
Computer Physics Communications 263 (2021) 107913

Z
P
a

b

D
c

c
i
r
i
s
b
i
B
t
c

M
r
t
p
a

h
0

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Efficient GPU implementation of the Particle-in-Cell/Monte-Carlo
collisionsmethod for 1D simulation of low-pressure capacitively
coupled plasmas✩

oltan Juhasz a,∗, Ján Ďurian b, Aranka Derzsi c, Štefan Matejčík b, Zoltán Donkó c,
eter Hartmann c

Department of Electrical Engineering and Information Systems, University of Pannonia, Egyetem u. 10, Veszprem, 8200, Hungary
Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská
olina F2, 842 48 Bratislava, Slovak Republic
Wigner Research Centre for Physics, Konkoly-Thege M. str. 29-33, Budapest, 1121, Hungary

a r t i c l e i n f o

Article history:
Received 2 October 2020
Received in revised form 11 January 2021
Accepted 16 February 2021
Available online 26 February 2021

Keywords:
Collisional plasma simulation
Particle-in-Cell method
GPU

a b s t r a c t

In this paper, we describe an efficient, massively parallel GPU implementation strategy for speeding up
one-dimensional electrostatic plasma simulations based on the Particle-in-Cell method with Monte-
Carlo collisions. Relying on the Roofline performance model, we identify performance-critical points of
the program and provide optimised solutions. We use four benchmark cases to verify the correctness
of the CUDA and OpenCL implementations and analyse their performance properties on a number of
NVIDIA and AMD cards. Plasma parameters computed with both GPU implementations differ not more
than 2% from each other and respective literature reference data. Our final implementations reach over
2.6 Tflop/s sustained performance on a single card, and show speed up factors of up to 200 (when using
10 million particles). We demonstrate that GPUs can be very efficiently used for simulating collisional
plasmas and argue that their further use will enable performing more accurate simulations in shorter
time, increase research productivity and help in advancing the science of plasma simulation.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
o

1. Introduction

Particle-in-cell (PIC) simulations represent a family of numeri-
al methods, where individual particle trajectories are computed
n a continuous phase space, while distributions and fields are
epresented on a numerical mesh. Such a representation of matter
s relevant to a large variety of condensed matter and gaseous
ystems. An early applications of the PIC method was to study the
ehaviour of hydrodynamic systems [1], subsequently it gained
ncreasing popularity in the field of gas discharge physics after
irdsall and Langdon [2,3] adopted it to electrically charged par-
icle systems including a Monte-Carlo treatment of binary particle
ollisions (PIC/MCC).
One of the most important fields of applications of the PIC/

CC approach has been the description of capacitively coupled
adiofrequency (CCRF) plasmas, which are widely used in high-
ech manufacturing, like semiconductor processing, production of
hotovoltaic devices, treatment of medical implants, like stents,
rtificial heart valves, etc., see e.g. [4–6]. These plasma sources

✩ The review of this paper was arranged by Prof. David W. Walker.
∗ Corresponding author.

E-mail address: juhasz@virt.uni-pannon.hu (Z. Juhasz).
ttps://doi.org/10.1016/j.cpc.2021.107913
010-4655/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
usually operate in a rarefied gas or gas mixture. The active
species, like ions and radicals interact with the samples that are
usually connected as electrodes or are placed on the surface of
the electrodes. At low pressures, the characteristic free path of
the active species, λ = 1/n0σ , where n0 is the number density
f the background gas and σ is the collision cross section of the

active species with the gas atoms/molecules may be comparable
or even longer than the dimensions of the plasma source. Under
such conditions a correct and accurate description of the particle
transport can only be expected from kinetic theory. This, in turn
restricts the applicable methods to those that are capable of
treating the non-local transport. Particle based methods qualify
for this purpose and became therefore a very important approach
for the description of low-pressure plasma sources. Their great
ability is also to provide (without any a priori assumptions)
the particle distribution functions which determine the rates of
plasmachemical processes (producing the species of interest) and
the nature and effectiveness of the reactions taking place at the
surfaces to be processed.

The simulation of collisional plasmas (such as those just men-
tioned) is a computationally very expensive task. When smooth
distributions with high spatial and temporal resolution are re-
quired, a very large number of particles and collisions needs to be
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.cpc.2021.107913
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2021.107913&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:juhasz@virt.uni-pannon.hu
https://doi.org/10.1016/j.cpc.2021.107913
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Z. Juhasz, J. Ďurian, A. Derzsi et al. Computer Physics Communications 263 (2021) 107913

s
a
g
s
c
p
s
h
t
a

p
l
a
l
O
o
a
f
t
t
t
a
o
a
f

d
s
u
c

a
p
p
m
u
n
e
e
f
t
t
f
p
a
s
u
c

imulated over long enough time. A good compromise between
ccuracy and simulation time can be found in cases when the
eometrical symmetry of the system enables the reduction of the
patial dimension of the particle phase space from 3D to 2D (in
ase of cylindrical or slab geometry) or even 1D (in case of plane-
arallel systems). The execution time of traditional sequential
imulations of one-dimensional systems can vary from several
ours to several weeks depending on the simulation parame-
ers [7]. In terms of execution time, sequential simulations of 2D
nd 3D plasma systems are clearly impractical.
Parallel computing has been used extensively in collisionless

lasma simulations for decades [8,9]. Interest in efficient paral-
el implementations increased significantly in the past 10 years
s multi-core systems became pervasive [10–13]. Early paral-
el plasma simulations were typically based on MPI [14] and
penMP [15] implementations running on large compute clusters
r supercomputers, and were characterised by coarse-grain par-
llelism based on domain decomposition using few hundred to
ew thousand cores. In special cases, for very large simulations,
he number of CPU cores may reach few hundred thousands. As
he parallel techniques of collisionless plasma simulation ma-
ured, the focus of attention gradually shifted from low-level
lgorithmic issues to higher-level aspects such as the creation
f simulation frameworks and object-oriented solutions [9,16]
iming at simplifying the simulation process for end-users and
acilitating code reuse.

Advances in parallel computing technology over the past
ecade has dramatically changed the hardware architecture land-
cape. The emergence of general purpose graphics processing
nits (GPGPUs) gave rise to cards with thousands of compute
ores and performance in the range of several Tflop/s (1012 oper-
ations per second). The majority of supercomputers now employ
thousands of GPUs raising the core count to the millions (see
e.g. supercomputer Summit with > 140 million GPU cores). These
new capabilities resulted in increased interest in massively paral-
lel accelerator based 2D and 3D PIC simulation studies reporting
maximum speedup values in the range of 30–50 [17–22].

Despite the success in parallel collisionless plasma simulation,
parallel simulation of collisional plasma is still a challenge. The
difficulty in achieving even modest performance improvements
is due to the peculiarities of collisional plasma simulations, such
as irregular memory access patterns, the computational cost of
parallel random number generation and collision calculation, as
well as potentially severe load imbalance. Special memory and
particle management schemes are required to achieve increase
in performance [23,24].

Several groups examined the use of GPUs for collisional PIC/
MCC plasma simulation. Fierro et al. [25,26] report on a 3D
PIC/MCC implementation achieving speedups of 13 for the Pois-
son solver and 60 for the electron mover section of the code.
Overall program speedup is not known. Shah et al. [27] developed
a 2D simulation for the NVIDIA Kepler architecture and achieved
a speed increase of 60 when using 1 million particles. Sohn
et al. [28] developed a 2D high-temperature plasma simulation
for studying magnetron sputtering achieving speedup of 3–30.
Clustre et al. [29] implemented a 2D PIC/MCC GPU code for
magnetised plasma simulation achieving speedup in the range of
10–20. Hur et al. [30] also report on 2Dmagnetised/unmagnetised
plasma implementations, with speedups of 80 and 140 for the
magnetised/unmagnetised cases, respectively.

Very few teams looked at the GPU implementation of the 1D
PIC/MCC case, most likely because a 1D sequential PIC/MCC code
computationally is not prohibitive. Nevertheless, shorter run-
times are still important as there are long-running 1D simulations
and the decrease in runtime could also allow improving simula-

tion accuracy by increasing particle counts. Mertmann et al. [31] a

2

report on a 1D GPU implementation using a novel particle sorting
mechanism achieving an overall 15–20x speed increase when
using 5 million particles. Hanzlikova [32] studied the efficient
implementation of 1D and 2D PIC/MCC algorithms on GPU. The
achieved speedup values are not known.

In this paper we show implementation approaches for the fun-
damental steps of 1D PIC/MCC simulation on GPUs in a massively
parallel fashion and examine the performance and scalability of
the developed algorithms. We highlight that traditional porting of
existing codes is not guaranteed to provide good performance; for
the efficient use of GPUs, new programming approaches and new
algorithms are required that take architectural characteristics into
consideration and provide the level of parallelism needed for
these massively parallel systems. We argue that GPU technology
is a key enabler for advancing the science of PIC/MCC plasma
simulation and its full potential in PIC/MCC simulation has not
yet been reached. Chip manufacturing, energy and performance
constraints all point to the direction that GPUs will be central
elements of our computing systems for many years to come.
The unprecedented pace of development in GPU hardware and
programming technology continually improves the efficiency of
GPU systems, making them suitable for an increasing number
of computing problems, while at the same time making their
programming simpler. These new algorithms and implementa-
tions are also of paramount importance for massively parallel CPU
and hybrid peta- and exascale systems as well, since their ar-
chitectural characteristics and programming challenges are sim-
ilar to GPUs (e.g. hiding memory access latency and inter-node
communication, increasing data locality).

The structure of our paper is as follows. In Section 2 we
briefly overview the fundamental concepts of PIC/MCC plasma
simulations with the governing equations. Section 3 gives a short
introduction to the architecture and programming of GPUs high-
lighting performance-critical features and to the Roofline per-
formance model. Section 4 provides details of our CUDA and
OpenCL 1D PIC/MCC implementations with performance analysis
and optimisations. In Section 5, we first show the results of the
verification of our implementations by comparing the simulation
results with standard benchmark cases, then present performance
results of strong and weak scaling cases as well as overall speedup
values and analysis of system performance in function of particle
counts. The paper ends with the conclusions.

2. Basics of the PIC/MCC simulation of CCRF plasmas

Typical technological CCRF plasma sources are excited by
single- or multifrequency waveforms at frequencies between
1MHz and 100MHz, with voltage amplitudes of several hundred
Volts. At ‘‘low-pressure’’ conditions they operate between ∼1Pa
nd few hundred Pa. The typical electron and ion density in these
lasmas is in the order of ne ≈ ni ∼ 108

−1011 cm−3. Considering
lasma volumes of ∼ 102

−103 cm3 the number of electrons/ions
ay be in the order of up to N ∼ 1014. These particles move
nder the influence of their mutual interactions and the exter-
al electric field that accelerates the charged species thereby
stablishing the plasma. Accounting fully for these interactions,
specially the pairwise interactions, is impossible, therefore the
ollowing two simplifications are conventionally introduced: (i)
he direct particle–particle pair interaction is neglected, the par-
icles move in an electric field that results from the external
ield and from the field generated by the presence of the charged
articles, (ii) instead of each and every particle, ‘‘superparticles’’
re traced that represent a large number of real particles. These
implifications form the basis of the ‘‘Particle-in-Cell’’ (PIC) sim-
lation method. In PIC simulations plasma characteristics (like
harged particle densities, electric field strength) are computed
t points of a spatial grid, at discrete times.

