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Abstract
This paper reviews our recent molecular dynamics simulation studies of the
static and dynamical behaviour of classical bilayers in their liquid phase. The
pair correlation functions obtained in the static calculations make it possible to
trace the structural changes of the system as well as to calculate the energy and
static structure functions of the bilayer. The dynamical calculations show the
existence of two (in-phase and out-of-phase) longitudinal and two (in-phase
and out-of-phase) transverse collective modes. We present the full dispersion
relations for these modes at different layer separations. At low layer separations
the out-of-phase modes are found to possess a finite frequency at wave numbers
k → 0, confirming the existence of the long-wavelength energy gap in the
bilayer system predicted by the quasi-localized charge approximation. It is
only at higher layer separations that the dominant portion of the longitudinal
out-of-phase mode is well approximated by the acoustic behaviour, resulting
from the random phase approximation theory.

PACS numbers: 52.27.Gr, 52.65.−y, 05.20.−y, 73.21.−b

1. Introduction

Layered structures of charged particles can be realized in various physical systems, e.g.,
ion traps [1, 2], semiconductor devices [3–5] and complex (dusty) plasmas with mesoscopic
charged grains [6–9]. Bilayers—consisting of two quasi two-dimensional layers of charged
particles—represent the simplest form of multilayered systems. It has been shown both
experimentally [1] and theoretically [10–14] that bilayers exhibit a rich variety of structural
phases depending on the system parameters. Bilayers described through a model of classical
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point charges interacting through the three-dimensional Coulomb potential can be fully
characterized by two variables: (i) the coupling parameter � = e2/(akT ), defined in the
same manner as in the case of a single layer [15, 16], where a = (nπ)−1/2 is the Wigner–Seitz
(WS) radius, n is the surface density of particles, and (ii) the separation of the two layers d/a.

The zero-temperature classical calculations of Goldoni and Peeters [17] have identified a
sequence of structural changes (hexagonal → staggered rectangular → staggered square →
staggered rhombic → staggered hexagonal) with increasing layer separation. The series of
structural changes has also been observed by Weis et al through Monte Carlo (MC) simulations
at nonzero temperature but still in the solid phase [18]. Theoretical calculations in the liquid
phase have been carried out by Valtchinov et al [10, 11] and Kalman et al [12–14], using the
hypernetted chain (HNC) technique [19]. These studies have shown that the series of structural
changes also exists in the strongly coupled liquid phase. The solid–liquid phase diagram of
the bilayer system has been determined by MC simulations by Schweigert et al [20, 21]. Their
results indicate a substantial change of melting temperature with layer separation. The highest
melting temperature was found for layer separations, where the system is in the staggered
square phase. The appearance of the pronounced long-range order in this domain of d/a (as
seen from the behaviour of the intralayer and interlayer pair correlation functions) [22] as well
as the largely reduced self-diffusion coefficient [23] can also be attributed to the solidification
of the system.

The dynamical properties of bilayers for the weakly coupled electron gas and for the
strongly coupled solid and liquid phases have been studied theoretically. The random phase
approximation (RPA) [24] has predicted an acoustic behaviour for the longitudinal out-of-
phase mode. The description of the phonon spectrum of the bilayer crystal by Goldoni and
Peeters [17] was followed by the analysis of the strongly coupled liquid phase with the aid of
the quasi-localized charge approximation (QLCA) [25]. The QLCA analysis has revealed the
existence of four distinct collective excitations [26]: the longitudinal in-phase and out-of-phase
modes (particles in the two layers oscillating in phase and 180◦ out of phase, respectively), and
the transverse in-phase and out-of-phase modes. The in-phase modes emulate a 2D behaviour
while the out-of-phase modes exhibit qualitatively new features. The analysis shows that in
sharp contrast to the results of the RPA theory, at low layer separation (d < a) this mode
exhibits a nonzero frequency at wave numbers k → 0 [26]. The matter of this energy gap has,
however, become the subject of some controversy. The issues brought forward have been the
possible effect of damping [27, 28] and the compatibility of the RPA and QLCA predictions
[29, 30].

