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This paper reviews experimental and modeling efforts aimed at the determination of
the shear viscosity of strongly-coupled Yukawa liquids. After briefly reviewing prior
work on three-dimensional (3D) systems, recent experimental and computer simulation
studies of two-dimensional (2D) settings are presented in detail. In the experiments
two counterpropagating laser beams were used to perturb a dusty plasma monolayer
and monitoring of the velocity field reconstructed from particle trajectories allowed the
determination of the shear viscosity with the aid of an analytical model. Subsequent
computer simulations based on the molecular dynamics approach resulted in velocity
profiles which are in very good agreement with the experimental ones. Further simulation
studies of idealized 2D Yukawa liquids (in which gas friction is neglected) gave results
for the shear viscosity over a wide range of system parameters and demonstrated the
existence of the shear thinning effect (non-Newtonian behavior) of the liquid at high
shear rates.
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1. Introduction: General Characteristics of Yukawa Liquids

Strongly-coupled plasmas — in which the average interaction (potential) energy

per particle dominates over the average kinetic energy — appear in a wide variety

of physical systems: dusty plasmas, charged particles in cryogenic traps, condensed

matter systems such as molten salts and liquid metals, electrons trapped on the

surface of liquid helium, astrophysical systems, such as the ion liquids in white dwarf

interiors, neutron star crusts, supernova cores, and giant planetary interiors, as well

as in degenerate electron or hole liquids in two-dimensional or layered semiconductor

nanostructures.1

Many of the systems listed above can be described in terms of classical physics

and share some properties, which allows one to describe them by the one-component
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plasma (OCP) model. The OCP model considers explicitly only a single type of

charged species and uses a potential that accounts for the presence and effects

of other types of species. This latter may be considered as a charge-neutralizing

background, which is either non-polarizable or polarizable. In the first case the pair

interaction energy of the main plasma constituents is Coulombic:

φ(r) =
Q2

4πε0

1

r
, (1)

whereas in the case of polarizable background, screening effects can be accounted

for by the

φ(r) =
Q2

4πε0

exp(−r/λD)

r
(2)

Yukawa potential (Q is the charge of the particles and λD is the Debye length).

The Yukawa potential is applicable, in particular, for dusty plasmas2–6 and charged

colloids.7–10

It is conventional to express the ratio of the interparticle potential energy to

thermal energy by the coupling parameter :

Γ =
Q2

4πε0

1

akBT
, (3)

where a is the Wigner–Seitz (WS) radius, and T is the temperature. Depending

on whether the system is three-dimensional or two-dimensional, a is defined as

(3/4πn)1/3 or (nπ)−1/2, respectively, where n is the volume or areal number density.

The strong coupling regime corresponds to Γ � 1.

In the case of Yukawa interaction an additional essential parameter is the

screening parameter :

κ =
a

λD

. (4)

In Eqs. (3) and (4), we use as the length scale a the Wigner–Seitz radius, although

some authors use other length scales. In the κ → 0 limit the interaction reduces

to Coulomb type, while at κ → ∞ it approximates the properties of a hard sphere

system.

The liquid state, which is our focus in this review, occurs at coupling parameters

Γ > Γm, where the melting point has been found in simulations to be Γm
∼= 175 in

3D11, 12 and Γm
∼= 137 in 2D,13, 14 both for the Coulomb limit κ = 0. In a Yukawa

system, Γm increases with κ, for both 3D15 and 2D16, 17 systems.

Complex (dusty) plasmas — which are of special interest here – can be cre-

ated in laboratory experiments by dispersing micron-sized particles into gas dis-

charges.18 The (typically noble gas) glow discharge can be direct current (d.c.) or

radio-frequency (r.f.) driven and serves primarily as a charging medium for the

(typically spherical, dielectric) particles. The dust particles are exposed to elec-

tron and ion currents from the discharge plasma, and a dynamic equilibrium is
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rapidly reached, where their net electric charge can be in the order of ∼104 elec-

tron charges. These particles interact with their environment with several forces:

gravity (which is proportional to the mass of the particle), ion drag force, neutral

drag force, and thermophoretic forces (which are all proportional to the particle’s

surface area), and the Coulomb force (which is proportional to charge and there-

fore the particle radius). The dominance of the different force contributions can

be tuned by adjusting the experimental conditions, including particle size. In this

paper we focus our attention on systems where the particles are levitated in a hor-

izontal plane-parallel electrode configuration r.f. discharge. In this case gravity is

compensated by the Coulomb force arising from the vertical electric field of the

plasma sheath, and the particles settle in a single 2D layer near the lower electrode.

If more particles were added, additional layers would form, but in the experiments

described here the particle number is limited to allow only a single layer to form.

This configuration allows a simplified analysis because ion drag forces act mainly

perpendicular to the particle plane, therefore they influence only the equilibrium

position of this layer. In this configuration, the interparticle potential can be well

approximated by a simple Yukawa type interaction, originating from the Coulomb

repulsion of the charged dust particles and the polarizability (screening property)

of the surrounding discharge plasma.

