Edited by Kalman el al., Plenum Press, New York, 1998 551



Figure 1. Pulsed arc: A-anode, K-cathode, Q-quartz rode, P-pressure probe, TE-auxiliary electrode.

Another independent diagnostic method for determination of electron density was
the use of laser interferometry, where we employed a Mach–Zehnder interferometer. A
special care has been paid to the influence of absorption of plasma in the working arm of
the interferometer. According to our calculations, it shows up that influence of the plasma
optical depth on the modulation of interference signal can not be neglected already
at For these reasons, we used a method of polar diagram that enables precise
determination of the parts of the fringes even in the case of plasma with In this
method the phase information is derived from the amplitudes of two interference signals
which are phase shifted by This is accomplished by an auxiliary beam-splitter outside
the interferometer and the interference signals phase shifted by are recorded by the two
monochromatic photo detecting systems. The main plasma parameters are summarized in
the Table 1.

The continuum radiation of inert gases was investigated in a number of papers. In
some of these publications the dependence on plasma parameters was discussed
in detail. Meiners and Weiss4 found out in their shock wave experiment that there was
a dependence for krypton and xenon whereas for argon did not depend on In
another shock wave experiment5 decrease with increasing electron density till to
the characteristic minimum at which is interpreted by the theoretical
prediction of the transparency window.6 In our experiment we determine factor dependence
on plasma parameters and T, at different wavelengths. The results are presented in terms
of dependence of the parameter which is characteristic for dependence of the plasma
absorption (emission) coefficient on plasma parameters (figure 2). We found factor decrease
with increasing value of at all relevant wavelengths. As is seen from the figure an
overall trend of the decrease of with increasing is observed. The measurements
at high densities are necessary for the knowledge of factor dependence
on plasma parameters, since only the range of parameters characteristic of weakly non
ideal plasma was covered in our experiment. Electron densities higher then approximately

could not be reached in the pulsed arc due to a limitations connected with the
value of dynamic pressure attainable.

These results are also compared with our calculations of  factor in quasi classical ap-
proximation (QCA). Recently in QCA an analytical expression for the continuum absorption
coefficient which corresponds to integral accounting of highly excited states has been ob-
tained.7,8 Quasi classical approximation is essentially written in the framework of quantum
defect method-QDM.9 Indeed, the basis of QDM are Coulomb approximation and quantum
defect extrapolation to the positive energies. An advantage of this approach compared to the
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Figure 2. Results in xenon pulsed arc:

numerical calculations1,2, 10–12 is that analytical expressions are obtained without loosing the
exactness of the results which is important in some applications.

We calculated continuous absorption coefficient of a low temperature xenon plasma
in QCA. The data necessary for photoionization cross sections calculations are

taken from the Tables.13 In the case of small jl-terms splitting, one can use an average
value of quantum defects corresponding to the different jl- terms series14 which considerably
simplifies the calculations. In our calculation of the absorption coefficient we take into
account a large number if atomic and ionic states. Photoionization was calculated for the
xenon excited states shown in Table 2.

In figure 3 we give comparison of QCA calculations with our measurements in pulsed
arc at and experimental results15 in a wall stabilized xenon arc.
Quasi classical approximation calculations are for T=10000 K both for XeI and XeI+XeII.

CONCLUSION

Satisfactory overall agreement between our QCA calculations and the results by other
methods (scaled Thomas–Fermi potential method, including polarization effects — STFP,12

QDM11) is found, both in the shape and magnitude, except in the region where
photoionization of Xell begins to play an important role. This is because in STFP and
QDM calculations the contribution of XeII photoionization was not taken into account. The
agreement between calculations and experimental results is not satisfactory, except in the part
of the spectrum. Probable cause of these discrepancies is the influence of different plasma
effects (e.g., line broadening, merging of the lines, ionization potential lowering, transparency
window), so it is necessary to investigate the dependence of the absorption coefficient on
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Figure 3. Comparison: QCA-experimental results. — QCA, XeI+XeII; - - - XeI; Goldbach 12300 K; ×, *,
+, Xe pulsed arc at and 7250 A.

electron concentration, especially at higher densities when plasma effects begin to play an
important role.
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INTRODUCTION

The scattering of laser radiation in plasmas is known to make transition from incoher-
ent scattering at plasma electrons to the collective scattering (scattering at a dressed particle in
plasma). For small values of the Salpeter parameter where k is wave number
of the scattering vector and  is the Debye radius [1], the scattering takes place at individual
electrons and the spectrum has Gaussian line shape with the half-width determined by the
electron temperature. In opposite limiting case, the scattering is a coherent one and
the spectrum contains the narrow central peak, with the half-width determined by the ion
temperature, and the symmetric satellites shifted to electron plasma frequency. For interme-
diate values of Salpeter parameter, the spectrum line shape is very sensitive to the
value of α  and, thus, to the correlation length of the screening of a charged particle in plas-
mas. For investigating the dynamic screening effects in dense plasmas it is worth to study
the scattering of laser light in Z-pinch plasma in a scattering geometry when The re-
sults reveal the importance of allowing for the non-static screening effects in interpreting the
experimental spectra and determining major parameters of dense plasmas in a high current
gas discharge.

EXPERIMENTAL SET UP

The experimental set-up (Fig. 1) includes discharge tube 60 cm long, 20 cm diameter,
with flat copper electrodes on the edges, low inductance capacitor, voltage ~ 30 kV.
Maximum current, is attained at after discharge breakdown. The diag-
nostics uses ruby laser of 15 ns pulse duration and energy 5 J. The 10-channel differential
diagnostic system (DDS) enables us to extract the signal under conditions of the signal to
noise ratio being as small as
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Fig.1. The experimental set-up:1,2,4 - light traps; 3 - plasma; 5 - vacuum chamber; 6,9,19 •
objective lenses; 7 - laser energetic block; 8,21 - Kerr cells; 10 - laser; 11,20,22 -
polarization filters; 12 - Kerr cells energetic block; 13 - synchronization block; 14 -
capacitor; 15 - oscilloscopes; 16 - photoelectron multipliers; 17 - fiber optics; 18 -
polychromator; 23 - coaxial photocell (monitor).

EXPERIMENTAL RESULTS

One of the experimental results for the scattered light spectrum is shown in Fig.2 for
scattering angle Comparison of this experimental curve with various theoretical

curves [2] gives an estimation for the value of Salpeter parameter, namely This
curve is replotted in new special coordinates shown in Fig.3 that allows to determine electron
temperature from the slope of the curve. This gives for both components of plasma elec-
trons, namely for background plasma and for electrons captured by the turbulence, the same
temperature, namely 36 eV. Here, the accuracy of determining the temperature is about 15%.

The measurements of absolute values of intensity, with the corresponding calibration
of the DDS, and of relative intensities of radiation scattered at different angles allow to find
electron density and finally to determine value of a which lye in the range of few units. Thus
we arrive at a discrepancy. Really, the line shape for these values of would give much dif-
ferent line shapes than the curve in Fig.2. It appears that we can eliminate such a disagree-
ment if we replace in the definition of Salpeter parameter the conventional Debye radius to
the dynamic screening radius which, according to [3,4], is equal to 10-20 Debye radius. The
descreening effect can be seen from Fig. 4 for the relative value of the average effective
charge for a moving particle in a plasma.
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Fig.2. Typical spectrum of scattered radiation (arb.units).

Fig.3. The dependence for conditions of Fig.2.

Fig.4. The relative value of the average effective charge  for a moving particle in a
plasma, for a given value of as a function of distance  from the
charge, expressed in units of Debye radius (solid curve). The dashed curve
corresponds to the Debye screening. Here, v, is the charged particle velocity, and v is
thermal velocity of plasma particles.
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Fig.5. The radially averaged plasma electron density at the moment of maximum plasma
compression.

Thus we arrive at a conclusion that the experimentally measured Thomson scattering
spectra confirm the qualitative description of the dynamic descreening effects in [3,4].

Figure 5 shows dependence of radially averaged plasma electron density on initial gas
pressure at the stage of maximum compression of plasma, which takes place
before the first singularity of electric current [5] (here the working gas is deuterium).

The value of density was determined from integral intensity of scattered light, with
the corresponding calibration, and also from relative measurements of the scattered light in-
tensity at various scattering angles 90°, 60° and 120°. This gives the value of lying in the
range

It is seen that there is a bifurcation in the domain (0.065-0.085) Torr. Also the density
exhibits stepwise dependence as it makes a jump, by a factor of five, at a certain pressure
value, about 0.075 Torr. This can be interpreted as a sort of the phase transition to a dense
plasma. Also the saturation of density with growing pressure is seen here.

The next figure, Fig.6, shows radially averaged at the moment of maximum com-
pression. It is seen that the temperature raises monotonously from 30 eV to 130 eV with the

Fig.6. The radially averaged plasma electron temperature at the moment of the maximum
plasma compression.
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Fig.7 The experimental spectrum for the laser light scattered at the angle (solid
line) and computed curves. Here is the half-width of the spectrum line; dash-
dotted, the Gaussian for dashed curve stands for the calculation which
assumes that 50% of plasma electrons are captured by the turbulence and that both
background electrons and captured electrons are Maxwellians and thus they give the
Gaussian line shape of scattered radiation.

initial working gas pressure varying from 0.01 Torr to 0.2·Torr, respectively. The tem-
perature attains its limiting value asymptotically with growing pressure. The asymptotic
value is determined by the characteristic time of the electron-ion energy exchange, which is
equal to 70 ns, at the stage of maximum compression of the pinch which has a duration of
about 100 ns.

We have already seen the effect of capturing the electrons by a strong turbulence in the
figure for the effective temperatures of scattered spectrum, namely a shift of the spectrum of
the radiation scattered at captured electrons. Remind that the Fig.3 shows that the tempera-
ture of captured electrons equals to temperature of the ‘background’ plasma.

CONCLUSIONS

Experimental results, presented on the diagnostics of the Dense Z-pinch plasma from
laser scattering spectra, demonstrate the possibility of the phase transition to a dense plasma.
It follows from interpreting the spectra of scattered radiation that the formal use of the
Salpeter parameter with conventional Debye radius leads to a discrepancy which can be re-
solved via allowing for the substantial dynamic descreening of a charged particle in hot
plasmas. Observations of strong Langmuir turbulence allowed to estimate the fraction of the
turbulence-captured electrons.
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The theory of electrical conductivity of dense cold fully-ionized hydrogen-like plasmas
based on the concept of self-consistent field, and the generalized random-phase approximation
(RPA) is shown to possess correct low- and high-density limiting properties, and to be in a
reasonable agreement with all available experimental data. The basic idea considered in the
present approach1,2 is: each electron (carrier) moves in a self-consistent field generated by all
other free charges in the system. The finite values of the transport coefficients result from the
electron’s scattering on the self-consistent field fluctuations. This approach was first outlined
in [1]. This work was based on the paper3 by S. F. Edwards, which related the Lorentz-model
expression for the fully-ionized plasma electrical conductivity to the strict quantum-statistical
calculation involving the Green’s function formalism with the self-consistent field potential.
The starting point for the conductivity calculation is thus the Lorentz formula

where is the density of one-electron states in the energy space,
and is the Fermi–Dirac distribution. Generally speaking, the mean relaxation time
of Eq. (1) is determined by the exact pairwise scattering cross-section, and we express it in
terms of the self-consistent field correlation function,

Here momentum being the maximum possible variation of the elec-
tronic momentum as a result of the scattering process; and

is the screened field potential operator complete Fourier transform, being the a-
species density operator in the and - the plasma dynamic screening
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function. The system is presumed to contain electrons (e) and ions (i), characterized by
their respective charge numbers and so that being the number
density of a-species. The field potential correlation function thus equals

The dynamic structure factor of the species a and b, was determined in [2] in terms
of the system polarization operators:

being the system temperature in energy units. Notice that the corresponding expression
of [2] is valid for hydrogen plasmas only. The l-summation in Eq. (5) is spread over the poles

of on the imaginary z-axis. In our computations we
evaluated the real part of the a-species polarization operator beyond the standard RPA,
using the temperature dependent electronic static local-field correction parametrized
to satisfy both the compressibility sum rule (with the electronic subsystem compressibility
determined from the one-component plasma excess interaction energy determined by the
Monte Carlo simulation5), and the long-wavelength limiting condition of Kimball6 with the
zero-separation value of the electronic radial distribution function determined by a
self-consistent procedure.4

Despite the approximations made to obtain our expression for the plasma conductiv-
ity, it possesses correct limiting forms corresponding to the cases of dilute gas plasma and
metal-density Coulomb systems.7 Extensive studies of electrical and thermal conductivities
in a wide range of variation of temperature and electronic density in hydrogen-like plasmas
(with were carried out in [2,8]. Successful comparison with the results corre-
sponding to model fully-ionized plasmas9 were reported in [7,10]. Here we report our results
on the conductivities obtained for the conditions corresponding to capillary discharges in
polyurethane,11 and copper plasmas obtained by vaporizing copper wire in a water bath.l2

Dense strongly coupled plasmas were created in a well-diagnosed uniform discharge
in polyurethane with density and temperatures in the range.11

These results were compared in [11] with several dense plasma theories, showed to be in a
significant disagreement. An effective average ionic charge number Z = 2.3 was obtained
in [11] presuming Saha equilibrium. This permitted us to carry out the calculation of
the electrical conductivity of a multiply ionized two-component plasma in the range

and The same (as in [4]) local field correction
was employed with The experimental data of [11] (provided graphically for
the resistivity) range between and Our results varied between

and and about (for
and taking the value of at about

and This last value is characteristic for the results of “dense
plasma theories” referred to in [11]. Notice that the lowest conductivity value reached by
these theories is about

We have also carried out a broad comparison with the conductivity data measured
by vaporizing copper wires in a water bath.12 Plasma densities observed ranged from about
2.5 g/cc down to 0.025 g/cc, and temperatures varied between 10 and 30 kK. The ionization
state used by A. W. DeSilva and in our computations was taken from the Fermi-Thomas model
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described by More.13 Some results of conductivity computations are provided in the Table. A
reasonable 30% agreement is observed in the majority of points, especially at higher densities.
A factor of two–three disagreement detected at 14 – 16kK and low densities is attributable
to the possible onset at the conductor-dielectric phase transition: the copper plasma begins
to undergo a transformation from the fully-ionized state corresponding to our model into the
partially ionized state where charge-neutrals interactions are to be taken into account. Notice
once more that no adjustable parameters were used in our computations. The only input data
were the plasma temperature (T) and density (provided by the SESAME code, see [12])
and the precalculated charge number Z (see above). Calculations were carried out for different
values of the local-field correction static parameter  ranging according to its definition
between zero and unity. No appreciable dependence on the value of was detected,
further calculations were carried out with set to be zero. Thus, the only “experimental”
data our results are based on, is the computer fit to the one-component plasma interaction
energy obtained by MC simulations.4,5 In conclusion, a theory of electrical conductivity
of fully ionized hydrogen-like strongly coupled plasmas, based on the self-consistent field
concept and having no adjustable parameters, is presented. The theory is also applicable to
multiple-component (non-hydrogen-like, see [7]) plasmas with variable ionization states, and
is shown to possess correct low density (Spitzer) and metal density (Ziman) limiting forms.
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PROPERTIES OF STRONGLY COUPLED MICROPLASMAS:
EXPERIMENTAL INVESTIGATIONS
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Spectroscopy and Molecule Physics, 09107 Chemnitz, Germany

INTRODUCTION

Physics of plasma formation in cathode spots of vacuum arcs despite of they are the
subject of an investigations in many research groups since many decades is not an
accomplished manner clear. Electrical arcs in a vacuum burn in a metal-vapor plasma emitted
from mobile hot spots at the cathode surface. Because of their smallness and
their non-stationary behavior( nanosecond range), the physical parameters of these cathode
spots are difficult to measure. The most important question is one: how the electrode material
from the cold cathode surface transforms into the plasma being able to carry out up to some
kA current in vacuum. If it is occurs according to a conventional models of gaseous arc
when the atoms are evaporated and ionized by electrons that are accelerated in the cathode
voltage drop, then it is difficult to explain some experimental facts established at the
beginning of vacuum arc physics [1] and not sufficient clarified up to now. Namely, (i) an
existence of a directional neutral, as well as (ii) a high energetic ion flows from the cathode
surface.

Consistent with a model of microexplosions, which has been confirmed in most resent
experiments [2-5], high local power concentration at the electrode surface leads to the
formation of a small, dense plasma - strongly coupled microplasma, which transports the
electrical current in non-stationary manner.

In this paper we present and discuss an experimental results concerning the properties
of non-ideal microplasma in cathode spots of a low current vacuum. In order to examine an
optical properties of cathode spot plasma the different experimental techniques: streak camera
recording, time-resolved and time-integrated Spectroscopy with a spectral resolution smaller
then 0.15 nm was used [6-7]. From spectroscopic measurements in visual spectral range,
degeneration of the upper exited atom states is deduced, corresponding to a strong non-
ideality of the cathode spot plasma with consequences for the particle density

Splitting of the resonance spectral lines of electrode material into three components
gives us a confirmation about an existence of self-generated magnetic field of order of 6.8 T
in cathode spot fragments [6], Investigations of a temporal evolution of x-ray radiation from
cathode spots of laser-induced discharges by means of picosecond x-ray streak camera
shown a presence of an intensive point-like structures of x-ray radiation with life time of
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250-330 ps and temperature above 100
eV, as well as a radiation related to an
expanding hot layer, which propagates
from cathode surface with a velocity of
1.5 km/s to 5 km/s. From picosecond
momentary absorption photography [5]
with high spatial and temporal
resolution (100 ps) we evaluated the
spatial-temporal density distribution in
cathode spot fragments. An absolute
density value in narrow
plasma channels with diameter smaller
than was estimated.

ELECTRON DENSITY IN
CATHODE SPOT FRAGMENTS

Cathode spots of pulsed and dc
discharges were investigated also by
laser absorption photography [5]. The

Figure 1: Absorption photograph for a pulse
vacuum discharge between Cu-electrodes. Delay    cathode consisted of a needle wlth 300
time after ignition t=18 ns. diameter, the anode had a large

area with a central hole through which
a laser pulse was directed onto the cathode surface for spot ignition. The cathode and anode
material was copper. The arc spots were ignited at the top of the cathode surface by
focusing an IR laser beam of 100 ps duration through a small hole in the anode.

Delaying the probe laser beam at second harmonics (532 nm) relatively to the ignition
laser beam by 0.1-20 ns with an accuracy of 50 ps, it was possible to record the breakdown
ignition phase for the cathode spots.

One selected absorption image for delay times of 18 ns is shown in Figure 1. We can
see for a delay time t = 18 ns after ignition some small spots near the cathode surface.

Their diameters can be evaluated from the two-dimensional electron density
distribution. They are smaller than The maximal electron density in a cathode spot
fragment is higher than similarly to the plasma channel density in experiments
with low dc voltage in air [8]. A momentary arc current for this "frozen" absorption image,
was determined from the oscillograms to be 10 A. During 18 ns the spot plasma expanded
up to distance of Small fragments separated from each other connect the boundary of
a diffuse plasma in front of the cathode and the cathode surface. They look like a narrow
bridge and can clearly be seen in this frame.

ABOUT TEMPERATURE OF CATHODE SPOT PLASMAS

Streak camera recording of the radiation from cathode spot plasma [7] had shown, that
in visual spectral range the most intensive emission lasts only 30-40 ns and originates from
the small local region of It indicates a nonstationary character of cathode spot
operation. Due to high local power concentration at the cathode surface an explosive
evaporation of thin layer of cathode material occurs on the time scale smaller than 1 ns [9].
Therewith an internal energy input per mass unit exceeds value of In result of
rapid energy input in small volume on electrode surface high dense microplasma immediately
forms and expands into vacuum with following velocity
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where the ratio of specific heats for plasma
of order of 1.2-1.3.

According with [10] the temperature
of shock wave front propagating with this
velocity can be determined as follows:

Taking into account that the most probable
radiation in front of shock wave can be
emitted at it becomes

clearer why in the streak recording traces
in visual spectral range we estimate a dark
interval of light emission of order of 30-50
ns. With mentioned above streak camera

Figure 2: Streak image of x-ray radiation from  we can record the radiation from the
the laser-induced discharge for delay time t =   cathode spot in spectral range of 400-700
9.63 ns after ignition by IR laser beam. Dis-  nm But at ignitbn of spot fragment the
charge voltage U = 1.7 kV, current I = 34 A.  front temperature can exceed the value of

100 eV.
Obviously, in order to determinate the cathode spot fragment temperature in ignition

phase the radiation detection in a soft and hard x-ray spectral range with high temporal and
spatial resolution is urgent necessary.

X-ray radiation in low-voltage vacuum arcs
Recently, computer simulations on laser-induced low-voltage breakdown (240 V) have

shown, that a soft x-ray radiation in result of an overheating instability can be generated in
cathode spot plasma [5, 14-15]. For short time of 100 ps the plasma temperature may
increases up to some hundreds of eV, as well as in a case of a plasma erosion interruption in
small gaps, where the electric potential abruptly raises in some local region of cathode torch
to values of some kV or MV [15], the plasma temperature can growth to some keV. Now we
demonstrate the first time an experimental results on x-ray radiation from low-voltage
vacuum spark.

Time-resolved x-ray emission from cathode spot of pulsed discharges in vacuum was
investigated by x-ray streak camera FRF-4 [13]. The cathode consisted of a solid plane target
1 cm growth, the anode had a row form with a central hole through which a laser pulse was
directed onto the cathode surface for spot ignition. The cathode and anode material was
copper. The arc spots were ignited at the cathode surface by focusing a IR - laser beam of
100 ps duration through a small hole in the anode. The discharges were
fed by a 50 Ohm coaxial cable charged up to 150 V, 240 V, 1.7 kV, 2.7 kV.

The radiation from small electrode gap was registered by x-ray streak camera with Au
photocathode, which is sensitive in spectral range of order of 0.1 -10 keV. The
synchronization of streak camera recording with a discharge initiation was realized by optical
signal from a second harmonic radiation of laser pulse and was delayed relative to an ignition
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pulse from - 3 ns with a sweep speed of 3 ns/ screen to 5.7 ns; 9.63 ns; 16.49 ns with a 30
ns/screen sweep speed.

Fig. 2 represents a streak record for the delay time t = 9.63 ns after initiation of laser-
induced discharge with voltage U = 1.7 kV between Cu-electrodes with small gap distance 1

As it is evident from Fig. 2 two kinds of x-ray radiation on streak images are
formed. The first one is a straight line from point-like source with a lifetime of order 250 -
330 ps and size of Some similar sources can exist simultaneously and give a traces
in form of the straight lines separated from each other in vertical (space on streak record)
directions. In addition another kind of traces from x-ray radiation with an linear deflection in
vertical direction was estimated. It means that the x-ray source moves relative to streak
camera slit with a velocity V corresponding to a ratio of trace deflection from horizontal line

to time interval length needed for displacement to this distance We
receive the velocity of order of and lifetime of 2.5 ns.

CONCLUSIONS

The theoretical effort that parallels the experimental one has uncoved resently [5, 11-
12] many interesting effects of cathode spot plasma: (i) focusing and defocusing of electrical
current in dense cathode plasma, which are caused by rapidly changes of electrical
conductivity due to phase transition from the metal to a non-ideal plasma with dielectric
properties; (ii) generation of "shooting solitons" - non-stationary plasma emissive centers,
formed at the moving boundary of the expanding cathode spot plasma with current density of
order of (iii) development of an overheating instability and exitation of an
intensive heating waves propagating back to the cathode surface. According with these latest
results a new mechanism for cathode spot self-sustaining have been proposed. The
experimental investigations presented in this paper are in good agreement with this theoretical
modelling.
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MODEL (CRM) AND AVERAGE ION MODEL (AIM) IN DENSE PLASMA.

P.D.Gasparian, S.A.Belkov, Yu.K.Kochubey, E.T.Mitrofanov, V.I.Roslov

Russian Federal Nuclear Centre - Institute of Experimental Physics,
607190, Sarov, Prospect Mira 37, Nizhny Novgorod Region, Russia.

INTRODUCTION

In many plasma applications there are necessity to describe the complicated plasma
flows when the plasma conditions change in a wide range of the parameters: highly ionized
heavy elements eV...several keV,

In order to study properties of systems under these conditions theoretically and
experimentally, atomic physics and gas dynamical codes are being developed based upon the
theories of: non-equilibrium population kinetics, radiation transport, radiative gas dynamics
etc.

Calculations of radiative emissivity of multicharge non-equilibrium strongly coupled
plasma are associated with two problems:

•     first, there is no reliable theory of d-d radiation transfer in strongly coupled non-
equilibrium plasma. Chemical CRMs are not applicable for describing strongly coupled
states near continuous spectrum of ions;

• second, even providing chemical CRMs are applicable, a huge number of states and
lines in large-Z-plasma makes the problem of calculating radiative characteristics of
such plasma super-labor-consuming in terms of calculation effort.

Approximate solution of these problems is given by Slator’s AIM, based on AIM
approximation, hydrogen-like SIM and model consideration of strongly coupled plasma. The
main goal of this work is to study the dielectron recombination description accuracy in the
AIM approximation. These issues are important for creation of economical codes for solution
of non-equilibrium gas-dynamical equations using AIM in a multidimensional case.

SLATOR’S HYDROGEN-LIKE MODEL OF MULTICHARGE IONS

Let be whole shell occupation numbers of an ion with the main quantum number n.
Ion’s state is given by ionic configuration Basic correlation’s of hydrogen-
like Slater’s ion model (SIM) are:
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Here: is the total energy of the state; is screening constants matrix
is ionization potential from the shell n; is screened charge of a nucleus for

n-shell.
Screening constants matrix was optimized by More1. One can believe that (1) gives

approximate analytical solution of ion structure calculation problem. In the case of zero
screening constants matrix we have Bohr’s ion model (BIM) in which ion energy
linearly depends upon occupation numbers, and ionization potentials of ions from the shell i
do not depend on occupation numbers. For BIM was shown2 the strict derivetion of the
kinetic equations of AIM from the RCM. For non-isolated ions in dense plasma, the effect of
ion’s surroundings upon energy structure takes place as a level shift that is considered for by
reduction of ionization potentials. In the ionic sphere model (strongly coupled plasma) level
shift of localized electrons is: where is average ion charge, is
average radius of a cell.