The simulations described in this paper have been carried out in order to provide a
definitive answer to the questions relating to the phases and to the mode structure of the
strongly coupled bilayer liquid. In the present work, we briefly review the details of the static
simulations [22] and present for the first time molecular dynamics (MD) data for the intralayer
and interlayer correlation energies. The dynamical simulations reported here represent a
preliminary account of a more comprehensive work [31] to be published later. The simulation
technique is described in section 2; the results of the static and dynamical simulations are
presented in sections 3 and 4, respectively. A summary of the work is given in section 5.

2. Simulation technique

Our molecular dynamics simulations are based on the particle–particle particle-mesh (PPPM)
method [32]. This method makes it possible to simulate large ensembles of particles
interacting through long-range forces, and uses periodic boundary conditions. We apply
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a two-dimensional variant of the algorithm and map the two layers into a single layer with
interaction potentials:[

φ11 φ12

φ21 φ22

]
= e2

[
1/r 1/

√
(r2 + d2)

1/
√

(r2 + d2) 1/r

]
. (1)

In the simulations presented here the number of particles is set to N = 1600 in both layers,
and we investigate the domain 10 � � � 80 and 0 � d/a � 3. The principal results of the
static simulations are the intralayer g11(r/a) and interlayer g12(r/a) pair correlation functions
(PCF). The potential energy of the system and the static structure functions are derived from
g11 and g12. The intralayer (E11 and E22 for layers 1 and 2, respectively) as well as interlayer
(E12) contributions to the potential energy of the whole system are given by

E11 = E22 = N
e2

a2

∫ ∞

0
[g11(r) − 1] dr (2)

and

E12 = 2N
e2

a2

∫ ∞

0

r√
r2 + d2

[g12(r) − 1] dr. (3)

The total potential energy per particle is E/(2N) = (E11 + E12 + E22)/(2N) =
(2E11 + E12)/(2N), as E11 = E22.

The intralayer and interlayer structure functions are calculated through the Hankel
transform of the pair correlation functions

S11(k) = 1 + 2πn

∫ ∞

0
[g11(r) − 1]rJ0(kr) dr (4)

S12(k) = 2πn

∫ ∞

0
[g12(r) − 1]rJ0(kr) dr (5)

where J0 is the zeroth-order Bessel function.
The dynamical properties are investigated through the spectra of the correlations in

the longitudinal and transverse current fluctuations, L(k, ω) and T (k, ω), respectively,
and in the density fluctuations S(k, ω) (e.g., [33]). For the bilayer system we calculate
L±(k, ω), T±(k, ω) and S±(k, ω), where the + and − signs refer to the in-phase and out-of-
phase modes, respectively [31].

3. Static properties

The dependence of the intralayer and interlayer pair correlation functions on the layer
separation (d/a) is illustrated in figure 1 for � = 50. At d/a = 0—as the two layers
merge into a single layer—g11 and g12 are identical. Here the system is in a hexagonal phase,
however, a substitutional disorder occurs: some of the lattice sites corresponding to one of
the layers are occupied by particles belonging to the other layer. This substitutional disorder
gradually disappears with increasing d/a [22].

As the layer separation is increased both g11 and g12 exhibit significant changes.
Examining the snapshots of particle positions and intralayer and interlayer coordination
numbers [22], the sequence of structural changes (similar to the zero-temperature case) can
be traced. The two layers become uncorrelated at separations exceeding ∼2a, g11 in this
domain corresponds to a single separated layer of charges. The correlation between the two
layers is the strongest at layer separations 0.5 � d/a � 0.8 as indicated by the amplitude
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(a) (b)

Figure 1. Intralayer (a) and interlayer (b) pair correlation functions for � = 50. Note the strong
interlayer correlation in the domain 0.5 � d/a � 1.

(a)

(b)

Figure 2. Intralayer (a) and interlayer (b) pair correlation functions for fixed layer separation
d/a = 0.5 and different values of the coupling parameter. The positions of the minima and
maxima change only slightly with decreasing �, demonstrating the stability of the structure.

of the first peak of g12. The emergence of long-range order in this domain of d/a at higher
values of coupling (e.g., � = 80) is a sign of the freezing of the bilayer into a crystal under
these conditions. According to the studies by Scheweigert et al [20, 21], the freezing of the
bilayer system occurs at the highest temperature in this domain of layer separations. (For the
conditions of figure 1 the bilayer system is in a liquid state.)