Z. Juhasz, J. Ďurian, A. Derzsi et al. Computer Physics Communications 263 (2021) 107913

c
p
i
b
j
x
a
d
p

δ

Fig. 1. The simulation cycle of a PIC/MCC bounded collisional plasma that has
to be carried out several thousand times within a radiofrequency period.

As the plasmas of our interest are collisional, the PIC method
(originally developed for collisionless plasmas) has to be com-
plemented with the description of collision processes (as already
mentioned in Section 1). For this purpose a stochastic treat-
ment, the ‘‘Monte Carlo Collisions’’ (MCC) approach is usually
adopted [3]. In this approach, colliding particles are selected in
each time step randomly, based (strictly) on the probabilities of
such events defined by the respective cross sections, the velocities
of the particles, the background gas density and the length of the
time step (see later).

The PIC/MCC method is thus a combination of two approaches.
It is capable of describing electrodynamics effects, but in most
cases the electrostatic approximation provides sufficient accu-
racy. The method is readily applicable to 1, 2, or 3 dimensions,
however, the computational load increases immensely for the
higher (2 or 3) dimensions. In the following we assume a one-
dimensional geometry: a source in which the plasma is estab-
lished between two plane parallel electrodes, which are placed at
a distance L from each other. The ‘‘lateral’’ extent of the electrodes
is assumed to be infinite, the plasma characteristics are therefore
functions of the x coordinate only. The velocity of the charged
particles (electrons and ions are considered), is however com-
puted in the three-dimensional velocity space upon collisions.
Because of the cylindrical symmetry of the system, however, the
particles carry only the values of their axial and radial velocities,
vx and vr , respectively, between their collisions with the atoms of
the background gas. The superparticle weight W (that expresses
how many real particles are represented by a superparticle) is the
same for electrons and ions.

The electrostatic PIC/MCC scheme considered here consists of
the following ‘‘elementary’’ steps (see Fig. 1), which are repeated
in each time step:

• computation of the density of the particles and the total
charge density at grid points,

• calculation of the potential distribution from the Poisson
equation that contains the potentials of the electrodes as
boundary conditions,

• interpolation of the computed electric field to the position
of the particles,
• moving the particles as dictated by the equations of motion,

3

• identification of the particles that reach the surfaces, ac-
counting for the interaction with the surfaces and removing
them from the simulation,

• checking of the collision probabilities of the particles and
executing the collision processes.

Here, we adopt an equidistant grid that has a resolution of
∆x = L/(M−1), where M is the number of the grid points having
oordinates xp with p = 0, 1, 2, . . .M−1. The densities of charged
articles at the points of this grid are computed with linear
nterpolations according to the particles’ positions as described
elow. The procedure applies both to electrons and ions. If the
th particle is located within the pth grid cell (p = [xj/∆x], where
j is the position of the jth particle (equal either to xe,j or xi,j for
n electron/ion, respectively) and [·] denotes the integer part), the
ensity increments assigned to the two grid points that surround
article j are

np =
(
(p + 1)∆x − xj

) W
A∆x2

, (1)

δnp+1 = (xj − p∆x)
W

A∆x2
, (2)

where A is the fictive electrode area (that is required for nor-
malisation purposes only, as the ‘‘real’’ area of the electrodes is
infinite). The linear interpolation scheme provides a good balance
between performance and accuracy, hence why it has become
the standard way to compute the particle densities at the grid
points. In specific cases higher-order interpolation schemes may
be used [2].

Once the particle densities at the grid points are known, the
charge density at the grid points can be computed as

ρp = e(ni,p − ne,p), (3)

where e is the elementary charge, ni,p and ne,p are, respectively
the ion and electron densities at grid point p. The potential
distribution is obtained from the Poisson equation:

∇
2φ = −

ρ

ε0
. (4)

This equation can be rewritten in the following finite difference
form for one-dimensional problems:
−φp−1 + 2φp − φp+1

∆x2
=

ρp

ε0
, (5)

known as the Discrete Poisson Equation. Solving this equation
is described in further detail in Section 4.6. Differentiating the
potential distribution (Eq. (6)) we obtain the electric field at each
grid point. Boundary grid points need to be treated specially as
given by Eqs. (7) and (8):

Ep =
φp−1 − φp+1

2∆x
, (6)

E0 =
φ0 − φ1

∆x
− ρ0

∆x
2ε0

, (7)

EM−1 =
φM−2 − φM−1

∆x
+ ρM−1

∆x
2ε0

. (8)

Knowing the electric field values at the grid points allows
computation of the field at the position of particle j located at
xj, as

E(xj) =
(p + 1)∆x − xj

∆x
E(xp) +

xj − p∆x
∆x

E(xp+1). (9)

The force being exerted on the jth particle located at xj are given
by

F = q E(x), (10)
j j j

Z. Juhasz, J. Ďurian, A. Derzsi et al. Computer Physics Communications 263 (2021) 107913
Table 1
Physical and numerical parameters of the benchmark cases.

Case

1 2 3 4

Physical parameters:
Electrode separation L [cm] 6.7 6.7 6.7 6.7
Gas pressure p [mTorr] 30 100 300 1000
Gas temperature T [K] 300 300 300 300
Voltage amplitude V [V] 450 200 150 120
Frequency f [MHz] 13.56 13.56 13.56 13.56

Numerical parameters:
Cell size ∆x L/128 L/256 L/512 L/512
Time step size ∆t f −1/400 f −1/800 f −1/1600 f −1/3200
Total steps to compute NS 512000 4096000 8192000 49152000
Data acquisition steps NA 12800 25600 51200 102400
Particle weight factor W 26172 52344 52344 78515

Converged computed parameters:
Number of electrons Ne 12300 57000 138700 161600
Number of ions Ni 19300 60200 142300 164500
Peak ion density n̂i [1015 m−3] 0.140 0.828 1.81 2.57
resulting in an acceleration

ajt =
qj
mj

E(xj), (11)

which makes it possible to solve the equations of motion using,
e.g., the popular leap-frog scheme, where the particle positions
and accelerations are defined at integer time steps, while the
velocities are defined at half integer time steps:

vj
t+1/2

= vj
t−1/2

+ ajt∆t, (12)

xjt+1
= xjt + vj

t+1/2∆t. (13)

After updating the positions of the particles a check must be
performed to identify those particles that have left the compu-
tational domain. These particles have to be removed from the
ensemble.

At every time step, the probability Pj of the jth particle under-
going a collision is given by [3]

Pj = 1 − exp
[
ng(x)σT(ε)vj∆t

]
(14)

where ng (x) is the background gas density, σT(ε) is the parti-
cle’s energy-dependent total cross-section, vj is the jth particle’s
velocity and ∆t is the simulation time step. Based on the compar-
ison of Pj with a random number (having a uniform distribution
over the [0, 1) interval) decision is made upon the occurrence
of the collision. The total cross-section is given by the sum of
cross-sections of all collisions the specific particle can participate
in:

σT(ε) =

k∑
s=0

σs(ε), (15)

where k is the number of reaction channels for the species of the
specific particle.

There is a finite probability that a particle undergoes more
than one collision within a single time step, resulting in missed
collisions. For this reason the time step of the simulation must be
chosen to be sufficiently small, as given by [33]:

νmax∆t ≪ 1 (16)

where νmax is the maximum of the energy dependent collision
frequency ν(ε) = ngσT(ε)v. Choosing a time step small enough
for Pj ≈ 0.1 results in a sufficiently small number of missed
collisions.

The type of the collision that occurs is chosen randomly, on the
basis of the values of the cross sections of the individual possible
reactions at the energy of the colliding particle. The deflection
4

of the particles in the collisions is also handled in a stochastic
manner, see e.g. [34].

Details of the implementations of the steps described above
will be discussed in parts of Section 4.

The steps outlined above have to be repeated typically several
thousand times per RF cycle. For sufficient accuracy the number
of superparticles has to be in the order of ∼ 105

− 106 in 1D
simulations. The spatial grid normally consist of 100 − 1000
points. These values are dictated by the stability and accuracy
requirements of the method (which are not discussed here but
can be found in a number of works, e.g. [33]). Convergence to
periodic steady-state condition is typically reached after thou-
sands of RF cycles. Due to these computational requirements,
in the past, such simulations were only possible on mainframe
computers. Today, sequential 1D simulations can be carried out on
PC-class computers or workstations, with typical execution times
between several hours and several weeks (depending mainly on
the type and the pressure of the gas).

Ideally, the results of a PIC/MCC simulation should not depend
on the number of superparticles used. In reality, however, as it
was discussed by Turner [35] low particle numbers give incorrect
results due to numerical diffusion in velocity space. The depen-
dence of the simulation results on the number of computational
particles was also analysed in [36]. The number of superparti-
cles in our work primarily follows those used in [7], which is
appropriate for a benchmarking activity, but we also executed
performance measurements for higher numbers of superparticles.
It should, however, be kept in mind that for results with improved
absolute accuracy the higher particle numbers should be adopted,
at least in the range of few times 105 per species.

2.1. Benchmarks

To perform the validation of our GPU implementations we
adopt the four benchmark cases that have been introduced in [7]
and compare the computed charged particle densities, being
some of the most fundamental and very sensitive plasma param-
eters, with the reference data of [7]. The parameters of the plasma
benchmark cases 1–4 are listed in Table 1.

The discharges are assumed to operate in plane-parallel ge-
ometry with one grounded and one powered electrode facing
each other, therefore a spatially one-dimensional simulation can
be applied. The discharge gap is filled with helium gas at densi-
ties and temperature (300K) that are fixed for each benchmark
case. A harmonic voltage waveform is applied to the powered
electrode at a frequency of 13.56MHz. The voltage amplitudes
are given for each of the four benchmark cases. Charged particles

Z. Juhasz, J. Ďurian, A. Derzsi et al. Computer Physics Communications 263 (2021) 107913

T
T

a
h
c
e
i
t
i
T
t

3

n
r
i
g
w
o
p
s
c
a
e
v
c
a
a
a
f
a
o
o
C
i

k
c
I
c
s
G
o

t
e
T
g
P
t
e
A

i
m
u
I
g
c
d
a
a
n
G

3

i
I
e
p
T
w
F
p
v

able 2
he collision types used in our plasma model.
Reaction Type Threshold energy (eV)

e + He → e + He Elastic –
e + He → e + He* Excitation (triplet) 19.82
e + He → e + He* Excitation (singlet) 20.61
e + He → e + e + He+ Ionisation 24.59
He+

+ He → He+
+ He Elastic (isotropic part) –

He+
+ He → He + He+ Elastic (backward part) –

reaching the electrodes are absorbed, and no secondary electrons
are emitted. The simulated plasma species are restricted to elec-
trons and singly charged monomer He+ ions. Collisional processes
re limited to interactions between these species and neutral
elium atoms. For electron-neutral collisions, the cross section
ompilation known as ‘‘Biagi 7.1’’ is used [37]. This set includes
lastic scattering, excitations and ionisation. Isotropic scattering
n the centre of mass frame is assumed for all processes. For
he ions only elastic collisions are taken into account, with an
sotropic and a backward scattering channel, as proposed in [38].
he cross sections for the ions are adopted from [39]. The list of
he processes is compiled in Table 2.