Transport properties of strongly-coupled plasmas in the liquid state have at-

tracted considerable interest since the 1970s. Among the transport parameters shear

viscosity is the focus of the present paper. Transport coefficients are meaningful if

they are part of a valid “constitutive relation” between the gradients of local vari-

ables and fluxes. For shear viscosity η, the constitutive relation

jy = −η
dvx(y)

dy
(5)

relates the “transverse” momentum flux jy to the velocity gradient dvx(y)/dy, which

is also termed the shear rate. In a non-Newtonian fluid, η may vary with the veloc-

ity gradient, whereas in Newtonian fluids it does not. In particular, if η diminishes

as shear is increased, the fluid is said to exhibit “shear thinning”. Following the

studies on simple liquids by Evans and co-workers,19 such behavior has been re-

ceiving increasing interest during the last couple of years, as many different systems

have been found to exhibit such features. Examples of such systems include com-

plex mixtures such as foams, micelles, slurries, pastes, gels, polymer solutions, and

granular flows.20 Recently, the possibility of shear thinning in dusty plasmas has

attracted the attention of experimenters.21, 22

In addition to non-Newtonian effects such as shear thinning, there is another

reason that the constitutive relation, Eq. (5), can fail. This failure arises from the

discrete nature of particles.23 If a shear layer is so narrow that there are only a

few molecules or particles across its width, the particles cannot be modeled as a

continuum, with a fluid velocity v.
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In Sec. 2 we briefly summarize previous work related to the shear viscosity of 3D

Coulomb and Yukawa liquids. In Secs. 3 and 4 we turn to 2D liquids, where there

are not only recent simulations but also experimental efforts aimed at determining

the shear viscosity.

2. Prior Work on Shear Viscosity of 3D Coulomb and Yukawa

Plasma Liquids

The shear viscosity of 3D Coulomb and Yukawa liquids has been investigated by

several authors. Calculated viscosity values obtained in earlier studies for κ ∼= 0

and κ = 1, respectively, are displayed in Figs. 1(a) and 1(b), as a function of the

coupling parameter Γ. The data are normalized by η0 = mnω0a
2 where m is the

mass of the particles, n is the particle density, ω0 =
√

Q2n/ε0m is the plasma

frequency, and a is the Wigner–Seitz radius, a = (3/4πn)1/3.

Regarding Coulomb systems, the shear (η) and bulk (ζ) viscosity of the 3D OCP

was first derived by Vieillefosse and Hansen24 from the transverse and longitudinal

current correlation functions of the plasma. They found that the shear viscosity

exhibits a minimum at Γ ≈ 20. The calculations of Wallenborn and Baus25, 26

were based on the kinetic theory of the OCP; their results were in a factor of

three agreement with the previous results24 at Γ = 1 and within a factor of two

agreement at Γ = 160. The minimum value of η agreed well for both reports,

however the position of the minimum was reported in the latter work to occur at

a lower coupling value, Γ ≈ 8.25 Molecular dynamics simulation was first applied

by Bernu, Vieillefosse and Hansen27, 28 to obtain transport parameters through the

Green–Kubo relations. Donkó and Nýiri29 used a nonequilibrium MD simulation

Fig. 1. Shear viscosity coefficient of the 3D classical one-component plasma (OCP) normalized
by η0 = mnω0a2 (see text). (a) Coulomb liquids (κ = 0) and Yukawa liquids with κ ∼= 0.
(b) Yukawa liquids with κ = 1. DN: Donkó and Nýiri29 using 1024 and 8192 particles, WB:
Wallenborn and Baus,25,26 VH: Vieillefosse and Hansen,24 BV: Bernu et al.,27,28 B: Bastea,30

D: Daligault,31 SC: Salin and Caillol,32 SH: Saigo and Hamaguchi,33 Sanbonmatsu and Murillo.23
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technique to determine the shear viscosity, while subsequently, Bastea30 applied

equilibrium simulation to obtain η for 3D Coulomb liquids using the Green–Kubo

relation. Recently Daligault found that the shear viscosity of the OCP follows an

Arrhenius type behavior at high Γ values.31 (These latter results have been scaled

by us in Fig. 1(a) so that they match the minimum value of η, given by the other

calculations.)

Concerning Yukawa systems, Salin and Caillol32 have carried out equilibrium

molecular dynamics computations for the shear and bulk viscosity coefficients, as

well as for the thermal conductivity. Saigo and Hamaguchi33 have also used the

Green–Kubo relations for the calculations of the shear viscosity. Sanbonmatsu and

Murillo23 calculated the shear viscosity from nonequilibrium MD simulations (which

apply a spatial velocity profile perturbation). Murillo34 and later on Faussurier and

Murillo35 obtained transport coefficients through mapping of the Yukawa liquid

and hard sphere, as well as one-component Coulomb systems.