At fixed layer separation the underlying structure in the liquid phase does not change with
�. This is illustrated in figure 2, where g11 and g12 are plotted for a series of � values at a fixed
layer separation (d/a = 0.5). It can clearly be seen that while the amplitudes of the peaks of
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(a)

(b)

(E11 + E22)/(2N)

E12 /(2N)
E /(2N)

Figure 3. (a) The dependence of the total potential energy per particle E/(2N) on d/a and �.
(b) Intralayer (E11 + E22)/(2N) and interlayer E12/(2N) contributions to the potential energy
per particle and total potential energy per particle E/(2N) as a function of layer separation (at
� = 50). At high d/a the total energy approaches the Madelung energy for a hexagonal lattice.
Appreciable interlayer energy is found at layer separations below d/a ≈ 1.

the pair correlation functions get smaller as the coupling parameter decreases, the positions of
the peaks remain nearly the same, thus proving the stability of the structure.

The potential energy per particle E/(2N) is shown in figure 3(a) as a function of layer
separation, for several values of �. In the high coupling limit at high layer separations the
energy approaches the Madelung energy of a hexagonal lattice EM ∼= −1.106e2/a (e.g., [34]).
At d → 0, the energy approaches EM

√
2, as the two layers transform into a single hexagonal

lattice. For any fixed layer separation we find that the absolute value of the energy decreases
towards lower values of �. The intralayer and interlayer contributions to the potential energy
per particle, (E11 + E22)/(2N) and E12/(2N), respectively, are plotted in figure 3(b). At
d = 0, we find that E11 + E22 = E12, as expected. At d/a > 1, the interlayer contribution
becomes very small, and (E11 + E22)/(2N) is approximately equal to the total energy.

The static structure functions S11(k) and S12(k) are plotted in figure 4, for � = 20 and a
series of layer separations. The calculated structure functions satisfy the perfect screening sum
rule S11(k = 0) = −S12(k = 0) = S0. S0 decreases rapidly with increasing layer separation.

4. Dynamical properties

Figure 5 shows the spectra of the longitudinal current fluctuations calculated at � = 40. The
in-phase (L+) and out-of-phase (L−) spectra displayed in figures 5(a) and (b), respectively,
have been obtained at d/a = 0.3, while figures 5(c) and (d) show L+ and L− spectra obtained
at d/a = 2.0. All plots show spectra for eight values of the wave number, multiples of
(ka)min = 0.0886. The results are displayed as a function of the ratio of oscillation frequency
to the nominal 2D plasma frequency ω0 = (2πne2/ma)1/2.
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Figure 4. Static structure functions S11(k) and S12(k) for different values of layer separation, at
� = 20. The S11(k) and S12(k) functions satisfy the perfect screening sum rule: S11(k = 0) =
−S12(k = 0) .

(a)

(b)

(c)

(d )

Figure 5. Spectra of the longitudinal current fluctuations at � = 40: (a) in-phase and (b) out-of-
phase spectra at d/a = 0.3, (c) in-phase and (d) out-of-phase spectra at d/a = 2.0. The vertical
dashed line in (b) marks the position of the gap.

For d/a = 0.3, the in-phase L+ mode exhibits sharp peaks and a positive dispersion: the
peaks are shifted towards higher ω with increasing k. The out-of-phase L− mode, on the other
hand, shows a very different behaviour: the peaks characterizing the collective excitation are
quite broad, and remain at the same frequency at k → 0. This behaviour provides direct
evidence for the presence of an energy gap in the out-of-phase mode spectrum of a strongly
coupled bilayer. The increased layer separation causes significant change only to the L− mode
spectra. At d/a = 2, we are no longer able to observe the energy gap; at this layer separation
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(b)

(a)

Figure 6. (a) Dispersion relations for the L− (�), T− (�), L+ (◦) and T+ (�) modes at d/a = 0.3.
(b) Dispersion relations for the L− (�) and L+ (◦) modes at d/a = 2.0. The heavy lines represent
the QLCA results for the L− and L+ modes.

the collective excitations displayed in figure 5(d) are maintained by the mean field, rather than
by the particle correlations.