. GPU programming and architecture

Modern GPUs can be programmed in a variety of ways. Ope-
ACC [40] and OpenMP 4.x [15,41] provide compiler-based di-
ectives that allow a simple and iterative parallelisation of ex-
sting sequential programs, particularly if they are based on al-
orithms with tightly nested loops. OpenMP is platform-neutral
hile OpenACC has a certain bias towards NVIDIA GPUs. Devel-
pers requiring tighter control of hardware resources and a more
rogrammatic approach, can use GPU programming languages
uch as OpenCL [42,43] or CUDA [44,45]. These are more suited to
omplex algorithms and advanced performance optimisation but
t the expense of increased code complexity and programming
ffort. OpenCL is a hardware agnostic standard supported by
arious vendors, utilising a portable C-based language to generate
ode executable on CPUs (x86/x64 and ARM architectures alike),
nd various accelerators including NVIDIA, AMD and Intel GPUs,
nd FPGAs. CUDA has a C/C++ and Fortran programming interface
nd can only be used on NVIDIA GPUs. To maximise programming
lexibility and performance, we chose a programming language
pproach over directives and used both CUDA-C and OpenCL for
ur GPU implementations. Since the CUDA and OpenCL terminol-
gy are slightly different, in the rest of the paper we will use
UDA terminology; the matching OpenCL terms can be looked up
n Table 3.

Common in both CUDA and OpenCL is the concept of the
ernel, a GPU function called from the host program and exe-
uted in parallel by multiple GPU threads (a.k.a. the SIMT /Single
nstruction Multiple Thread/ model). Kernel execution is an asyn-
hronous operation; the CPU and GPU can execute instructions
imultaneously. Synchronisation constructs are available if the
PU and CPU instructions must follow a prescribed execution
rder.
Every kernel call must contain two parts, (i) the list of func-

ion arguments found also in standard C functions, and (ii) the
xecution parameters which define the degree of parallelism.
hese execution parameters are determined by an object called
rid (not to be confused with a computational grid used in the
IC algorithm), which defines an index space for the individual
hreads to use. In theory, these grids can be N-dimensional, how-
ver, modern GPUs only support grids of up to three dimensions.
ll launched threads are assigned a unique N-dimensional index
5

Table 3
Comparison of CUDA and OpenCL terminology.
CUDA OpenCL

GPU (device) Device
Multiprocessor Compute Unit
Scalar core Processing Element
Kernel Kernel
Global memory Global memory
Shared memory Local memory
Local memory Private memory
Grid Computation domain
Thread block Work-group
Warp Wavefront
Thread Work-item

from this grid, and executed on the GPU in groups called thread
blocks.

From the architectural point of view, each GPU device con-
sists of several Graphics Processing Clusters (GPCs) that contain
a number of Streaming Multiprocessors (SMs). Each SM con-
tains several compute cores; in modern GPUs, there are separate
floating-point (FP32 and FP64), integer (INT32), special function
unit (SPU) and tensor cores. These cores execute the actual in-
structions of a launched kernel. The number of cores is computed
as the product of the number of GPCs, the number of SMs per
GPC and the number of cores per SM. For instance, the number
of cores in the NVIDIA V100 accelerator card is given as 6 GPCs x
10 SMs/GPC x 64 FP32/SM = 5120. If we multiply the number
of cores by the clock frequency of the GPU and a factor of 2
(assuming the execution of fused multiply-add /FMA/ instructions
only that count as 2 operations per cycle), we obtain the approx-
imate peak performance value (e.g. V100 card: 5120 cores × 2
instructions/cycle × 1.4 GHz ≈ 14 TFlop/s).

Each SM has a large register file (256 kB) providing 64k reg-
sters or up to 255 registers per thread, a fast on-chip shared
emory (48 or 64 kB) and an L1 cache. The shared memory is
sed for fast data sharing among threads running on the same SM.
nstructions are scheduled by up to four thread schedulers. Since
lobal memory operations take in the order of 600–900 clock
ycles to complete, a large number of threads is required to hide
ata latency. The schedulers choose threads for execution that
re not stalled on data or synchronisation operations. In addition,
dvanced GPUs support concurrent kernel execution, as well as a
umber of instruction streams that help developers to maximise
PU utilisation.

.1. Hardware environment

A wide range of GPU devices are available on the market rang-
ng from gaming cards to datacentre/supercomputer accelerators.
n this paper we have used a number of GPUs representing differ-
nt product classes to demonstrate their effectiveness in PIC/MCC
lasma simulation and to compare their relative performance.
able 4 contains the details of the selected set of GPU cards that
e used during the implementation and performance evaluation.
or each card, the table includes the number of FP32 cores, the
eak computational performance, the GPU memory bandwidth
alues, and the HW instruction-to-byte ratio – computed as peak

performance (Gflop/s) / peak bandwidth (GB/s) – that forms the
basis of the roofline performance analysis method that we use
later in the paper.

The roofline performance model [46,47] provides a simple
but effective tool for estimating the attainable performance and
exploring the expected behaviour of parallel algorithms. If the
Arithmetic Intensity (number of executed FP instructions/number
of bytes read and stored) of a kernel is greater than the HW

Z. Juhasz, J. Ďurian, A. Derzsi et al. Computer Physics Communications 263 (2021) 107913

w
p
g

A

i
t
i
o
i
t
t
A
m

4

i
d
d
s
d

Table 4
Performance characteristics of the selected GPU cards.
GPU card Cores Instruction Bandwidth HW instruction-to-

throughput (GFlop/s) (GB/s) byte ratio

NVIDIA GTX 1080 Ti 3584 11339 484 21.91
NVIDIA GTX 1660 S 1408 5027 336 25.64
NVIDIA RTX 2080 Ti 4352 13447 616 19.91
NVIDIA Tesla P100 3584 9340 549 14.70
NVIDIA Tesla V100 5120 14899 900 16.55
AMD Radeon Pro WX9100 4096 12290 483.8 25.40
AMD Radeon VII 3840 13440 1024 13.125
c

Fig. 2. Roofline performance model of the selected GPU cards. Kernels with
arithmetic intensity below the HW instruction-to-byte ratio are memory-bound;
the attained performance is limited by the available memory bandwidth.

instruction-to-byte ratio, the kernel is compute-bound and can
potentially reach near peak performance, otherwise it is memory-
bound and the performance is determined by the achieved mem-
ory bandwidth. More formally, the performance is given as

AttainablePerformance [GFlop/sec]
= min(PeakFloatingPointPerformance,
PeakMemoryBandwidth × ArithmeticIntensity), (17)

here ArithmeticIntensity (AI) is the ratio of the executed floating
oint operations and the bytes transferred to/from memory in the
iven GPU kernel,

rithmeticIntensity =
FloatingPointOperations

Bytesread
+ Byteswritten. (18)

Some of the above parameters can be obtained from GPU spec-
fications while others are estimated from the algorithm. When
he attainable performance is plotted in function of the arithmetic
ntensity, a curve resembling a roof line emerges. The intersection
f the two lines is at the arithmetic intensity threshold (the HW
nstruction-to-byte listed in Table 4) that a code must achieve
o become compute-bound. Fig. 2 shows the roofline curves of
he six selected GPU devices used in this paper. Note that an
rithmetic Intensity in the range of 13–26 is required to achieve
aximum compute performance on these GPUs.

. GPU implementation

In this section we discuss the details of the parallel GPU
mplementation of the PIC/MCC simulation core. To keep the
escription short and easy to follow, we will not include every
etail but concentrate only on the most crucial issues. Empha-
is is placed on performance-critical design and implementation
ecisions.
6

Fig. 3. High-level structure of the parallel PIC/MCC simulation program. The
host system is responsible for initialising the simulation and saving results. The
actual simulation is executed exclusively on the GPU by a sequence of GPU
kernel calls. Note that the final version uses restructured kernels as described
in Section 4.7.

4.1. Design principles

The primary goal of our work is to maximally harness the per-
formance of the GPUs in PIC/MCC simulations. The two guiding
principles in achieving this are (i) minimising execution over-
heads and (ii) maximising available parallelism.

As depicted in Fig. 3, our implementation uses a GPU-only
simulation loop. The CPU code is used only to call the execution
of the parallel GPU kernels (electron_density(), ion_density(), and
so on). Since PIC simulations execute a very large number of sim-
ulation loop iterations, it is important to remove any unnecessary
CPU–GPU communication inside the loop, since the PCI-e bus
is a performance critical point of GPU systems. Several authors
implemented hybrid systems, executing parts of the loop (e.g. the
Poisson solver) on the CPU [21,48] to keep the implementation
simpler. Even if the execution time of a code section might be
faster on a CPU, taking all costs (CPU execution time, data transfer
and synchronisation overheads) into account, the end result may
not be ideal; performance suffers. We focused on implementing
each step of the simulation loop on the GPU even at the cost of
higher code complexity and increased programming effort.

Maximising the level of parallelism required an architecture-
oriented perspective during the code design. Traditional CPU-
based parallel PIC plasma simulations are based on partitioning
the physical domain according to the number of cores, where
each thread loops over the particles contained in a given partition.
In the 1D plasma simulation case, this coarse-grain parallelism
offers speedups up to the order of 102. GPU chips, however,
contain thousands of cores, generating a mismatch between the
partitioning scheme and the underlying architecture. In addition,
global memory operations have large latency, > 600− 800 clock
ycles. To hide the cost of memory access, GPU programs require

Z. Juhasz, J. Ďurian, A. Derzsi et al. Computer Physics Communications 263 (2021) 107913

T
D
t

f
t
i

p
m
o
k
p
o
r
e
m
p

4

a
d
s
t
e

v
a
a
a
a
h
o
f

c
w
t
w
o
c
t
U
m
h
s

S
c

p
t
p
p
l
D
c
n
w
c
w
c
p
b
e
p
a

4

E
a
p
p
t
s

able 5
ictionary of the notations of the physical quantities, which appear both in the
heoretical part (Section 2) and in the parts of the code in this section.
Quantity Notation Variable in code

Electric field E(x) e_field[]
Number of electrons Ne N_e
Position of an electron xe,j x_e[]
Axial electron velocity vx,e(x) vx_e[]
Radial electron velocity vr,e(x) vr_e[]
Electron density ne(x) e_density[]
Number of positive ions Ni N_i
Position of an ion xi,j x_i[]
Axial ion velocity vx,i(x) vx_i[]
Radial ion velocity vr,i(x) vr_i[]
Positive ion density ni(x) i_density[]
Number of grid points M M
Superparticle weight W weight
Simulation time step ∆t dt
Division of spatial grid ∆x deltax
Electron impact total cross section σe(ε) sigma_e[]
Ion impact total cross section σi(ε) sigma_i[]

significantly more threads than cores for efficient execution. As a
rule of thumb, 105

− 106 concurrent threads are recommended
or chips with few thousand cores. Consequently, instead of par-
itioning the physical domain, we map each particle onto an
ndividual thread.

In the rest of this section we describe the key features of our
arallel GPU implementation and discuss them from a perfor-
ance optimisation perspective. The order of treatment is not the
rder of execution in the simulation loop; we first discuss those
ernels that show performance problems but at the same time
rovide optimisation opportunities. Kernels that perform well
r offer limited optimisations are described afterwards. To help
eaders connecting the implementation details to the theory and
quations outlined in Section 2, in Table 5 we created a dictionary
apping the notation of physical quantities to the corresponding
rogram variables.