As opposed to simple liquids, it is a remarkable feature of the η(Γ) graphs

that they exhibit a minimum at intermediate values of the coupling coefficient.

The shape of the η(Γ) curves can be explained by the prevailing potential and

kinetic contributions to the viscosity at low and high values of Γ, respectively.33

Comparing the results shown in Figs. 1(a) and 1(b) we can observe that with

increasing screening (i.e. increasing κ) the minimum of the η(Γ) curve is shifted

towards higher Γ.

When, however, Saigo and Hamaguchi33 normalized their results by η′
0 =

mnωEa2 (where ωE is the Einstein frequency) and plotted these against the nor-

malized temperature T ′ = T/Tm, they found that the viscosity obeys a universal,

κ-independent scaling η/η′
0 = aT ′ + b/T ′ + c (a, b, and c are constant coefficients).

The Einstein frequency ωE which appears above is defined as the oscillation fre-

quency of a test particle in the frozen environment of the other particles,33, 36 while

Tm is the melting temperature. Here, Tm and ωE are κ-dependent. It has been

demonstrated16 that for many dynamical processes, ωE provides a more appropri-

ate normalization of time than the κ-independent plasma frequency.

3. Dusty Plasma Shear Viscosity Experiment

Next we turn our attention to two-dimensional Yukawa liquids, where there are

not only simulations, but also experiments. Moreover, these simulations and exper-

iments are well suited to a direct comparison. Here we will normalize time using ei-

ther the 2D analog of the plasma frequency ω0 = (Q2/2πε0ma3)1/2, or the Einstein

frequency ωE. We will normalize distances by a = 1/
√

nπ, the 2D Wigner–Seitz

radius, where n is the areal density.

Experiments are performed using low-pressure gaseous discharges in the way

already explained in Sec. 1. To investigate viscosity, a sheared velocity profile has to

be established; in the experiments of Nosenko and Goree37 this was accomplished

by directing two parallel, but counterpropagating laser beams onto the particle
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Fig. 2. Sketch of experimental apparatus.

suspension. The experimental apparatus is sketched in Fig. 2. A vacuum chamber,

not shown in Fig. 2, is filled at a low pressure with an inert gas to allow the

production of a glow-discharge plasma when radio-frequency voltages are applied

to electrodes. A horizontal lower electrode is powered through a capacitor, so that

a negative d.c. bias can develop naturally on this electrode. The entire vacuum

chamber serves as the other electrode. Polymer microspheres are dispensed with

a simple device like a salt shaker so that they fall into the plasma, where they

become negatively changed. They are levitated in a high electric field region above

the negatively-biased lower electrode. Due to their great inertia, these dust particles

respond only to d.c. fields, and not to the radio-frequency fields which are used to

accelerate electrons and sustain the ionization of the plasma.

The gas in the vacuum chamber is only partially ionized, so that particles ex-

perience a frictional force as they move through the gas. This force is proportional

to the particle velocity, with a known coefficient.38 Unlike 3D particle suspensions,

the particles in the 2D suspension are too few for their mass motion to cause a flow

in the gas.

The particles are imaged by illuminating them with a low-power laser beam

dispersed into a horizontal sheet, and images are recorded by a video camera and a

digital VCR. Particle positions are measured in each video frame using a moment

method, and particles are tracked between two consecutive frames to allow a cal-

culation of the velocity of each particle that is imaged. The camera operated at

30 frames per second, with a 23.1 × 17.3 mm field of view that included 370–770

particles.

A single layer of microspheres was suspended in the plasma. The particles had a

diameter38 of 8.09± 0.18 µm and a mass m = 4.2× 10−13 kg. The particle suspen-

sion’s diameter was 50–60 mm. The interparticle potential for particles arranged

in a single plane was experimentally shown39 to be nearly of the form as given by

Eq. (2).
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Fig. 3. A bitmap image of the central portion of the particle suspension shows the particles (a)
and the structure factor S(k) (b), both before the manipulation lasers are applied to produce a
shear stress. The particles are arranged in a crystalline triangular lattice with hexagonal symmetry.
Results during steady-state application of shear stress using a pair of counterpropagating laser
beams are shown as particle trajectories (c) and S(k) (d), for a steady-state shear flow. Profiles of
the inverse particle temperature T−1

x and T−1
y are shown in the insets. The static structure factor

S(k) was computed as the Fourier transform of the raw bitmap images as in (a). (Adapted from
Ref. 37. Copyright (2004) by the American Physical Society.)

Initially the suspension was an undisturbed triangular lattice, see Fig. 3(a), in

a highly ordered state. The static structure factor S(k) had the distinctive peaks

of a hexagonal crystal, Fig. 3(b).