The full dispersion relations ω(k) of the L modes obtained at � = 40 are plotted in
figures 6(a) and (b), for d/a = 0.3 and 2.0, respectively. In addition to the L± dispersion
curves, figure 6(a) also shows the dispersion curves of the T± modes. At the low value of
d/a the frequencies of both the L− and T− out-of-phase modes exhibit a weak dependence on
wave number k over the whole domain as shown in figure 6(a). This behaviour is in agreement
with the predictions of the QLCA theory. On the other hand, the present simulations yield a
≈30% higher frequency of the out-of-phase modes at k → 0 compared to the QLCA.

For the in-phase longitudinal mode L+ the RPA theory predicts that for k → 0 the
dispersion is 2D-like ω ∼ √

k(1 − kd/2 + 3ka/4�), while the QLCA predicts a further O(k)

correction due to particle correlations [24, 26, 35]. Our simulation results reproduce this
latter behaviour; the RPA results increasingly deviate from the present data as ka increases.
The in-phase transverse T+ mode is quite weak for � = 40, similar to the behaviour of the
corresponding mode in the isolated 2D system where, however, the mode becomes stronger
at higher values of � [36]. Here the T+ mode is observable only at wave numbers ka � 1; for
ka � 1, ω = 0. The disappearance of the shear modes for k → 0 is a well-known feature
of the liquid state [36–38]; the sharp cut-off, ω → 0 for a finite k, has also been observed
in simulations of Yukawa systems [39, 40]. Comparison with the QLC theory shows an
agreement as far as the linear acoustic dispersion is concerned, but the QLCA fails to predict
the finite k, ω = 0 cut-off.

At high layer separations, as shown in figure 6(b) for d/a = 2.0, the major portion of
the out-of-phase longitudinal (L−) mode at low wave numbers exhibits the linear acoustic
behaviour predicted by the RPA. Figure 6(b) also shows the result of the QLC theory calculation
at d/a = 2.0 [26], which is in good agreement with the present MD results.

The widths of the peaks in the fluctuation spectra are related to the lifetimes of the
corresponding modes. L+(ω), which is maintained primarily by the mean field, is characterized
by an extremely narrow peak and a long lifetime. In contrast, T+(ω) and T−(ω), which are
supported by particle correlations, have broader peaks and shorter lifetimes. The peak for
L−(ω) is broad in the domain dominated by correlations (low d/a), in particular in the gap
region; it narrows dramatically, however, as it travels into the quasi-linear region (high d/a)
which again is maintained primarily by the mean field.
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5. Summary

In this paper, we have reviewed the results of MD simulations of strongly coupled, classical
charged particle bilayer liquids. The simulations confirm a sequence of structural changes
in the liquid phase, induced by the changing separation of the two layers. The intralayer
and interlayer pair correlation functions have made it possible to calculate the energy of the
system, as well as the static structure functions. The structure functions have been found to
satisfy the perfect screening sum rule S11(k = 0) = −S12(k = 0) = S0.

The dynamical simulations have generated current fluctuation spectra. From the analysis
of these spectra we have identified the four collective modes of the system and have determined
their dispersion characteristics. The existence of a frequency (energy) gap in the out-of-phase
modes has been unambiguously established. The qualitative conclusions of the QLCA for
all four modes, in particular those concerning the emergence of the energy gap for the out-
of-phase modes, are verified. Quantitatively, the agreement between the MD and the QLCA
results is excellent for the in-phase longitudinal mode; for the out-of-phase modes the value
of the energy gap obtained in the present work is about 30% higher than that predicted by the
QLCA. The reason for this discrepancy is not understood at the present time. The MD results
well complement the existing experimental findings [41] in laboratory experiments that have
been carried out for rs ≈ 1.0–1.5, a much weaker coupling range than that investigated in the
present simulations.
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