.2. Data structures and memory layout

The state of each type of superparticle includes its position
nd velocity components. In a Cartesian system, the state can be
escribed by the tuple ⟨x, vx, vy, vz⟩. In a cylindrical coordinate
ystem, this simplifies to ⟨x, vx, vr⟩. The plasma characteristics:
he density of the charged species, the potential as well as the
lectric field are computed at the grid points.
There are several alternative schemes for storing particle state

alues. Software engineering best practices would suggest using
C structure (or a C++ class) encapsulating position, velocities
nd additional particle information which then can be stored in
n array or list data structure (Array of Structures, AoS). Another
lternative is to use special GPU data types, such as float4
aving x, y, z, w elements to represent a tuple and creating arrays
f these elements. The third option is to use separate N-element
loat arrays for individual elements of the tuple.

GPU architecture is designed in a way that memory is ac-
essed the most efficient way if consecutive threads in a thread
arp access consecutive memory addresses. In other words, with
his ideal, aligned and coalesced addressing pattern, a 32-thread
arp can read 128 (i.e. 32 × 4) bytes either as one 128-byte
r four 32-byte transactions, depending on the given GPU ar-
hitecture generation. This access pattern can only be guaran-
eed with separate arrays for position and velocity components.
sing plain C arrays contradicts common high-level program-
ing practices that promote encapsulation but demonstrates that
igh-performance parallel code often requires deviation from the

oftware engineering methods of the sequential world. Other

7

Fig. 4. Data structures and their layout in GPU memory (only the electron
position (x_e) and axial velocity (vx_e) arrays are shown). K blocks of 256
threads form a thread grid that are used to process all data elements. Within the
blocks each number represents a thread index. Blocks are mapped to available
streaming multiprocessors by the thread schedulers of the GPU. Memory access
is coalesced as threads in each warp read contiguous memory addresses.

memory layouts would introduce various memory bank con-
flicts that drastically increase the required number of memory
transactions. Since memory and computational performance is
maximised if float data types are used instead of doubles, our
program defaults to floats except for the density calculation and
Poisson solver code sections.

Fig. 4 shows the data structures used in our implementations
along with illustrations how the GPU threads are mapped in units
of thread blocks onto the array elements. We only show the
position and velocity arrays for electrons holding N_e electrons.
toring particle data in this manner results in ideal, aligned and
oalesced data load/store access pattern.
Besides access patterns, memory access efficiency is also de-

endent on the size of the transferred data. As shown in Fig. 5,
he effective memory bandwidth can be very different from the
eak bandwidth values found in hardware specifications. The
lots show the global memory bandwidth derived from kernel
oad/store operation performance in function of particle numbers.
epending on the card chosen, a minimum of 250k to 1M parti-
les are required for reaching maximum bandwidth. It is worth
oting that most cards have a relatively narrow ’sweet spot’ range
here the bandwidth is higher than the peak value. This is espe-
ially pronounced in for RTX 2080Ti card where the range is much
ider (300–800k particle). We suspect this is due to memory
lock boost effects and the caching mechanism. Kernels with
article counts below 100k show significantly reduced memory
andwidth, reducing the performance of memory-bound kernels
ven further. Fortunately, the drive for increasing the number of
articles in simulations meets GPU architectural characteristics
nd is expected to result in increased performance.

.3. Particle mover

In a PIC/MCC simulation, particles interact via an electric field
formed by the superposition of an external electric field applied
t the electrodes and the electric field created by the charged
articles themselves. These interactions are facilitated by a com-
utational grid in which we store information about the value of
he electric field. Moreover, in every point of this grid we also
tore information about the electric potential φ, as well as the
particle densities.

The particle mover is implemented by the GPU kernel code
section below. Each GPU thread of the kernel implementing this
simulation step is responsible for one particle, therefore must
read one element of the input arrays x_e[tid], vx_e[tid],
vr_e[tid] for electrons, and x_i[tid], vx_i[tid]|,
vr_i[tid] for ions, where tid is the thread index. In addition,

Z. Juhasz, J. Ďurian, A. Derzsi et al. Computer Physics Communications 263 (2021) 107913

r
c
I
w
(

T

3
G
(
i
p
t
t
f
r
f
1
a
l

a
k
t
s
c
t
s

o
r
m
n
n
b
b
(
a

4

q
i
t
r
c
v
t
d
a
b

0
c
r
s
t
t

Fig. 5. Effective GPU global memory bandwidth (GB/s) as a function of particles
to load/store.

the position x_e[tid] or x_i[tid] is used to compute the
index p of the grid cell within which the particle is located.
Once the grid cell is located, the interpolated electric field value
e_x is computed using e_field[p] and e_field[p+1], from
which the new velocity and position is computed by a leapfrog
integration scheme. The lines computing the new velocity vxei
and position xei values (Eqs. (12) and (13) use pre-computed
constants s1 = qj∆t/mj and dt_e = ∆t).

// compute thread (particle) index
int tid = blockIdx.x * blockDim.x + threadIdx.x;
// load position and velocity values into register variables
xei = x_e[tid]; vxei = vx_e[tid]; vrei = vr_e[tid];
// obtain grid cell index in which the particle is located
int p = xei / deltax;
// calculate ...
float e_x = (((p+1)*deltax-xei) * efield[p] +

(xei-p*deltax) * efield[p+1])/deltax;
// compute new velocity
vxei -= s1*e_x;
// compute new position
xei += vxei*dt;
check_boundary();
// store new values in global memory
x_e[tid] = xei; vx_e[tid] = vxei; vr_e[tid] = vrei;

The next step is to handle particles at the boundary of the
system. When a particle leaves the system, a helper index array
element (e_index[i] or i_index[i] for electrons and ions,
espectively) is set to 1 to indicate to downstream stages of the
alculation that this particle should be ignored in the simulation.
n our OpenCL implementation, instead of defining extra arrays,
e used the fourth component of the particle velocity vector
float4 datatype) to mark particles to be ignored. The kernel
completes by writing out the new position and velocity values
and the random number state into global memory. Our kernel is
prepared for treating particles reflected back from the boundary
plates, but we ignore this case for brevity.

Now, we turn our attention to the performance of this kernel.
he code ideally issues 7 load (x, vx, vr, one index element,

random number state and two field values) and 4 store (x, vx, vr,
random number state) requests (1 request implies 4 32-bit global
memory transactions) and a number of floating-point operations
(non floating-point operations are treated as overhead). Instead of
hand-counting operations, profiler tools such as NVIDIA nvprof
and Nsight Compute can be used to obtain the important perfor-
mance metrics. In the rest of the paper, we will use the following
command and a P100 card to obtain metrics.
8

>nvprof --metrics flop_count_sp
--metrics dram_read_transactions
--metrics dram_write_transactions
./executable input_parameters

From these, ArithmeticIntensity is computed as AI = flop_
count_sp/[(dram_read_transactions + dram_write_transactions) ∗

2] and gives 1.18 (electrons) and 1.16 (ions). The achieved
flop/s rates (flop_count_sp/kernel_time) on a P100 card are 150.3
electrons) and 98 Gflop/s (ions). Fig. 2 shows that the arithmetic
ntensity value of 1.16 should result in approximately 500 Gflop/s
erformance on the P100. The low performance of this kernel is
he result of the irregular memory indexing by p and p+1 into
he array efield, which causes unpredictable memory bank con-
licts decreasing memory transfer performance. Nsight Compute
eveals that the actual average number of memory transactions
or this kernel are 35.57 (electrons) and 42.85 (ions) for loads and
2.03 (electrons) and 12 (ions) for stores. The store transactions
re less than the required 16 because threads whose particles
eave the system will not save output values.

Since the 1.16 arithmetic intensity is well below the optimal
rithmetic intensity range of 13–26 needed for a compute-bound
ernel (see Table 4 for details) we need to find ways to improve
he memory data transfer performance. By utilising the on-chip
hared memory, it is possible to reduce global memory bank
onflicts. We modify the kernel that each thread block will read
he efield array into a private shared-memory copy, then this fast
hared field array will be used in the interpolation.

extern __shared__ float s_efield[];
int k = threadIdx.x;
while (k < n) {
s_efield[k] = efield[k];
k += blockDim.x;

}
__syncthreads();
// use s_efield instead of the global efield
// from this point on
float e_x = ...

The benefits are that the global field array will be read in an
ptimal coalesced way and – while bank conflicts will remain in
eading the private arrays – the much lower latency of the shared
emory will improve data access performance. As a result, the
umber of load and store request are reduced to 5.6 and 4 and the
umber of transactions to 19.1 load and 12 store transactions for
oth electrons and ions. The arithmetic intensity remained 1.16,
ut the achieved performance of the kernel increased to 495.5
electrons) and 486.6 (ions) Gflop/s, which is very close to the
pprox. 512 Gflop/s limit.

.4. Collisions

The collision calculation kernel issues 8 load and 4 store re-
uests for electrons, 7 load and 4 store requests for ions, resulting
n 65 and 28 as well as 51 and 28 load/store transactions for
he two types of particles. These are about twice as high as the
equired number of transactions at coalesced memory access. The
ause of this inefficiency lies in loading the σe and σi cross-section
alues frommemory. The cross sections are stored as interpolated
able values that are looked up during the computation by in-
irect indexing that causes bank conflicts. In addition, since not
ll particles collide, thread predication due to conditional code
ranching also has a performance decreasing effect.
The arithmetic intensity of the electron collision kernel is

.65, the achieved performance is 256.5 Gflop/s. The ion collision
ode performs better, due to its higher intensity (AI = 2.92)
eaching 1205.6 Gflop/s performance. While both kernels show
imilar memory access behaviour, the higher arithmetic load in
he ion collision calculation compensates memory inefficiencies
o a certain degree.

Z. Juhasz, J. Ďurian, A. Derzsi et al. Computer Physics Communications 263 (2021) 107913

4

a
i
e
f
i
p

r
p
p
o
t
i

4

f
e
d
b
t
a
a
o
v
b

l
p
w
a
t
t
e

a
a
t
t

r
p
i
b
h
d

.4.1. Random number generation
The quality and speed of random number generation in par-

llel Monte Carlo methods is of prime importance. In our first
mplementations we used vendor and community developed gen-
rators (CUDA: cuRand, OpenCL: clRNG libraries) to create uni-
ormly distributed random sequences for each particle. These
mplementations however seemed to be computationally too ex-
ensive. In the final version, we used N = Ne + Ni independent

sequences by initialising N generators based on the standard
an implementation [49] with different seeds. The statistical
roperties of this method were tested and found correct for our
urposes. The key benefit is the approximately 3× speed gain
ver the library versions. For the particle number range 64k–1M,
he cuRand XORWOW execution times are 35–3158 µs, whereas
n our implementation are 13.5–974 µs.

.5. Density calculations

In order to be able to calculate the potential and the electric
ield at the grid points the charge density corresponding to the
lectrons and ions has to be determined. In our scheme we
istribute the density of each charged particle to two grid points
etween which the particle resides. The density is weighted to
hese two points according to the distances between the particle
nd the grid points. Taking one electron as example, this ‘‘charge
ssignment’’ procedure could be executed by the following lines
f the code. The variable c_de_factor holds the pre-computed
alue of W/A∆x2 stored in GPU constant memory for efficient
roadcasting to all threads.