Particles were manipulated by applying a pair of powerful cw laser beams. The

powers of these two beams were nearly the same, and they could be varied over a

range of a few Watts, as measured inside the vacuum chamber. These laser beams

apply a radiation-pressure force to particles that are struck by the laser; this force

is proportional to the applied laser intensity.38 To apply a shear stress, the two

laser beams were applied in a counterpropagating configuration.

Beginning with an undisturbed lattice, the laser beams were then turned on to

apply a shear stress, causing the particle suspension to melt and develop a steady-

state shear flow. The camera field of view shows only a central portion of the

entire flow pattern, which was a pair of counter-rotation vortices. At their junction,

where the camera’s field of view was located, this pair of vortices made a shear

flow with a nearly one-dimensional symmetry. More than 95% of the time-averaged

flow velocity was directed in the x-direction, with less than 5% of the flow velocity

diverted in the y-direction. The flow velocity varied little with x within the field of

view, so that the flow can be modeled as a one-dimensional shear flow.

Particle velocities were averaged within bins, yielding vx and vy as a function

of y. Likewise, the mean-square fluctuations of particle velocity were computed

to yield the kinetic temperature Tx(y) and Ty(y). Profiles of the temperature are

shown in Fig. 3(c), while the velocity profile, which is one of the chief experimental

results, is shown in Fig. 4.
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Fig. 4. Experimental particle velocity profiles (data points) are shown with fits to the Navier–
Stokes model (curves) for various laser powers. (Adapted from Ref. 37. Copyright (2004) by the
American Physical Society.)

The flow velocity profile vx(y) in Fig. 4 was curved, unlike in a traditional planar

Couette flow where vx(y) is linear with y. This curvature can be attributed to the

frictional drag exerted on particles by the gas. A balance between this drag in the

x direction and the viscous transport of particle momentum in the y direction away

from the laser stripes accounts for the observed steady-state velocity profile.

The velocity profile was modeled in the continuum approximation, using the

Navier–Stokes equation, which includes a viscous term corresponding to the con-

stitutive relation for viscosity (Eq. (5)). Also added to the Navier–Stokes equation,

especially to model this experiment, is a final term for the gas drag

∂v

∂t
+ (v∇)v = −ρ−1∇p +

η

ρ
∇2v +

[

ζ

ρ
+

η

3ρ

]

∇(∇ · v) − νdv. (6)

Here, the parameters for the continuum representing the particle suspension are v,

p, ρ, η, and ζ, which are the velocity, pressure, areal mass density, shear (dynamic)

viscosity, and second viscosity, respectively, and νd is the gas friction. The ratio η/ρ

is the kinematic viscosity, which has the same dimensions in 2D and 3D systems.

The flow has a symmetry ∂/∂x = 0 and vy = 0. The Navier–Stokes equation is

then reduced to

∂2vx(y)

∂y2
− νdρ

η
vx(y) = 0, (7)

and p = const. Solving Eq. (7) yields a theoretical velocity profile

vth
x (y) =

(V1 + V2 e2αh)eαy − (V2 + V1 e2αh)e−αy

e3αh − e−αh
, (8)
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Fig. 5. Results for kinematic viscosity η/ρ, as a functions of the shear stress (a) and temperature
(b). There is a broad minimum in viscosity in the range 70 < Γy < 700. In (b), to allow comparison
to theory, the viscosity is normalized by η0 = mnω0a2, as usual. (Adapted from Ref. 37. Copyright
(2004) by the American Physical Society.)

where α =
√

νd ρ/η and 2h is the distance between the laser sheets. The boundary

conditions vx(−h) = −V1 and vx(h) = V2 are used, where V1 and V2 are the

observed peak velocities in the laser stripes.

Here the spatial dependence of η/ρ is ignored, thereby neglecting the tempera-

ture gradient in the shear flow. The presence of a significant temperature gradient,

with a variation of temperature over a factor of three within the observed region,

will somewhat limit the accuracy of the determination of the viscosity coefficient

to an extent that may require future experiments to quantify.

To find the viscosity, the experimental velocity profiles in Fig. 4 are fitted to

theory using experimental values of V1 and V2 and a single free parameter α. The

resulting curves fit the experimental profiles well. Using the known value of Epstein

gas drag νd = 0.87 s−1 for the experimental conditions,38 the kinematic viscosity

was calculated as
η

ρ
= νd α−2. (9)

The main experimental result was the kinematic viscosity η/ρ of the particle

suspension, Fig. 5(a). Its value is of order 1 mm2s−1, which is comparable to η/ρ

for both a 3D Yukawa system and liquid water.23, 32, 33, 35, 40 For a given value of κ,

the parameter varied was the applied laser power; increasing this power caused the

shear stress to increase and Γy to decrease, so that these two parameters were not

varied independently.

A prominent feature of Figs. 5(a) and 5(b) is a broad minimum in the viscosity.