In order to describe cross-sections and rates of collisional and radiative processes in
SIM and SAIM of multicharge plasma we used quasiclassical expressions of Kramers, Lotz,
Regemorter and Tuker-Gould (for ionization, recombination and Auger effect) with oscillator
forces correction in order to consider for screening given by More in the paper3.

Dielectron recombination.
One of the reasons for relative success of AIM approximation for averaged description

of local plasma kinetics, described by detailed CRMs, is preservation, within AIM
approximation, of particles conservation law in reactions between discrete states with single-
electron transitions. In autoionization and dielectron recombination reactions (direct and
reversed Auger effect) no such conservation law exists. Due to this fact, when they are
important for kinetics of strongly non-equilibrium processes, AIM approximation
considerably loses its accuracy. In these cases strong dynamic correlation’s appear in the
system, unsatisfactorily described by AIM.

Let be relative concentration of  configurations with bound electrons at
the level i, normalized by the number of nuclei in a unit volume: In the case of

configurations consisting of two shells, degeneration degree (statistical weight) of a
configuration is where the number of combinations from by

Let’s consider coronal equilibrium limit in Bohr’s CRM: Solution of steady-state
equations in the perturbation theory PT for shows that in zero order ground states (GS) of
ions are non-zero: Concentrations of excited states (ES), connected with GS by a
single-excitation line and any number of decays, are proportional to twice-excited lines -
to- etc. If ES are not considered distribution inside one shell is still binomial, and
the single-step GS ionization process is nearly linear. Consideration of radiative and
Auger transitions makes GS ionization kinetics process a non-linear and multistep one.
Due to transitions through ES in multilevel CRM, transitions appear between GS connected
by a line with decaying ES (cascade transitions). Particularly simple is the case of two-level
CRM with preferential occupation of one shell: (at as well). In this case
transitions between GS induced by radiative transitions through ES are small perturbations

(the feature of photo recombination rate at level and distribution of is
close to binomial.

In the case of coronal equilibrium correlator perturbations are zero-order values with
respect to In the case of two-level CRM it is easy to show that, in zero order

However, in a special case, if (here I is an ionization rate) and
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when binomial distribution “works”, they yield the average occupation numbers
close to exact values and the number of spontaneous decay acts, despite absolute

violation of “statistical” independence of Consideration of Auger processes even in this
case does not permit to describe and satisfactorily by the usual kinetic equations, since
cascade processes start playing the important role, which strongly changes correlators in
coronal equilibrium limit (up to changing their signs). Due to this reason, AIM
approximation, based on correlator uncoupling, is not correct for describing the effect of
dielectron recombination upon average plasma characteristics.

In order to study possibility of using the AIM approximation and to evaluate its
accuracy for description of Auger processes, we developed a program for calculation of
kinetics equations for SCRM, calculations with which can be a “reference” for evaluating
AIM approximation accuracy. Ions’ characteristics were calculated using (1). Comparison of
basic plasma parameters in coronal limit: average charge and emissivity in a wide
range of conditions for electronic temperature, density and compositions of plasma has
shown that approximation of Slator’s AIM and Slator’s CRM without consideration of
Auger processes are in rather good agreement with each other in these parameters - with an
accuracy better than 10...20% for and for If Auger processes are considered
using average CRM equations the accuracy of these parameters is steeply deteriorated up to
ten times for For multicharge plasma (Z>>10) this is due to strong role of cascade
processes with radiative excitation decay channel, efficiently reducing autoionization
processes. Qualitative considerations concerning effective account of cascade processes for
AIM are given in the paper of More et al.4. In this paper it is suggested to consider for the
main channel of cascade process, reducing dielectron recombination rate due to radiative
decay to ground states of ions by branching factor:

where is spontaneous decay rate (n>m), is Auger process rate are
fitting parameters. Taking into account approximate character of such approximation, in AM
approximation we simplified this approach to some extent, preserving AIM equations with
reduction of Auger process rate by a factor (2). In this case reversed Auger process rates are
preserved, that ensure LTE in equilibrium plasma. This way of consideration for Auger
processes considerably improves the initial AIM approximation, “justified” for Bohr’s CRM
in the case of weak discrepancy with LTE.

AIM APPROXIMATION IN THE NON-LTE CASE, SOME NUMERICAL
CALCULATION RESULTS

AIM approximation and Slator’s AIM of non-equilibrium multicharge plasma kinetics
allow quick and easy qualitative evaluation of different effects’ influence in radiative gas
dynamics and kinetics of complex systems: - influence of constant values accuracy upon
kinetics, of number of levels upon time-progress of processes, role of plasma coupling,
relative role of different processes upon emissivity, value of static and dynamic correlation’s,
etc. At the same time evaluation of absolute accuracy of the model itself needs comparison to
calculations that can be considered as a reference. At present, non-equilibrium theory of
weakly coupled plasma is developed rather strictly and is confirmed by agreement with
experiments of super-non-equilibrium systems like, for instance, laboratory X-ray lasers.
Concerning strongly coupled plasma, things are more complicated, but here also agreement
between experiments and theory is rather satisfactory (for instance, in ICF target
spectroscopy). The most complete description of weakly coupled plasma kinetics requires
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development of complete data bases and weakly coupled plasma kinetics CRM and their
implementation in numerical codes. We performed comparison of SAIM calculations to
reference calculations with CC-9 code, in which Data Bases are implemented for not very
complex ions with average in applicability area of the reference calculations.
Under conditions when complex ions are present in plasma we took as a reference the
calculations with Slater’s hydrogen-like CRM described above.

Coronal plasma emissivity calculations.
Comparative calculation results for average ionization degree and emissivity of Au

plasmas in LTE and coronal equilibrium using SAIM and SCRM codes, with and without
Auger processes considered are given in the Tables 1-3. These calculations show high
accuracy of AIM approximation in cases of kinetic coefficients close to real values for
multicharge plasma.
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CONCLUSION

Estimation of accuracy of SIM approximation for model systems (Bohr’s and Slator’s
CRMs) has shown that in a number of cases SAIM, regarded as an approximation of "exact"
CRM, can satisfactorily (with precision up to two times) represent the effect of "dynamic"
correlations upon plasma radiation spectrum in conditions of strong non-LTE, including
consideration of Auger processes in a wide range of densities, temperatures and
compositions of multicharge plasma.

Solution of a number of stationary problems in local and non-local cases using SAIM
and more precise calculations with detailed CRM for weakly coupled plasma, where CRM-
calculations are reference calculations, has shown that SAIM can describe with sufficient
accuracy "averaged" plasma characteristics both in states, close to LTE and coronal
equilibrium states, rather far from LTE.

Non-equilibrium generalization of SAM is, at present time, apparently, the only
model for universal description of kinetics of strongly coupled non-equilibrium plasma. The
largest inaccuracy of SAM is associated with description of Auger processes and d-d
radiation transfer in cases of weak line-overlapping. One can expect that in conditions of
strong line-overlapping accuracy of SAM will increase.

ACKNOWLEDGEMENTS

The authors are grateful to Prof. A. N. Starostin for fruitful discussion of non-
equilibrium kinetics of coupled plasma and permanent interest to this problem.

The work has been done with partial support from ISTC Project #76.

REFERENCES

1.
2.

3.
4.

R.More, Radiative properties of hot dense matter, J.Q.S.R.T. Special issue, 27:345 (1982).
S.A.Belkov, P.D.Gasparian, G.V.Dolgolyova, Yu.K.Kochubey, Comparison of radiative
collisional model of plasma kinetics and average ion model in the non-local case,
“International Conference Radiative Properties of Hot Dense Matter”, Santa-Barbara,
November 4 - 7, 1996, Special issue J.Q.R.S.T., to be published (1997).
R.More, Plasma processes in non-ideal plasmas, Preprint UCRL 94360 (1986).
R.M.More, G.B.Zimmerman, and Z.Zinamon, Dielectronic recombination in the average-
atom model. AIP Conf. Proceeding, #16, “6th Conf. on Atomic Proceses in High-
temperature Plasmas”, Santa Fe, , A.Hauer and A.Merts ed., (1987).

573



This page intentionally left blank 



SELF-ORGANIZATION PHENOMENA IN DENSE PLASMA FOCUS
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INTRODUCTION

The formation of a linear dense Z-pinch as an essentially axis-symmetric 2D structure
was the major goal of experimental research programs on Dense Z-Pinches, both in
cylindrical geometry and non-cylindrical one, like e.g. plasma foci. Here, all the deviations
from axial symmetry were considered as a serious threat to concentrating the energy.
However, a lot of data is accumulated that exhibit importance of the essentially 3D behavior
of the plasma and magnetic field in the case of successful enough driving the load in high-
current discharges. In particular, formation of a closed, spheromak-like magnetic
configuration, of several cm size, in Filippov-type plasma focus gaseous discharges takes
place thanks to (i) strong filamentation of helical electric currents and (ii) enhanced
propagation rate of magnetic field (and current sheath) along the anode, due to Hall effect in
plasmas (see Ref. [1]). So, the question does exist: to what extent does the 3-D 2-fluid MHD
govern the high-current discharges?

Here, we present a number of experimental results which have been accumulated in
earlier studies carried out at the Filippov-type plasma focus facility.2 Such a presentation is
focused at illustrating the coexistence and interaction of complicated structures, both
disordered and ordered ones, of various space scale, in plasma focus gaseous discharges at
conditions typical for the high current discharges.

SELF-FORMATION AND SELF-COMPRESSION OF A CLOSED,
SPHEROMAK-LIKE MAGNETIC CONFIGURATION

The model [3] and the analysis of experimental results obtained from earlier
experiments in various high-current gaseous discharges has allowed the identification of the
following characteristics of the spheromak-like magnetic configuration (SLMC) formation1:
(1) The self-consistent generation of a poloidal magnetic field (the dynamo effect), solely by
the internal dynamics of the magnetic field in the discharge. (2) Strong filamentation of
electric currents, which occurs both in the inner region of the SLMC (i.e. in the combined Z-

and in its periphery. (3) SLMC formation is stimulated by the enhanced
propagation rate of the magnetic field along the anode, due to the Hall effect in plasmas. (4)
A magnetic field reconnection process leading to the formation of the SLMC as a closed
configuration, appears to occur before the current sheath converges on the axis. (5) In its
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final stage, the SLMC takes the form of a squeezed spheromak configuration, confined and
driven by the pressure of the residual magnetic field of the plasma focus discharge. (6) Large
space scale (vs. “hot spot”) determined by the geometry (and capacitance) of the facility. (7)
The power density in the combined -pinch at the major axis exceeds the peak power
density of a force-free flux-conserver-confined spheromak by several orders of magnitude.
(8) The SLMC exhibits a cyclical, evolutionary tendency to form, be compressed and
eventually repelled away from the anode, and reform repeatedly. (9) Self-organization of the
discharge plasma (non-monotonic dependence of input vs. output parameters; “quantization”
of the discharge energy).

A great deal of experimental data obtained in earlier neon gas studies carried out at the
Filippov-type plasma focus facility2 supports the SLMC model.3 Some of the results
presented here and in Ref.[l] have not been previously published, as they were not fully
understood before. Significantly, the identification of the SLMC formation appears to be
available essentially from combining the results of the following diagnostics with different
(and complementary to each other) spatial and spectroscopic scales: namely, (i) motion
picture of the evolution of SLMC formation, taken with the help of a ruby-laser-based
interferometer operating in the Bates regime (0.01-J laser pulse energy; 2-ns duration); (ii)
visible light photographs taken with the help of an electronic optical converter which is
synchronized with the current to an accuracy of <50 ns; (iii) time-integrated SXR spectra
from a pinhole camera.

The results are presented for the following discharge conditions: mushroom-shaped
anode (11-cm diam.) inside a coaxial metallic chamber 80-cm long and 30-cm high, which
acts as the cathode; capacitance, 180 µF; initial inductance, 55 nG; initial voltage, 16 kV;
discharge energy, 20 kJ; maximum current, 530 kA; neon gas pressure, 3 Torr. Time zero
(t=0) corresponds to the major peak of the time derivative of the current.

SHORT-SCALE MIXING OF THE PLASMA AND MAGNETIC FIELD

The Hall effect in plasmas,4 which is caused by the frozenness of the magnetic field
into electron plasma and by the resulting transfer of magnetic field with electric current
velocity, manifests itself in the enhanced rate, as compared with ordinary diffusion, of
magnetic field propagation in plasmas in the case of electric current moving along the
gradient of plasma density. The major physical mechanism is the "scattering" of magnetic
field, which is transferred by the electric current, at positive gradient of electron density.
Such a phenomenon is identified in full in the case of steep electron density gradients at
plasma-conductor boundaries. For instance, the current sheath slipping along the anode at
initial stage of the discharge in plasma focus facility2 has been reproduced in the 2-D 2-fluid
numerical modelling5 with allowing for the Hall term (see also the database presented in
Ref.[l]). Contrary to ideal MHD instabilities, this mechanism gives regular, highly
reproducible dynamics that agrees quite well with numerous experimental data. Similar
phenomena may take place in plasma interior as well. Here, the enhanced propagation rate
leads to penetrating the domain of the lower plasma density and subsequent superseding the
plasma by the magnetic field. Such a mechanism leads to a stochastic short-scale (as
compared with space scales of the current sheath) mixing of the plasma and magnetic field,
being thus an alternate for the snow plough regime of current sheath formation and driving.

The pictures shown in Fig.1 (t= -90 ns) and Fig.2 (t= +174 ns), for deuterium
gaseous discharge of initial pressure 163 Torr, are the shadowgrams taken with the help of a
ruby laser (0.01-J laser pulse energy; 15-ns duration; pulse direction perpendicular to the
system axis). The anode is at the bottom of the diagnostic window (4 cm diam.), the plasma
focus major axis coincides with the vertical axis of the window.

A great deal of experimental database exhibit cell-like structure of the plasma. Such a
phenomenon may be interpreted as the formation of a thin volumetric (three-dimensional)
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net-like structure of the magnetic field penetrating the plasma. The local values of magnetic
field inside this net may substantially exceed its values averaged over several cells, up to the
order of magnitude. Therefore this mechanism of plasma-magnetic field interaction doesn’t
need large spatially averaged values of the parameter thus suggesting that the criterion
for the onset of the 2-fluid effects may be strongly dependent on the local values of density
fluctuation level of the appropriate space scale. Such a 2-fluid instability being developed in a
certain small volume, can propagate in space and interact with conventional ideal-MHD
instabilities, e.g via triggering the current sheath breakthrough by the Rayleigh-Taylor
instability.

Figure 1 Figure 2

FILAMENTS AND MAGNETIC FLUX ROPES

The complexity of short-scale structure of the magnetic field penetrating the plasma,
leads to existence of a rich background for short-scale self-organization processes. This
results in forming the strongly inhomogeneous plasma structures, with the filaments of
electric current and the magnetic flux tubes (magnetic flux ropes, according to the space
plasma language, see e.g. Ref.[6]) being the building blocks of these structures. The
filaments are characterised by the enhanced plasma density, due to pinching effect, whereas
magnetic flux ropes exhibit substantially lower plasma density, with force free-like
configuration of magnetic field. It is combination of these two substructures, under condition
of appreciable helicity, that supports long-range, essentially three-dimensional correlations of
electric currents and magnetic field.

The filamentation of electric current
is well known to characterize plasma
behavior at initial stage of gaseous
discharges. Being driven by the inflated
magnetic field toward system’s axis, the
filaments may form a quasi-uniform
current sheath of a cylindrical/linear Z-
pinch. However, this may not be the case
when filamented structures form
essentially 3D plasma structure as it
happens, in particular, in a certain type of
plasma focus discharge resulted in the

Figure 3. formation of a closed, spheromak-like
magnetic configuration of several cm size.1 Here, filamentation of electric currents is needed
for the production of the poloidal magnetic field and the respective 3D large-scale ordering of
both the plasma incorporated in a closed configuration and the plasma carrying the current of
external circuit. Figure 3 (interferogram, Bates scheme, ruby laser, 2ns pulse duration)
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shows fine structure of the filamented inner, closed magnetic configuration and the current
sheath formed by the residual magnetic field 6 Torr, 24 kV, -150 ns; system’s axis is
indicated,- space scale the same as in Figs. 1,2). The interferogram of Fig. 4 (negative; 20
ns; discharge type similar to that of Fig.3) illustrates the braidedness of the twisted filaments.

Figure 4 Figure 5

Interaction of filaments and magnetic field lines, via twisting, winding and
interweaving, leads to formation of the heterogeneous force free-like magnetic
configurations. Such a structure may form a heterogeneous magnetic flux rope. Separate
section of the (teared to pieces) rope forms a stick-like, heterogeneous plasma formation
embedded into a closed, spheromak-like magnetic configuration. Typical formation of this
type is shown in Fig. 5 (see left upper part of the Figure) which is extracted from the right
lower part of Fig. 1.

CONCLUSIONS

Experimental results presented illustrate complexity of plasma and magnetic field
behavior in high-current discharges. It follows that the 2-fluid effects (the Hall effect in
plasmas) may produce more intense (short-scale) mixing of the plasma and magnetic field, as
compared with that predicted by the ideal MHD. This, in turn, leads to formation of
essentially 3D structures of space scale of the above mixing. Interaction of these processes
with electric current filamentation leads to long-range 3D correlations and strong local self-
organization. The latter results in formation of closed, strongly inhomogeneous magnetic
configurations of various space scale, up to several cm size formations reported in Ref.[1].

The results suggest the necessity to allow for the effects of the 3-D 2-fluid MHD in
numerical modelling of plasma radiation sources.
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INTRODUCTION

The problems of calculating the electric field and revealing the mechanism of its
formation in a non-equilibrium inhomogeneous plasmas has been widely studied. Here, we
restrict ourselves to investigating the case of a quasi-stationary plasma in local
thermodynamic equilibrium (LTE). At a quasi-stationary stage of gas discharges in
laboratory plasmas the LTE may be sustained by, e.g., strong external magnetic field, and
the electron and ion temperatures are inhomogeneous and different.

The electric field can be explained using balance equations. In this approach the electric
field is necessary to explain ambipolar diffusion. Calculation of the electric field is very
complicated due to difficulties in correct determination of particle flows because of
anomalous character of diffusion.

In the present work we use microscopic approach for calculating the electric field,
which is based on the generalization of the results.1,2 It is shown that the electric field has a
thermoelectric origin connected with different screening of particles of inhomogeneous
plasmas. Thus the inhomogeneity and deviation from equilibrium play a key role for the
screening of the potential, because in a homogeneous and equilibrium plasma the potential is
obviously constant and is not connected to the screening. Dynamic character of screening is
important because zero value of potential, irrespectively to local deviation from equilibrium,
is obtained in the model of static Debye screening, due to quasineutrality condition. The
electric field space distribution is explained by competition between the electron and ion
contributions.

STATEMENT OF THE PROBLEM AND THE MODEL

We shall consider a completely ionized, two component plasma consisting of ions, of
charge and electrons. We assume that time and space dependencies of plasma
parameters are adiabatically flat. Characteristic space scale L of plasma inhomogeneity is
assumed to be large in comparison with electron Debye radius i.e. For
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typical main sequence of stars one has and for laboratory plasmas one has
The condition of quasistationarity means that the rates of processes are

determined by ion motion which results in slow change of electrical potential, and electron
distribution follows it adiabatically. In this case the plasma can be considered as a quasi-
neutral medium.3 However, this does not mean that there is no macroscopic electric field in
plasma. This implies only the smallness of uncompensated charge density in comparison
with separate electron and ion charge density perturbations. Charge density perturbations are
just charge densities in an inhomogeneous plasma. Note that the potential of the electric field
can be found from the Poisson equation if uncompensated charge density is known.
However, it is a nonmeasurable quantity; and there are no reasons to put it precisely equal to
zero. As it will be seen from further calculations of the potential, we have is
electron temperature), and then when and are ion and electron
density. Thus, nonzero macroscopic electric field in a plasma does not contradict to its quasi-
neutrality. In contrast, we shall use the quasi-neutrality condition for obtaining the
potential of this field. We assume that the distribution functions of plasma components

(a=e,i) are of Maxwellian type. All space dependencies of these functions arise
from dependencies of respective moments and current velocity of the
plasma components. We consider these functions as given (for example, determined from
the experiment ) and we do not set a problem of their determination. Our results are of
general form and do not depend on a particular kind of these functions. The gradients of
plasma parameters certainly distort electron and ion distributions , but these corrections give
the contribution to potential and do not considered hereinafter.

We shall note that the locally isothermal state is not an equilibrium one. Obviously
such a state is never achieved in practice since, as a rule, the plasma cannot be considered as
an isolated system. Runaway electrons, auxiliary and Ohmic heating in a plasma result in
infringement of local equilibrium and deviation of distribution functions from a Maxwellian.
In practice the distribution functions are unobservable quantities, and only some their
moments can be measured. Since the distribution functions enter in the expression for the
potential in the integrand this suggest an idea of weak dependence of the potential on details
of their behavior. Thus when simulating the local non-equilibrium we have selected a
phenomenological approach, using corrections to the Maxwellian. We assume that the
number of particles in the screening cloud is large. Thus it is possible to consider plasma as a
collisionless one and to use the approach of linear response. We consider the plasma as a gas
of neutral quasi-particles, plasma particles "dressed" by their polarization clouds. A distinct
feature of inhomogeneous plasma quasi-particles is the possible non-identity of quasi-
particles produced by particles of one kind, as far as screening can be different at different
places. Below we shall see that just difference of the sizes and of the structure of quasi-
particles (polarization clouds ) results in appearance of the macroscopic electric field. Thus
dynamic character of screening plays a key role.

POTENTIAL

Application of similar expression for a weakly inhomogeneous plasma was
justified by work of R.L. Guerncey.4 Thus the dependence of plasma polarization on
magnetic (gravitational) field in our phenomenological approach is arising from space
distribution of plasma parameters which are formed self-consistently in quasi-stationary
(stationary) state supported by this field.

Following the approach developed in our paper2 we shall calculate the potential of a
particle of charge and moving with constant velocity The expression has the form:5
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where is the longitudinal part of the permittivity tensor (we assume
that the motion is a non-relativistic one). This potential is produced by the charged particle
and its polarization cloud. Average potential taking into account electron and ion quasi-
particle contributions has the form

Substituting according to Eqs.(l) and distribution function in and
neglecting the terms of order of and as well as neglecting the macroscopic
velocities of particles in comparison with thermal velocities of particles, and using the
quasi-neutrality condition we arrive at the following results for the potential which has a
form typical for thermoelectric potentials:

Here the thermoelectric coefficient is defined by the expression

In the LTE the electron contribution does not depend on space variables and is equal to
Ion contribution is represented by a function of dimensionless

variable      We are to stress that this result does not depend on the choice of the particular
structure of the electron and ion temperature profiles.

The potential is vanished at static Debye screening (with accuracy
irrespectively to specific form of distribution function. The influence of possible local
electron non-equilibrium is simulated by the small addition to Maxwellian distribution
function also corresponding to a local equilibrium but with the temperature in times
greater and corresponding to a part of plasma electrons. Thus the total electron
distribution function is described by local Maxwellian distribution, having plateau in the tail.
The value of again does not depend on space variables. Dependence of this value on
"plateau width” for a part of non-equilibrium electrons show that weak non-
equilibrium can result, nevertheless, in appreciable electron contribution to thermoelectric
coefficient at sufficiently large "plateau width”. This situation corresponds to an increase of
effective temperature. Thus electron non-equilibrium increases the electron contribution
and does not influence the ion contribution (at small values of Such conclusion does
not depend on the electron distribution due to mentioned above integrated dependence of the
potential.

The locally equilibrium ion function presents the ion contribution in the
thermoelectric coefficient. It is comparable with the locally equilibrium electron contribution

at value of dimensionless parameter  which corresponds to zero potential.

This result is explained by essential difference of electron and ion masses. In practice
we have and Hence the ion contribution to the screening of electron is
insignificant. Electron contribution to the screening of ions is a static one since the ions look
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as stationary particles compared to the fast electrons. In the presence of impurities we have
where is effective charge of the ion. Here is a function of space variables

and its value should be taken from the experiment.

RESULTS OF NUMERICAL CALCULATIONS

To verify the results of calculations of electric field strength according to expressions
(3) we have chosen experimental works6,7 from the extensive list of papers, because in these
papers the measured profiles both of electron and ion temperatures are presented. The
comparison shows that in the core of tokamak TM-4 plasma both calculated and measured
potentials have negative value that corresponds to domination of the electron contribution to
thermoelectric coefficient becuase The potential goes through zero near the plasma
boundary and then acquires positive values. Such a behavior is explained by the domination
of the ionic contribution over electronic one. Thus theoretical calculation reproduces
characteristics of the potential in the case of local equilibrium of the electron and ion
component. In the plasma core the value of potential is found which, unlike neoclassical
approach, considerably exceeds ion temperature in absolute values. To achieve the
quantitative agreement we took into account local non-equilibrium of the electron component
caused by the runaway electrons. Results of calculations of the potential give the value of the
electron thermoelectric coefficient which corresponds to 10% fraction of electrons
which has the temperature In this way the agreement between theoretical calculation
and experimental data is improved for plasma core.

The space distribution of potential for DIII-D was calculated in assumption of local
equilibrium and with temperature profiles presented in it.7 The radial component of

the electric field was calculated which is found to be in qualitative agreement with values
given in this paper7. Here the radial electric field strength is positive in the plasma core. This
is explained by prevalence of the ion contribution in this experiment. There is a change of
sign of the field strength in the plasma periphery caused by the excess of over The
more detailed information about local non-equilibrium of the electron and ion components is
necessary for achieving the quantitative agreement between calculated and experimental
values.

The authors would like to thank K.A. Razumova, A.V. Mel’nikov and I.S.
Nedsel’skij for presenting the experimental data, and for discussions of and interest to this
work.
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The aim of the work is to analyze and model strong discharges in water.1 In these
measurements a cylindrical strongly coupled plasma is created by vaporizing a copper wire
embedded in water with a burst of current. The resulting plasma column expands radially,
compressing the surrounding water and causing a cylindrical shockwave to move radially
outwards in the water. The plasma is observed to remain quite stable during this expansion.
Both the current and voltage across the channel were measured, and reactive contributions
to the voltage were accounted for. The column diameter was observed photographically and
calculated using the SESAME code, and the conductivity values were deduced.

The new set of data,1 obtained for the conditions different from those reported earlier,2

implies that, at longer times for some shots the scaling time dependence is
valid for the column radius: In this sense the experiments resemble those reported
in [3] for longer timescales.