// compute thread (particle) index
int tid = blockIdx.x * blockDim.x + threadIdx.x;
// load particle position
xei = x_e[tid];
// find grid cell index
p = (int)(xei/deltax);
// calculate charge for grid points p and p+1
e_density[p] += (p+1)*deltax-xei)*c_de_factor;
e_density[p+1] += (xei-p*deltax)*c_de_factor;

The update instructions in the last two lines present a chal-
enging situation. Since all threads execute concurrently, appro-
riate locking mechanisms must be used to protect memory
rites from race conditions. GPUs provide various atomic oper-
tions to handle these cases. The simplest solution is to replace
he + = operators with atomicAdd function calls. These execute
he global memory read–modify–write cycle instruction sequence
fficiently with built-in hardware support.

atomicAdd(&(e_density[p]), ((p+1)*deltax-xei)*c_de_factor);
atomicAdd(&(e_density[p+1]), (xei-p*deltax)*c_de_factor);

The electron and ion density kernels have reasonably high
rithmetic intensities (2.69 and 3.98, respectively) but the
chieved performance is rather low: 42.7 and 37.8 GFlop/s. This is
he result of executing a large number of global memory atomic
ransactions at conflicting addresses.

It is possible to improve this code by executing a parallel
eduction operation. Each thread block (i.e. SM) will create a
rivate density array in its on-chip shared memory as illustrated
n Fig. 6. Threads within the block will update values in this array
y using shared-memory atomics. When all threads of the block
ave finished, the private arrays are written out into the global
ensity array with global atomics.
9

Fig. 6. Outline of the optimised density calculation using local density arrays for
each block. Once each block completed its density update using shared atomics,
the shared memory arrays are written out into the main density variable in
global memory with global atomic operations.

// block-local density vector
extern __shared__ float s_e_density[];
for (int i = threadIdx.x; i < n; i += blockDim.x)
s_e_density[i] = 0.0f; // initialise to zero

__syncthreads(); // wait for all threads to complete
...
float xei = x_e[tid];
int p = (int)(xei/deltax);
// local update in shared memory density array
atomicAdd(&(s_e_density[p]), ((p+1)*deltax-xei)*c_de_factor);
atomicAdd(&(s_e_density[p+1]), (xei-p*deltax)*c_de_factor);
__syncthreads(); // wait for all threads to complete
int k = threadIdx.x;
while (k < n) { // update global memory density array
atomicAdd(&(e_density[k]), s_e_density[k]);
k += blockDim.x;

}

While the code has become more complex, there are several
benefits; updates are now performed in the much faster shared
memory, and the number of global atomic operations is reduced
from the number of particles to the number of grid cells. The
final code shows increase in arithmetic intensities (3.98 and 4.22)
and a significant improvement in performance (275.4 and 280
Gflop/s).

4.6. Poisson solver

Traditionally, the 1D Poisson equation is solved on CPUs using
the well-known Thomas algorithm [50] that provides a solution in
O(n) steps, where n is the number of unknowns, i.e. the number
of grid points. The Thomas algorithm is very efficient, requires
little memory space but is inherently sequential. Consequently,
in several GPU simulation implementations a hybrid execution
scheme is used, i.e. the Poisson equation is solved on the CPU
after the input data are copied back from the GPU memory, then
once the solution is computed, the results are transferred back to
the GPU memory for continuing the simulation loop.

In our implementation, we aimed to execute the solver on
the GPU using a parallel algorithm to remove the data transfer
overhead and make use of the parallelism the GPU offers. Two
parallel solver versions were implemented and tested. The first is
based on the Parallel Cyclic Reduction algorithm [51]. Our CUDA
implementation is based on the GPU version introduced in [52].
The second approach that we used in our OpenCL implementation
is based on the direct solution of the discrete Poisson equation.
This approach requires more memory space and requires O(n2)
steps for solution, but can be executed in parallel efficiently using
matrix–vector operations.

Z. Juhasz, J. Ďurian, A. Derzsi et al. Computer Physics Communications 263 (2021) 107913

t
t

w

s

φ

T
p
f

s
c
µ
a
t
=

r
d
µ

4

p
o
e
m
l

i
r
f
e
s
t

a
t

Table 6
Effect of kernel performance optimisations on arithmetic intensity (AI), streaming multiprocessor (SM) and memory
subsystem utilisation.
Kernel AI SM util. (%) Memory util. (%)

Original Optimised Original Optimised Original Optimised

electron_move 1.18 1.18 4.29 21.24 15.29 69.91
electron_collision 0.65 0.65 28.03 28.03 71.97 71.97
electron_density 2.69 3.98 1.01 13.45 5.25 15.87
ion_move 1.16 1.16 4.28 21.64 15.71 73.68
ion_collision 2.92 2.92 47.18 47.18 76.87 76.87
ion_density 3.98 4.22 1.22 13.69 6.28 14.30
Poisson_solver 0.05 0.05 0.41 0.41 6.1 6.1
Taking the Discrete Poisson equation (5), the solution is ob-
ained by solving a set of linear equations which can be collec-
ively written in the matrix form

Cφp =
ρp∆x2

ε0
, (19)

here C is the coefficient matrix of the linear system and ρp is
the charge density at pth grid point (p = 1, 2, . . . ,M − 2). The
olution can be written as

p = C
−1 ρp∆x2

ε0
. (20)

The boundary conditions at the edges of the computational
domain (the first and the last grid point) are the externally
imposed potentials of the electrodes. This means we only need
to solve M − 2 linear equations for p = 1, 2, . . . ,M − 2.

The inverse matrix C
−1

is constant (and symmetric) through-
out the simulation, and can be precomputed as

Csp =

{
−

(s+1)(M−p)
M−1 s ≤ p

Cps s > p
(21)

his allows us to solve Eq. (20) as a general matrix–vector multi-
lication operation, which has a highly efficient implementation
or GPUs.

The execution time of the Parallel Cyclic Reduction Poisson
olver kernel for the grid sizes 128, 256 and 512 (benchmark
ases 1–4) on the V100 system are 8.84, 9.61, 11.15 and 11.13
s, respectively. The OpenCL direct solver kernel times (WX9100)
re 18.6, 19.4, 22.9 and 22.7 µs. The sequential CPU execution
imes using the Thomas algorithm are 2.7 (M = 128), 3.3 (M
256) and 5.2 µs (M = 512) which are better than the GPU

esults but the overall time that includes the required additional
evice–host–device data transfer as well is in the range of 80–190
s.

.7. Kernel fusion

In the preceding parts we looked at the performance critical
oints and optimisation opportunities of the individual kernels
f the PIC/MCC GPU simulation program. Table 6 summarises the
ffects of these performance improvements in terms of arith-
etic intensity, streaming multiprocessor and memory utilisation

evels.
The complete simulation program has three main parts: (i)

nitialisation, (ii) the simulation loop, and (iii) saving states and
esults to file system. The initialisation stage includes data input
rom files and copying data to GPU memory; the simulation loop
xecutes GPU kernels for the specified number of simulation
teps; the post-processing steps include copying results from GPU
o host memory then saving the results to files.

As the length of the simulation and the number of particles
re changing, the relative contribution (weight) of the kernels and
he host–device data transfer operations to the overall execution
10
Table 7
The relative contribution of individual kernels and data transfers to the overall
simulation execution time. Each run is performed for 100 RF voltage cycles (V100
results).
Kernel Relative kernel execution times (%)

Case 1 Case 2 Case 3 Case 4

electron_move 7.17 7.25 7.66 8.18
electron_collision 14.25 11.89 13.17 12.81
electron_density 9.02 15.58 19.26 20.20
ion_move 7.67 7.33 8.37 8.95
ion_collision 14.15 12.35 12.13 12.40
ion_density 9.21 16.35 19.98 20.94
Poisson_solver 22.31 18.55 12.45 11.80
host-to-device copy 5.57 2.46 0.94 0.41
device-to-host copy 10.58 8.17 5.05 4.30

time changes too. Table 7 lists these relative contribution values.
The purpose of this analysis is to identify kernels or memory
operations that might become potential performance bottlenecks.

The particle move and density kernels increase, while the Pois-
son solver and the memory copy operations decrease in weight
as the number of particles and simulation steps increase (Case 1–
4). The weight of the collision kernels remain approximately the
same for the different benchmarks. Overall, the particle-related
kernels (electron and ion move, collision and density) represent
an increasing share – from 61.5 (Case 1) to 83.5% (Case 4) – of
the simulation time, indicating that further optimisations might
have significant effect in reducing the simulation time.

The main performance limiting factor in the particle kernels is
the low arithmetic intensity. The number of arithmetic instruc-
tions cannot be increased in these kernels but if multiple kernels
are fused into a single kernel, a number of load/store instructions
can be reduced. For instance, the electron position is required
in the e_move, e_collision and e_density kernels. In the fused
kernel, we need to load the position only once, reducing memory
transfer by a factor of 3. Based on this idea, we created two fused
kernels, one for the electrons (electron_kernel), one for the
ions (ion_kernel). Table 8 lists various performance metrics of
the fused kernels obtained by executing benchmark case 4. The
result of kernel fusion is further time reduction. For Case 4, the
execution time of the fused kernels reduced to 82.0 (electron)
and 77.64 (ion) µs from the original 117.2 and 114.1 µs pro-
duced by the separate electron and ion (move+collision+density)
kernels. Measurements were made on a P100 card. Fig. 7 il-
lustrates the effects of individual kernel optimisations and ker-
nel fusion graphically on the roofline plot. The final, optimised
fused kernels show large improvement in performance and move
close to the memory-bound limit of the roofline performance
curve. As a consequence, the production version of our CUDA and
OpenCL PIC/MCC simulation codes are based on the fused kernel
implementations.

5. Results and discussions

In this section, we first verify the correctness of our final,

fused-kernel implementations by comparing them to the four

Z. Juhasz, J. Ďurian, A. Derzsi et al. Computer Physics Communications 263 (2021) 107913

b
m
f
t
d
p
a
o
G
n
t
b
e
c

5

t
r
v
o
t
3
r
1
p
e
S

Fig. 7. Effects of the different optimisation steps shown on the roofline model. Red markers represent electron, while black ones represent ion kernel performance
values. Arrows indicate how kernel arithmetic intensity and attained performance changed due to kernel level optimisations (dashed), kernel fusion (solid) and
changing the target GPU architecture (dot-line). Asterisk marks kernel performance achieved with kernel-level optimisations.
Table 8
Performance metrics of the fused electron and ion kernels executing benchmark
case 4.
Performance metric Electron kernel Ion kernel

Arithmetic intensity 1.58 3.87
kernel time P100 (µs) 82.0 77.64
kernel vs. total time (%) 45.93 43.48
performance P100 (Gflop/s) 207.9 488.0
performance V100 (Gflop/s) 650.3 1657.4

verified benchmark cases described in Section 2.1 (more details
in [7]), then examine and compare the execution performance of
the parallel CUDA and OpenCL versions on the selected GPU cards.

5.1. Verification of the GPU implementations

Fig. 8 shows the computed He+ ion densities for the four
enchmark cases obtained by both the CUDA and OpenCL imple-
entations of the simulation. Comparing these data to the results

rom the original work [7] shows that both GPU implementa-
ions differ not more than 2% from each other and the original
ata. These deviations can originate from small differences in the
recision of floating point arithmetic operations on the different
rchitectures and the fact that the CPU implementation utilises
nly double precision (FP64) number representation, while the
PU codes use a mixture of single (FP32) and double precision
umbers. Further, the charged particle density in the simula-
ion is a statistically fluctuating quantity, which is determined
y charge production in the plasma volume and losses at the
lectrodes, which processes are separated in space and often are
haracterised by a highly nonlinear time evolution.