The minimum occurs in the range 70 < Γy < 700. This minimum is generally

similar to the minimum found in simulations of 3D Yukawa liquids.23, 32, 33, 35
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Having a value for the viscosity allows an estimate of the Reynolds number

R of the shear flow. This dimensional ratio indicates whether a flow is viscous or

turbulent. For this experiment, R = V1h/(η/ρ) = 0.7–17; values this low indicate a

laminar flow, validating that assumption in using a simplified Navier–Stokes equa-

tion (Eq. (7)).

The good fit in Fig. 4 suggests that the Navier–Stokes model, which is a con-

tinuum model that does not describe motion of individual molecules, works well

even when the ratio of the shearing region width 2h to the Wigner–Seitz radius a

is as small as 17 to 24, as it was in the experiment. Although the results indicate

that the shearing region had a sufficient width to use the Navier–Stokes equation,

the laser stripes are surely too narrow, because they were less than an interparti-

cle spacing in breadth. Thus, the Navier–Stokes equation was applied only in the

shearing region and not in the narrower laser stripes. In general, if the continuum

approximation underlying the Navier–Stokes equation fails to apply, one cannot

expect the constitutive relation for viscosity to hold.

4. Simulations

In this section we introduce the basic concepts of molecular dynamics (MD) sim-

ulations. Subsequently, in Sec. 4.1 we describe a simulation using experimental

parameters matching those of the previous section. Finally we describe idealized

equilibrium and non-equilibrium simulations in Secs. 4.2 and 4.3 for frictionless

systems, unlike the experiment.

Molecular dynamics simulations follow the motion of particles by integrating

their equations of motion while accounting for the pairwise interaction of the par-

ticles.41 The Newtonian equation of motion that is integrated is simply

mr̈i = Fi, (10)

where Fi is the total force acting on particle i due to all the other particles and

due to any other forces, due for example to externally-applied electric forces, laser

radiation pressure, or gas friction. The way Fi is calculated will be discussed below.

MD simulations in general can have either periodic boundary conditions to

simulate an infinite system, or they can have boundaries to simulate every particle

in a finite system. Here we use periodic boundary conditions, where a particle

exiting one side of the simulation box re-enters the opposite side. Particles interact

not only with other particles in the simulation box, but also particles in image

boxes. In this way, finite computational resources can be used to mimic an infinite

system.

The interparticle forces can be calculated either by a simple pairwise particle–

particle (PP) method, or a more complicated method, depending on the range

of the potentials. The easier case, which we report in the following sections, is

for relatively short-range potentials, where it is possible to limit the number N 2

of pairwise interactions that are included by using a truncation of the potential.
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A common method of doing this is to apply a cutoff radius, beyond which any

interparticle interactions are neglected. For a Yukawa system, this cutoff radius is

typically a multiple of λD. The more difficult case is for longer-range potentials, such

as the unshielded 1/r Coulomb potential for OCP systems, which does not allow a

simple truncation of the potential. For those systems, which are not modeled in the

following section, it is typical to use either Ewald summation,42 the fast multipole

method, or the particle–particle particle–mesh method (PPPM, or P3M).43–47 The

authors have previously used the PPPM method to model OCP systems, but for

the finite κ Yukawa systems modeled here a simpler truncation of the potential is

used.

At the initialization of the simulations usually a random particle configuration

is set up, with velocities sampled from a Maxwellian distribution of temperature T0,

which corresponds to the desired value of the coupling parameter Γ (see Eq. (3)).

The equations of motion of the particles are integrated using the leapfrog scheme or

the velocity-Verlet scheme. The desired system temperature is reached by rescaling

the particle momenta during an initialization phase of the simulation. The desired

measurements are made after this initialization phase.

Molecular dynamics simulations provide two basic ways for the determination of

transport coefficients. In non-equilibrium simulation methods an external pertur-

bation is applied to the system and the system’s response (linked to the perturba-

tion through a transport coefficient) is measured and compared to the constitutive

relation. In equilibrium simulations, no perturbation is applied because the sys-

tem is intended to mimic a thermodynamic equilibrium. Consequently, there is no

gradient, and the constitutive relation is not used. To find macroscopic transport

coefficients using an equilibrium code, one uses the Green–Kubo (GK) relations,

which require a calculation of correlation functions of microscopic quantities such

as particle velocity. In equilibrium simulations, some workers use thermostats (like

the Nosé–Hoover thermostat41) throughout the simulation to maintain a desired

temperature, while others do not.

In the following sections first we present the molecular dynamics simulation of

the experiment discussed in Sec. 3. Subsequently, in Secs. 4.2 and 4.3, MD simula-

tions aimed at the determination of idealized (frictionless) 2D Yukawa liquids are

presented and discussed.