Current was supplied by a capacitor bank of charged to V = 15kV. The
bank inductance was about 212nH, to which the load (wire) inductance of typically 20 to
30nH must be added. Some shots were terminated by short currents, and we will focus on
four shots with the discharge current across the plasma channel measured over a relatively
long time interval of up to 10 with up to three current zeros observed.

The circuit current oscillation equation in this case reads:

Here being the circuit net inductance,

The wire length was 26.5mm. We presume the plasma column conductivity to be
constant on the timescale when the column cross-section S(t) can be approximated as
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If we presume that the current remains finite at t = 0, the resulting differential equation
possesses an exact analytical solution in terms of first kind Bessel function with the index
related to the conductivity value:4

The latter can be determined from the position of the first current zero, the positions
of the second and the third (if any) ones can serve to check the validity of the model. In
addition, the value of the effective conductivity to be determined from the index value can be
compared with the averaged (over the adequate time interval) experimental conductivity.

The values of the model parameters, and the position of the first zero, of the current
were obtained from the experimental data for the discharges under investigation, the values
of  were used to find those of the Bessel function indices, see Table 1.

On the basis of these data we estimated the positions of the second, and third,
(not observed for the first discharge) current zeros of the theoretical curve, Eq. (4), and
compared them with the corresponding experimental values, and see Table 2, and Fig.
1, where both experimental (solid line), and theoretical curves (dashed curve, the value of
was adjusted to the first maximum of the experimental curve) are displayed as functions of

for the discharge No. 3.

The next table contains the values of effective plasma conductivity calculated according
to Eq. (5) compared to those estimated from the experimental data averaged over the time
intervals, for which Eq. (3) fulfils with high precision.

The factor of two discrepancy between experimental and theoretical values of strongly
coupled plasma electrical conductivity, especially taking into account the simplicity of the
theory presented, might be considered as satisfactory, see [5].

The fact that the plasma channel cross-section curves demonstrate, for a well defined col-
umn, the validity of Eq. (3) for strong discharges in water, and independently of the discharge
initial conditions (at least for the cases considered), requires a theoretical interpretation. One
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Figure 1. The zeros of the experimental and theoretical current curves coincide.

should keep in mind that these curves were generated by the SESAME code, but were also
confirmed by independent streak camera observations.1,2 The SESAME code application was
based on the kinetic model, which denies any possible mixing of the copper plasma created
by the discharge with the surrounding water.

An alternate interpretation of the data, due to one of us (I. M. T.), is that a Mott-type first-
order phase transition occurs at the column-water interface. It can be shown5 that the interface
temperature should be maintained constant and equal to the phase transition temperature while
Eq. (3) is verified. The SESAME code ‘is increasingly inaccurate with the onset of strong
Coulomb interaction’,6 and cannot include the possible Mott-type phase transition; it predicts
a uniform temperature distribution within plasma, and for the discharges we considered the
value of the plasma temperature varies quite slowly around (like in [3])as
long as the column radius is scaled by the square root of time.

The solution of the cylindrical Stefan problem4 was used to estimate that within this
model the radial distribution of the plasma column temperature differs from the homogeneous
one with the temperature equal to by only about 10%.

The justification of the phase-transition model of strong discharges in water requires
knowledge, among other things, of the strongly coupled plasma equation of state.

The plasma channel is optically dense, and it complicates its further experimental studies
aimed at the construction of a complete energy-conversion model of the discharge.
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We have generalized the Balescu–Lenard kinetic equation to weakly nonideal spatially-
uniform polarizable plasma by including non-Markovian effects1 (see also these proceed-
ings). However, in many problems, nonlocality in space must be considered as well as
non-Markovian effects (or nonlocality in time).

For, we extended our previous work to nonuniform systems in such a way that we
obtain a nonlinear kinetic equation which shows the local laws of conservation for particle,
momentum and total energy densities. This last is, at equilibrium, equal to the Debye–Hückel
energy.

Out of equilibrium the evolution of a nonuniform system can be described from the
BBGKY-hierarchy, In the so-called plasma approximation (see Ref. [1]), the two first mem-
bers can be written as:

where is the collision integral,  is the one-particle distribution function
(df) and is the pair correlation function;

with  the Coulomb potential and
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The two last terms in the curly bracket in l.h.s. are mean field terms we neglect in a first
approach of the problem.

The equation (2) is solved by means of the Green’s function method.2 In the case of
uniform system it was possible to disentangle the collision time from the one-particle df
relaxation time. Similarly, in the case of nonuniform system it is possible to separate in the
Green’s function large length scales from the length scale of effective interaction.

Specifically, we have:

where is the Green's function and with
As in Ref. [1], indicates that the functions varies with respect to variables on

the scale of the one-particle df.
We make the change of variables and expand with

respect to slow variables; then, after a Laplace transformation with respect to  and a Fourier
transformation with respect to and r, we obtain

where we have put since all space and time variables are now on the scale of the
one-particle df.

The expression of  can be obtained as in [1] (see also Ref. [3]).
The expression for the pair correlation function is then:

where and
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The collision integral is deduced from Eqs. (1) and (6). It must be pointed out that in Eq. (6)
the correlation function is given as a function of R, the median position between particles
1 and 2, while we need the collision integral at position r1 of particle 1. This introduces

supplementary derivatives of the form acting on

With this in mind, we obtain:

As a first application we shall restrict the above results to the spatially-uniform Markovian
approximation and its first correction in nonlocality in space as well as in time i.e., in Eq. (6)
and (8 ) we only carry terms of order 0 and of order 1 in the derivatives. In this approximation,
the balance equations are easily obtained from the kinetic equation (1) with (8). From the
equation for the total momentum density,

where u is the mean velocity field: and

is the kinetic part of the pressure tensor, we obtain the definition of the potential part of the
pressure tensor:

In the same way, we have the total energy balance equation:

where is the kinetic energy density and  is the potential energy density.
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is the kinetic heat flux

and is the potential heat flux

Formulas (11)–(15) are of course compatible with those deduced by general arguments from
the BBGKY-hierarchy (see for instance Ref. [5]) They show the coherence of our approach.
Remind that the approximation used in (11)–(15) is not trivial since  takes into account
polarization effects and the potential energy (13) becomes at equilibrium the Debye–Hückel
one.
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INTRODUCTION

This investigation consists of a calculation of the Fokker–Planck coefficients for a two-
dimensional, isotropic plasma with a low-density component of fast electrons. It sheds light
on the role of emission and damping of electrostatic waves in the relaxation of weakly stable
plasmas. Two dimensions provides a convenient paradigm because, unlike three dimensions,
the transport due to waves dominates collisional effects. No dominant approximation1 is
needed since the Coulomb potential in two dimensions is logarithmic, and, because wave
effects are prevalent, there is an enhanced interaction between fast electrons. That is, a fast
test electron experiences anomalously large drag and diffusion forces due to the enhanced
fluctuations generated by a low-density, fast-electron population. Of course, fast electrons also
generate enhanced fluctuations in three dimensions,2,3 but for plasmasnear equilibrium, their
effect on transport is largely masked by collisional processes.4,5 The differences between
two and three dimensions arise from the fact that both emission and damping of plasma
waves are retained to lowest order in two dimensions, while the three-dimensional dominant
approximation effectively includes only wave emission by test particles. An understanding
of the differences between two and three dimensions is crucial to the interpretation of two-
dimensional particle simulations. Some properties of two-dimensional and three-dimensional
plasmas are compared in Table 1.

TRANSPORT COEFFICIENTS DUE TO FLUCTUATIONS

The fluctuation integral of Lenard6 has been rederived7 for application to fewer than
three dimensions by considering a quasilinear extension of the Vlasov equation.8 The drag and
diffusion coefficients of the Fokker–Planck equation, represent the drag and
diffusion experienced by a test particle due to species and are all proportional to an integral
over wave-number where v is the spatial dimension (1, 2, or 3) and
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In three dimensions diverges logarithmically and

leads to the dominant1 approximation: In two dimensions, because of the soft
core of the Coulomb potential, retains information about the distribution function and the
dispersion relation through

This result was first obtained by Abraham–Shrauner.9

In three dimensions, all the coefficients are proportional to the species density This
makes sense physically because the interaction with a group of particles is expected to be
proportional to the quantity of those particles. It is only valid, however, within the dominant
approximation, and arises because the kinetic information, which contains the damping of
the emitted waves, is neglected. In two dimensions, the parallel diffusion coefficient for a
Maxwellian distribution can be written7

where

with similar expressions for and At both small and large velocities the Fokker–Planck
coefficients behave similarly in two and three dimensions10 (aside from numerical factors
which are geometrical in nature). For nonequilibrium plasmas, however, the weak dynamical
shielding of nonthermal particles becomes important, and the interplay between the thermal
velocity scales increases in complexity.

Enhanced Large-Velocity Interaction in Two Dimensions

An enhanced large-velocity interaction appears when there is a small, superthermal
electron component. If this component is treated as a separate species, then the drag and
diffusion due to these hot electrons are only weakly dependent on their density, i.e., even a
small population of fast electrons can affect the transport significantly.

We choose a nonequilibrium distribution with three species: ions, bulk electrons, and
tail electrons each with Maxwellian distributions. Figures 1 and 2 show the
coefficients due to the bulk electrons and the tail electrons, respectively, for the parameters

and an ion-to-electron mass ratio of 64. Because the ions are
the slowest species, the ion coefficients are unchanged from the equilibrium case, and are
not shown. The coefficients due to the bulk electrons are also virtually unchanged from the
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Figure 1. Contribution of the bulk electrons to the Fokker–Planck coefficients of a test electron in a
nonequilibrium two-dimensional plasma as a function of The ion-to-electron mass ratio is 64,

and The contribution of the tail electrons to the parallel drag,  is shown for
comparison.

equilibrium case, but they are shown for comparison with the coefficients due to the tail
electrons.

The most striking aspect of Fig. 2 is the strength of the tail interaction at large velocities,
This strength is much larger than the density ratio would predict. The physical

reason for this behavior is that because the wave emission and the wave damping are both
proportional to the density of the population, and because both are retained in the two-
dimensional description, this density dependence cancels out for large velocities.7 As
decreases, the damping due to the tail electrons increases more rapidly than the damping
due to the bulk electrons (because and both are exponential). This continues until
the damping due to the tail saturates near In this region, the damping due to the
bulk electrons becomes appreciable, and the largest term becomes the electron damping term.
For the bulk damping dominates the tail damping and the coefficients due to the tail
electrons revert to scaling linearly with density.

The density dependence of the coefficients due to the tail electrons is shown in Fig. 3.
This figure shows the strength of the coefficients for as a function of the tail
density, It can be seen that on a logarithmic scale, and vary only linearly, while
exhibits a modicum of exponential behavior, which implies a stronger density dependence.

Comparison with Three Dimensions

Ware2 derived a Fokker–Planck equation for the parallel distribution function of fast elec-
trons in a three-dimensional, strongly magnetized plasma due to wave emission
and damping. He considered only the higher-order terms usually ignored by the dominant
approximation in three dimensions, but which are similar in character to the lowest-order
term that appears in two dimensions, and obtained the same behavior as in two dimensions.
This shows that the enhanced interaction is due to the wave-driven transport, rather than an
anomaly of the choice of only two dimensions.

In addition, Tidman and Eviatar3 showed that for large test-particle velocities (i.e.,
the correction to In is exactly equivalent in form (Landau damping in the denominator)
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Figure 2. Contribution of the tail electrons to the Fokker–Planck coefficients of a test electron in a
nonequilibrium two-dimensional plasma as a function of The ion-to-electron mass ratio is 64,

and The distribution function of the tail electrons, is shown for comparison.

Figure 3. Contribution of the tail electrons to the Fokker–Planck coefficients of a test electron in a
nonequilibrium two-dimensional plasma, plotted as functions of the logarithm (base 10) of the tail density. The
ion-to-electron mass ratio is 64, and
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to that of Ware.2 They also showed that for fast electrons, the 90° deflection time is much
shorter than the energy loss time, which means that the enhanced fluctuations scatter the fast
electrons more quickly than they equilibrate with the bulk electrons. Because this process is
the dominant one in two dimensions, this is the probable explanation for the two-dimensional
particle simulation results of Decyk et al.11

CONCLUSION

We have investigated an effect that is inherent to weakly stable plasmas: an enhanced
large-velocity interaction. This behavior is not unique to two dimensions, but is quite similar to
the higher-order terms in a three-dimensional dominant approximation expansion, as shown in
the studies of Ware2 and of Tidman and Eviatar.3 The increased level of fluctuations generated
by fast electrons is quite similar in both two and three dimensions. However, because
both the emission and absorption of fluctuations by fast electrons is retained by the two-
dimensional Fokker–Planck theory to lowest order (no dominant approximation is needed),
these electrons interact at a significantly higher level than predicted by an extrapolation based
on the usual three-dimensional dominant calculation. Small-angle collisions do not dominate
in two dimensions, and the soft core of the logarithmic potential implies that any enhanced
fluctuations affect the transport significantly. In three dimensions, a substantial tail would
be necessary before a corresponding effect is observed.4,5 These results are essential to a
complete understanding of two-dimensional particle simulations, especially those of weakly
stable plasmas.
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The importance of the polarization effects on plasmas in the kinetic regime has been
recognized for a long time. In 1960, Balescu1 and Lenard2 derived their famous kinetic
equation valid for weakly coupled polarizable plasmas.

However, Kadanoff and Baym3 and Klimontovich4 have noticed that the Balescu–Lenard
(BL) equation takes into account the polarization of the system only in the collision integral
while the thermodynamics corresponds to the ideal gas: the dissipative and nondissipative
phenomena are not treated on an equal footing. They have shown that this discrepancy can
be avoided if non-Markovian effects are taken into account. Klimontovich5 wrote the system
of equations for the one-particle distribution function (df) and the pair correlations for the
electric field and for the charge density, but he did not succeed in obtaining a closed kinetic
equation. On the other hand, Résibois6 and Dorfman and Cohen7 have formally derived
the fully non-Markovian generalization of the BL equation, but their results are not easily
tractable in practical case. Still recently, papers on non-Markovian kinetic equations were
published. They treat the first density correction to the Uehling–Uhlenbeck equation8 and
the case of the quantum Landau equation.9

We have obtained10 a nonlinear kinetic equation which generalizes the BL equation for
weakly nonideal plasma. This equation includes the dynamical screening of the interaction
potential and describes correctly the conservation of the total (kinetic and potential) energy
in a nontrivial way.

We have considered a spatially-uniform weakly nonideal multicomponent plasma. Out
of equilibrium, its evolution can be described by a kinetic equation which is derived from
the BBGKY-hierarchy by making the so-called plasma approximation: triple correlation
function as well as interaction between correlated particles are neglected. In this way,
the set of equations for the one-particle d.f. and for the pair correlation function

is closed. In Fourier space, they take the form:
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where is the collision integral and where is the solution of the
equation

is the Fourier transform of the Coulomb potential and is the velocity
of particle 1.

By doing the plasma approximation and then solving eqs. (1) and (2), we neglect
Markovian contributions of order two in the plasma parameter. These contributions would
lead to small quantitative corrections to the relaxation time of one-particle df. If necessary
they can be added to our results without qualitative change.

Although eq. (2) is an integro-differential equation with variable coefficients, the so-
called Green’s function method11 allows to disentangle the time-scales and gives a solution
in terms of successive derivatives with respect to time on the scale of the one-particle df.10

Successive derivatives correspond to successive approximations of the non-Markovian effects.
We considered only the Markovian limit of the solution and its first non-Markovian

correction (i.e., the first time-derivative). Let us point out that it is not a trivial approximation
since it leads to the total energy conservation.

Specifically we obtain:

where is the well known result of Markovian theory:11, 13

with

and

is the dynamical dielectric function. We also used the conventional notations:
where P means the Cauchy principal

part. It can be shown that expression (4) reduces at equilibrium to the Debye–Hückel pair
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correlation function. The non-Markovian correction to the pair correlation function is:

where is the derivative of Finally, the correction to the collision integral is
obtained from Eq. (1):

The conservation laws are easily verified with the following symmetry property in mind:

The particle conservation is a trivial consequence of expression (1) while the momentum
conservation follows directly from eqs. (1) and (9). We know that kinetic energy is conserved
by the Balescu–Lenard collision integral. Therefore, the variation of the kinetic
energy is due to the non-Markovian part of the collision integral

where we used Eq. (9). The three last terms of r.h.s. of Eq. (7) give no contribution to r.h.s.
of Eq. (10) since they are proportional to The first term leads to:

The r.h.s. of Eq. (11) is precisely minus the variation of the potential energy at the
order of approximation we consider. It is easy to show that this potential energy becomes
at equilibrium the Debye–Hückel energy.11–13 Equation (11) achieves the consistence of the
theory.
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INTRODUCTION

The structuring of matter is connected with the formation of bound states and phase
transitions. Therefore, the consideration of bound states in strongly correlated many particle
systems is an essential task.
In this talk, we want to deal with bound states in a strongly correlated hydrogen plasma. In
particular, we want to investigate the influence of bound states on two-particle quantities such
as the T matrix, the two-particle Green’s function and the single particle spectrum.
By an elementary theory, the formation of atomic bound states is described by the Schrödinger
equation for an isolated electron–proton pair. It is clear that the bound states influence all
plasma properties, such as, e.g., the equation of state (EOS). The bound state contribution to
the EOS is given by the bound state part of the second virial coefficient1–3

with and It is well known that this contribution is
divergent. The reason is clear: We neglected completely the influence of the surrounding
plasma on the e–p pair. A simple idea to take into account the influence of the medium is
to replace the Coulomb potential by a screened one, and, instead of the kinetic energy, we
have to take the single particle energy, i.e., we have to add the Debye quasi-particle shift

with In this way we obtained an EOS, which
works very well. After a transformation into the chemical picture, the EOS describes the
ionization equilibrium and the plasma phase transition.3

BOUND STATES, T-MATRIX ONE PARTICLE EXCITATION SPECTRUM

Let us consider the bound states from a more rigorous point of view. In general, we
have to deal with two questions. How do bound states influence the plasma properties?, and
how are the bound states modified by the surrounding plasma? For the consideration of this
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Figure 1. a,b Imaginary part of the off-shell T-matrix for initial and final relative momenta  and
and

problem, we use the formalism of Green’s functions being an appropriate tool. From the
point of view of Green’s functions, the properties of strongly coupled plasmas are determined
by the single particle spectral function

where is the damping of the single particle states which is related to by
a dispersion relation. To include bound states we have to apply in the screened ladder
approximation. In this approximation, we find

One can see that and, consequently, the most properties of the strongly coupled
plasma are given by the off-shell T-matrix, or, equivalently, by the two particle Green’s
function according to On the other hand, the two-particle
Green’s function and its singularities incorporate the influence of the plasma on the bound
states. We determine the two-particle Green’s function in the dynamically screened
ladder approximation, i.e., from the Bethe Salpeter equation. In momentum representation,
we have5

Here the effective two particle interaction is given by [6]

and the effective two particle self energy shift reads

The blocking factor is So, in Eq. (4) we took into account
correlation effects such as dynamical screening, self energy, retardation, and Pauli blocking.
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Figure 2. Momentum–energy surface of the imaginary part of the off-shell T-matrix for p = 0, 8,

Starting from (4), let us now determine the two particle properties. To this end, we
perform a perturbative solution of the Bethe Salpeter equation in the limit of static screening,
i.e., instead of the dynamical quantities in (4), we use the statically screened Coulomb
potential and the static Debye-shift. On this level, the imaginary part of the off shell T-Matrix

was determined for different screening parameters see also [7]. The results
for the imaginary part are given in fig. 1a,b.

The bound state manifests itself as a peak separated from the continuum, which is
lowered with increasing density. We find that the position of the peak and therefore the bound
state energy is weakly density dependent only. The width of the bound state peak broadens,
i.e., we have a finite life time. The momentum and energy dependencies of the imaginary
part of the T-matrix are demonstrated in fig. 2.

Now we are able to determine the real part of the off-shell T-Matrix from
the dispersion relation

The result is shown in fig. 3.
We observe the typical principal value behavior at the peaks of the imaginary part at the

bound state positions. Having determined the T-matrix, we obtained from the relation (3)
and displayed it in fig. 4.

Again, the bound state peak is separated from the continuum; a lowering of the latter is
observed as a function of the screening. Now we come back to the spectral function (2). With

and being calculated from a dispersion relation, the spectral function is determined
explicitly. The result is given in fig. 5. Here, the ideal spectral function is indicated for
comparative purposes. One sees that the spectral function is strongly modified by correlation
effects. The maximum is shifted, and the continuum is broadened, and we have a bound state
satellite. Knowing the spectral function, one may determine thermodynamic functions.8–10

BOUND STATES IN NONEQUILIBRIUM PLASMAS

The situation is much more complicated in nonequilibrium plasmas with bound states.
Again, the most plasma properties are determined by the spectral function which is given
now by the two time corelation functions i.e., In
nonequilibrium situations, these two functions are independent of each other,11 and both have
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Figure 3. Real and imaginary parts of the off-shell T-matrix for p = 1,

Figure 4. Imaginary part of the self energy for T = 20000 K, p = 0, 5,
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Figure 5. Spectral function for T = 20000 Kp = 0,5,

to be determined from the well known Kadanoff–Baym equations which read

where the self energy and the two-particle Green’s functions are related by

Obviously, again the two particle Green’s function is the most important quantity. In order to
determine the latter, we have to find a nonequilibrium generalization of the Bethe–Salpeter
equation. For this goal, we use an idea of Keldysh. According to this idea, we have to
consider the diagram representation of the Bethe–Salpeter equation on the Keldysh-contour
instead on the physical time axis. In dynamically screened ladder approximation, and using
the Shindo approximation, we get the following equation (in time representation)

In this equation, and the other two time quantities are defined at the Keldysh contour.
By positioning of the times at the branches of the contour, one gets the equations for the
two-particle correlation functions  and for the causal and anticausal functions. In addition
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to Eq. (10), we have to give an expression for the nonequilibrium effective two-particle
potential. We found12

Correspondingly, we have for the nonequilibrium two particle shift12

Equations (10)–(12) are the basis for the description of strongly correlated nonequilibrium
plasmas with bound states. In nonequilibrium, the Bethe–Salpeter equation (10) and the
Kadanoff–Baym equations (8) have to be solved self-consistently. Of course, this is an
extremely difficult task. First results were achieved in this direction by developing methods
for the numerical solution of the Kadanoff–Baym equations; see the contribution of Bonitz
and Kremp at this conference.
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INTRODUCTION

It is now well known that collisional atomic processes in dense plasmas can be considered
to arise from density fluctuation perturbations.1–5 In particular, it is possible to describe these
processes in terms of the dynamic structure factor defined by

which is a measure of the power spectrum of density fluctuations In the atomic
transition problem, the DSF is evaluated at the atomic transition energy and the plasma
density is taken as the plasma charge density which includes all species weighted by their
charge. In such a Stochastic Model, interesting dynamic screening behavior arises as a result
of different atomic transition energies sampling different frequency regimes, relative to the
plasma frequency, of the DSF.

Electron impact processes, characterized by an electron one component plasma DSF,
denoted may typically be treated within the Born approximation since the electrons,
which are light and typically hot, have a high average velocity. Under these conditions the
rate can be written directly in terms of

For ion impact processes it is almost always the case that transition frequencies are well
above the ion plasma frequency. The dominate behavior then arises from the high frequency
limit of

which has significant contributions only for small values of That is, only short times are
important in determining in the high frequency limit. The treatment of ions is further
complicated by the fact that ions can be highly charged. As such, ions cannot be treated in
the same perturbative manner as the electrons.
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In reality, of course, both electrons and ions simultaneously perturb the atoms so that
the criteria governing the slow ions must be taken into account and included when treating
electron collisions and vice versa. This prediction is in distinct contrast to previous work
which either neglects the surrounding ions entirely or treats them within a thermally averaged
potential, which corresponds to a long-time average. In summary, it is necessary to construct
an electron collision description in which we can account for the following ion features:

• Ion short-time behavior is important. This follows directly from Eq. (2) if the transition
energies are large. For smaller transition energies ion motion may be important. Here
large transition energy is defined as having frequency greater than the ion plasma
frequency.

• Ions are relatively slow. Due to their large mass, ions, including protons, move with
velocity if the electron and ion temperatures are the same. In general,

• Ions interact strongly. Ions may be highly charged and move slowly; simple perturbative
treatments (e.g.,, Born approximation) are typically not valid.

A SELF-CONSISTENT MODEL

A model is now presented in which ions are included in a calculation of electron impact
processes. Care is taken to treat the ions in the manner discussed above. Estimates are made
of the ionization potential depression (IPD) based on this model in the next section.

The atom–plasma Hamiltonian can be written as

where is the atomicHamiltonian, is the ion Hamiltonian, is the electron Hamiltonian,
is the electron–ion interaction Hamiltonian, is the atom–ion interaction Hamiltonian,

and is the atom–electron Hamiltonian. The eigenstates of  are defined by

The probability that there has been a transition from some initial state
to final state at time t later is

The contour c encloses the real axis counterclockwise and is the Hamilto-
nian resolvent. The interesting matrix elements are thus those of G(z).

Fortunately, it is possible to formally obtain the matrix elements
exactly thereby keeping terms to infinite order in the interaction V. The matrix element is
written in terms of the level shift operator

as
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where is the projection onto states other than and This is the
central result of this paper which indicates how energy level shifts due to both electrons and
ions arise in a self-consistent transition calculation. (Note that the energy level shifts
and are generally complex, as is This technique also has found wide applicability in
quantum optics.6 We now estimate the IPDs based on the considerations so far.

PREDICTIONS FOR IONIZATION POTENTIAL DEPRESSION

Consider now a simple model for electron impact ionization of a hydrogenic ion with
nuclear charge Z. Note that the matrix element describes transitions arising from both
electrons and ions since To isolate the electron impact contribution from
the ion impact contribution, only is retained in This describes electron impact
transitions in the presence of the electrons and ions which contribute to and
(Similarly, we could keep in to describe ion impact processes in the presence of
electrons and ions. In either case the interference term is being ignored, which is
a consequence of treating the two processes as distinct.)