.2. Attained performance

As a comparison baseline, we list in Table 9 the execution
imes of the four sequential benchmark cases measured on two
epresentative CPUs. The runtime values are given for 100 RF
oltage cycles after steady-state is reached. Based on the number
f simulation steps (Table 1) required for reaching steady-state,
he overall sequential simulation time of these benchmarks are
.8 min, 1.9 and 9.9 h, and 3.4 days, for Case 1, 2, 3 and 4,
espectively. For Case 2 we also added two extra sub-cases using
and 10 million particles per species which are expected to

rovide more precise results (see our discussion on the undesired
ffect of the number of superparticles used in the simulations, in
ection 2).
11
Fig. 8. He+ ion density distributions of the four benchmark cases obtained by
both the CUDA and OpenCL implementations on GPUs (lines) together with the
original data as in [7] from the sequential CPU code (open circles). The data
represent averages accumulated during the simulation of 10000 RF cycles.

Table 9
Execution times (seconds) of the sequential benchmark cases 1 to 4 on Intel
CPUs as indicated. Intel C compiler version 19.0 with compiler option ‘‘-fast’’
was used. Each run is for 100 RF voltage cycles.
Case Particle counts Time (seconds)

(electrons/ions) Xeon Gold 6132 i7-6850K

1 12.3k/19.3k 18.7 19.5
2 57k/60.2k 131.9 133.5
3 138.7k/142.3k 700.4 706.6
4 161.6k/164.5k 1902 1897

2 (1M)* 987k/1040k 2945 2754
2 (10M)* 9.9M/10.4M 29069 28409

5.2.1. Strong scaling
First we examine the performance of the GPU implementation

for the same problem sizes as in the sequential cases to determine

Z. Juhasz, J. Ďurian, A. Derzsi et al. Computer Physics Communications 263 (2021) 107913

T
G
r .

d
i
t
P
p

t
i
t
a

a
c
p
n
I
1

5

v
t
m
s

a
a
s
s
c
v
v
1
C
f
w

able 10
PU execution times (seconds) of the benchmark cases on various GPUs. Each
un is for 100 RF cycles. The last row lists the highest achieved speedup values
Card Case 1 Case 2 Case 3 Case 4

NVIDIA GTX 1080 Ti 1.87 6.49 21.0 46.8
NVIDIA GTX 1660 Super 1.83 6.39 21.0 46.8
NVIDIA RTX 2080 Ti 1.83 4.30 13.5 30.6
NVIDIA Tesla P100 2.30 7.95 29.0 63.8
NVIDIA Tesla V100 1.99 4.36 13.7 28.5
AMD Radeon Pro WX9100 3.12 10.4 41.9 88.1
AMD Radeon VII 1.83 6.16 25.9 50.8

Speedup range 6.0–10.2 12.7–30.6 16.7–51.9 29.8–66.7

Table 11
Attained performance (in Gflop/s) of the fused ion computation kernel. In
brackets is the same value expressed as percentage of peak performance (%).
Card Case 1 Case 2 Case 3 Case 4

Tesla P100 516.6 (6.4%) 450.3 (5.6%) 492.5 (6.1%) 501.5 (6.2%)
Tesla V100 815.5 (5.5%) 1406 (9.4%) 1728 (11.6%) 1791 (12%)

to what extent the GPU versions reduce the overall simulation ex-
ecution time. Table 10 lists the parallel execution times obtained
with the CUDA and OpenCL implementations on our selected GPU
cards. Results are given for 100 RF voltage cycles. The highest
achieved speedup values based on the Xeon 6132 CPU execution
times of Table 9 for cases 1 to 4 are 10.2, 30.6, 51.9, and 66.7,
respectively. The speedup for Case 4, for instance, enables one
to complete a simulation that originally ran for 1 week in about
2.5 h.

The results indicate that the execution times achieved on the
ifferent cards are in the same order of magnitude, but the CUDA
mplementations on the NVIDIA cards perform slightly better
han the OpenCL versions on the AMD cards. Two cards, the Tesla
100 and the Radeon Pro WX9100, showed significantly weaker
erformance than the rest.
The most likely reason for the poorer OpenCL performance is

he lack of floating point atomics. As a workaround, a loop-based
mplementation using integer atomic compare-exchange opera-
ions had to be used that incur performance penalties, especially
t higher particle numbers.
Finally, in Table 11, we show the highest kernel performance

chieved in the benchmark simulation cases along with the per-
entage of peak performance for two NVIDIA cards, the best
erformer V100 and the worst performer P100. The values are
ot particularly high but we must notice that for an Arithmetic
ntensity value 3.87, one cannot expect to achieve more than
5%–25% of the peak performance.

.2.2. Weak scaling
The trend of the increasing speedup and kernel performance

alues call for examining the performance of the GPU implemen-
ations for increasing particle counts. Under weak scaling, we are
ainly interested in the size of a system we can simulate in the
ame time as in the sequential simulation.
We have measured the execution time of the benchmarks for 1

nd 10 million particles per species (electrons and ions). Tables 12
nd 13 list the GPU execution time results. Compared to the
equential CPU simulation times (Table 9, Xeon CPU), one can
ee that for 4 GPU cards for Case 1 and all cards for Cases 2–4
omplete the 1M particle simulation faster than the sequential
ersion for the original particle numbers. The highest speedup
alues for Cases 1–4 are 1.9, 6.1, 16.5 and 23.4. In the case of
0M particles, two cards finish faster than the sequential one for
ase 3, and four cards for Case 4. The maximum speedup values
or these cases are 2.2 and 3.2, respectively. The results show that

e can execute more accurate simulations with increased particle

12
Table 12
GPU execution times (seconds) of benchmark cases 1–4 for 1M particles/species.
Each run is for 100 RF voltage cycles.
Card Case 1 Case 2 Case 3 Case 4

NVIDIA GTX 1080 Ti 14.72 49.51 99.78 193.4
NVIDIA GTX 1660 Super 20.66 47.17 99.79 194.3
NVIDIA RTX 2080 Ti 11.14 24.07 49.90 97.77
NVIDIA Tesla P100 18.52 71.33 144.3 278.7
NVIDIA Tesla V100 9.66 21.52 42.41 81.13
AMD Radeon Pro WX9100 43.49 99.49 221.31 430.62
AMD Radeon VII 22.27 48.03 116.32 223.36

Table 13
GPU execution times (seconds) of benchmark cases 1–4 for 10M parti-
cles/species. Each run is for 100 RF voltage cycles.
Card Case 1 Case 2 Case 3 Case 4

NVIDIA GTX 1080 Ti 133.1 454.1 925.5 1733
NVIDIA GTX 1660 Super 195.6 442.6 931.5 1753
NVIDIA RTX 2080 Ti 93.66 201.3 408.3 758.7
NVIDIA Tesla P100 163.2 662.8 1335 2511
NVIDIA Tesla V100 81.86 167.7 323.5 594.5
AMD Radeon Pro WX9100 413.27 966.06 2097.34 4258.53
AMD Radeon VII 208.46 460.45 1080.60 2207.14

Table 14
Attained performance (in Gflop/s) of electron and ion kernels executing for 1
M and 10 M particles/species. In brackets the same value as fraction of peak
performance (%).
Kernel Case 1 Case 2 Case 3 Case 4

Electrons 1M 1011 (6.8%) 997 (6.7%) 1011 (6.8%) 1020 (6.8%)
Ions 1M 2526 (16.9%) 2418 (16.2%) 2410 (16.2%) 2408 (16.2%)
Electrons 10M 1147 (7.7%) 1105 (7.4%) 1133 (7.6%) 1174 (7.9%)
ions 10M 2735 (18.4%) 2611 (17.5%) 2624 (17.6%) 2626 (17.6%)

counts and in many cases the results are still delivered faster than
the sequential versions. Table 14 shows that this is due to the
increase in relative kernel performance. The highest value, 2.735
Tflop/s is nearly 80% of the peak attainable performance given by
the roofline model.

5.3. Performance vs. workload size

In order to examine the effect of increasing particle numbers
on the performance in more detail, and to compute speedup
values relative to the sequential version, we have selected one
benchmark – Case 2 – for a particle number dependent analysis.
The reason for using this benchmark is that this represents a
physically relevant discharge system with a well developed quasi-
neutral plasma bulk (in contrast to Case 1) and the runtimes for
large particle numbers are still manageable on CPUs (in contrast
to Cases 3 and 4). Particle number for each species were changed
from 10k to 10M both in the sequential CPU and the parallel
GPU versions. The results are summarised in Fig. 9. The top panel
contains a plot of the CPU execution times for three different
CPU models. The execution times are normalised by the number
of executed RF cycles (100 cycles) and the total particle count
(N = Ne + Ni). While there are obvious speed differences among
the processors, the most notable phenomenon is the step-like
increase of the normalised execution times. Up to about 105 par-
ticles the per-particle execution time is practically constant but
after that the values transit rapidly to another, nearly constant
plateau with normalised execution times about 30% higher. We
suspect that this is due to caching effects. Until all particles fit
in the L3 cache, the performance is ideal. Once particle vectors
become too large to be cached entirely, cache invalidations start
to happen. To support this hypothesis, in Fig. 9(a) the threshold
particle number values at which the particle coordinate buffers

Z. Juhasz, J. Ďurian, A. Derzsi et al. Computer Physics Communications 263 (2021) 107913

r
c
t
i
6
A
i
s
t

f
T
a

o
d
t
A
f
c
a
t
N
t
i
n

s

l
i

Fig. 9. CPU and GPU execution times in function of particle count. The measured
untimes are normalised by the number of the executed RF cycles (100 in every
ase) and the total particle count. The particle numbers are controlled by setting
he superparticle weight factor. Panel (a) shows results of the original sequential
mplementation as introduced in [7] on 3 selected CPUs: Intel Xeon Scalable Gold
132 with 19712kB L3 cache, Intel Core i7-6850K with 15360kB L3 cache, and
MD Ryzen Threadripper 1900X with 8192kB of the same. The vertical lines
ndicate the particle number thresholds at which the particle buffers reach the
ize of the L3 cache for each CPU. Panel (b) shown the normalised runtimes of
he CUDA and OpenCL implementations on different GPUs.

ill the entire L3 cache for each CPU is indicated with vertical bars.
he position of the step-like runtime increase follows the order
nd relative distance of these threshold values.
The bottom panel of Fig. 9 shows the execution times obtained

n the GPU cards. Here a trend opposite to the CPUs can be
etected. For small particle numbers the per-particle execution
ime is high but it decreases as the particle count increases.
fter reaching a card-specific particle count threshold, the curves
latten and the per-particle time becomes constant. When this
onstant time is reached, the GPU chip is fully utilised, i.e. there
re sufficient number of threads to keep the GPU busy all the
ime. We can observe that for most cards this threshold is around

= 106, while for the V100 and RTX 2080Ti cards it is closer
o N = 107 particles. These results explain why we achieved
ncreasing absolute performance as we increased the particle
umbers.
From the CPU and GPU execution times we compute the

peedup as function of particle count as Sp(N) = TCPU(N)/TGPU(N).
The result (the strong scaling speedup as function of particle
count) is plotted in Fig. 10. Since the speedup depends on the
speed of the CPU used, the absolute value of the speedup might
be misleading (slower CPUs produce higher speedups), therefore
we are focusing on the shape of the speedup function instead. For
the sake of clarity, in Fig. 10 only one speedup curve is shown per
GPU, the one calculated with our fastest server class CPU (Xeon
Gold 6132), establishing a lower bound on the achieved speedup.