4.1. Simulation of the experiment

To model the shear flow dusty plasma experiment, we adapted an equilibrium MD

code to include not only interparticle forces, but also two additional terms in the

equation of motion: the gas friction and laser radiation pressure forces. The gas

friction force is −νdv. The laser radiation-pressure force, which is localized to two

stripes as in the experiment, is proportional to the laser intensity, which has a

Gaussian profile I = I0 exp(−2r2/w2). Here, the coordinate r is the distance from

the laser beam center and for the width of the beams we use the experimental value

2w = 0.61 mm.
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Fig. 6. Velocity (a) and inverse temperature (b) profiles obtained in the simulation of the dusty
plasma experiments. The labels of the curves indicate the values of the external force acting on the
particles in the beam waist of the laser. The gray arrows in (b) indicate the laser stripe locations.

In the MD simulation we used N = 757 particles arranged in a rectangular

simulation box fitting the shape of the observation region in the center of the

experiment. The simulated system is intended to model the camera’s field of view

in the experiment. By using periodic boundary conditions, it was not necessary to

model the portions of the experimental suspension that were not in the field of

view; those portions include a pair of counter-rotating vortices driven by the shear

applied in the field of view.

In the absence of laser beams the simulated system crystallizes due to the con-

tinuous cooling by the neutral drag. Following the initialization of the simulation,

and having the laser beams “turned on”, ample time was given to the system to

reach a stationary state, and sampling of the particle velocity profiles starts af-

terwards. The simulations have been carried out using different laser intensities; a

series of results is presented in Fig. 6. The force values indicated in Fig. 6 were

adjusted to achieve peak velocities matching those observed in the experiment; this

force does not necessarily match the experimental force because in the experiment

the lasers pushed a flow of a larger number of particles, due to the particles outside

the observation region. It is only the observation region that is modeled by the

simulation box, which uses periodic boundary conditions.

The results of this simulation are velocity and temperature profiles, Fig. 6, which

appear very similar to those obtained in the experiment, as seen in Figs. 3 and 4.

The velocity profiles are curved, and not straight as in the classical Couette flow,

due to the gas friction. The temperature profiles are peaked in the laser stripes

where the velocities are highest because energy deposition by the laser is localized

there, while energy is lost throughout the system due to gas friction.
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4.2. Equilibrium molecular dynamics simulations of frictionless

systems

Equilibrium simulations for the determination of the shear viscosity coefficient are

based on the Green–Kubo (GK) relation48

η =
1

V kT

∫ ∞

0

〈P xy(t)P xy(0)〉dt, (11)

where P xy is the off-diagonal element of the pressure tensor:

P xy =

N
∑

i=1

[

mvixviy − 1

2

N
∑

j 6=i

xijyij

rij

∂φ(rij)

∂rij

]

, (12)

where N is the number of particles, and rij = |rij | = |ri − rj | = |(xij , yij)|.
A key issue in calculating transport coefficients using equilbrium simulations is

determining whether the required correlation function decays fast enough for the

GK integral to converge. Investigations of Alder and Wainwright concerning the

slow (∝ t−1) decay of the velocity autocorrelation function in two-dimensional sys-

tems, followed by subsequent simulation and theoretical studies have raised doubts

that the integrals would converge and that any transport coefficient would be valid

in two dimensions.49, 50 Recent studies51, 52 on 2D Yukawa liquids, however, indicate

that the stress autocorrelation function Cλ(t) = 〈P xy(t)P xy(0)〉 decays faster than

power law thus allowing its integration and determination of the shear viscosity

through Eq. (11).

Results from two different MD equilibrium simulations, reported by Liu and

Goree51 using a thermostat and Donkó et al.53 without a thermostat, will be pre-

sented in the next section together with results from non-equilibrium simulations.

4.3. Non-equilibrium molecular dynamics simulations of

frictionless systems

In a non-equilibrium simulation, we apply a shear quantified by the shear rate

γ = dvx/dy, and its normalized value γ = (dvx/dy)(a/v0). This creates a gradient,

which we then observe to determine the shear viscosity. Below, we will normalize

quantities using the thermal velocity v0 = (2kBT/m)1/2, the 2D analog of the

plasma frequency ω0 or the Einstein frequency ωE, and the Wigner–Seitz radius a.

We used two different techniques for non-equilibrium MD simulation, which we

summarize below (see Fig. 7).

(i) Reverse molecular dynamics method. Here the cause-and-effect picture usually

used in non-equilibrium molecular dynamics is reversed: the effect, the momen-

tum flux, is imposed, and the cause, the velocity gradient (shear rate) is measured

in the simulation.54 The momentum in the liquid is introduced in a pair of nar-

row slabs A and B, which are situated at y = Ly/4 and 3Ly/4, respectively.