A complication arises from the term which couples the electron and ion subsystems.
To obtain simple estimates for the level shifts, we include this coupling approximately by
writing

where the are the potentials arising from statically (electron) screened ions and
represents electron density fluctuations. The first term will be retained in which

isolates electron impact processes. The levels are modified by both terms, but mostly the
strong interactions of the screened ion terms, and are included in and For very
slowly moving ions, can be neglected and the ion configuration is the same for both the
initial and final states. Since we don’t know the given ion configuration, an average over ion
configurations is taken at the end of the calculation. In the second equation, the total potential

due to the screened ions has been expanded in a multipole expansion
about small r. This approximate form is useful for tightly bound states and allows one to
average over the microfield distribution to account for the various ion configurations.1

For less localized states, continuum states in particular, the full form of the interaction must
be used. It is clear that, in either case, the screened ion microfield is largely responsible for
the level shifts whereas the electrons represent a stochastic perturbation; we thus refer to this
model as the “Microfield Stochastic Model” (MSM).

Consider now an ionization process from an n = 2 level to a plane wave state
in an approximation where Ignoring the monopole term the first order
energy correction to the bound state arises from the total electric field of the perturbing
screened ions. Since the n = 2 level has angular momentum degeneracy, care must be taken
in evaluating the energy level shift. This will, of course, give rise to the well-known Stark
shifts7 of the bound state levels. Thus we see that the n = 2 sublevels will not be shifted
equally: some levels will move toward the continuum (become less tightly bound) and others
move away from the continuum (become more tightly bound). Thus, for the n = 2 bound
states,
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Figure 1. Ionization potential for a hydrogenic argon ion (ICF conditions) from the n = 2 level. The curves
represent the ionization potentials from the various Stark levels and from a simple ion-sphere model.

Figure 2. Ionization potential for a hydrogenic carbon ion (short pulse laser conditions) from the n = 2 level.
The curves represent the ionization potentials from the various Stark levels and from a simple ion-sphere
model.
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where (Atomic units will now be used.) In the second step a typical field
strength of  has been used is the electron sphere radius). The energies refer
to the upper and lower Stark states, the other two n = 2 levels being unshifted. For the final
state we have

where ion-sphere potentials have been used as a model screened ion; the multipole expansion
has not been used for the continuum state. (In general the potentials will also depend on
temperature.) From these estimates, we find that the ionization potential I is given by

Here refers to the mean ion charge surrounding the target atom. This result can now be
compared with the shift predicted by simply placing the atom in an ion-sphere cell. This
gives an ionization potential again for n = 2, of

Comparisons of I and are given in Fig. 1 and Fig. 2 for argon in hydrogen and pure
carbon, respectively. In the argon calculation Z = 18 and which roughly corresponds
to ICF conditions. It is clear that the simple ion-sphere screening model predicts a much
larger IPD than the MSM model. In particular, note that the lower Stark state is nearly
unshifted as a result of a near cancellation of the increased Stark binding and the lowering of
the continuum. For such a state, we would not expect a large increase in the ionization rate.
In the carbon calculation Z = 6 and which roughly corresponds to short-pulse laser
experimental conditions. Again we see that the lower Stark state is mostly unshifted, even
out to unrealistically large densities. Interestingly, the upper Stark state follows fairly closely
to the simple ion-sphere prediction. It is important to note however, that it is only the upper
Stark state which follows that prediction, which appears to be fortuitous since the argon case
did not show this behavior.
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D. Beule and A. Förster
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INTRODUCTION

Partially ionized and dense plasma may develop rather complex reaction kinetics. The
plasma is usually composed of atoms and ions as well as of free electrons, which undergo
mutual transformations by ionization and recombination.1, 2 The theoretical description of   the
inhomogeneous kinetic processes in hydrogen plasma can be reduced to coupled reaction–
diffusion equations3 for electron, ion and atom densities. Strong Coulomb interaction de-
creases the reaction energies for ionization and excitation and the corresponding reaction rates
depend on the charged-particle densities. This additional non-linearity in the kinetic equa-
tions lead not only to an enhancement of ionization and excitation processes and therefore
to shifts of stationary states, but also to the appearance of new stable and unstable stationary
states. In the area of strong coupling the macroscopic behavior of the plasma may involve
collective effects like bistability, nucleation, and front propagation.3, 4

MESOSCOPIC DISCRIPTION

We investigate pure hydrogen plasmas using the chemical picture.5 The elementary
constituents are free electrons e, bare nuclei i, and atoms a. For the stochastic simulation of
inhomogeneous kinetic processes6 space is divided into M boxes of length h and the number
of particles of species in each box 1,... ,M is considered instead of particle
densities. The evolution of the number of particles is assumed to be a
Markoff process and thus the dynamics are governed by a master equation for the probability
distribution P

The time-evolution operator consists of a reaction and a diffusion part. The reactions
give rise to local particle birth and death processes while the diffusion leads to hopping of
particles between neighboring boxes. The probabilities for these events are determined6 by
considering each box as a homogeneous plasma for sufficiently small box lengths h.

When simulating the master equation for large systems the most time consuming proce-
dure is the probabilistic selection among the large number of possible events. This selection
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requires a large summation of event probabilities in each simulation step. The problem can
be overcome by collecting events into groups: First the probabilities for all events in a certain
cell are summed up. Second cells with probability sums that are similar on a logarithmic
scale are collected into classes. Thus the summation of event probabilities can be split into
three parts and the selection of the events can be done more efficiently. After selection and
performing a change in particle numbers only a few parts of the sum have to be recalculated
in order to proceed with the next selection.

MACROSCOPIC MODEL

Neglecting fluctuation and averaging over distribution functions one can derive reaction–
diffusion equations for electron, ion and atom density and In the macroscopic
approach analytical solutions3 and numerical investigations4 of inhomogeneous kinetic pro-
cesses in hydrogen plasma are based on a reaction–diffusion equations for the degree of
ionization It is derived on the assumption of homogenous mass density

for the regime of ambipolar diffusion3

D denotes the ambipolar-diffusion coefficients while and are the rate coefficients for
impact ionization and three-body recombination

The rate coefficient1 for ionization and recombination in an ideal thermal plasma
are altered by interaction effects that decrease the effective ionization energies
The ionization coefficients depend exponentially3 on the lowering of the ionization energy,
i.e., Therefore interaction may change  by orders of
magnitudes while recombination  coefficients change only slightly,2               This justifies
the approximation Rigid shift approximation allows to establish a relation between
the lowering of the ionization energy and the interaction parts of the chemical potential

for the constituents:

FLUCTUATION EFFECTS ON FRONT PROPAGATION

The general features of equation (2) are determined by the roots of the reaction function
i.e., by its stationary states. For ideal and for most non-ideal plasmas the source

function has two roots, corresponding to one stable stationary state and one unstable stationary
state. The stable state belongs to the ionization equilibrium at given temperature and
density of heavy particles, and the unstable state corresponds to an atomic gas with
no ionization. Small fluctuations will cause transitions from the unstable to the stable state.
One scenario is that trigger fronts connecting stable and unstable states propagate in space.

For a plane front, i.e., in a quasi one-dimensional situation it can be shown that all
kinds of localized initial condition for Eq. (2) evolve to trigger fronts with fixed shape that
propagate with constant velocity7 Figure 1 compares different stochastic realization
that evolved from the same initial conditions with analytical results6 for the mean-field
equation. Each stochastic simulation has developed a front shape that compares well with
the analytical prediction. Furthermore the mean front velocity is also in good agreement with
the analytical results.6 Nevertheless the front position of different stochastic realization differ
significantly. In order to understand this effect one has to check how the mean-field equation
(2) is related to the mesoscopic discription (1). The relation is usually established by the

-expansion.8 By using this expansion the master equation for the distribution of particle
numbers is transformed into a differential equation for the densities and a

614



Figure 1. Snapshot of different stochastic realization that evolved from the same initial conditions (rectangular
front) with analytical results for the fronts shape of the the mean-field equation (2) at arbitrary position.
Density of heavy particles  and temperature T = 35000K.

Figure 2. Expansion of an ionization spot into an embedding atomic gas. The height represents the degree of
ionization on a linear scale. The initially sharp transition between plasma and atomic gas at t = 0 is smeared
out and the front propagates into the gas. Both the shape of the spot and the local degree of ionization
fluctuate. Density of heavy particles and temperature T = 35000K.
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Fokker–Planck equation for the distribution of the fluctuations. The  -expansion requires that
fluctuations are always damped in order to keep the distribution of the fluctuations unimodal
and narrow. In our model this requirement is violated by fluctuations that correspond to a
movement of the whole front relative to a frame moving with the average front velocity
The fact that these modes are not damped reflect the translation invariance of the system and
leads to a diffusion-type behavior of the front position. Therefore the position of different
stochastic realization of ionization fronts starting from the same initial conditions will drift
apart. The fluctuations of the front position show an unusual scaling behavior.9

CURVED IONIZATION FRONTS

So far we have considered only quasi one-dimensional situations. The solution of (2)
can be generalized for arbitrary dimensions d. The velocity of the front becomes

where denotes the velocity of plane fronts and K is the local curvature of
the front.

Figure 2 shows a two dimensional simulation of an ionization spot that grows and
expands into the surrounding atomic gas. The initially sharp boundary between plasma and
gas is smeared out and the stable front profile starts to build up. The front propagates while
its shape and the degree of ionization fluctuate. Due to fluctuations the spot loses its initially
spherical symmetry and develops an irregular boundary with different local curvature.
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INTRODUCTION

The quantum-statistical theory of dense plasmas in the framework of Green’s functions
needs input quantities like self energies, effective potentials, T -matrices and information about
few particle properties to set up improved approximations for kinetic equations, stopping
power and thermodynamic functions and to go beyond simple approximations like rigid shift,
Born approximations and static screening. First showing the essential role of the self energy,
we then give an expression for the self energy in the binary collision approximation using
off-shell T-matrices.

In kinetic theory, the stopping power

can be calculated, if the single particle distribution function is known. This function
can be determined from a general kinetic equation, given in the following shape by Bornath
et al.1

with the corresponding collision integrals

This kinetic equation is nonlocal in time and conserves the total energy. The self energy
correlation functions read
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with the T-matrices off the energy shell and can be interpreted as scattering rates into and
out of a state with momentum p. It describes the impact of the system on the few particle
properties and the effective interaction. The imaginary part of the retarded self energy
is related to a finite life time of the single particle state due to collisions. We start from an
effective wave equation, first given by Röpke et al.2

where the plasma hamiltonian can be decomposed as

describing the phase space occupation (Pauli blocking) and the exchange (HF) self energy
as static contributions and the dynamic self energy and the contribution of the dynamically
screened potential. So the continuum edge can be written as the sum of the quasiparticle
energies of the species

where the quasiparticle energies are determined also more generally by the maxima of
the spectral weight function

the latter having the meaning of  a probability function, which gives the energy and momentum
distribution of the particle. Again the central role of the self energy is obvious. Thermody-
namic properties can be achieved by using the relations for the density or the pressure (the
parameter  may be the charge)

Results for different approximation schemes are given by Fehr.3

THE BINARY COLLISION APPROXIMATION

In order to include the binary collision and especially the influence of the bound states
on the single particle spectrum, it is necessary to deal with the T-matrix approximation of the
self energy. In order to discuss the single particle spectral properties one needs the off-shell
T-matrices, which depend on momenta and on the complex energy. These quantities can be
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Figure 1. Real and imaginary parts of the T-matrix for an attractive Coulomb potential (hydrogen plasma)
as a function of the energy An on-shell singularity can be

seen for positive energy.

derived by solving the Lippmann–Schwinger equation for the T-matrix, here written down
in c.m. variables

the superscript denotes the inclusion of exchange terms. In the case of the Coulomb
potential, this Eq. can be solved using Schwinger’s4 expressions for the Coulomb Green's
functions

with  and relative
mass. The real part of the T-matrix shows a typical principal value behavior at the bound state
energies, and, in the imaginary part, we find delta peak like structures at these energies, see
Fig. 1. But this expression shows several singularities, especially on the energy shell, and we
have to include an appropriate screening of the potential. The binary collision approximation
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Figure 2. Real and imaginary parts of the self energy in binary collision approximation (T-Matrix
approximation) and corresponding spectral function for an electron in an electron–hole plasma (equal masses
of the species) in atomic units, T=1Ryd (100K),

of the self energy reads in c.m. variables

Since there is no exact solution for the (screened) Debye T-matrix off the energy shell
known, we modify the Lippmann–Schwinger equation as proposed by Gorshkov5 and get
after a summation over all ladder terms

with — inverse Debye screening length and   — screening function

This corrects the singularities, however the dispersion relation of the T-matrix is violated.
The characteristics of the T-matrix as to be seen in Fig. 1 determine the real (full line) and the
imaginary parts (dashed) of the self energy in binary collision approximation shown in Fig. 2
for an electron together with the corresponding spectral function. The merging of the higher
bound states into the continuum is clearly to be seen. More details can be found in Fehr.6

SUMMARY

We tried to give a relative simple way for the inclusion of bound states in self energy cor-
rections by modifying the Lippmann–Schwinger equation and calculating off-shell T-matrix

620



elements. This left open questions considering an appropriate screening. For alternatives see
the contributions of Kremp and Kraeft and of Schlanges to these proceedings.
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EXPERIMENT

It is known since the fifties1 that discharges between two electrodes bridged by an
insulator in high vacuum start in flashing over the insulating surface. A so-called sliding spark
develops. Bridging the electrodes by a capillary, the same phenomenon was observed.2–5 The
capillaries were typically made of polyethylene in order to observe line-free recombination
spectra of C V   I. During the discharge the capillary wall material is evaporated and ionized
due to Joule heating and a hot dense carbon–hydrogen plasma is formed. In high-vacuum
discharges the capillary is filled in much less than 50 ns. Typical plasma parameters are

for electron density and for electron temperature.
Since the sixties capillary discharge experiments were of interest as highly reproducible

light sources. Sparks emitting intense continuum radiation in the visible and ultraviolet
spectral region are important for many applications: temperature determination in plasma by
means of line-reversal method, for measurement of absorption coefficients in the ultraviolet
and soft X-ray domains, especially of the discontinuities at the absorption edges, or for use
as radiation standards. Today they are considered as promising x-ray laser sources.6

Electron density and temperature in the plasma column (Fig. 1) are determined by
measurement of emitted absolute radiation intensity from optical thin and optical thick layers.
As the process of ablation continues more and more material is released from the wall of the
capillary and transformed into plasma. The increase in plasma density is accompanied by a
steady decrease in temperature in the way that the pressure remains almost constant. Radiation
from prominent bound-bound transitions allows to record the temporal appearance of ions of
different charges. At the temperatures under consideration hydrogen is fully ionized. The
carbon ions may be identified by the line radiation from the transitions between the lowest
excited states and the ground states, respectively. The experimental data of Fig. 2 suggest
that the plasma composition in the first hundreds of nanoseconds is dominated by C VI and
C v. The massive appearance of highly charged carbon ions is still not well understood.
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Figure 1. Experimental data for electron temperature and electron density as function of time. A
polyethylene capillary of 10 cm length and inner diameter of 2 mm was used.2

Figure 2. Temporal development of intensity emitted by the C VI line at 3.373 nm and the C v line at 4.027 nm
and of discharge current U
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THEORETICAL MODEL

The theoretical description aims at a calculation of the plasma composition over time.
In the considered state of the discharge process recombination takes place by fast capture of
electrons into highly excited levels which are followed by radiative de-excitation processes.
Our treatment is based on the assumption that the evolution of the charge-state distribution
in the plasma column during the discharge process may be approximately described as a
sequence of equilibrium states. The detailed modelling of the excitation and de-excitation
processes would need a more sophisticated treatment based on rate equations.7

Our model for the equilibrium takes into account several dense plasma effects such as
correlation and continuum lowering due to Coulomb interaction, degeneracy, and quantum-
mechanical exchange. The basic thermodynamic quantity is the free energy density

that depends on the densities of the different ions of the free electrons
and of the temperature T. The construction of free energy density follows the ideas of

PACH8 and has the structure

The ideal contribution of the ions (indices i,id) and electrons (indices e,id) are computed
following the Boltzmann and the Fermi–Dirac statistics. The correlation and exchange
contributions of the ionic (index i) and electronic (index e) subsystems as well as of the ion–
electron interaction (index ie) are given by Padè approximations which interpolate between
the analytically known limit cases for the interaction expressions. The last term in the free
energy density models the short-range repulsion between ions due to overlapping electron
shells by an neutral hard-sphere system (index hs). The detailed plasma composition for
a given total heavy-particle density n and temperature T may be calculated by minimizing
the free energy density with respect to the individual ion densities. In Fig. 3 we present a
map of the ionization state of carbon as part of a plasma in the temperature range of
105 . . . 106K and a mass-density range of The knowledge of the detailed
composition implies naturally also the figures of the free-electron density in any point of the
ionization map.

The experimental points of Fig. 1 for the electron density and temperature may be in
good approximation interpolated by linear functions of time t:

The corresponding path for the evolution of the wall material during the discharge process is
indicated by the full line in Fig. 3. The detailed plasma composition along the evolution path
of the capillary discharge plasma is given in Fig. 4.

DISCUSSION

The charge state distribution (Fig. 3) is dominated at high temperatures by fully ionized
carbon ions (lower right corner), followed by a narrow strip dominated by C VI and a relatively
large area of almost pure C v (lower left area) at medium temperatures. The shape of the
different areas is mainly determined by temperature ionization and reflects the jump of
ionization energies between C I . . . C IV and C V and C V I , respectively. The effects of density
ionization may be studied in the upper part of Fig. 3 but they are relatively small in the area of
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Figure 3. Equilibrium abundancies of highly charged ions in the mass density–temperature plane and
experimental path (thick black line)

Figure 4. Detailed composition  calculated along the experimental path of Eq. 2.
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the recorded path of the wall material. Morgan et al.9 argue that fully ionized carbon needs a
temperature of  to appear. The characteristic ionization temperature is naturally a
function of the density. According to our calculation the mass density of the discharge plasma
is between and In this range a temperature of  is sufficient to
produce a substantial amount of fully ionized carbon. Consequently, our calculation of the
detailed composition (Fig. 4) starts in the area with fully ionized carbon and continues over
C VI and C V to C I V . This way the model supports the facts of the appearance of highly
charged carbon in a transitory discharge regime.
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INTRODUCTION

Adiabatic processes play an important role in plasma physics. A list of examples includes
sound waves, expansion of plasma or gas into vacuum, and shock-wave experiments.1 Further
they play an important role in astrophysics since e.g., the radial structure of the stars as well
as of the fluid planets like Jupiter or Saturn follows an adiabat;2 further we mention the three
adiabatic coefficients used in astrophysics and in particular in planetary and helioseismology.3

Adiabatic processes are characterized by a relatively fast change of state so that the system
undergoing the change does not exchange heat with its surroundings. Reversible adiabatic
processes are isentropic, since they take place with no change in entropy. Here we consider
strongly coupled plasma under isentropic conditions. In difference to an earlier work devoted
to moderately coupled isentropic plasma,4 we extend here the theory to strong coupling using
the full Padé approximant (PACH - approach).

ADIABATIC EOS IN PARTIALLY IONIZED PLASMA

We investigate pure hydrogen plasma using the chemical picture.5 The elementary
constituents are free electrons e, bare nuclei i, atoms a, and molecules m.                  and
denote the particle densities of these constituents. We do not consider the ionic species
and since their concentration are found to be negligible. For a given total density of nuclei

the composition can be described by the fraction of atoms  and
the fraction of molecules                                                       These quantities are related to the degree of ionization

via the relation The thermodynamic properties of the plasma
model are characterized by the free energy density Taking electro-
neutrality into account, one particle density can be eliminated and the free energy
can be expressed in terms of the degree of ionization and the fraction of molecules i.e.,

The characterization of the plasma state involves a minimization procedure
with respect to the composition under the constraints of electro-neutrality and given total
density n. This constrained minimization can be expressed by:  and
Other thermodynamic properties can be obtained by the usual thermodynamic relations. The
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adiabatic EOS p(s, T), here called AEOS, can be calculated from the isothermal pressure
p(n, T) and the isothermal specific entropy by solving the specific entropy
s(n, T) with respect to T and inserting the result into p(n, T). Already in ideal or weakly
coupled plasma this leads to a rather complex equation.4

AEOS IN STRONGLY COUPLED PLASMA

For many applications of an adiabatic equation of state the model of ideal or weakly
coupled plasma is insufficient. Under non-ideal conditions the Coulomb interactions lower
the ionization energy, alter the degree of ionization and yield negative contributions to, e.g.,
the pressure and the entropy. Additionally, electrons may become degenerated and quantum
exchange and correlation effects appear. In effect, there is a strong interplay between the
Coulomb coupling and quantum effects on one hand and the ionization equilibrium and the
AEOS on the other. This interplay is characterized by the following feedback effect: The
more the ionization is developed and charged particles dominate the plasma composition the
stronger are the Coulomb effects in the plasma. On the other hand the Coulomb interaction
shifts the ionization equilibrium to higher ionization states; this effect is also known as
pressure ionization.

A quantitative treatment of interaction effects for a broad range of densities and temper-
atures is given by the the so-called PACH model.6 In the framework of this model the free
energy is calculated from an expression with the following structure

This free energy density is to be minimized with respect to the degree of ionization and
the degree of dissociation The ideal electron contribution is calculated from Fermi–
Dirac statistics, while for the ideal ion contribution       Boltzmann statistics is used. The
Coulomb interaction contributions that interpolate analytic results6, 7 consist of three Padé
approximations: the exchange and correlation contribution of the electron gas  the Coulomb
contribution of ionic subsystem and ion–electron screening contribution The contri-
bution of neutral hard-sphere system is taken in the Carnahan–Starling approximation.
The excited states of the atoms are accounted for by a Planck–Larkin partition sum in the
atomic contribution For the molecules contains also vibrational and rotational
contributions.8

The Padé approximation takes advantage of the quantum viral functions.5 For efficient
numerical treatment we approximate the infinite sums by new interpolation formulas that are
improvements of those given in Ref. [11]

where denotes the Euler constant.

RESULTS AND DISCUSSION

The essential part of the PACH approach is the minimization with respect to and
The degree of ionization and the degree of dissociation have to be determined
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Figure 1. Plasma isentropes as obtained from PACH (solid) and in ideal plasma (dashed). The thin black lines
limit the area where ionization raises from weakly ionized to the nearly completely ionized

simultaneously. We achieve the minimization of the free energy density by a simulated
annealing procedure9 that was originally developed for multi-component systems.10 After
performing this procedure on a dense grid in the density–temperature plane one can calculate
different thermodynamic properties by numerical differentiation. An alternative approach is
to construct separate Padé approximations for each thermodynamic property. So far this has
only be done for completely ionized plasma.11

We calculated the isentropes s = const. for hydrogen plasma. They are plotted in figure
1 together with lines of constant degree of ionization. In general the difference between ideal
and non-ideal isentropes increases as density increases and temperature decreases but the
interaction effects vanish when the ions and electrons are bound into to atoms and molecules.
Therefore the ideal and non-ideal isentropes that nearly coincide at high temperatures merge
again after they have crossed the area of partial ionization. Due to the decrease in particle
number the adiabats become steeper as atoms and molecule formation takes place for de-
creasing temperature. Lower values of reduced entropy correspond to higher densities or
lower temperatures and therefore to larger non-ideal effects and thus to greater differences
in the degree of ionization. There are points where the non-ideal contributions to entropy
(cf. figure 1) cancel each other and the ideal and non-ideal isentropes cross. This points are
found in the region of highly ionized plasma.

In order to demonstrate how bound-state formation significantly alters the adiabatic
EOS we plot adiabatic EOS obtained from PACH and of an ideal system where no ionization
processes take place. For such systems the adiabatic EOS can be obtain by integrating

For a Boltzmann plasma with fixed degree of ionization one finds Therefore the
adiabatic EOS for such a system is given by a set of parallel straight lines in a log(p) over
log(T) plot. One of this lines is shown in figure 2. For high temperatures (i.e., a high degree
of ionization) the PACH isentropes fulfil But in the area where the formation
of bound states takes place the adiabatic EOS deviates significantly from this value. For
decreasing temperature the pressure is decreasing much faster than in a system with fixed
degree of ionization. For s = 18 one can even see a second steep decrease in pressure at low
temperature where molecule formation starts.