The speedup curves show several distinct trends. At low parti-
cle counts where the CPU works efficiently mainly from cache and
the GPU is severely underutilised, the speedup values are modest.
As the number of particles increases (105–106), the CPU becomes
ess efficient due to cache misses while the utilisation of the GPU
ncreases, resulting in increasing speedup values. Finally, for large
13
Fig. 10. GPU speedup ratios with respect to the performance of the sequential
CPU implementation on the fastest CPU (Intel Xeon Scalable Gold 6132) as
shown in Fig. 9(a).

particle numbers, above 1M particles, both CPU and GPU work
at constant per-particle calculation speed resulting in a constant
speedup. The actual speedup value depends on the CPU used as
reference, as well as on the actual GPU card model, therefore
we recommend the relative attained performance (percentage
of the peak performance) as a parameter to compare parallel
implementations.

The execution times given in Table 10 are based on running
100 RF voltage cycles only. The overall time for a simulation to
reach steady state requires more RF cycles, typically between
1000 and 20000, where (number of RF cycles = Ns/∆t , see
Table 1). For benchmark cases 1–3 with parameters set in Table 1,
our GPU implementations reach steady state typically within 1-
35 min (time varies with benchmark cases and GPU cards used).
For Case 4, execution times reach 1-2 h. The length of these
simulation runs allow for one-shot executions where the entire
simulation can be finished in one simulation run and state saving
is sufficient only at the end of the program, the cost of which is
negligible compared to the GPU execution time.

For larger simulations, however, having e.g. 1 or 10 million
superparticles, the overall GPU execution time can increase up
to 3 (Case 3) and 25 (Case 4) hours. In these cases, application
level checkpoint/restart mechanisms with regular state saving
(e.g. once every 30 or 60 min) should be employed to pro-
vide fault-resilient execution. Fortunately, GPU kernels execute
concurrently with the host program, consequently, state saving
can be completely overlapped in time with the execution of
simulation kernels on the GPU, reducing checkpointing overhead
effectively to zero.

Our results demonstrate that a single GPU card can execute
1D PIC/MCC simulations very efficiently. With sufficiently high
number of particles, one can reach close to the attainable peak
performance. The per-particle computation time also becomes
closer to the theoretical minimum as the particle count increases.
Although the focus of this paper was on 1D plasma simulation,
our findings are also applicable to higher dimensions. Assuming
a 1000 × 1000 grid and 200 particles per grid cell, a 2D simu-
lation can fit entirely into the memory of high end cards, such
as the AMD Radeon VII, NVIDIA Titan RTX, RTX3090, V100 or
A100, enabling performing 2D simulation on (i) single cards and
(ii) without any host-GPU data transfer penalty. For cards with
smaller memory, unified memory can be used that stores particle
data in host memory and transfers it to the device only when
needed. In this case, some performance penalty is expected. We
do not consider 3D PIC/MCC practical on single-card systems.

If the performance of a single card is not sufficient, multi-
GPU systems can be used. The fact that the per-particle GPU

Z. Juhasz, J. Ďurian, A. Derzsi et al. Computer Physics Communications 263 (2021) 107913

e
p
u
o
o
2
o
f

o
P
T
t
o
b
t
e
d
u
a
l
d
s

6

G
p
v
m

s
k
c
o
t
s
d
i
k

2
A
i
c
v
t
w
b
h
t
s
t
c
s

D

c
t

xecution time for 1D simulations is nearly constant above 1M
articles means that large 1D simulations are expected to fully
tilise the GPUs in multi-GPU configurations. Even with the added
verhead of particle sorting due to domain-decomposition, with
ver 10M particles, one can expect further speedups when using
, 4 or even 8 GPU cards per simulation. Studying the scalability of
ur implementation in multi-GPU configurations is an important
uture direction of our research.

We have shown that an architecture and performance-
riented view during the design and implementation of the
IC/MCC simulation is essential for achieving high performance.
his does not mean our implementation is perfect. We believe
here are still further optimisation opportunities and some parts
f our code can be improved. Nevertheless, we demonstrated
oth with CUDA and OpenCL implementations that it is possible
o reach sustained performance in the teraflops range and reduce
xecution time by two orders of magnitude. New architectural
evelopments are also in favour of GPU-based PIC/MCC sim-
lations. As the number of cores, computational performance
nd memory bandwidth increase in future GPU generations, the
arge number of threads used in our implementations accommo-
ates for future growth, scaling and automatic improvement in
imulation performance without any further code modification.

. Conclusions

In this article, we described an efficient massively parallel
PU implementation for one-dimensional electrostatic PIC/MCC
lasma simulations. Four plasma benchmark cases were used to
erify the accuracy, correctness and performance of our imple-
entation.
We described a particle-per-thread execution strategy with

everal performance optimisation steps to improve individual
ernel performances. Using the roofline performance model, we
ould identify the performance boundaries of our program and
perations that limit performance. Using within-kernel optimisa-
ions and kernel fusion, the final version achieved over 2.6 Tflop/s
ustained performance and speedup values from few 10x to 200x
epending on the number of particles. These results can have an
mportant impact on advancing the science and practice of 1D
inetic electrostatic plasma simulations.
We implemented our simulations using CUDA 10.2 and OpenCL

.0 and tested them on a representative set of NVIDIA and
MD GPU cards. In general, we found that OpenCL and CUDA
mplementations performed very similarly at kernel level exe-
ution. Also, the top-end AMD and NVIDIA cards also showed
ery similar performance. We have found some differences in
he development environment and software support, however,
ith CUDA being more mature and better supported with li-
raries and development tools (IDEs, debuggers, profilers). We
ave also compared NVIDIA accelerator cards (V100 and P100)
o consumer cards (GTX and RTX series) and found that con-
umer cards perform comparably or in some cases (P100) better
han the significantly more expensive high-end server accelerator
ards, which may pave the way for creating high performance
imulation infrastructures at a moderate cost.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.
14
Acknowledgements

JD and SM acknowledge support from the Slovak Research and
Development Agency, project Nr. APVV-19-0386 and JD by Come-
nius University project Nr.: UK/180/2020. ZD, AD, and PH grate-
fully acknowledge financial support from the Hungarian Office
for Research, Development and Innovation under NKFIH grants
K-134462 and FK-128924. Support by the János Bolyai Research
Fellowship of the Hungarian Academy of Sciences (AD) is ac-
knowledged. ZJ was supported by the TKP2020-IKA-07 project
financed under the 2020-4.1.1-TKP2020 Thematic Excellence Pro-
gramme by the National Research, Development and Innovation
Fund of Hungary. NVIDIA Corp. donated the Titan Xp GPU card
that was used for program development.

References

[1] M.W. Evans, F.H. Harlow, The Particle-in-Cell method for Hydrodynamic
Calculations, Technical Report LA-2139, Los Alamos Scientific Laboratory,
Los Alamos, New Mexico, 1957, URL https://apps.dtic.mil/dtic/tr/fulltext/
u2/a384618.pdf.

[2] C. Birdsall, A. Langdon, Plasma Physics via Computer Simulation, CRC Press,
Boca Raton, 1991, http://dx.doi.org/10.1201/9781315275048.

[3] C.K. Birdsall, L. Fellow, IEEE Trans. Plasma Sci. 19 (2) (1991) 65–85, http:
//dx.doi.org/10.1109/27.106800.

[4] M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and
Materials Processing, John Wiley & Sons, 2005.

[5] P. Chabert, N. Braithwaite, Physics of Radio-Frequency Plasmas, Cambridge
University Press, 2011, pp. i–iv.

[6] T. Makabe, Z.L. Petrovic, Plasma Electronics: Applications in Microelectronic
Device Fabrication, Vol. 26, CRC Press, 2014.

[7] M.M. Turner, A. Derzsi, Z. Donkó, D. Eremin, S.J. Kelly, T. Lafleur, T.
Mussenbrock, Phys. Plasmas 20 (1) (2013) 1–11, http://dx.doi.org/10.1063/
1.4775084, arXiv:arXiv:1211.5246v2.

[8] P.C. Liewer, V.K. Decyk, J. Comput. Phys. 85 (2) (1989) 302–322, http:
//dx.doi.org/10.1016/0021-9991(89)90153-8.

[9] V.K. Decyk, Comput. Phys. Comm. 87 (1–2) (1995) 87–94, http://dx.doi.org/
10.1016/0010-4655(94)00169-3.

[10] K.Z. Ibrahim, K. Madduri, S. Williams, B. Wang, S. Ethier, L. Oliker, Int. J.
High Perform. Comput. Appl. 27 (4) (2013) 454–473, http://dx.doi.org/10.
1177/1094342013492446.

[11] X. Sáez, A. Soba, E. Sánchez, M. Mantsinen, S. Mateo, J.M. Cela, F. Castejón,
J. Phys. Conf. Ser. 640 (1) (2015) 12064, http://dx.doi.org/10.1088/1742-
6596/640/1/012064.

[12] I. Surmin, S. Bastrakov, E. Efimenko, A. Gonoskov, A. Korzhimanov, I.
Meyerov, Comput. Phys. Comm. 202 (2016) 204–210, http://dx.doi.org/10.
1016/j.cpc.2016.02.004.

[13] A. Beck, J. Derouillat, M. Lobet, A. Farjallah, F. Massimo, I. Zemzemi, F.
Perez, T. Vinci, M. Grech, Comput. Phys. Comm. (2019) http://dx.doi.org/
10.1016/J.CPC.2019.05.001.

[14] W. Gropp, E.L. Lusk, A. Skjellum, Using MPI : Portable Parallel Programming
with the Message-Passing Interface, MIT Press, Cambridge, Mass, 1994, p.
307.

[15] L. Dagum, R. Menon, IEEE Comput. Sci. Eng. 5 (1) (1998) 46–55.
[16] V.K. Decyk, C.D. Norton, Comput. Phys. Comm. 164 (1–3) (2004) 80–85,

http://dx.doi.org/10.1016/j.cpc.2004.06.011.
[17] V.K. Decyk, T.V. Singh, Comput. Phys. Comm. 182 (3) (2011) 641–648,

http://dx.doi.org/10.1016/j.cpc.2010.11.009.
[18] V.K. Decyk, T.V. Singh, Comput. Phys. Comm. 185 (3) (2014) 708–719,

http://dx.doi.org/10.1016/J.CPC.2013.10.013.
[19] G. Chen, L. Chacón, D. Barnes, J. Comput. Phys. 231 (16) (2012) 5374–5388,

http://dx.doi.org/10.1016/j.jcp.2012.04.040.
[20] X. Kong, M.C. Huang, C. Ren, V.K. Decyk, J. Comput. Phys. 230 (4) (2011)

1676–1685.
[21] F. Hariri, T. Tran, A. Jocksch, E. Lanti, J. Progsch, P. Messmer, S. Brunner, C.

Gheller, L. Villard, Comput. Phys. Comm. (2016) http://dx.doi.org/10.1016/
j.cpc.2016.05.008.