At regular time intervals τ we identify the particles in slabs A and B having
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External
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y

x

v
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B
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v
x
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(a) (b)

Fig. 7. (a) Reverse molecular dynamics algorithm suggested by Müller-Plathe.54 The artificially
(externally) introduced momentum transfer between cells A and B is compensated by a momentum
flux of opposite direction inside the liquid. The left part of the figure shows the vx(y) velocity profile
that builds up in the system. The figure shows only the primary simulation box. Conventional
periodic boundary conditions are applied. (b) Homogeneous shear algorithm, as described by Evans
and Morriss,55 based on the Lees–Edwards (“sliding brick”) boundary conditions. The primary
computational cell is shaded grey. “Upper” and “lower” images of this cell are moved with velocity
v = ±γ(Ly/2), as indicated.

the highest |vx| in the positive and negative directions, respectively. We then

instantaneously exchange the vx velocity component of these two particles with-

out moving the particles. This artificial transfer of momentum between slabs A

and B (which is accomplished without changing the total energy of the system)

creates a velocity profile vx(y). Unlike the scheme presented earlier to mimic the

lasers in the experiment, here the shear is produced without introducing energy

into the system. The slope of the resulting velocity profile, i.e., the shear rate γ,

can be adjusted by controlling the frequency of the momentum exchange steps.

The equations of motion are

dri

dt
= pi

m ,

dpi

dt
= Fi ,

(13)

where r = (x, y),p = (px, py) are the positions and the momenta of particles, m

is their mass, and Fi is the force acting on particle i.

(ii) Homogeneous shear algorithm. As proposed by Evans and Morriss,55 this tech-

nique uses the Lees–Edwards (sliding) periodic boundary conditions, as shown

in Fig. 7(b). Here we obtain a homogeneous streaming flow field in the simula-

tion box: 〈vx〉 = γ(y − Ly/2), where 〈 〉 denotes a time average. The system is

described by the Gaussian thermostatted SLLOD equations of motion:55

dri

dt
= p̃i

m + γyix̂ ,

dp̃i

dt
= Fi − γp̃yix̂− αp̃i ,

(14)
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where p̃ = (p̃x, p̃y) is the peculiar momentum of particles, x̂ is the unit vector

pointing in the x direction, and α is the Gaussian thermostatting multiplier. The

above set of equations is solved using an operator splitting technique.56 This

method ensures a homogeneous shear field and a constant temperature within

the whole simulation box. Thus, arbitrarily high shear rates may be established

without the need for considering any effects of temperature gradients on the

viscosity, making this method well suited for studies at high shear rates.

Near equilibrium (small γ) shear viscosity values have been obtained using both

techniques. In the case of the reverse MD method this is done at low shear rates,

where dvx/dy is nearly uniform between slabs A and B. We calculate ηeq from

|jy| = ηeq

dvx(y)

dy
=

∆p

2tsimLy
, (15)

where ∆p is the total x-directional momentum exchanged between slabs A and B

during the whole simulation time tsim.54 In the homogeneous shear algorithm the

off-diagonal element of the pressure tensor is measured during the course of the

simulation, just like in the case of an equilibrium simulation (see Eq. (12)), and

the shear viscosity is obtained as55:

η = lim
t→∞

−〈P xy(t)〉
γ

. (16)

As illustrations, Fig. 8 shows the vx(y) velocity profiles established using the

reverse MD method, while Fig. 9 shows particle trajectories using the homogeneous

shear algorithm.

Our results for ηeq as a function of Γ, for different values of κ are plotted in

Fig. 10(a). Here we include results not only from the non-equilibrium simulations,

but also from the two equilibrium simulations. We find excellent agreement among

all the simulations in the value of the viscosity and the shape of its curve. A promi-

nent feature of the viscosity of the present system is a minimum (e.g. at Γ ∼= 20

for κ = 1), which was familiar for 3D Coulomb and Yukawa liquids, and which

we also saw in the 2D dusty plasma experiment reviewed above. The shape of the

ηeq(Γ) curve can be explained by the prevailing kinetic and potential contributions

to the viscosity at low and high values of Γ, respectively, similarly to their 3D

counterparts.

Similarly to the case of 3D Yukawa liquids as found by Saigo and Hamaguchi,33

we observe that the near-equilibrium viscosity ηeq obeys a scaling law as demon-

strated in Fig. 10(b), where the viscosity has been normalized by the Einstein

frequency ηE = mnωEa2. Since ωE depends on κ, it was necessary for us to com-

pute ωE(κ) with Eq. (7) of Kalman et al.57 using pair-correlation functions mea-

sured from our simulations. The horizontal axis is the normalized temperature

T ′ = Ty/Tm = Γm/Γ, where Tm and Γm are melting-point values reported by

Hartmann et al.16 Using these normalizations, the data fall on the same curve,
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Fig. 8. Velocity profiles building up in the system in the reverse MD method at different rates
of exchange of momentum between slabs A and B, see Fig. 7(a). (k is the number of time steps
between consecutive momentum exchanges.) Here, Γ = 100, κ = 1. The profiles are very nearly
linear and scale with the frequency of momentum exchange.
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Fig. 9. Particle trajectories in the homogeneous shear algorithm, see Fig. 7(b), for normalized
shear rates (a) γ̄ = 0.2 (time of recording: ω0∆t = 5.0) and (b) γ̄ = 0.05 (ω0∆t = 23.6), at Γ =
100, κ = 1. (Adapted from Ref. 53. Copyright (2006) by the American Physical Society.)