In conclusion we may state that bound-state formation and strong coupling effects alter
significantly the AEOS in definite regions of the temperature-density plane.
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Figure 2. Adiabatic equation of state for reduced entropy s = 18, 21, 24 over temperature. We compare the
pressure of an ideal plasma (thin lines) with the pressure obtain from PACH (thick lines). For comparison we
also plot an adiabatic EOS for a fixed degree of ionization as obtained from Eq. (4) using   (short
dashed line).
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1. INTRODUCTION

There are number of collision processes involved in plasma production and diagnos-
tics.1–3 These are elastic scattering, ionization, excitation, dissociative ionization, recombi-
nation, electron capture, etc. Among them, the elastic scattering process plays a key role in
plasmas. Plasma in laboratory and astrophysical environments can be classified as weakly and
strongly coupled plasmas according to the strength of coupling due to Coulomb interaction
in plasmas.4 Those plasma with values of the plasma coupling parameter
much smaller than unity may be called weakly coupled plasmas; those with the plasma cou-
pling parameter around or greater than unity, strongly coupled plasmas, where b and T are
the interparticle distance and the temperature. A description of the strongly coupled plas-
mas is provided by the ion-sphere (or Wigner–Seitz) model.5–7 Astrophysical dense plasmas
are those we find in the interiors, surfaces, and outer envelopes of astrophysical objects,
such as neutron stars, white dwarfs, the Sun, etc. The ion-sphere model has been widely
used to investigate the atomic processes in strongly coupled plasmas, such as excitation8

and bremsstrahlung9, 10 processes. The ion-sphere model has played an important part in
elucidating the properties of the strongly coupled plasmas.4, 6, 7 The semiclassical method
called the eikonal approximation11, 12 has been widely used in many collision processes.3

However, most of the literature has focused on electron collision processes in weakly coupled
plasmas.13–17 Also, the eikonal method has not been used in elastic electron–ion collisions in
strongly coupled plasmas. Thus, in this paper we investigate the elastic electron–ion collisions
in strongly coupled plasmas using the ion-sphere model with the eikonal approximation. The
eikonal differential elastic scattering (EDES) cross section in dense plasmas is obtained as a
function of the impact parameter (b) and ion-sphere radius (Rz). A modified eikonal method
called the Wallace correction18, 19 is also applied to calculate the cross sections. The results
show that the Wallace correction on the EDES cross sections cannot be neglected in the cutoff
impact parameter, i.e., the ion-sphere radii. The EDES cross sections substantially decrease
as an increase of the energy of the projectile electron and increase as the plasma-screening
effect decreases through the ion-sphere radius.
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2. EIKONAL AND MODIFIED EIKONAL APPROXIMATIONS

A first-order theory, in the rearrangement sense, arises from the Lippmann–Schwinger
equation,20

where is the solution of the Schrödinger equation,

here k is the wave number, the reduced potential U(r) is given by the potential V(r) : U(r) =
and is the solution of the homogeneous equation,

and is a Green’s function, such that

The free outgoing solution of the above equation is obtained by

Then a solution to Eq. (2) can be written in the form

where we have, for convenience, defined

If we have chosen the z axis in the direction of the incident wave vector the free outgoing
Green’s function can be written as

where is given by

with the impact parameters and (= 1 for  for x < 0)
is the step function. The eikonal wave function is then

If we adopt a cylindrical coordinate system such that being a unite vector
perpendicular to the momentum transfer and the integral over the variable z, the
eikonal scattering amplitude becomes
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where is the eikonal phase,

After some manipulation the total elastic scattering cross section in the eikonal approximation
is obtained by

where the differential solid angle was replace by (here, The
EDES cross section is then

where

for a symmetric potential V(r) with Here the condition of validity of the
eikonal approximation is , where E is the energy of the incident electron. A simple
modification to the eikonal approximation has been suggested by Wallace.18, 19 The modified
eikonal scattering amplitude containing the reading correction to the eikonal phase is

where the corrected eikonal phase is given by

here Wallace phase is obtained by

with

The modified EDES cross section with the Wallace correction is found to be

where is given by Eq. (16) and the Wallace phase now reduce to

for a symmetric potential V(r).
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3. EIKONAL ELASTIC SCATTERING CROSS SECTION IN STRONGLY
COUPLED PLASMA

A most typical example of a strongly coupled plasma may be seen in the system of ions
inside a highly evolved star. A description of the strongly coupled plasmas is provided by the
ion-sphere model.5–7, 21 In this model the interaction potential is obtained by

where is the ion-sphere radius (or the Wigner–Seitz radius). This ion-
sphere potential is designed so that potential and its first derivative vanish at some cutoff
distance, which is the so-called ion-sphere radius. Thus, in strongly coupled plasmas,
screening is better described by this ion sphere picture, in which the stationary ion of charge
Z is surrounded by Z electrons, uniformly distributed throughout the ion-sphere radius. Using
this potential, the ordinary eikonal phase is obtained by

After some manipulation the Wallace phase is found to be

Then the EDES cross section in a strongly coupled plasma is given by
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where                        is the scaled ion-sphere radius, is the scaled impact parameter,
and is the scaled energy of the projectile electron. Including the Wallace
correction the modified EDES cross section is found to be

Numerical values of the EDES and modified EDES cross sections at the maximum positions
are listed in Table 1. Here we consider two cases of  and 20, and consider two
case of the ion-sphere radii: and 10. The cross sections are substantially decreased
with an increase of the plasma-screening effect through the ion-sphere radius. The Wallace
correction effect is increased as the plasma-screening effect increases for a given projectile
energy. However, the Wallace correction effect is decreased as the projectile energy increases.
For a given ion-sphere radius, the maximum position of the cross section is almost unchanged
with a change of the energy of the projectile electron.
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VANISHING OF HIGHER EXCITED BOUND STATES WITHOUT
LOWERING OF IONIZATION POTENTIALS IN PARTIALLY IONIZED
STRONGLY COUPLED PLASMAS
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PO Box 110, Moscow 121019, Russia
e-mail: henry@aha.ru, fax: (095)1357995

INTRODUCTION

The influence of plasma waves on atomic spectra in electron-ion strongly coupled
plasmas (SCP) was studied in

 1,2

. The SCP collective model 1,3,4 allows one to consider
plasma Hamiltonian as a set of weakly coupled oscillatory-like terms. The model was com-
pleted by excited atomic states also in the form of the oscillatory-like terms. The interaction
between two oscillatory modes was taken into consideration as a plasma wave field. Thus it
becomes possible to construct a rough representation of a SCP plasma spectrum of free and
bound electron states.

The principle idea of l,2 may be formulated in a following way.
Particle motion in the collective states corresponds to the oscillatory type of charge

density variation. It is connected with longitudinal electromagnetic waves for frequencies
Hence collective states, i.e. the continuous spectrum states, can be

identified by frequencies from to where is a boundary wave vector 1. The
quantity is defined by analogy with Debye wave number in solid state theory.

An atomic electron with principle quantum number t behaves upon the action of a cir-
culating electromagnetic field as an oscillator. Its frequency

corresponds to a transition from t-th level to (t+l)-th. This fact permits one to classify the
states of this mode over the frequency scale. It is fairly obvious that the energy of the t-th
state decreases when t growth.

The low energy states are sufficiently well defined, the interaction with collective states
being weak enough in accordance with the inequality The mode fre-
quencies draw together with the growth of t. A resonance condition is achieved at some
value t=t*
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Interaction is carried out by means of plasma wave fields, as well as by atomic polari-
zation fields. The interaction results in mutual repulsion of the resonance oscillation frequen-
cies. An atomic state spectrum is found to be restricted by some frequency, Eq. (2), and by
the corresponding energy

The repulsion and restriction discussed above were treated as an electron spectrum gap

where discrete spectrum vanishes and density of continuous states remains low. The energy
gap results in the decrease of (a) shift and broadening constants of spectral lines, (b) spectral
line intensities, and (c) continuum spectrum intensities.

There are two weak points in the above presented idea of 1,2. First, the definition (1) is
not valid for complex atoms. The hydrogen-like Eqs.(l)-(3) can underestimate the value of

substantially. It will be shown in the next Section.
Second, the classical mechanics treatment was implied in l,2. It is inconsistent since

there is no concept of descrete spectrum in classical mechanics. Besides, it does not permit to
perform quantitative estimates of the gap influence on lines&continuum spectrum intensities.
The preliminary statement of the problem for quantum treatment is presented in the last Sec-
tion. We involve Fano5 approach which was only mentioned in 2.

Note works which are partially related to l,2. Gutierrez and Girardeau 6,7 tried to con-
sider an atom as bound states of charge particles interacting by means of Coulomb potential
renormalized by collective plasma excitation.

COMPLEX ATOM SCP TREATMENT

The resonance condition

remains valid. But the Eq.(l) should be replaced with

where is the energy difference between t-th and -th terms of complex atom.
Now apply the Eqs. (5) and (6) to the analysis of experimental results obtained by

Levina and Pukhov 8. They have measured spectral line broadening for carbon atom CI
2419Å and ion CII 2837Å for electron concentration range and
temperature about 30000°Ê. The observed values of the half-width agreed with data 9 for

The values measured became less then values calculated according to 9

with increasing of The discrepancy achieved the value of factor 7 for CI 2479Å and factor
4 for CII 2837A at The nonidealty parameter is about for
Z=l at these conditions, i.e. the Debye radius is less then interparticle distance.

The CI atomic energy levels related to the spectral line CI 2479A and to its broadening
are shown in Fig.la. Note that the broadening quadratic Stark effect constant is defined
by
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where and are the wavelength and the oscillator strength of the optical transition from the
level considered to the i-th level. The sum (7) is extended to all levels connected with the
level considered.

The effect that we spoke of consists of the following. If the resonance condition (5) is
carried out for the substantial part of the i-th levels in (7), these levels should be cancelled
from the sum (7) and the value of decreases.

It is seen in Fig.la that at the plasma wave energy does not al-
most disturb the levels which give the main contribution to the sum (7) for the line consid-
ered. Consequently the halfwidth values were measured to be close to the values obtained
from9. And vice versa at the plasma wave energy disturbs considerably all
the levels which contribute to the sum (7). It reduces  substantially.

Figure.1. Fragments of energy level diagramms for CI (a) and CII (b) relevent to spectral lines
CI 2479Å and CII 2837A. Vertical thick segments designate energies for two
cases. Thin lines designate terms contributions to the broadening constant (7) (only
upper level is considered).
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It makes no matter whether we estimate according to (1) or (6) to treat CI 2479Å.
The opposite situation takes place for the spectral line CII2837Å. The estimates according to
Eqs.(1)-(4) does not affect at all the sum (7) either at or at If one
compares not with (1) but with (6) (Fig.1b) it is possible to conclude that the plasma
wave energy disturbs considerably all the levels which contribute to the sum (7) for the
spectral line CII 2837Å. It is necessary to take into account that the value exceeds by a
factor the value for the values considered.

Thus, Fig.1b shows that taking into account the atomic energy levels for complex
atom may increase the value of by substantial factor. It results in reducing value. That
was the case in the measurements8.

PRELIMINARY STATEMENT OF THE QUANTUM PROBLEM

We treat absorption spectrum in SCP since it is an observable quantity and provides
information about energy spectrum.

Approximate Hamiltonian is expected to be constructed from two parts in the follow-
ing way. The first part accounts for descrete spectrum, the second part accounts for contin-
ues states. The perturbation is introduced to describe the influence of collective modes
which results in mixing of wave functions corresponding to two parts of the Hamiltonian.

It is necessary to emphasize that is a nonstationary perturbation with frequencies
from to The perturbation leads to mixing of bound and free states which energies
differ by the value This picture agrees with quasiclassical results 1,2 concern-
ing energy gap value. However this approach opens the way to absorption spectrum calcula-
tion.

The effect, which is expected from mixing of the every pair of states, is a Beutler-Fano
profile. The effect is entangled by two factors. Nonstationary perturbation results in nonsta-
tionary profile. Therefore the time averaging is needed. Moreover treating of mixing of only
two states is not a good approximation since all the states interacting with the perturbation are
necessary to take into account for photoabsorption calculation. Consequently the final ex-
pression should be a double integral from the Beutler-Fano profile over time and energy.

ACKNOWLEDGEMENT

We thank A.M.Pukhov for placing at our disposal the results8 before publication.

REFERENCES

1.

2.

3.
4.
5.
6.
7.
8.
9.

A.A.Valuev, A.S.Kaklyugin, G.E.Norman, in: Radiation plasmodynamics, ed.
Yu.S.Protasov (Energoatomizdat, Moscow, 1991) p. 396.
A.S.Kaklyugin, G.E.Norman, Proc. Intern. Conf. Physics of Strongly Coupled Plasmas
(Binz, 1995), eds. W.-D.Kraeft and M.Schlanges (World Scientific, Singapore, 1996)
p.278.
A.S.Kaklyugin, G.E.Norman, A.A.Valuev, ibid, p.435.
A.S.Kaklyugin, G.E.Norman, A.A.Valuev, XXIII ICPIG (Toulouse, 1997).
U.Fano, Phys. Rev. 124, 1866 (1961).
F.A.Gutierrez, M.D.Girardeau, Phys. Rev. A42, 936 (1990).
F.A.Gutierrez, Phys. Rev. A42, 2451 (1990).
O.V.Levina, A.M.Pukhov, Optics and Spectroscopy 81, 712 (1996).
H.Griem, Broadening of Spectral Lines in Plasmas, Moscow, 1978.

642



IONIZATION KINETICS IN A DENSE CARBON PLASMA

Ralf Prenzel,1 Thomas Bornath,1 and Manfred Schlanges2

1Fachbereich Physik der Universität Rostock
18051 Rostock, Germany

2Institut für Physik, Universität Greifswald
17487 Greifswald, Germany

INTRODUCTION

Recently, hot dense plasmas with electron densities of about and electron
temperatures of about 100eV were produced by intense laser irradiation of more than

focused on a solid target.1–3 Under such conditions, the plasma becomes nonideal,
and correlation induced many-body effects can influence essentially its equilibrium and non-
equilibrium properties. An important point in connection with these fascinating developments
is, that there is now a unique possibility to confront the theory of strongly coupled plasmas
with the obtained experimental results. Of special interest is the recombination and expansion
phase. Here, measurements were performed recently to study the temporal evolution of the
degree of ionization and of the electron temperature in laser-produced carbon plasmas. 1–3

The aim of this paper is to consider the recombination and expansion of such dense
plasmas theoretically based on a quantum kinetic approach. In the first part of the paper, the
coupled system of equations for the densities and the temperatures is given, including the
relevant collision processes as well as the typical plasma density effects. Numerical results
are presented which describe the density–temperature relaxation of a dense, hydrogen-like
carbon plasma for isoenergetic conditions. Then a simple model is applied to extend the
considerations to a adiabatically expanding carbon plasma appearing in the laser-produced
experiments.

EQUATIONS FOR DENSITIES AND TEMPERATURES

Rate equations for the population densities of atomic states in a dense plasma can
be derived starting from quantum kinetic equations for the Wigner distribution function of
free and bound particles.4 These equations include many-body effects such as quasiparticle
energies, dynamical screening, lowering of ionization energy and Pauli blocking. Integration
of the kinetic equations with respect to the momenta leads to hydrodynamic equations for the
densities and temperatures. In this section we are interested in the situation, where light and
heavy particles have not yet relaxed towards a common temperature. Such plasmas can arise,
when a short laser pulse interacts with solid matter.5
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For a plasma consisting of electrons, fully stripped ions and hydrogen-like ions in
different states with number densities respectively, we get

where Z is the nuclear charge number. On the r.h.s. of equation (1), we have the coefficients
of impact ionization three-particle recombination and of excitation/deexcitation
The coefficients account for many-body effects, what leads to a density dependence of these
coefficients. Numerical results can be found in Refs.6,7. In order to have analytical formulae
for the coefficients, we use here a simple approximation:8

with being the value for the ideal plasma state. In the following j denotes the principal

quantum number only. is given by where the second
term represents the lowering of the ionization energy. The shifts are in the lowest order9

The inverse screening length is given by
The excitation/deexcitation coefficients have been taken from Ref.10.

In the spatially homogeneous case the balance equations for the electron temperature
and the temperature of the ions can be given as

with The equations describe the temperature relaxation
of the light and heavy particles. Many-body effects are included in the terms with the inverse
Debye length explicitly, in the source function and in the terms of energy
transfer due to elastic collisions between the electrons and ions For
non-degenerate systems we find in the quasi-hydrodynamic approximation:11

with and is the reduced mass. is given in terms of the transport
cross section.11 The latter is used in first Born approximation.

In the following example, a dense hydrogen-like carbon plasma is investigated. Nu-
merical results following from the solution of the coupled set of equations (1), (3), (4)
are presented in Fig. 1. In the initial state, the plasma is chosen to be fully ionized with

In the first stage the screening is so
high, that only the ground state and the first excited state (j = 2) can be occupied. Due to the
recombination, the free electron density is reduced and the electron temperature rises, so that
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Figure 1. Time evolution of the occupation numbers and the temperatures for a two-temperature carbon
plasma:

the screening decreases. After the second excited state (j = 3) can exist and appears
as a new level (inverse Mott effect). The temperature relaxation is slower than the chemical
relaxation by more than one order of magnitude in time. This was discussed also in the case
of hydrogen.11 LTE is reached after Results for the density–temperature relaxation
for hydrogen and carbon plasmas based on a stochastic approach are given in Ref. [12].

ADIABATICALLY EXPANDING CARBON PLASMA

In this section we consider the case of an adiabatically expanding plasmas, as produced
by high-power, subpicosecond lasers.3 The ionization kinetics of such plasmas is studied
using a simple model of adiabatic expansion. For simplicity, a plasma with a common non-
equilibrium temperature of the whole plasma is considered. Using the internal energy and the
pressure in the approximation of the Debye limiting law,13 the equation of the temperature
for an adiabatically expanding hydrogen-like plasma can be written as

with The relaxation of the temperature is determined by the contri-
bution of chemical reactions and by the change of the energy density due to the expansion.
Nonideality effects enter this equation via the source term the nonideal pressure p
and the inverse Debye length

In the following example, the one-dimensional adiabatic expansion of an laser-produced
H-like carbon plasma is examined. Such plasmas were considered by Theobald et al.3 A
simple approximation is to set the expanding velocity MO constant and equal to the ion sound
velocity Then and is the
initial thickness of the irradiated foil). In Fig. 2 the time evolution of the plasma is shown.
The initial state (fully ionized,

is similar to the experimental conditions of Ref.14. In Fig. 2a the time evolution
of the plasma temperature in the nonideal case (described model) and ideal case (also without
reactions) is plotted. The temperature of the plasma with nonideal corrections is higher than
the “ideal” one, because of the reactions and the nonideal pressure. In Fig. 2b the evolution
of the free electron density is plotted. From calculations we find, that after LTE is
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Figure 2. Time evolution of the temperature and the free electron density for a adiabatically expanding,
hydrogen-like, carbon plasma: Points
are measurements from Ref. [14].

reached, so that the free electron density can also be calculated by using a nonideal Saha
equation with time-dependent temperature. The comparison with measurements14 shows,
that the calculated curve fits the experimental data fairly good.
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NONEXPONENTIAL TEMPERATURE DEPENDENCE OF REACTION RATES IN
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1Troitsk Institute for Innovation and Fusion Research
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Time evolution of ionic charge distribution and excited level populations may be density
dependent especially under non-ideal plasma conditions.1–5 The recent works1–5 show a
strong increase of ionization and excitation rates mostly due to so-called lowering of ionization
potential LIP with increasing density. In the present report we consider another mechanism
for increasing reaction rates which turns out to be even more important than the LIP. For
nonideal plasmas and dense gases with collisional frequency the adequate description of
kinetic phenomena can be done using generalized distribution function over energies and
momenta which is defined as

where is the particle field operator in Heisenberg represen-
tation.6 In (1) E and p are independent Fourier-transform variables and usual distribution
functions over energies f (E) or over momenta f (p) can be obtained by integrating f (E,p)
over p or E. Under equilibrium conditions Baym and Kadanoff showed that f (E, p) may be
represented in the following way6

where n (E) is a particle population number (for Fermi particles   and

is the mass operator for one-particle retarded Green’s function. The conventional
approach1–5 neglects and takes into account only which for weakly non-ideal
plasmas reduces to

where is coupling parameter, and is the Debye radius. This consideration gives
an increase in the reaction rates due to the LIP. For low density gases and plasmas we have

where v is a collisional frequency. For Coulomb scattering we have

where is the thermal de Broigle wavelength; that is, is of quantum
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nature. Owing to uncertainty principle, for given energy there are particles with any value
of momentum. Galitskiy showed that even under equilibrium conditions the non-zero value
of leads in dense gases to the appearance of nonexponential tail for the distribution
function over momenta7

where is the Maxwellian distribution function. The last term in (4) may be many
orders of magnitude larger than the first one for large values of momentum. Nevertheless, the
distribution over energies is exponential one; e.g., for  we have

The nonexponential tail in (4) can strongly affect the rates of high-threshold inelastic
processes at high densities and low temperatures.

In the general case the rate constant in the Born approximation can be written as follows
(compare with [1–5]):

where and is a Fourier transform of matrix

element of interaction potential for transition
Here, the usual are replaced by the Lorentzian profiles which for electron in

nonideal plasmas can be written as

where in the gaseous approximation we have
In (6) the Pauly blocking mechanism is taken into account. More generally, V(q) may be

replaced by the two-particle scattering amplitude in media and in the gaseous
approximation one can assume where is the scattering amplitude outside
the mass shell It is follows from this consideration that the rate constant is governed
mostly by the distribution function over momenta rather than that over energies and that at

the nonexponential tails may cause an increase in the rates which is many orders of
magnitude higher than that which is due to the LIP. As a model example we can estimate the
rate of atom excitation (ionization) using the approximations (which is valid
near the energy threshold) and (which is reasonable for ionization in dense
gases). In this case we obtain

where I is the energy of ionization (including the LIP) or excitation.
The last term in (8) shows the nonexponential behavior of the rates and may be much

more important at low temperatures than the first one even if the LIP is taken into account.
Figs. 1 and 2 show the normalized rates versus density which were obtained numerically
using (6H8).
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Figure 1. The normalized electron impact ionization rate for model neutral gas with I=10 eV and
versus gas density.

Figure 2. The same magnitudes for model non-ideal plasma versus electron density. Curve 1 is the ratio
between our results neglecting the Pauly blocking and that of conventional theory; Curve 2 is the ratio between
the same our results and that of the theory1–5 and Curve 3 is the same as curve 1 but taking into account the
Pauly blocking.
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The main conclusions of our calculations are the following:
1. The quantum nonexponential tails in the distribution over momenta7 in dense gases

and nonideal plasmas lead to nonexponential temperature dependence of rate constants even
under equilibrium conditions.

The same exponential acceleration must occur for V-T relaxation rates in dense molecular
gases, for ionization rates in dense dielectrics and for chemical reaction. In addition, this
can give rise to hard radiation and nuclear fusion reactions at relatively low temperatures and
high plasma densities.

2. The ten-fold increase in the rate constants occurs at while the theories1–5

considering the LIP give the same effect only at when these theories are not well
justified.

3. The degeneracy effect is more pronounced than that which follows from the approach
which takes into account only the LIP.
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INTRODUCTION

Recent lasers allow one to create a high density plasma within few femto seconds and
observe its time evolution on a comparable scale.1,2 Naturally, this plasma is highly excited
at the beginning and relaxes towards equilibrium by various mechanisms. In this paper
we discuss the very first time regime, the transient regime, in terms of the energy balance.
Let us assume a typically set up of molecular dynamics. One takes N particles, distributes
them randomly into a box and let them classically move under Coulomb forces due to their
own charges. Those particles which are very close will be expelled from each other. Their
first movement thus forms correlations which lower the Coulomb energy This
build up of screening stops when the effective Debye potential is reached.
We will discuss the formation of correlations in terms of correlation energy. It is more
convenient to calculate the kinetic energy than the correlation energy because the kinetic one
is a single-particle observable.

KINETIC APPROACH

To this end we can use the kinetic equation, of course, such which leads to the total
energy conservation. It is immediately obvious that the ordinary Boltzmann equation cannot
be appropriate for this purpose because the kinetic energy is an invariant of its collision
integral and thus constant in time. We have to consider non-Markovian kinetic equations of
Levinson type1

where denotes the energy difference between initial and
final states. The retardation of distributions, etc., is balanced by the
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lifetime The total energy conservation for Levinson’s equation has been proved in [3].
The full solution of Levinson’s equation on the long time scale is a hard problem, however,
its solution in the short-time region can be written down analytically. In this time
domain we can neglect the time evolution of distributions, and the life-time
factor, therefore the deviation of Wigner’s distribution from its initial value,

reads

This formula shows how the two-particle and the single-particle concept of the transient
behavior meet in the kinetic equation. The right hand side describes how two particles
correlate their motion to avoid the strong interaction regions. This very fast formation of
the off-shell contribution to Wigner’s distribution has been found in numerical treatments of
Green’s functions.4,5

INCREASE OF KINETIC ENERGY

From Wigner’s distribution one can readily evaluate the increase of kinetic energy,

After substitution for from (2) we symmetrize in k and p and anti-symmetrize in the
initial and final states which yields the correlation energy. Of course, starting with a sudden
switching approximation we have Coulomb interaction and during the first transient time
period the screening is formed. This can be described by the non-Markovian Lenard–Balescu
equation6 instead of the static screened equation (1) leading to the dynamical expression of
the correlation energy [details, see [7]]. To demonstrate its results and limitations, we discuss
special cases that allow for analytical treatment. To this end we use equilibrium initial
distributions at the high temperature limit, where the distributions are non-degenerated.

COMPARISON WITH SIMULATION

In order to compare the time dependency of the correlation energy with molecular
dynamical simulations,8 we assume a one component plasma which possess the Maxwellian
velocity distribution during this formation time. From (3) we find

where we used and This is the analytical quantum
result of the time derivative of the formation of correlation for statically as well as dynamically
screened potentials. For the classical limit we are able to integrate expression (4) with respect
to times and arrive at
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In Figs. 1, this formulae are compared with molecular dynamic simulations8 for two values
of the plasma parameter and 1. This parameter where  is
the inter-particle distance or Wigner–Seitz radius, measures the strength of the Coulomb
coupling. Ideal plasma are found for In this region the static formula (5) well follows
the major trend of  the numerical result, see Fig. 1. The agreement is in fact surprising, because
the static result underestimates the dynamical long time result of Debye- Hueckel
by a factor of two. We have for the longtime and the classical limit

where the first result is the Montroll correlation energy.9,10 The explanation for this fact
is that we can prepare the initial configuration within our kinetic theory such that sudden
switching of interaction is fulfilled. However, in the simulation experiment we have initial
correlations which are due to the set up within quasiperiodic boundary condition and Ewald
summations. For see Fig. 1, non-ideal effects become important and the formation
time is underestimated within (5). The non-ideal effects were found to be an expression of
memory effects11 and lead to a later relaxation.

SUMMARY

The characteristic time of formation of correlations at high temperature limit is given
by the inverse plasma frequency The inverse plasma frequency indicates that
the dominant role play the long range fluctuation. On the other hand, we also see that the
correlation time is found to be given by the time a particle needs to travel through the range of
the potential with a thermal velocity This confirms the numerical finding of [12] that the
correlation or memory time is proportional to the range of interaction. In the low temperature
region, i.e., in highly degenerated system   one finds a differentpicture. From (3) we can
calculate the formation of correlations as well.13,14 Unlike in the classical case, the equilibrium
limit of the degenerated case is rapidly built up and then oscillates around the equilibrium
value. We can define the build up time as the time where the correlation energy reaches its
first maximum, Note that is in agreement with the quasiparticle formation time
known as Landau’s criterion for is the Fermi energy. Indeed, the quasiparticle formation and
the build up of correlations are two alternative views of the same phenomena. The formation
of binary correlations is very fast on the time scale of dissipative process. Under extremely
fast external perturbations, like the massive femto second laser pulses, the dynamics of binary
correlations will hopefully become experimentally accessible. Even if related measurement
will not reveal any unexpected features, the experimental justification of basic concepts of
the non-equilibrium many-body physics is very desirable.
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Figure 1. The formation of correlation energy due to molecular dynamic simulations8 together with the result
of (5) for a plasma parameter (top) and (bottom). The upper curve is the static and the lower the
dynamical calculation. The latter one approaches the Debye–Hückel result.
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1. INTRODUCTION

The goal of the research to be described here is to compare perturbative solutions of
two well-established procedures of nonlinear screening calculations, treating the case of a
fixed charged impurity in an ideal, charged-boson gas of density and particle charge e at
T=0. The procedures are based on the Euler equation of density-functional theory1–3 and the
density-profile relation given by an integral equation.4,5

The perturbative solutions, obtained here up to the quadratic order in the external charge
Z for the induced densities and screened potentials, allow a valuable investigation and would
extend the validity of the standard linear screening theory.