[22] G. Stantchev, W. Dorland, N. Gumerov, J. Parallel Distrib. Comput. 68 (10)
(2008) 1339–1349, http://dx.doi.org/10.1016/j.jpdc.2008.05.009.

[23] D. Tskhakaya, R. Schneider, J. Comput. Phys. 225 (1) (2007) 829–839,
http://dx.doi.org/10.1016/j.jcp.2007.01.002.

[24] A. Sun, M.M. Becker, D. Loffhagen, Comput. Phys. Comm. 206 (2016) 35–44,
http://dx.doi.org/10.1016/j.cpc.2016.05.003.

[25] A. Fierro, J. Dickens, A. Neuber, APS (2013) ET2–005.

https://apps.dtic.mil/dtic/tr/fulltext/u2/a384618.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a384618.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a384618.pdf
http://dx.doi.org/10.1201/9781315275048
http://dx.doi.org/10.1109/27.106800
http://dx.doi.org/10.1109/27.106800
http://dx.doi.org/10.1109/27.106800
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb4
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb4
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb4
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb5
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb5
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb5
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb6
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb6
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb6
http://dx.doi.org/10.1063/1.4775084
http://dx.doi.org/10.1063/1.4775084
http://dx.doi.org/10.1063/1.4775084
http://arxiv.org/abs/arXiv:1211.5246v2
http://dx.doi.org/10.1016/0021-9991(89)90153-8
http://dx.doi.org/10.1016/0021-9991(89)90153-8
http://dx.doi.org/10.1016/0021-9991(89)90153-8
http://dx.doi.org/10.1016/0010-4655(94)00169-3
http://dx.doi.org/10.1016/0010-4655(94)00169-3
http://dx.doi.org/10.1016/0010-4655(94)00169-3
http://dx.doi.org/10.1177/1094342013492446
http://dx.doi.org/10.1177/1094342013492446
http://dx.doi.org/10.1177/1094342013492446
http://dx.doi.org/10.1088/1742-6596/640/1/012064
http://dx.doi.org/10.1088/1742-6596/640/1/012064
http://dx.doi.org/10.1088/1742-6596/640/1/012064
http://dx.doi.org/10.1016/j.cpc.2016.02.004
http://dx.doi.org/10.1016/j.cpc.2016.02.004
http://dx.doi.org/10.1016/j.cpc.2016.02.004
http://dx.doi.org/10.1016/J.CPC.2019.05.001
http://dx.doi.org/10.1016/J.CPC.2019.05.001
http://dx.doi.org/10.1016/J.CPC.2019.05.001
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb14
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb14
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb14
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb14
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb14
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb15
http://dx.doi.org/10.1016/j.cpc.2004.06.011
http://dx.doi.org/10.1016/j.cpc.2010.11.009
http://dx.doi.org/10.1016/J.CPC.2013.10.013
http://dx.doi.org/10.1016/j.jcp.2012.04.040
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb20
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb20
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb20
http://dx.doi.org/10.1016/j.cpc.2016.05.008
http://dx.doi.org/10.1016/j.cpc.2016.05.008
http://dx.doi.org/10.1016/j.cpc.2016.05.008
http://dx.doi.org/10.1016/j.jpdc.2008.05.009
http://dx.doi.org/10.1016/j.jcp.2007.01.002
http://dx.doi.org/10.1016/j.cpc.2016.05.003
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb25

Z. Juhasz, J. Ďurian, A. Derzsi et al. Computer Physics Communications 263 (2021) 107913
[26] A. Fierro, J. Dickens, A. Neuber, Phys. Plasmas 21 (12) (2014) 123504.
[27] H. Shah, S. Kamaria, R. Markandeya, M. Shah, B. Chaudhury, 2017 IEEE 24th

International Conference on High Performance Computing (HiPC), IEEE,
2017, pp. 378–387.

[28] I. Sohn, J. Kim, J. Bae, J. Lee, IEEE Trans. Plasma Sci. 44 (9) (2016)
1823–1833, http://dx.doi.org/10.1109/TPS.2016.2593491.

[29] J. Claustre, B. Chaudhury, G. Fubiani, M. Paulin, J. Boeuf, IEEE Trans. Plasma
Sci. 41 (2) (2013) 391–399.

[30] M.Y. Hur, J.S. Kim, I.C. Song, J.P. Verboncoeur, H.J. Lee, Plasma Res. Express
1 (1) (2019) 015016.

[31] P. Mertmann, D. Eremin, T. Mussenbrock, R.P. Brinkmann, P. Awakowicz,
Comput. Phys. Comm. 182 (10) (2011) 2161–2167, http://dx.doi.org/10.
1016/j.cpc.2011.05.012, arXiv:1104.3998.

[32] N. Hanzlikova, Particle-in-Cell Simulations of Highly Collisional Plasmas
on the GPU in 1 and 2 Dimensions (Ph.D. thesis), Dublin City University,
Dublin City University, Dublin, Ireland, 2015.

[33] J.P. Verboncoeur, Plasma Phys. Control. Fusion 47 (5A) (2005) A231–A260,
http://dx.doi.org/10.1088/0741-3335/47/5a/017.

[34] Z. Donkó, Plasma Sources. Sci. Technol. 20 (2) (2011) 024001, http://dx.
doi.org/10.1088/0963-0252/20/2/024001.

[35] M.M. Turner, Phys. Plasmas 13 (3) (2006) 033506, http://dx.doi.org/10.
1063/1.2169752, arXiv:https://doi.org/10.1063/1.2169752.

[36] E. Erden, I. Rafatov, Contrib. Plasma Phys. 54 (7) (2014) 626–634, http:
//dx.doi.org/10.1002/ctpp.201300047.

[37] Cross sections extracted from PROGRAM MAGBOLTZ, VERSION 7.1,
Biagi-v7.1 database, 2004, www.lxcat.net (retrieved on February 20, 2017).

[38] A.V. Phelps, J. Appl. Phys. 76 (2) (1994) 747–753, http://dx.doi.org/10.1063/
1.357820.

[39] Compilation of Atomic and Molecular Data 2005; http://jila.colorado.edu/
{~}avp/.
15
[40] S. Chandrasekaran, G. Juckeland, OpenACC for Programmers: Concepts and
Strategies, Addison-Wesley Professional, 2017.

[41] B. Chapman, G. Jost, R. Van Der Pas, Using OpenMP: Portable Shared
Memory Parallel Programming, Vol. 10, MIT press, 2008.

[42] A. Munshi, 2009 IEEE Hot Chips 21 Symposium (HCS), IEEE, 2009, pp.
1–314.

[43] A. Munshi, B. Gaster, T.G. Mattson, D. Ginsburg, OpenCL Programming
Guide, Pearson Education, 2011.

[44] J. Cheng, M. Grossman, T. McKercher, Professional CUDA C Programming,
John Wiley & Sons, 2014.

[45] S. Cook, CUDA Programming: a Developer’s Guide to Parallel Computing
With GPUs, Newnes, 2012.

[46] S. Williams, A. Waterman, D. Patterson, Commun. ACM 52 (4) (2009)
65–76, http://dx.doi.org/10.1145/1498765.1498785.

[47] A. Lopes, F. Pratas, L. Sousa, A. Ilic, 2017 IEEE Int. Symp. Perform. Anal.
Syst. Softw., IEEE, 2017, pp. 259–268, http://dx.doi.org/10.1109/ISPASS.
2017.7975297.

[48] P. Hartmann, L. Wang, K. Nösges, B. Berger, S. Wilczek, R.P. Brinkmann,
T. Mussenbrock, Z. Juhasz, Z. Donkó, A. Derzsi, E. Lee, J. Schulze, Plasma
Sources. Sci. Technol. 29 (7) (2020) 075014, http://dx.doi.org/10.1088/
1361-6595/ab9374.

[49] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical
Recipes 3rd Edition: The Art of Scientific Computing, third ed., Cambridge
University Press, USA, 2007.

[50] L.H. Thomas, Elliptic Problems in Linear Difference Equations Over a
Network, Vol. 1, Watson Sci. Comput. Lab. Rept., Columbia University, New
York, 1949.

[51] R. Hockney, C. Jesshope, Parallel Computers: Architecture, Programming
and Algorithms, Adam Hilger, Bristol, 1981.

[52] Y. Zhang, J. Cohen, J.D. Owens, ACM SIGPLAN Not. 45 (5) (2010) 127,
http://dx.doi.org/10.1145/1837853.1693472.

http://refhub.elsevier.com/S0010-4655(21)00050-3/sb26
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb27
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb27
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb27
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb27
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb27
http://dx.doi.org/10.1109/TPS.2016.2593491
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb29
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb29
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb29
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb30
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb30
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb30
http://dx.doi.org/10.1016/j.cpc.2011.05.012
http://dx.doi.org/10.1016/j.cpc.2011.05.012
http://dx.doi.org/10.1016/j.cpc.2011.05.012
http://arxiv.org/abs/1104.3998
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb32
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb32
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb32
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb32
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb32
http://dx.doi.org/10.1088/0741-3335/47/5a/017
http://dx.doi.org/10.1088/0963-0252/20/2/024001
http://dx.doi.org/10.1088/0963-0252/20/2/024001
http://dx.doi.org/10.1088/0963-0252/20/2/024001
http://dx.doi.org/10.1063/1.2169752
http://dx.doi.org/10.1063/1.2169752
http://dx.doi.org/10.1063/1.2169752
https://doi.org/10.1063/1.2169752
http://dx.doi.org/10.1002/ctpp.201300047
http://dx.doi.org/10.1002/ctpp.201300047
http://dx.doi.org/10.1002/ctpp.201300047
http://www.lxcat.net
http://dx.doi.org/10.1063/1.357820
http://dx.doi.org/10.1063/1.357820
http://dx.doi.org/10.1063/1.357820
http://jila.colorado.edu/{~}avp/
http://jila.colorado.edu/{~}avp/
http://jila.colorado.edu/{~}avp/
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb40
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb40
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb40
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb41
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb41
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb41
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb42
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb42
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb42
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb43
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb43
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb43
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb44
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb44
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb44
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb45
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb45
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb45
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1109/ISPASS.2017.7975297
http://dx.doi.org/10.1109/ISPASS.2017.7975297
http://dx.doi.org/10.1109/ISPASS.2017.7975297
http://dx.doi.org/10.1088/1361-6595/ab9374
http://dx.doi.org/10.1088/1361-6595/ab9374
http://dx.doi.org/10.1088/1361-6595/ab9374
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb49
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb49
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb49
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb49
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb49
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb50
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb50
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb50
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb50
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb50
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb51
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb51
http://refhub.elsevier.com/S0010-4655(21)00050-3/sb51
http://dx.doi.org/10.1145/1837853.1693472

	Efficient GPU implementation of the Particle-in-Cell/Monte-Carlo collisions method for 1D simulation of low-pressure capacitively coupled plasmas
	Introduction
	Basics of the PIC/MCC simulation of CCRF plasmas
	Benchmarks

	GPU programming and architecture
	Hardware environment

	GPU implementation
	Design principles
	Data structures and memory layout
	Particle mover
	Collisions
	Random number generation

	Density calculations
	Poisson solver
	Kernel fusion

	Results and discussions
	Verification of the GPU implementations
	Attained performance
	Strong scaling
	Weak scaling

	Performance vs. workload size

	Conclusions
	Declaration of competing interest
	Acknowledgements
	References