The systems of charged bosons offers a relatively simple many-body model to the
mentioned problem of screening, and thus parallels the system of an electron gas for the same
problem.6–8

2. PROCEDURES AND CONSTRAINTS

The ground-state wave-function of the charged boson system is a unique, non-
negative symmetric function and, in our case, it is given by We use atomic units

throughout this work.
Now, suppose we place a charged test particle in the many-body system. Then, the total

boson density depends on the position r and can be written as:
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where the induced density satisfies the screening, i.e., normalization condition

The spherically symmetric, screened potential [V(r)] of the charged impurity is calcu-
lated by using the Poisson equation

In the first procedure we consider, according to the Hohenberg–Kohn theorem, the
fundamental energy functional for jellium in the presence of a charged test particle. The
Euler equation of this variational problem becomes1–3

in which the convenient notation is introduced. An investigation
of the short-distance limit of Eq. (2.4) results a useful constraint, which is known as the
Kato–Kimball nuclear cusp condition9

Our quadratic treatment rests on a perturbative expansion, which is defined as follows

for the ground-state wave function.
For simplicity, from now on, only the indices (1 and 2) will be devoted to first- and

second-order expansions. The screened potential is defined as  in the
quadratic approach, and the corresponding expressions are given by

In Eqs. (7a)–(7b) the solutions and
are the results of coupled equations, obtained by using Eq. (4) up

to the relevant order

In the second procedure to be employed, we consider a density-profile relation5 given in
form of an integral equation, in Fourier-momentum (q) space. This linear integral equation
is as follows, for an ideal boson system4,5
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where is the classical plasma frequency, and the function f (k,q) has the form

Notice that in Eq. (9) is the linear response solution. This linear-response solution
is unique for our procedures and has an asymptotic form (see Sec. 3, below) of

for high q-values.
Using this, together with the well-established relation of Kimball9

we arrive at [via Eqs. (9)–(10) and the trick of inverse Fourier representation with  in the
argument of Eq. (9)] the standard Kato–Kimball condition of Eq. (5). Therefore, the nuclear
cusp condition is satisfied in the integral-equation procedure.

Our quadratic treatment, for this case, rests on a successive approximation for Eq. (9), by
using under the integral-sign in order to define the corresponding second-order solution
of this procedure.

3. RESULTS

The present section will be devoted to detailed analytical and numerical results, with
relevant comparisons and accompanying analysis. For convenience, we introduce new vari-
ables (R and Q) by the and definitions, where In addition,
in order to distinguish quadratic solutions, we shall use (beside the index 2) an asterisk for
results obtained from the integral-equation

The linear-response solution, which is unique in both procedures, is defined by Eqs. (7a)–
(8a). The linearized, Schrödinger-like Eq. (8a) is solved by standard Fourier-transformation
and the results obtained are

in which the above-introduced variables are used.
The real-space equivalents of Eqs. (12) and (13) are calculated by inverse Fourier

transformations and have the following forms

The ratio of shows that the natural expansion (small) parameter
in our treatment is, in fact,

Now, we present our quadratic solutions obtained within the frameworks of applied
procedures. Eq. (8b) is solved with the help of Fourier transformation into momentum (q)
space and simultaneous application of Eqs. (7b), (14), (15) and The result for the
induced density is given, in this case, by
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Figure 1. The functions of  (solid curve) and (dashed curve), introduced in the evaluation of the
quadratic induced densities [see Eq. (18)], as a function of the variable

in which is given by Eq. (12) and the introduced variable is used. The
quadratic, induced potential [see, Eq. (7b)] has a simple form

The corresponding result for the integral-equation procedure is as follows

This equation is obtained by using Eq. (12) in the argument of Eq. (9) and
standard application of residue-theorem for integration in the latter. The quadratic, induced
potential of this successive approximation is

Now, we perform numerical, inverse Fourier transformations in order to obtain the
real-space equivalents of induced quadratic densities and potentials. For convenience, we
introduce and functions via definitions of and

, These functions are as follows

The corresponding functions  for the integral-equation procedure are denoted
by asterisk.

The values of these functions at zero separation, i.e., at R = 0, are:
and respectively. It is remarkable, that

and do not depend on the density of the system. The important ratios
of densities are determined easily:  by using Eq. (14),
also. Perturbative methods for boson system are meaningful for by our physical
guess.

The detailed shapes of and are exhibited in Fig. 1, as a function
of the R variable. The and functions are plotted in Fig. 2.
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Figure 2. The functions of (solid curve) and (dashed curve), introduced in the evaluation of the
quadratic induced potentials [see Eq. (19)], as a function of the variable
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BY QUASI-CLASSICAL SIMULATIONS*
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INTRODUCTIONS

The electron gas on a uniform positive background is an important theoretical model.
Both the interactions due to Coulomb forces (i.e, the coupling) and quantum statistical effects
due to the Fermi character (i.e., the degeneracy) determine the properties of the electron
plasma. To characterize the degeneracy of the electron system the dimensionless parameter

is introduced, where T is the temperature (in energy units), n the electron density
and is the Fermi energy. Further we define the coupling constant as

a being the Wigner–Seitz radius.
Important characteristics of the electron gas are the dielectric function and the dynamic

structure factor. Knowing these functions the plasma dispersion relation, static correlation
functions, and thermodynamic potentials of the electron gas can be obtained. In order to
check the validity of the different analytical approaches for the calculation of the dielectric
function of a coupled electron gas1 microscopic simulations of the quantum electron gas could
be very useful. Classical simulations of the one component plasma were already performed
by Hansen et al.2 In this paper the dynamic properties of the quantum electron gas will be
investigated on the basis of quasi-classical molecular dynamics simulations.

In order to treat the quantum electron gas by quasi-classical simulations we make use
of effective pair potentials. An effective potential depending only on the space coordinates3

leads necessarily to the Maxwell momentum distribution. Since we want to model the
momentum distribution of an electron gas governed by Fermi statistics we have to include
in our simulations momentum-dependent interaction terms. Our approach follows a line
developed by a series of authors as e.g., Wilets and Kirschbaum, Dorso et al.,.4–6 We mention
here also the wave packet dynamics approach as an alternative possibility to model the electron
gas by quasiclassical simulations,7–9

In our model we approximate the real quantum dynamics of the electron system by
a phase space dynamics of Hamilton type with certain constraints given by the effective

*Supported by the Deutsche Forschungsgemeinschaft (DFG, Germany)
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Figure 1. Comparison of the MD and RPA loss function  versus frequency for different
wavevectors q at and

Hamiltonian,10,12

Here the first term is the ordinary (classical) kinetic energy of the electrons. The second
contribution, the Pauli potential is introduced to model the Pauli exclusion principle, it is
chosen in a form suggested by Dorso et al.,4

where is the effective phase space distance of two particles with relative
momentum p and distance r. The last term in the effective Hamiltonian is the Coulomb
interaction averaged with respect to the two particle Gaussian wave packet in order to take
into account the Heisenberg uncertainty condition,

The parameters in the Hamiltonian Eq. (1) are chosen to describe the correlation function
and the momentum distribution of a free Fermi gas. An appropriate choice is discussed in [10],

with being the kinetic energy per electron of a free Fermi gas. It has been also shown
that the mean energy calculated from the simulations based on the Hamiltonian Eq. (1) with
the parameters from Eqs. (4) is in good agreement with Quantum Monte Carlo simulations
and with Padé approximations.10 This encourages us to expand our considerations to the
investigation of the dynamic properties of the electron gas within the developed approach.12
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Figure 2. Comparison of the MD and RPA loss function versus frequency  for different
wavevectors q at and

Figure 3. The MD loss function versus frequency for different wavevectors q at  and
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Figure 4. The MD loss function versus frequency for wavevector q = 0.619 at fixed   and
different

DYNAMIC PROPERTIES

Consider the dynamic structure factor

where is the Fourier component of the microscopic electron density.
The dynamic structure factor can be calculated from the MD simulations if one approximates
the Heisenberg operator by the position of the i-th particle in the simulations. However,
the thus obtained quantity (we denote it by is symmetric with respect to the frequency.
It corresponds therefore to a classical fluctuation–dissipation theorem,

with the dielectric function From Eq. (6) one concludes that cannot be
regarded as a structure factor, but can be regarded as a normalized loss function. In what
follows We will regard the normalized loss function. Note, that in the classical case the loss
function and the dynamic structure factor coincide.

In our molecular dynamic simulations we integrated numerically the equations of mo-
tions obtained from the effective Hamiltonian of a system of 250 electrons. The typical length
of the MD runs were about The equilibration phase was replaced by a Monte Carlo
Simulation. Periodic boundary conditions have been used in order to account for the long
range of the Coulomb interaction.

We have studied the collective motion by calculating the loss function.12 The loss func-
tion (q = ka) is plotted for two q values, at and for different parameters of
degeneracy (moderate degenerate) and (classical) and for strongly coupled,
weakly degenerate electron gas at )(Figs. 1–3,12). The results of the sim-
ulations are compared with the Random Phase approximation (RPA) data. For the case of
moderate coupling constants the plasmon peak of the loss function is slightly shifted
to the left and has a less height than that predicted by RPA (Figs. 1,2). In both cases the
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Figure 5. Comparison of the loss function from MD simulations and sum rules approach versus
frequency at and  for wavevector q = 1.856.

Figure 6. Comparison of the loss function from MD simulations and sum rules approach versus
frequency at and for wavevector q = 3.094.
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plasmon peak can be observed only for the smallest q value (q=0.619). From Figs. 1 and 2 it
can be also seen that the change of the degeneracy parameter in the range from 50 to 1 has
only a small influence on the results.

However at higher degrees of degeneracy  the plasmon peak obtained from
the MD datas is shifted towards higher frequencies, but the peak position in this case differs
quite significantly from those predicted by the RPA (Fig. 4).

In the strong coupling regime a sharp plasmon peak centered near can be
observed at the smallest q value (Fig. 3). A collective plasmon mode has been developed.
With increasing wavevector the plasmon peak widens and is shifted more and more to the
left. The plasmon peak is present up to q = 3.1 and only at still larger q values the plasmon
peak vanishes. This behavior contradicts to the RPA predictions where no plasmon peak can
be observed due to the strong Landau damping. However, the RPA cannot be applied to the
strong coupling regime, where the potential energy is dominant. On the contrary, the results
of our simulations for the case of a weakly degenerate plasma are in a good agreement with
the results of corresponding MD simulations of Hansen et al. for the classical one component
plasma.2

Further we have compared the results of our simulations with the expression of the
dynamic structure factor obtained by the application of the classical theory of moments.11 A
detailed discussion can be found elsewhere.12 Here the results for two different q vectors at

are shown (Figs. 5,6). The agreement with the MD calculations is rather good. The
theoretical curves reproduce the varying shape of the dynamic structure factor and describe
the plasmon peak position in a good manner. However, the agreement in the height of the
peaks is less satisfactory. One of the reasons for this disagreement between the results of
simulations with theoretical predictions (both based on RPA and on the sum rules approach)
might be the normalization to S(q,0) which is a value rather bad measured in the simulations
due to the poor statistics at long times.

Finally we note that due to the quasi-classical character our quantum molecular dynamic
simulations describe the dynamic properties of the electron gas only approximately. Our
model yields reasonable results at weak and moderate degeneracy, whereas for the case of
high degeneracy it seems to break down.

REFERENCES

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]

S. Ichimaru, Rev. Mod. Phys. 54:1017 (1982), and references therein.
J.-P. Hansen, I. R. McDonald, and E. L. Pollock, Phys. Rev A 11: 1025 (1975).
J. P. Hansen and I. R. McDonald, Phys. Rev. A 23:2041 (1981).
C. Dorso, S. Duarte, and J. Randrup, Phys. Lett. B 188:287 (1987).
C. L. Kirschbaum and L. Wilets, Phys. Rev. A 21:834 (1980).
L. Wilets, E. M. Henley, M. Kraft and A. P. Mackellar, Nucl. Phys. A 282:341 (1977).
H. Feldmaier, K. Bieler, and J. Schnack, Nucl. Phys. A 586:493 (1995).
D. Klakow, Toepffer, and P.-G. Reinhard, Phys. Lett. A 192:55 (1994).
D. Klakow, Toepffer, and P.-G. Reinhard, J. Chem. Phys. 101:10766 (1994).
W. Ebeling and F. Schautz, Phys. Rev. E (in press).
V. M. Adamyan and I. M. Tkachenko, High Temp. (USA) 21:307 (1983)).
J. Ortner, F. Schautz, and W. Ebeling, Phys. Rev. E (in press).

668
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Linear response theory has been very successful in describing many-body systems.
However, in many cases it is not sufficient and one has to take into account higher order
contributions. The quadratic contribution to the density change that external scalar potentials
induce in an equilibrium system is governed by the quadratic density response function

For a 3D system it was first derived in the static limit by Lloyd and Sholl1 in 1968. Twenty
years later the dynamical quadratic response function was evaluated, the real part by Cenni
and Saracco2 and the imaginary part by Hu and Zaremba.3

A closed analytic form of the full dynamical longitudinal quadratic density response of a
2D many-body system was first presented by the first author at the 1997 APS March Meeting.
In this contribution we compare the 2D result with the 1D and 3D case and discuss some of
their features.

For a free particle system one finds3,4 the retarded symmetrized form

where and  is the Fermi momentum distribution
function. It is important to note that each occurrence of an  in (2) is accompanied by an
infinitesimal positive imaginary contribution io that ensures causality.
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The RPA for the quadratic response function is obtained from the non-interacting by
with the linear dielec-

tric function
All six terms on the right of (2) have the same analytic structure, namely

In terms of these F-functions the quadratic density response is given by

where we have introduced the abbreviation
The expressions (2) — (4) are valid regardless of the dimensionality of the systems

which is only specified by choosing the dimensionality of the p-integration.
In the low temperature limit becomes a step function All wave numbers are

in units of the Fermi wave number and energies in units of the Fermi energy
For a one-dimensional system the integration is a simple matter.

In the limit the one-dimensional obviously becomes singular along the lines
and For or has an imaginary part.

The calculation of F in 2D and 3D is difficult, mostly because we need to integrate over
a product of two different angles in the denominator. For (2D) substituting the variables

and remedies that problem. The becomes a contour integral
on the unit circle around the origin in the complex z-plane. The integrand has four

singularities and we can use the residue theorem.

The angle is spanned by and The residues are and

For one always lies within and the other

outside the unit circle contour. For the case  both   appear to lie right on
the contour and we have to take the infinitesimal contribution io into account to see that again
one lies within and one outside the contour. Because and  differ only by a
phase factor everything said about the also holds for the  The positive io contained
in x and y also determines the sign of square roots as

The remaining p-integration can be carried out with some diligence and we find
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Figure 1. Left: The conditions (dashed) and in the static limit. The bold region surrounds
the area where the static quadratric vanishes. The first quadrant depicts the second quadrant

Right: The conditions and the singularities (bold) for  and

where we have used is positive) and is defined
as

We will denote by and by As obvious from Eq. (7), the
imaginary part of has a logarithmic singularity if either or Concurrently
the real part shows a discontinuity with a height This feature prevails when the six

are summed up. Where both, and vanish the quotient is finite and  no
longer singular.

Noting that  we can write in a form symmetric in x and y

Separating real and imaginary part of the term i/2 · In gives

and shows that for and the function is real. For the case
and and the case and clearly is complex. Inside the
square and the functions and are real. Accordingly, is essentially
imaginary there (the term cancels when the six are summed), its real part consisting
only of multiples of

To discuss further we switch to the actual arguments, wave numbers and frequencies,
and start with the static limit when the density response becomes a real function. In the left
of Fig. 1 all boundaries for a fixed total angle  are plotted in the The
angles and are determined by the ratio The conditions and
simply translate into and whereas holds inside the outer ellipse.
The inner, dashed ellipse depicts the condition which, interestingly, for is
identical for all six For the two ellipses become coinciding circles. Since the
wave numbers are positive only the first quadrant describes the situation with The
second quadrant corresponds to The static 2D quadratic density response exhibits
two interesting features not seen for in 3D or for the linear in any
dimensionality. For small wave numbers it vanishes and, depending on the angle, the onset
of its real part can be discontinuous. The onset is illustrated with a bold line in the left Fig. 1.
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Figure 2. Real and imaginary part of the dynamic quadratic for

Inside the bold boundary the static 2D quadratic density response is zero. In the upper right
where both the onset is a discontinuity caused by the logarithmic singularities

on the dashed ellipse.
To simplify the finite frequency discussion we consider only the case and

where consists of only three distinct In the right of Fig. 1 the and the three
discontinuity conditions (bold) are shown for Note again that the real part
of  vanishes for small and below the lowest parabola.

Figure 2 shows the real and imaginary part of the dynamic for
In the vertical plane on the left you find the static over The locations of the
discontinuities and other features correspond to right plot in Fig. 1 which is projected onto
the bottom of Fig. 2. The large values for small are due to the in

We have solved the three dimensional version of (3) along the same lines as the 2D
case. Previous calculations5,6 have combined the two angular terms in (3) using the so-called
“Feynman trick” The resulting has the form

where is the same as in the 2D calculation.
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THERMODYNAMIC FUNCTIONS OF STRONGLY COUPLED PLASMAS:
LOCAL FIELD EFFECTS

W. Stolzmann1,2 and M. Rösier3
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Potsdam, Germany

2 Institut für Astronomic und Astrophysik, Universität Kiel
Germany

3 Hahn-Meitner-Institut
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INTRODUCTION

In order to obtain accurate results for the dielectric and thermodynamic functions for
strongly coupled plasmas we have to include a local-field correction (LFC) factor
in the polarization function The LFC takes into account exchange and correlation
effects between the particles in the polarization potential contribution of the density–density
response function. The approximate inclusion of  LFC in calculating the dielectric function and
thermodynamic properties was done successfully in the classical regime and for the ground-
state. Over the past decade considerable effort has been directed towards a generalization of
the LFC factor for intermediate degeneracy.1,2 One approach is the use of the two standard
constraints for the static LFC factor  the compressibility sum rule and the cusp
condition.

3

 We apply a generalization of both wavelength constraints to finite temperatures.
We adopt for our numerical studies the Vashishta-Singwi (VS) form4 for G (q), which has been
derived originally for zero-temperature liquid metals. This type of approximation provides the
possibility to calculate a dielectric function and the free energy with a static LFC at arbitrary
densities and temperatures. Comparisons of thermodynamic functions are presented using
different approaches for the LFC factors.

STATIC LOCAL-FIELD FACTOR G(q)

In order to improve the dielectric function of an interacting electron system we have to
determine G(q), which is defined by

where v(q) is the Fourier transform of the Coulomb potential and denotes the
ideal fermion part of the polarization function. The dielectric function  in RPA is
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related with given by Eq. (1). We choose for G the static solution from Vashishta
and Singwi4 expressed by

which has been derived originally for the metallic density regime. The coefficient A is
determined by the cusp condition

which relates the short-wavelength limit of G(q) with the the (radial) two particle distribution
function at zero separation.5 Yasuhara6 found for g(0)

where is the modified Bessel function of the first kind.
BA is determined by the compressibility is the isothermal compressibility of the

noninteracting electrons)

It should be noted that both conditions are extended to finite temperatures with (Fermi–
Wellenzahl: Brueckner parameter: Bohr radius:

, degeneracy parameter: Fermi-integrals:

Finally, we have to calculate the isothermal compressibility  by means
of the free Helmholtz energy F, which we have done explicitly in the RPA

7

-

9

 throughout a
broad range of densities and temperatures.

NUMERICAL RESULTS

The inverse compressibility normalized to the inverse ideal compressibility are presented
at a fixed temperature versus the particle density in Fig. 1. Fig. 2 shows  in dependence
of the degeneracy parameter at a fixed (metallic) density. Our LFC corrected RPA results
reduce remarkable our RPA calculations for in the region of strongly coupling. To
determine G(q) with a high accuracy we calculated G(q) given by the compressibility sum
rule in a self-consistent manner.10 Furthermore, we use the LFC factor to calculate the free
Helmholtz energy. Fig. 3 shows the correlation contribution of the free Helmholtz energy
at a fixed temperature and Fig. 4 at a fixed density over a wide range of the degeneracy.
Our comparisons with the self-consistent STLS calculations1 for the correlation free energy
demonstrate that the approximative VS form for modelling of finite temperature static LFC
factors is a successful method.2 We would like to mention alternatively to the VS form for
G(q) we can use a generalized Hubbard form16 or the form from Moroni et al.17 for G(q) to
study the dielectric and thermodynamic properties.
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Figure 1. The ratio of  the inverse compressibility in RPA7-9 (dashed line) compared with the LFC corrected
RPA (solid line) vs. the electronic density  at T = 3430K.

Figure 2. The ratio of the inverse compressibility in RPA7-9 (dashed line) compared with the LFC corrected
RPA (solid line) vs. the the degeneracy parameter at
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Figure 3. Free Helmholtz correlation energy vs. the degeneracy parameter at T = 3430K. Our LFC
corrected RPA approach (+) are compared with the Padé approximant from Stolzmann and Blöcker11 (solid
line), Ebeling et al.12 (dots), Lehmann and Ebeling13 (diamonds), and with the parametrizations from Ichimaru
et al.1 (dotted line) and from Dandrea et al.2 (dashed-dotted line), which is valid for metallic densities only.
The long-dashed line14 and the triangle (our results for G(q) = 0) refer to the RPA.

Figure 4. Free Helmholtz correlation energy vs. the degeneracy parameter at Our LFC corrected
RPA approach (+) are compared with the Padé approximants from Stolzmann and Blöcker11 (solid line),
Ebeling et al.12 (dots), Lehmann and Ebeling13 (diamonds), and with the parametrizations from Ichimaru et
al.1 (dotted line) and from Dandrea et al.2 (dashed-dotted line). The long-dashed line14 and the triangle (our
results for G(q) = 0) refer to the RPA. The stars represent data of the variational calculations from Pokrant.15
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DIELECTRIC FUNCTION AND TRANSPORT COEFFICIENTS IN STRONGLY
COUPLED PLASMAS

Gerd Röpke

Fachbereich Physik, Universität Rostock
Universitätsplatz 3, D-18051 Rostock, Germany

INTRODUCTION

A consistent unified approach to the dielectric function as well as the dc conductivity is
presented. A standard approach to the dc electrical conductivity is given by the Chapman-
Enskog approach.1 In dense plasmas, linear response theory has been worked out to relate the
dc conductivity to equilibrium correlation functions which can be evaluated using the method
of  thermodynamic Green functions.2,3 The dielectric function can also be expressed in terms
of equilibrium correlation functions, but a simple perturbative treatment to include collision
effects is not possible near the point because an essential singularity arises in
zeroth order.

Different improvements are known to go beyond the well-known RPA result. In the static
limit, local field corrections have been discussed extensively,4 and the dynamical behavior
of the corrections to the RPA in the long-wavelength limit was investigated in the time-
dependent mean field theory neglecting damping effects,5 see also Ref. [6] for the strong
coupling case. At arbitrary and approximations are made on the basis of sum rules for
the lowest moments.7 However, these approximations cannot give an unambiguous expression
for in the entire space.

Within a generalized linear response theory, the polarization function is related to equi-
librium correlation functions for nonideal plasmas. Applying perturbation theory, thermo-
dynamic Green functions8 are evaluated in Born approximation. Improvements are possible
using diagram techniques and partial summations.2 A promising alternative to evaluate equi-
librium correlation functions in strongly coupled plasmas is given by molecular dynamics
simulations, see the related contributions to this Conference.

GENERALIZED LINEAR RESPONSE THEORY

In homogeneous, isotropic systems the dielectric function is related to the
electrical conductivity and the polarization function according to
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In particular, the polarization function was found9 as

The matrix elements are equilibrium correlation function. They contain operators
and which specify the nonequilibrium state,

The equilibrium correlation functions are defined as

with and The equilibrium statistical operator

is
We will consider a two-component plasma consisting of electrons (c = e) and ions

(c= i). With the single-particle operators

the current density operator is given by

MOMENT EXPANSION OF THE POLARIZATION FUNCTION

Up to now, was not specified. It is an advantage of the approach given here that
different levels of approximations can be constructed, depending on the use of different sets
of    If no finite order perturbation expansion of the correlation functions is performed in
evaluating the polarization function (2), all these different approaches are exact and should
give identical results. However, evaluating the correlation functions within perturbation
theory, different results for the polarization function are expected using different sets of
As has been shown for the electrical conductivity,2,3 results from finite order perturbation
theory are the better the more relevant observables are considered.

A simple example for a relevant observable characterizing the nonequilibrium state
of  the system is the current density (6),

The current density is related to the lowest moment of the distribution function. Possible
extensions to more general sets of relevant observables are discussed in Ref. [10].

In the approach given by Eq. (7), we have
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with

Applying integration by part, the expression (8) can be rewritten as

Performing the limit  we obtain the simple result

which is also denoted as the Kubo formula for the polarization function. Different approaches
based on different sets of relevant observables are formally equivalent as long as no
approximations in evaluating the correlation functions are performed.

RESULTS FOR TWO-COMPONENT PLASMAS

In the case considered here, the relevant observable (6) is given by a single particle
observable. The correlation functions occurring in (8) will contain the operators

and with

To evaluate the correlation functions, we perform a perturbation expansion with respect
to the interaction V. In addition to the zeroth order terms which reproduce the RPA result,
we consider the Born approximation. We obtain in the nondegenerate case for small k,

with

Here, and

denotes the Dawson integral. Note that a statically screened potential was used in (12) to obtain
a convergent collision integral, the screening parameter is given by
From (13) it is immediately to be seen that the RPA result is obtained in the limit of  vanishing
interactions,

Expression (8) allows to include the effect of  collisions in the entire k–  plane. It  fulfills
important sum rules as well as the Kramers–Kronig relation.10 For small k, the conductivity
corresponding to the Faber–Ziman formula at finite temperatures is obtained.9
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OPTICAL LINE SPECTRA

Line shapes can be obtained from the perturbative treatment of the polarization function
within a cluster decomposition.11 Pressure broadening in dense plasmas due to the interaction
with electrons are treated in a systematic way expanding the two-particle self-energy and
vertex function with respect to the density. As a result of  nonideality, the shift and width of
spectral lines are not proportional to the density.12 The quantum statistical approach is not
only able to explain deviations from linearity observed by experiments but predicts also blue
shifts which have been observed afterwards in experiments with dense Cs plasmas.13

An interesting point is the treatment of the ionic effects on spectral line shapes. By
reason of its large masses, the influence of the ions is usually replaced by a static microfield.
For light ions, in particular also for highly ionized radiators, a dynamic microfield has to be
considered which is given by a stochastic model process,14 a systematic cluster expansion,15

or molecular dynamics simulations of  the motion of  ions, respectively. A unified systematic
treatment of electrons as well as ions with respect to their influence on spectral line shapes
is, however, missing until now.
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OPTICAL CHARACTERISTICS OF STRONGLY COUPLED
COULOMB SYSTEMS

G.A. Pavlov

Institute of Chemical Physics, RAS
Chernogolovka, 142432, Moscow Region, Russia.
e-mail: pavlov@icp.ac.ru;
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Reflexion absorbtion and scattering of electromagnetic irradiation by
Coulomb sytems are considered. The first two can be analysed provided that transverse
dielectric susceptibility of the Coulomb system is known. Practically the latter
can be calculated in the limit of long wavelenghs in which case it immediately follows
from proper time correlation function. The scattering - the power of electromagnetic field
scattered by Coulomb system - depends on the dynamical structure factor of electrons

Direct determination of the transverse dielectric susceptibility and the dynamical
structure factor for strongly coupled Coulomb system is hardly possible. For this reason a
new technique is proposed to calculate frequency dependence of absorbtion and re-
flection coefficients and scattering spectra. The technique is based on proper approxima-
tions for the transverse dielectric susceptibility and the dynamical structure factor with a
number of fitting parameters and the sum rules (frequency moments) being used. The
technique enables one to simplify considerably calculation of dynamical characteristics of
nonideal Coulomb systems reducing the problem to calculating moments of these charac-
teristics, i.e. coordinate correlation function. Frequency moments are in fact thermody-
namical characteristics of Coulomb systems.

In these formulas c- light velocity;  real and imaginary parts  of
The scattering electromagnetic irradiation power is proportional to The fol-

lowing expression is well known N,V - number of  particle and volume of  the sys-
tem; inverse temperature)
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Thereby it is interesting to consider the frequency moments of dynamical structure
factors, and connected with these: Kubo coefficient.

are even function of in the classical limit, therefore it ought to investi-
gate

In this equation - charge number of i-particle, - i-particle
coordinate.

From (3) and using the expression

it is possible to determine frequency moments of four various definitions of conductivity
and, hence, other linear response theory characteristics of Coulomb system. Some moments
calculations of external longitudinal conductivity real part are reduce to

other frequency moments of external conductivity are equal to

zero) :

In these expressions - electrons and ions masses, - binary corre-
lation functions. The following frequency moments connect with triple correlation functions
and so on. From ( 4 ) it is easy to find dynamic structure factors frequency moments .
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Write out even frequency moments of  over frequency moments of external
conductivity real part (other frequency moments of  are equal to zero)

and so on. Frequency moments of and Kubo coefficient investigated as well as
external conductivity frequency moments .

So, the frequency moments of values, which directly define reflection, absorbtion and
scattering of electromagnetic irradiation by Coulomb systems , are inves-
tigated. Besids that, frequency moments of other connected with previous linear responce
characteristics of Coulomb systems are considered. Therefore it is interesting to find out the
question about commutation different linear response characteristics frequency moments.
With this purpose to compare frequency moments of four different Coulomb system con-
ductivity definitions. The comparison in the classical case shows that these moments are
different at finite wave vector k. In longwavelenght limit coincide with each
other. In that case the moments are defined by the members with and depended on

form. In spite of the coincidence the moments in longwavelenght limit,
but and in this case. Longwavelenght limit of is not

equal to the limits of Frequency moments are thermodynamical characteris-
tics of Coulomb systems. Some restriction on and inequalities between the
moments follow from the fact that the moments are positive. Series of the inequalities define
by the well known integral inequalities between response function of Coulomb systems
(Pavlov, 1991, 1992).

To describe the Coulomb systems optical characteristics experimental data it is neces-
sary to have the functions Frequency behaviour reconstruction of these

by its known frequency moments ( moments problem decision ) require, gen-
erally speaking, infinite number known frequency moments. It is, in practice, not available,
therefore proper approximations for transverse dielectric susceptibility and the dynamical
structure factor with a number of fitting parameters are used. The fitting parameters deter-
mine by knowm frequency moments of This technique is used for fre-
quency behaviour reconstruction dynamic structure factors of electron; comparison recon-
straction results shows a good agreement with molecular dynamic simulation data (Pavlov,
1991) .

Reflection and absorbtion of electromagnetic irradiation in linear response case are de-
scribed, as well known, by longwavelenght limit of transverse dielectric susceptibility.
Imaginary part of was elected in the following form:

In this formula m, fitting parameters; Im is odd real
part of defined by Kramers-Kronig relations. Calculation results of (1), re-
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ceived by described method, are presented in (Pavlov, 1991). The comparison Coulomb
system indicates a satisfactory agreement with nonideal plasma inert gases experimental
data. These conclusions mean, that Coulomb system is available nonideal plasma model
(Pavlov, 1995).
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STATISTICS OF QUANTUM-ELECTRODYNAMIC PLASMAS IN EXTERNAL
MAGNETIC FIELDS

L. G. Suttorp

Institute of  Theoretical Physics, University of Amsterdam
Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

INTRODUCTION

In the standard statistical description of a one-component quantum plasma the interaction
is assumed to be purely Coulombic. Magnetic effects are taken into account only in so far
as they are generated by an external field. Hence, induction effects cannot be studied in the
context of that model. To determine the relevance of  these effects one has to incorporate
the quantized radiation field in the theoretical analysis. In this paper we shall study the
equilibrium statistical properties of a one-component quantum-electrodynamic plasma in
an external magnetic field, with an emphasis on fluctuations. Fluctuations in quantum-
electrodynamic plasmas have been discussed before1–3 in the context of specific perturbative
approximations like the random-phase approximation. Here, a more general reasoning based
on the equations of  motion will be followed.

MODEL

The model that we shall discuss is a generalization of the usual one-component plasma
consisting of  charged particles with charge e and mass m that move in a uniform background
of opposite charge in a volume V. Apart from the Coulomb interaction the particles interact
through their coupling to the quantized radiation field. Moreover, a static and uniform external
magnetic field B is present. The Hamiltonian is
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The matter fields and satisfy (anti-)commutation relations. The field operator
a(k) in the Coulomb gauge is a combination of  photon annihilation and creation operators,
and of  polarization vectors orthogonal to the wave vector k.

EQUATIONS OF MOTION

The sources of the quantized radiation field are the charge and current density. The
charge density is defined as

The current density is:

with the plasma frequency. Here we introduced convolution products in Fourier space by
writing   The field equations for the radiation field
are found to have the usual form:

with the transverse part of  the current density.
In a one-component plasma the current density is proportional to the momentum density.

It turns out to satisfy a balance equation of the form:

with the cyclotron frequency and with a unit vector in the direction of the external
magnetic field. The last term is the divergence of the (material) pressure tensor; it is the sum
of a kinetic term (depending on the radiation field as well) and a potential term accounting
for the Coulomb interaction.

Likewise, one may derive a balance equation for the energy density E(k). It has the
general form with an energy flux

FLUCTUATIONS

Fluctuation formulas are the long-wavelength limits of Green functions in Fourier space:

with A and B local operators, with the label denoting imaginary time translation (that is, a
transform with with a subscript T meaning truncation, and with brackets indicating a
(grand)canonical averaging.

Kubo-transformed fluctuation formulas (denoted by the symbol follow by integration
over all between 0 and
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These Kubo-type fluctuation formulas arise in analyzing the (linear) response of a system to
external disturbances. They can be derived from the equations of  motion, with the help of an
identity that is a direct consequence of the Kubo–Martin–Schwinger-condition:

for arbitrary local operators A and B.
By exploiting the equations of motion in a systematic way one may derive a set of

Kubo-type fluctuation formulas for the charge density, the current density, the energy density
and the radiation field. A few examples of  the results that can be obtained in this way will be
given presently. First of  all, the charge fluctuations satisfy the formula

It has the same form as the well-known Stillinger–Lovett relation for the standard one-
component plasma. Remarkably enough, its form does not change by incorporating the
effects of an external magnetic field and of the radiation field.

The current fluctuations fulfil the relation:

It should be noted that the current density contains contributions of the radiation field and of
the external field, as we have seen in (3). Nevertheless, the right-hand side has the same form
as in the standard one-component plasma without radiation and external fields.

The transverse electric field satisfies the fluctuation formula:

which is valid at all length-scales (for all k). It is an exact relation, that has a similar form
as the fluctuation formula for the longitudinal field Indeed, from
(9) one finds In contrast to (11) this fluctuation
formula is an approximate one, valid for small k only.

As it turns out, the formula (11) does not have an analogous counterpart describing the
magnetic-field fluctuations. In fact, the magnetic-field fluctuations are found to be influenced
by the pressure tensor in a rather subtle way. A simple result for the magnetic-field fluctuations
is obtained only in the trivial case of  a free field.

SCALING BEHAVIOR

The pressure occurring in the momentum balance is a tensor that even in equilibrium does
not need to be isotropic owing to the presence of  the external magnetic field. To determine
its anisotropic part one considers the change of the grand potential under a change of  volume 

which is brought about by a change of the position of the wall
enclosing the system. The variation of the grand potential is

(12)

with the chemical potential of  the particles with varying number N. The change of  the
energy levels is a consequence of  the adjustment of the boundary conditions to the new
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position of the wall. By a rescaling of  the Hamiltonian H one finds with
the variation of  H. In performing the rescaling one should be careful to scale both the wave
vector and the polarization vectors as:

with the transpose of Applying these transformations one arrives at the result:

Here is the averaged material pressure, integrated over the volume, and the averaged
integrated Maxwell stress tensor. The presence of an external magnetic field has led to
additional terms involving the averaged integrated magnetization

If  the grand potential is taken to be independent of  the shape of  the system the variation
depends on the change of volume only, and hence on the trace of This implies that

the averaged integrated total pressure tensor must be anisotropic in such a way that
the anisotropy of the terms with in (14) is compensated. The anisotropy found here is
similar to that of the pressure tensor in magnetized Coulomb systems.4 The difference is that
here the Maxwell stress tensor appears as well.

The anisotropy of the pressure tensor plays a role in the fluctuation formulas involving
the energy density. While the auto-fluctuation formula of the energy is trivial, the cross-
fluctuation formula of the energy density and the charge density is found to depend on the
averaged integrated total pressure tensor:

The leading term is of order as could be expected for a one-component plasma. Here
is the energy density, and the angle between the external field and the wave vector. Using
our specific knowledge of the anisotropic part of the averaged integrated total pressure tensor
we easily find that the cosine in the denominator is compensated by a factor in the numerator,
with the result:

The thermodynamic pressure is defined in the usual way in terms of the grand potential.
A second example of a fluctuation expression that depends on the averaged integrated

total pressure tensor is the cross-fluctuation formula of the energy density and the magnetic
part of the radiation field. Once again it turns out that information on the anisotropy of the
pressure tensor is essential in understanding the nature of the fluctuations. More details on
that example, and on the statistical properties of the quantum-electrodynamic one-component
plasma in general can be found in a thesis5 by P. John, in collaboration with whom the above
research has been carried out.
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EXTRA LOOP IN PLASMON DISPERSION FOR STRONGLY COUPLED
COULOMB LIQUIDS

Dexin Lu

Department for Intensive Instruction
Nanjing University
Nanjing 210093, China

Two-dimensional strongly coupled electron liquid can be treated in the quasilocalized
charge (QLC) approximation, initiated by Kalman and Golden.1 When direct thermal effect is
taken into account, we have mean field theory. The resulting dispersion curve is quantitatively
similar to RPA dispersion curve. The curve is divided into two branches: the upper branch
corresponds to plasmon branch and the lower branch is related to soundlike mode. They form
a loop.2

Based on the formalism, we can consider layered electrons, or superlattice. The su-
perlattice model consists of a large stack of equally spaced electron plasma monolayers
embedded in a dielectric substrate of dielectric constant each monolayer of large area
A is parallel to the xy plane; is the length of the superlattice; the Wigner–Seitz
radius where is the two-dimensional areal electron density. The
intralayer coupling strength is characterized by the plasma parameter The
collective mode structure of the superlattice has been analyzed in a number of works.3–5

A strongly correlated superlattice can be treated in a parallel way,6 in QLC scheme. The
dielectric response function is

where the form factor

and

For weak interlayer correlation case, (say d/a=10), we can first neglect interlayer correlation
at all and reduces to single-layer expression:
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Figure 1. Extra Loop Structure in Dispersion of  SCCS

where the intralayer structure function

and the equilibrium pair-correlation function

Following standard procedure, we can obtain dispersion from Eq. (1). Resulting curves are
of similar structure to two-dimensional system, reported years ago.

2

 Data are from Ref. 7,
and for and 90(MC)  from Ref. 8. In the superlattice case, the upper
branch is now a band instead due to values of parameter q. Physically it spreads from 2D
shape to a 3D gap structure. Examination for six values of  shows that for the largest value
of   there is an extra loop, the only one, at shorter wavelength side. It is necessary to
find corresponding damping.

Let we can separate the dispersion equation as

or

and

where

Using Eq. (11), we can find
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Eq. (9), (11), and (12) give us

So formally the leading term is exact 2D RPA Landau damping. Surely here the argument
is k– and structure dependent. We know that 2D RPA polarizability is

and

is the plasma dispersion function. The polarizability can be resolved into real and imaginary
parts as follows.

With

where D is Dawson integral

The frequency are measured in units of and We have

Then

The damping is also measured in units of Eq. (24) is the fundamental equation for
damping calculation. Computation indicates that in both loops soundlike mode is heavily
damped. While the plasmon band in the first loop is only damped near maximum k edge,
curve in the extra loop is relatively light damped than soundlike mode, see Fig. 1. So plasmon
mode can develop to some extent. For weaker coupling (smaller values of  there is no
extra loop. We believe the extra loop is substantially due to the strong intralayer coupling, a
2D characteristics. It is definitely related to crystallization, but in this scheme, no example
was found for other values of The possible physical reason why the dispersion band (or
curve) is broken is still lack.
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EFFECTIVE TRANSPORT COEFFICIENTS IN LOW
TEMPERATURE MULTICOMPONENT PLASMA

G.A. Pavlov

Institute of Chemical Physics, RAS
Chernogolovka, Moscow region , 142432, Russia.
e-mail: pavlov@icp.ac.ru
fax: (096)515-3588.

A modelling approach is proposed, providing full set of transport coefficients, de-
terming currents of pulse, heat, mass and charge in low temperature, multicomponent plasma
with strong Coulomb interactions and chemical reactions: coefficients of viscosity, thermo-
conductivity, multicomponent diffusion and thermodiffusion, electrical conductivity and so
on. To do this a detailed analisys has been carried out of experimental data availible on
transport coefficients of nonideal plasmas of various substances. A number of commonly
used techniques of plasma composition calculations were applied in the course of this analy-
sis. A set of kinetic equations was derived with collision integrals written in Boltzmann
form. In written out these equations elementary processes, essential in nonideal plasma,
plasma composition peculiarities and data on kinetic coefficients in strongly coupled Cou-
lomb systems have been taken into account. This approach made possible separate analysis
of contributions to kinetic coefficients resulting from composition of plasma and interparticle
interactions, i.e. “nonCoulomb” and Coulomb contributions.

Effective transport coefficients are introduced, relating mass currents of chemical ele-
ments and convective heat current to temperature and element concentration gradients and the
effective field in plasma. Local thermodynamic equilibrium approximation solution of high
temperature gas dynamic problems in the case, when number of components is greater that
the number of chemical elements, constituting plasma, is considerably simplified, if made in
terms of effective transport coefficients. It is shown that nonideality of thermodynamical
forces should be taken into account when calculating effective transport coefficients (Pavlov,
1984).

The scheme of effective transport coefficient calculations is rather complicated. For
this reason a number of conditions imposed on the nonlinear, nondiagonal matrix of effective
transport coefficients are derived. These conditions can be used as a criterion to control ef-
fective transport coefficients numerical values. Properties of this matrix are also important in
problems in high temperature gas hydrodynamic, when the full set of transport coefficients is
used. Analysis is also carried out of the high derivative coefficients matrix of the set of con-
servation equations for medium with strong interparticle interactions (Pavlov, 1985,1995).
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In (1) courses, are mass currents of chemical elements and energy

current; effective diffusion and thermodiffusion coefficients; effective
thermoconductivity coefficients. The system of equtions (1) has the matrix form:

The first matrix in (2 ) is determined by thermodynamic properties of the mat-
ter; the second by effective transport coefficients. Matrix a(u) is nonlinear high de-
rivative coefficient matrix; The relations between effective
transport coefficients are received from entropy production in chemical element formulation:

Formulas (3) are convenient for investigations effective transport coefficients proper-
ties, phenomelogical kinetic coefficients. For example, positive entropy production con-
sequences for two chemical element matter is:

It may be established that but has not definite sign. There are no relations
between effective transport coefficients only, if the matter consists of three or more chemical
elements. Vector part of entropy production corresponds to positive definite matrix with ele-
ments, which depends on effective transport coefficients and The relations are de-
fined between thermodynamic and transport properties of a matter in the inequality form by
calculation of principal minors of this matrix. There is the equation:
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Matrix is matrix is D and  ( consists of ), therefore (5) may
be received from Onsager relations between The matrixes a(u), a’(u) are investigated,
the latter has the following form:

Usually matrix a(u) is supposed as parabolic, this property of matrix a(u) is important
for system of equations type (1), (2) solutions. Matrix a’(u) is not generally speaking para-
bolic. The product of two latter matrix in (6) is parabolic matrix. The product of matrixes

and b’(u) ( see (7)) is equal to a(u) .

Matrix b’(u) is diagonal and, consequantly, a(u) is parabolic matrix in “ideal” case,
when is not dependent on Matrix b’(u) is nondiagonal in the contrary case and
a(u) is, generally speaking, nonparabolic matrix. Thus, the corresponding hydrodynamic
problem may be noncorrect in the nonideal case.

REFERENCES

1.

2.
3.

Pavlov G.A., 1984, Zhurnal Tech. Fiziki, 54:873.
Pavlov G.A. , 1985, Pizma v Zhurnal Tech. Fiziki, 11, N 18:1141.
Pavlov G.A. , 1995, “Transport Processes in Low Temperature Plasma with Strong Cou-
lomb Interactions”, Energoatomizdat, Moscow.

697



This page intentionally left blank 



ELECTROMAGNETIC MODES IN COLD MAGNETIZED STRONGLY COUPLED
PLASMAS*

J. Ortner,1 V. M. Rylyuk,2 and I. M. Tkachenko3
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INTRODUCTION

In Ref. [1] the dielectric tensor of cold nonideal magnetized plasma is constructed
applying the classical theory of moments. The aim of this paper is to use the results of
Ref. [1] to analyze the spectra of electromagnetic waves propagating in such a system.
Hereby we will regard the damping of the modes as negligibly small. The validity of such
an assumption can be confirmed obviously only experimentally. We notice that damping can
be essential and must be taken into account near the cyclotron resonances. Here the thermal
motion of the particles leading to the spatial dispersion must be accounted for also. Thus, the
following considerations in which we exclude damping are valid only far from the cyclotron
resonances.

In neglect of the thermal motion the dielectric tensor reads

where and are the transverse and longitudinal (with respect to the external magnetic
field) components of the dielectric tensor.

The components of the dielectric tensor of nonideal magnetized fully ionized plasmas
consisting of electrons and pointlike ions are obtained using the method of moments,1 and
within the first approximation in the ratio and being the electron and the ion
masses):

*Partially supported by the Deutsche Forschungsgemeinschaft (DFG, Germany)
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where is the plasma frequency, -e, and n being the charge and the density
of the electrons, is the electron cyclotron frequency. The positive magnitudes
and take into account the Coulomb correlations between the particles and are expressible
via the second frequency moment of the magnetized plasma conductivity tensor,

being the partial electron–ion static structure factor, and (and is the projection
of the vector on the direction perpendicular (parallel) to the external magnetic field. A
detailed analysis of these magnitudes is beyond the scope of this paper, we mention here
only that in the ideal plasma limit both and We also wish to emphasize that
the electron–ion correlations are the factor which guarantees the existence of nonvanishing
parameters and Notice that the above expression Eqs. (2) for the dielectric tensor
coincides (within the first order in the ratio with that of the quasilocalized charges
model developed by Kalman and Golden.2

WAVES IN STRONGLY COUPLED MAGNETIZED PLASMAS

The dispersion equation of electromagnetic waves propagating in magnetized plasmas
reads in the Cartesian system of coordinates with the z-axis parallel to the external magnetic
field as follows:

where  is the scalar refraction index, and

and is the angle between the wavevector and the magnetic field
Eq. (4) has two different solutions:

which are associated to the ordinary and extraordinary waves. In a magnetized plasma
there are two different kinds of waves of given frequency and different refraction indices.
These waves are generally elliptically polarized, a wave which propagates along the external
magnetic field is transverse polarized: the ordinary wave is characterized by the right-handed
circular polarization, the extraordinary wave is left-handed polarized.

The frequencies that satisfy the relation are called the plasma resonance fre-
quencies. Note that one of the refraction indices tends to infinity as the frequency approaches
the resonance value whereas the second one remains finite, Mak-
ing use of Eqs. (5) and (2) we obtain a cubic equation with respect to Hence it determines
three resonance frequencies in contrast to an ideal magnetized plasma  where
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Figure 1. Squares of refraction indices of strongly coupled magnetized plasma vs. frequency (in arbitrary
units)

only two resonances exist if one neglects the ion motion. For the case of near longitudinal
propagation the resonances are

For the case of transverse propagation one obtains the following expressions for the
poles of the refraction indices:

The zeros of the determine the boundaries between the domains of propagation for
different waves. From Eq. (4) it follows that  if the coefficient C is equal to zero. We
find three zeros,

Once one knows the poles and the zeros and taking into account that
as well as the relation one easily plots the refraction

indices. In Fig. 1 we show the frequency dependence of the refractive indices for an angle

The branches of propagation  are associated with the eigenfrequencies
The latter are shown in Fig. 2 as functions of the wavevector. The modes are determined
by Eq. (4). Since in neglect of ion motion Eq. (4) is an equation of fifth power with respect
to we can find five eigenmodes. This is in contrast to the ideal plasma where only four
eigenfrequencies can be found in neglect of ion motion (i.e., neglecting the Alfvén wave).
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Figure 2. Frequencies of various eigenmodes of strongly coupled and ideal magnetized plasma vs. wavevector
(in arbitrary units). 1-fast extraordinary wave; 2- ordinary wave; 3, 3’ - slow extraordinary wave; 4,5 - strongly
coupled plasma whistling sound waves; 4’ - helicon wave of ideal plasmas

From Fig. 2 we can see that in the case of a strongly coupled plasma the helicon wave of an
ideal plasma splits into two branches, which we call the strongly coupled plasma whistling
sound waves.

Thus five eigenmodes occur in strongly coupled magnetized plasma: ordinary and
extraordinary whistling sound wave, the slow extraordinary, the ordinary and the fast extraor-
dinary waves.

Consider in more details the low frequency region of the spectra if  i.e., the
dispersion of the whistling sound waves at small wavenumbers. Then the dispersion equation
reduces to a quadratic equation with respect to For the case of parallel with respect to the
external magnetic field propagation the corresponding solution reads

In ideal magnetized plasmas (i.e.,  the solution of Eq. (10) represents then the
spiral wave - the helicon, or the whistler, the frequency of which is3

and tends to zero as
For the case of strong interaction between the particles and at small wavenumbers, i.e., if

the solutions of Eq. (10) describe the ordinary and extraordinary whistling
sound waves propagating in strongly coupled plasmas,

with the whistling sound velocity
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CONCLUSIONS

In this paper the dispersion laws for electromagnetic waves in cold magnetized plasmas
are analyzed. The basis of our analysis was the expression for the dielectric tensor obtained
from the classical theory of moments. The dielectric tensor is constructed without using the
perturbation theory. Thus both the case of weak and strong Coulomb coupling can be regarded.
A qualitative distinction in the electromagnetic wave propagation for the low-frequency region
between systems with weak and strong Coulomb coupling has been established. It has been
shown that the helicon branch for the case of a weakly coupled plasma splits into two whistling
sound branches in the case of strongly coupled plasmas.
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INTRODUCTION

The present contribution is about the status of van der Waals forces in a gas at low density
and low temperature which is always partially ionized by entropy or thermal excitations.
The description of van der Waals forces in the framework of the N-body problem with
Coulomb interactions contains many difficulties. For instance, the formation of atoms from
the fundamental entities such as nuclei and electrons is to be described by quantum mechanics
and not from a chemical approach in which the atoms would be preformed objects. The long
range of Coulomb interaction must be handled with in a systematic way that incorporates
collective screening effects. At last, the quantum statistics should be taken into account
without any approximation.

The standard calculation of van der Waals forces for two atoms in their ground state
in the vacuum relies on the fact that at distances R large compared with the Bohr radius,
the dipole–dipole-like interaction between the charges that belong to two different atoms is
negligible with respect to the ionization energy  of one atom. The averaged electric dipole
inside an atom vanishes and, according to the second order perturbation theory, its quantum
fluctuations give rise to a squared dipolar effective interaction. When this calculation is
generalized in a naive way to the case where the two atoms are in a partially ionized medium,
then the bare Coulomb potential between charges in different atoms is to be replaced by some
screened interaction. If the latter decayed exponentially at larges distances, the effective
attractive interaction between two atoms would be short ranged as well. In fact the screening
in quantum plasmas is only algebraic,1–3 namely the screened effective interactions between
the charges surrounded by their polarization clouds behave as some squared dipolar-like
interactions induced by the intrinsic quantum fluctuations of the particles. Thus the decay
of the particle correlations in a partially ionized gas should be controlled by the two similar
mechanisms that generate algebraic screening and van der Waals forces respectively. This
interplay has already been investigated in a simple solvable model.4 Here we extend this
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analysis to the many-body problem in the framework of the path integral formalism.

ATOMIC LIMIT FOR A GAS OF PROTONS AND ELECTRONS

For the sake of simplicity, we restrict the study to the Hydrogen plasma. We consider
the quantum grand partition function of the system at temperature T where the fundamental
entities are protons and electrons with chemical potentials  and respectively. We stress
that there is no preformed atom. The Hamiltonian is the sum of the kinetic energies of the
particles and of the Coulomb pair interactions. Since all negative charges are fermions, the
H-stability requirement is fulfilled.5 On the other hand, screening effects ensure that the
system does not explode and the thermodynamic limit exists.6

Another important result is that, whatever the values of the chemical potentials are, the
charge neutrality relation is satisfied by the densities of protons and electrons, and in the
bulk in the thermodynamic limit, As a consequence, we can set  and

as in Ref. 7. The interest of such a choice is that, when Coulomb
interactions are neglected, the densities of protons and electrons in the corresponding ideal
gas are compelled to satisfy the charge neutrality.

First, let us consider the zero-temperature limit at fixed negative values of  In this limit,
the recombination of electrons and protons into complex entities (atoms, molecules, ions) in
their ground states competes with ionization favored by entropy effects since the density goes
to zero. As rigorously shown by Fefferman,8 the pressure of the system then behaves as that of
a mixture of ideal gases made with the following simple and/or complex entities: protons and
electrons if protons electrons and Hydrogen atoms if only  Hydrogen

atoms if – cst where the constant is smaller than –  We stress
that the atomic gas may exist though one Hydrogen molecule has a lower ground state energy
than two isolated atoms,  because the inequality allows entropy
to win over energy when the density is sufficiently small. (For instance, on earth Hydrogen
molecules are formed, whereas Hydrogen atoms may be found in interstellar clouds that are
dilute enough.) In order to control the ionization rate at  the previous limit can
be replaced by the following scaling limit

where the temperature goes to zero and w is a fixed parameter that determines the proportion
of atoms and free charges. It has been proved that the corresponding equation of state exactly
reduces to the familiar Saha formula.7 (The contributions of the interactions between entities
become negligible because of infinite dilution.) In the following, we study the quantities of
interest in the previous scaling limit.

QUANTUM FLUCTUATIONS AND COULOMB SCREENING

For our purpose it is convenient to use the Feynman–Kac path integral representa-
tion. Indeed, contrarily to the standard many-body theory, this formalism is not based on
a perturbative treatment of Coulomb interactions, and consequently it is able to describe
the recombination of electrons and protons in a simple way. Furthermore, it naturally pro-
vides low-density expansions that incorporate both quantum effects and collective screening.
Finally, it allows one to investigate the large-distance decay of correlations straightforwardly.

First, we recall the basic outlines of the formalism and we briefly describe the structure of
the diagrammatic representations derived in this framework. (For a detailed presentation see
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Ref. [2].) By using the Feynman–Kac representation of the matrix elements of the quantum
Gibbs factor in position space, the noncommuting quantum operators can be replaced by
path integrals of scalar functions in which a Brownian path is associated with each point
particle. In the case of Boltzmann statistics, only diagonal matrix-elements appear and one
particle corresponds to one closed path. When quantum statistics is taken into account, matrix
elements of the Gibbs factor between sets of permuted positions are to be considered. The
open paths that are associated with the particles exchanged in a given cyclic permutation can
be collected in a bigger closed path. Thus, as first used by Ginibre,9 a quantum system of point
particles with Fermi/Bose statistics is equivalent to a classical system of loops with random
shapes and Maxwell–Boltzmann statistics. Then standard methods of statistical mechanics
for classical fluids can be used. For instance, generalized Mayer graphs for the system of
loops can be devised and the divergencies due to the long range of the Coulomb interaction
are exactly resummed by a generalization of the method introduced by Meeron.10 This
provides the required diagrammatic representations in terms of various resummed bonds that
incorporate the following phenomena. In one of these bonds denoted by        the recombination
is taken into account nonperturbatively.(The contributions of Rydberg states, all of which are
excited as soon as the temperature is nonzero, are also automatically screened by collective
effects.) The large-distance charge–charge and charge-multipole interactions between the
loops are exponentially screened. However, the multipole–multipole interactions in      are
only algebraically screened, because, according to Feynman–Kac formula, a line element of
a loop interacts with only one line element of the other loop and not with all line elements
of the other loop, as it would be the case for the electrostatic interaction between wires. The
fluctuations of the partially screened dipolar-like interactions present in  ultimately
generate the algebraic tails in the particle correlations which decay as at large distances.

The previous formalism, or similar versions,11 has been used for computing the low-
density expansion of the equation of state at finite non-zero temperature (with [12] or without13

external uniform magnetic field). The corresponding forms of the coefficients of the algebraic
tails in the particle correlations have also been obtained.3 In the present scaling limit, this
formalism is still well-suited if the diagrammatic series are expressed in terms of the fugacities
rather than the densities (notice that the relation between the fugacities and the densities is non-
linear in the scaling limit). Indeed the inequalities between ground states energies introduced
by Fefferman8 can be used here for showing that only the first resummed graphs in the
fugacity expansions contribute. This allows us to recover immediately the Saha equation of
state (and next corrections beyond the ideal gas behavior might be investigated). Similarly,
the coefficient A in the large-distance tail - of the proton–proton correlation can
be evaluated exactly at leading order in the considered limit. It appears as the sum of three
contributions: a particle–particle contribution, a particle–atom one, and an atom-
atom contribution, All the corresponding contributions exhibit the following
structure,

where the factor involving the delta-distribution is a track of the partial
quantum screening of dipole–dipole interactions, (The -distribution gives the contribution
in the vacuum and the –1 is due to the medium). The is a symbolic notation for
the quantum fluctuations of either the position of a particle alone or of the relative position
between the electron and the proton inside a proton. The particle fluctuations behave as the
squared de Broglie thermal wave length whereas the fluctuations of the atomic dipole behave
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as the squared Bohr radius. At leading order in the integration over the imaginary
times (in units) s’s and t’s gives an extra factor if at least one of the position
fluctuations refers to an atom. Thus the dependencies in  of the various contributions are the
following: is proportional to to and is independent of at leading order.
A miracle shows up not only at the qualitative level but also at the quantitative level: the
effective potential reduces to the van der Waals potential calculated in the vacuum,
as if the surrounding medium had no effect. More precisely, the partial screening due to the
free charges does not contribute to the leading behavior of when the temperature goes
to zero.

CONCLUSION

As a conclusion from our study, the van der Waals forces between atoms do exist in a
partially ionized Hydrogen gas. They cannot be screened by the free charges present in the
system, contrarily to the predictions of a naive classical description of screening. Moreover, at
sufficiently low temperature and low density, their quantitative form is given by the standard
calculation in the vacuum and does not depend on the ionization rate. Our analysis shows that
van der Waals-like effective interactions also appear between a free charge and an atom, and
between two free charges. All these effective interactions arise from the genuine Coulomb
interactions and from quantum fluctuations of positions of a particle which are controlled
either by the de Broglie wavelength if the charge is free or by the Bohr radius if the charge
is bound in an atom. The tails in the particle correlations result from the contributions
of these three effective interactions. Their low-temperature form in the scaling regime of
interest is exactly evaluated, by discarding exponentially decaying terms (in particular the
contributions of excited atomic or molecular states). The present results should remain valid
in any partially ionized gas at sufficiently low temperature and low density. The existence of
van der Waals forces between neutral entities in an ionized medium, as well as between solids
separated by a plasma, can be viewed as an indirect proof of algebraic screening in quantum
plasmas.
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INTRODUCTION: TWO-DIMENSIONAL COULOMB SYSTEMS

For mimicking real three-dimensional Coulomb systems in a two-dimensional world (a
plane), it is appropriate to write the interaction energy, between two charges and at a
distance r from each other, as  –     log(r/L), where L is some irrelevant length scale. With
such an interaction, the usual equations of electrostatics (Poisson equation, Gauss theorem,
etc...) hold in two dimensions. These two-dimensional models should not be confused with
systems of real charges, such as electrons, confined in a plane, for which the interaction
of course remains the usual law. A good reason for being interested in these two-
dimensional logarithmic models is that exact solutions are obtainable, for classical equilibrium
statistical mechanics.

ON A SPHERE

Two-dimensional models living on the surface of a sphere are of interest, especially
because they are very appropriate for performing numerical simulations1 (three-dimensional
models on the surface of an hypersphere have also been used2). Here, we review the sphere
problem as an introduction to the next section.

Coulomb Potential

In terms of the spherical coordinates  the two-dimensional Laplacian on a sphere
of radius R is

One might wish to take for the potential at an angular distance from a unit point charge
a solution of

However, (2) has no solution; this is because the field lines emitted by the +1 point charge
will converge into a – 1 charge at the antipodal point, and therefore there is no solution for

*Laboratoire associé au Centre National de la Recherche Scientifique — URA D0063
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one point charge. One resorts to the choice

(where is the geodesic distance), which obeys

This is the potential due to a unit point charge and a uniform background of opposite
charge.

Solvable Models

For particles of charge q at a temperature T, when the one-component
plasma3 (OCP), the two-component plasma4 (TCP), and the TCP plus a background,5 with
the interaction (3), are solvable models.

Method of Solution

The model on a sphere can be transformed into a plane model by a stereographic
projection, from the North pole of the sphere onto the plane P tangent at the South pole. A
point on the sphere, with spherical coordinates  is projected into a point of P with polar
coordinates such that

In terms of an infinitesimal distance ds on the sphere is such that

while the finite geodesic distance  between two points on the sphere can be expressed
in terms of the coordinates of their projections by

For a system of charges on the sphere with the interaction (3), the total potential energy
can be reexpressed as the one of a flat model, by using (7).

For instance, in the case of an OCP of N unit charges, one finds a total potential energy

where C is a constant. Thus, the OCP on a sphere maps onto a flat OCP with an r-dependent
background charge density. This flat model is easy to solve, when The truncated
two-body density, for two particles separated by a geodesic distance D, was found3 to be
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ONE-COMPONENT PLASMA ON A SURFACE OF CONSTANT NEGATIVE
CURVATURE

Our interest for this problem was triggered by a recent work by M. B. Hastings.6

Admittedly this is essentially a mathematical game, but, in our opinion, an amusing one.

Surface of Constant Negative Curvature

The whole surface cannot be embedded in Euclidean three-dimensional space, but it can
be represented by a plane projection, the Poincaré disk, which closely resembles the plane
stereographic projection of a sphere. The whole surface is represented by the inside of a
disk of radius 2a. In terms of polar coordinates an infinitesimal distance is now given
by (6) where the squared curvature radius is replaced by the negative number The
geodesies are circle arcs normal to the boundary circle. The geodesic distance D between
two points of complex coordinates and is given by

instead of (7). D becomes infinite if r = 2a or which means that the circle of radius
2a represents surface points at infinity.

Coulomb Potential

The Poisson equation for the potential at a geodesic distance D from a unit point
charge now does have a solution

this potential vanishes at i.e., on the boundary circle.

One-Component Plasma

The one-component plasma, with a particle number density n and the curved metric,
maps onto a flat model in the Poincaré disk with an r-dependent background charge density
and ideal conductor walls. When one finds a truncated two-body density

instead of (9).

An Unusual Equivalence

The ideal conductor walls in fact play no role, because in the flat model mapping the
image charges are screened by a density which is infinite at the boundary. Thus, one obtains
the same correlations by using for the interaction the analog of (3)

which has no image forces.
Thus, two different interactions (11) and (13) generate the same n-body correlation

functions (in the thermodynamic limit).
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Perfect Screening

Generic perfect screening sum rules are expected to hold. The screening of a particle of
the system is expressed as

where dS is the area of a surface element computed with the curved metric. The screening
of an infinitesimal external charge (and linear response theory) lead to the Carnie and Chan
sum rule

involving the correlation between the charge density  and the electric potential this sum
rule can be rewritten as

na generalization of the second-moment Stillinger–Lovett sum rule.
These sum rules are indeed obeyed by the OCP when

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

J. M. Caillol, D. Levesque, J. J. Weis, and J. P. Hansen, A Monte-Carlo study of the classical two-
dimensional one-component plasma, J. Stat. Phys. 28:325 (1982).
J. M. Caillol, A Monte-Carlo study of the liquid–vapor coexistence of charged hard spheres, J. Chem.
Phys. 100:2161 (1994).
J. M. Caillol, Exact results for a two-dimensional one-component plasma on a sphere, J. Physique-lettres
(Paris) 42:L–245( 1981).
P. J. Forrester, B. Jancovici, and J. Madore, The two-dimensional Coulomb gas on a sphere: exact results,
J. Stat. Phys. 69:179(1992).
P. J. Forrester and B. Jancovici, The two-dimensional two-component plasma plus background on a sphere:
exact results, J. Stat. Phys. 84:337 (1996).
M. B. Hastings, Non-Hermitian fermion mapping for one-component plasma, cond-mat/9703006 and J.
Stat. Phys., to be published.

712



A MONTE CARLO FINITE SIZE SCALING STUDY OF CHARGED HARD
SPHERE CRITICALITY

J. M. Caillol,1 D. Levesque,2 and J. J. Weis2

1M. A. P. M. O. Université d’Orléans, BP 6759
45067 Orléans, France

2L. P. T. H. E. Bât. 211, Université Paris-Sud
91405 Orsay, France

INTRODUCTION

A subject of current theoretical and experimental interest is the critical behavior of ionic
fluids.1–3 The experimental situation appears for the moment somewhat controversial as both
classical and Ising-like behaviors have been observed. Evidence accumulates, though, that the
situation might be that of a crossover to Ising-type critical behavior at scales
whose values may vary appreciably with nature of the system. A review of theoretical
achievements concerning ionic criticality is given by Pr. M. E. Fisher in this volume.1, 2

However, no firm conclusion concerning the nature of ionic criticality can be drawn from
these theoretical works. Hence the present attempt to see whether computer simulations
together with a finite size scaling (f.s.s.) analysis can help elucidating the nature of ionic
criticality. We have studied the restricted primitive model (RPM) near its critical point. The
RPM is an equimolar mixture of positively and negatively charged hard spheres of the same
size which captures the main features of realistic ionic fluids. As shown by previous Monte
Carlo (MC) simulations the model exhibits a liquid vapor transition with a critical point at
unusual low temperature and density.4–7

MODEL AND BOUNDARY CONDITIONS

The RPM of an ionic solution consists of N / 2 hard spheres of diameter and charge
+q and N / 2 hard spheres of the same diameter and charge –q. The pair potential between
ions i and j is given by

A thermodynamic state is characterized by a reduced density and a reduced
temperature (k Boltzmann constant). We also introduce a reduced inverse
temperature
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As well known, numerical simulations of Coulomb fluids need some caution due to the
long range of electrostatic interactions. A possible way of handling the problem is to confine
the particles at the surface of a 4D sphere, a hypersphere for short. This surface, denoted

is a 3D non Euclidean, homogeneous, isotropic, albeit finite space well suited for the
numerical simulations of fluids. Moreover the Poisson equation can be solved analytically
in this geometry which enables simulations of Coulombic fluids.6,8 In the pair potential
between ions i and j reads

where is the angle between the vectors and of the
ions on the hypersphere of center O and radius R. The use of hyperspherical geometries has
been checked,6,8 to give results for the thermodynamic and structural properties of the RPM
similar to those obtained with more conventional Ewald periodical geometries.

ENSEMBLE

We performed our MC simulations of the RPM in in the grand canonical (GC)
ensemble. In this ensemble the volume V, the temperature T and the chemical potential

are fixed but the number N of ions can vary. The MC sampling of the GC ensemble
was made in cycles, each cycle comprising, in a random order, displacement trial moves,
as well as attempted insertions and deletions of a neutral pair of ions. Biased schemes
were introduced in order to speed up the convergence.6,7 The aim of the calculations was
to determine the joint distribution of the density p and energy per unit of volume
u for a given system of size L R. From the knowledge of one can compute all the
moments and cross correlations of and u as required in a f.s.s. analysis. Of course the
distribution is wanted for all (continuous) values of and u in the critical region.
This was achieved by using (multiple) histogram reweighting of distinct states
more or less uniformly sampling the critical region.9 Five system sizes corresponding to
reduced volumes = 1500,2500,3500,5000, and 10000 were considered, for
each volume about MC sweeps were generated.

FINITE SIZE ANALYSIS

Revised Scaling

The first step to perform a f.s.s. analysis is to identify the scaling operators and variables.
This was done in the framework of revised scaling theory by Rehr and Mermin.10 In this
phenomenological theory the critical properties of a liquid are described by two scaling fields
h and which are supposed to be analytical functions of T and The conjugate operators
of h and are denoted respectively  and Therefore in the vicinity of the critical point
the scaling fields can be written

where (r,s) are field mixing parameters, and the subscript c denotes values at the
critical point. The expressions for the scaling operators are
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In fact the quantities of interest are the deviations and of
the scaling operators from their values at criticality. The linear mapping
amounts to associate to the fluid an hypothetical magnetic system of magnetization
magnetic energy temperature τ in the presence of a magnetic field h. The hamiltonian of
this associated system is invariant in the symmetry  for h = 0.

Within this framework the order parameter of the liquid vapor transition is  and the
coexistence line is denned by the condition h = 0. Note that obviously one has

The field mixing parameter where the derivative must be evaluated
along the coexistence line (h = 0) at The parameter s is obtained, for a given T*, by
tuning the values of and s in such a way that the distribution of the ordering field

is an even function of  For the RPM we found r = –0.62 and s = –1.46,
values which do not depend appreciably upon system size L.

F.s.s. hypothesis and analysis

It has been postulated by Bruce and Wilding that the scaling behavior of  in the
critical region and f.s.s. limit is that of a usual magnetic system.11 For instance, at coexistence
(h = 0) and for sufficiently large systems, one should have

where and are non-universal amplitudes, is a universal function which depends
only on the universality class of the model and the type of geometry, and the renormalized
exponents are given in terms of the usual exponents and (Wegner’s correction-to-
scaling exponent), assuming hyperscaling, by and

From Eq. (5) one finds that for an apparent crititical temperature

where is a universal function. Moreover scales with system size
as

We have found for the RPM that collapses according to Eq. (6) on the fixed
point distribution corresponding to the 3D Ising universality class within periodic
boundary conditions (this function is known from earlier MC simulations12). This point is
illustrated by Fig. 1. The scaling law (Eq. (6)) for allows to compute the (true) critical
temperature of the 3D RPM: =0.0488(2). Similar collapse of on the fixed
point distribution of th 3D Ising model shows that the data for the joint distribution
of the RPM are compatible with an Ising-like behavior.

We also made an attempt to compute directly the critical exponents of the RPM by
considering Binder’s cumulant which should scale as

where Q* is universal while and are non universal constants. We have attempted
to determine and using the values of calculated for the five volumes along the
gas–liquid coexistence curve for 21 temperatures in the range 0.0480–0.050. A fit of our data
by Eq. (8) yields: and in fair agreement with recent
estimates of 3D Ising values Q* = 0.623, An analysis similar to
that made for but for leads to the value once again in agreement
with that of the 3D Ising model.

715



CONCLUSION

This work represents a first attempt to determine the criticality of a simple model of
Coulomb fluid by means of a f.s.s. analysis of MC data. Despite poor precision in comparison
with current lattice MC simulations of Ising and related models our data are clearly in favor
of an Ising-like criticality. More details concerning this work may be found in Refs. (14,15).
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THERMAL PHOTONIC SCREENING IN A WEAKLY RELATIVISTIC PLASMA
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INTRODUCTION

In many physical systems, the description of a plasma as a Coulomb system is sufficient to
reproduce most of the properties of interest. If the system is cold enough, the mean velocities
of the particles are much smaller than the speed of light, and the charges may be assumed to
interact via the instantaneous Coulomb potential. However, at sufficiently high temperatures,
this approximation is no longer valid, and the contributions of the relativistic effects (which
include, apart from the trivial kinetic corrections, the magnetic interactions, and of course all
the retardation effects) must be incorporated when studying the equilibrium properties of the
system. For a weakly relativistic plasma, the corrections to the Coulomb quantities can be
expanded in powers of 1/c. In the classical (non quantum) case, there exist various approaches
based on the so-called Darwin Hamiltonian, which describes the equations of motion of a
classical system with electromagnetic interactions up to order  However, the classical
models are not entirely reliable to describe real plasmas, as shown by an analysis within the
framework of Quantum Electrodynamics (QED) at finite temperature, the sole theory that
provides a complete and coherent treatment of both matter and radiation at equilibrium.5–7

In this paper, the failures of the classical models are illustrated through the QED study
of the current correlations. We shall show that the retarded interactions beyond the Coulomb
potential, generated by the exchange of thermalized photons, are exponentially screened on the
thermal photonic wavelength This invalidates the large-distances predictions
of all the classical Darwin models which equally fail (contrarily to what is claimed in the
literature.) However, at distances the first non-ideal relativistic
corrections are indeed given by the Darwin models. In order to avoid the classical collapse
between opposite charges due to the Coulomb attraction, we restrict ourselves to the case of
a One-Component Plasma.

GENERAL FRAMEWORK

We consider, in the framework of QED at finite temperature,8,9 a system composed of
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matter: electrons and positrons are described by a bi-spinor field  the free Hamiltonian
of which is the Dirac Hamiltonian The chemical potential of the
electrons will be denoted where is the usual chemical potential. The
chemical potential of the positrons is then

radiation: photons are described by a four-vector field their chemical potential is
identically zero. They are described by a free Hamiltonian which
depends on the gauge choice.

Matter and radiation are coupled via the interaction Hamiltonian

In order to investigate the equilibrium statistical mechanics of the system at given temper-
ature and chemical potential we introduce the usual imaginary-time evolved
operators

and

The familiar Dyson expansion with respect to of the equilibrium quantities leads to
Feynman graphs, which can be expressed in terms of free propagators, built with and

Since the imaginary-time free propagators are periodic (or antiperiodic) functions
with period they can be decomposed in Fourier sums over discrete Matsubara frequencies.
For instance, the Fourier components of the free photon propagator read, in the Feynman
gauge

where we have set
In order to study the weakly relativistic and almost classical limit of the system, we take

negative such that

This inequality ensures that primo the matter is mainly made of classical electrons (the density
of the positrons vanishes then as and secundo they are weakly relativistic.

CURRENT CORRELATIONS

For our purpose, it is interesting to introduce the current correlations

where denotes a thermal equilibrium average. The first-order terms in the Dyson
expansions are represented by the two following Feynman graphs

and

The second one is of purely quantum origin, and has no classical equivalent. Only the first
one will be of interest for us.
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In order to avoid the quantum effects arising from the overlap of the electrons wave-
functions, we will restrict the analysis to distances where is the
de Broglie thermal wavelength of the electrons. When we calculate the contribution of the
first graph in (7), we observe the emergence of two distinct spatial regimes, separated by the
photonic thermal wavelength

At intermediate distances  and at the lowest orders in and in 1/c, the
three dimensional current correlation function is an algebraically decreasing function
of the distance

At large distances on the contrary, the classical part of the correlations
decays exponentially fast with respect to the distance. Indeed, the photon propa-

gator exhibits a factor while the static (n = 0) non-vanishing
contributions are purely quantum (they depend on h.)

This proves the existence of the thermal photonic screening of the transverse effective interac-
tions between classical charges. We stress that this screening does not result from a collective
effect (note that the screening length   does not depend on the density.).

At higher orders in and 1 /c, the effective interactions between classical charges that
appear in each Feynman graph should reduce to a sum of the Coulomb potential and of
screened transverse effective interactions.

INTERPRETATION IN TERMS OF CLASSICAL THEORIES

The two different behaviors of the current correlations can be explained in the frame-
work of two different classical approaches. The large-distance behavior can be obtained
within Classical Field theory, while the intermediate-distances behavior coincides with the
predictions of the Darwin models.

Classical field theory

Let us consider a purely classical and fully relativistic model of a one-component plasma
of electrons, interacting via a classical electromagnetic field       This field can be written as
the sum of a Coulomb instantaneous field, and a retarded transverse field (in the Coulomb
gauge.) Using an appropriate set of canonical variables, the free Hamiltonian of the system
can be recast in the following form:

where A is the vector potential (transverse field), is the canonical momentum of particle i,
is the electrostatic Coulomb energy, and is the energy of the transverse

field (which can be written as the sum of harmonic oscillators.) The partition function then
factorizes into the product of the free transverse-field partition function and the Coulombic-
matter partition function. The transverse field is then decoupled from the particles, that
behave like a purely Coulomb system. Consequently the current correlations identically
vanish. However, the classical statistics of the (free) transverse field involves well-known
ultraviolet divergencies, and the present analysis is only valid for the range of momenta

(for larger momenta, the field must be treated quantum mechanically), that is
to say, using the Fourier conjugation, at distances So, in agreement with
the above QED analysis, the current correlations do vanish at these large distances.
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Darwin models

Let us consider a model of one-component plasma made of classical point particles
with electromagnetic interactions.1,2 We assume that all the speeds of the particles are much
smaller than the speed of light c. The equations of motion can then be expanded in powers
of 1 /c and, at order they can be recast into an Hamiltonian where only the particles
degrees of freedom appear (the electromagnetic field is eliminated like in the purely Coulomb
description.) This Hamiltonian is the sum of a kinetic term, the Coulomb interaction, and a
two-body momentum-dependent term of order which reads

We have studied this model5–7 and shown that the Darwin interactions are weakly autoscreened
on a scale where  At distances  no screening
occurs, and the current correlations, at lowest orders in and 1/c , reduce to the contribution
of the two-body direct interaction between the two involved particles, i.e.,

This prediction is therefore in agreement with our previous QED analysis at intermediate
distances. We stress that the above autoscreening of the Darwin current correlation has
nothing to do with the thermal photonic screening. Consequently, the large-distance behaviors
computed in the Darwin models do not make any physical sense. The same considerations
apply to the other related models based on the Darwin approach.3,4

CONCLUSION

Our QED analysis of the first-order terms (in and 1/c) of the current correlation
functions proves that a thermal photonic screening occurs at distances This
screening is responsible for the failure of the different Darwin models at large distances,
although some predictions of these models, involving only the contributions from the window

are expected to be relevant pieces of the relativistic corrections for real
plasmas. This analysis is confirmed by the study of the excess pressure that appears in [10].
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