demonstrating the existence of a scaling law for the 0.5 ≤ κ ≤ 2.0 range of the

screening parameter. The near-equilibrium viscosity is fit by an empirical form

ηeq

ηE

= aT ′ +
b

T ′
+ c (17)

with coefficients: a = 0.0093, b = 0.78 and c = 0.098.
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Fig. 10. (a) Small shear rate (“equilibrium”) viscosity of the 2D Yukawa liquid, as a function
of Γ, obtained from the reverse MD method using N = 990 and 3960 particles. SLLOD denotes
the results of homogeneous shear method, and IOWA MD shows previous results obtained from
equilibrium EMD simulations of Liu and Goree.51 η is normalized by η0 = mnω0a2. (b) A scaling
law for the shear viscosity. η is normalized by ηE = mnωEa2. (Adapted from Ref. 53. Copyright
(2006) by the American Physical Society.)
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Fig. 11. (a) Dependence of shear viscosity on the normalized shear rate γ̄, as obtained from the
homogeneous shear method. Kinetic (open symbols) and potential (filled symbols) contributions to
η as a function of γ̄. (Adapted from Ref. 53. Copyright (2006) by the American Physical Society.)

A shear-thinning effect is revealed in Fig. 11(a), which shows that η decreases

significantly as the shear rate γ is increased. In other two-dimensional systems the

reduction in η, as compared to the value at small shear, was observed to vary as

the square root of γ.19 We find that this scaling also occurs for the Yukawa system,

as indicated by data that fall nearly on a straight line in Fig. 11(a) for γ > 0.2. At

smaller shear rates, γ < 0.2, however, the shear thinning effect is less pronounced
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and the liquid is more nearly Newtonian, especially for large Γ. Results are shown

for γ & 0.01, which we found to be reliable, whereas at lower γ the homogeneous

shear method yielded noisy data even for very long simulations.

Because viscosity arises from both kinetic and potential contributions, we iden-

tify in Fig. 11(b), which of these contributions is responsible for shear-thinning.

Recall that for equilibrium conditions, the kinetic term dominates for Γ � 20 and

the potential term dominates for Γ � 20. In Ref. 53 we find that for non-equilibrium

conditions, as the shear rate increases, the reduction in viscosity is mostly due to

a reduction of the kinetic contribution, except for Γ above the minimum.

We now compare the experimental and simulation results for viscosity as a func-

tion of Γ. The data, Figs. 5(b) and 10(a) for experiment and simulation, respectively,

have the same normalizations. They exhibit a number of similarities, but are not in

complete agreement. Both the experiment and simulation exhibit the minimum in

the viscosity that we have often mentioned in this review paper. This minimum is

different from the case of molecular liquids which have a viscosity that diminishes

monotonically with increasing temperature. The value of the viscosity at the min-

imum is in agreement, within the error bars shown in Fig. 3 of Ref. 51. The most

significant difference is that the minimum in the experimental Fig. 5(b) is much

broader, and is located at a much higher Γ, than for the simulation. The reason

for this difference is not yet certain, but there are at least three possibilities. First,

in the experiment there was a shear, and moreover this shear was not varied inde-

pendently of Γ, so that there is a possibility that shear thinning complicates the

interpretation of the experimental results. Two additional explanations, which were

suggested in Ref. 51, arise from inhomogeneity and anisotropy in the experiment

that are lacking in the simulation. First, the experiment had an applied shear that

had a specific scale length and that was in a specific direction. In contrast, the

simulation was in equilibrium, with the shear corresponding to thermal motions

that had a wide range of length scales including very short length scales, and the

direction of the shear fluctuated isotropically. Second, the experiment had a non-

uniform temperature; therefore it had non-uniform values of Γ and η whereas the

simulation was uniform. The values reported for η and Γ in the experiment were

computed as spatial averages over a region that had a non-uniform temperature.

This non-uniformity could possibly be eliminated in a future experiment using a

different heating scheme.

5. Summary

This paper intended to review experimental and numerical simulation work aimed

at the determination of the shear viscosity of two-dimensional Yukawa liquids.

In the experiment of Nosenko and Goree,37 reviewed in Sec. 3, the shear viscosity

in a 2D dusty plasma layer was determined by measuring a sheared velocity profile

produced using two counterpropagating laser beams and by fitting this profile to

the solution of the Navier–Stokes equation. The experiment has successfully been

simulated by molecular dynamics technique, as described in Sec. 4.1.
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Both equilibrium and non-equilibrium molecular dynamics simulations have

been used for the calculation of the shear viscosity on idealized 2D Yukawa liq-

uids where friction terms arising from the interaction of the dust particles and the

plasma have been neglected (Secs. 4.2 and 4.3). We have found reasonable agree-

ment between the results of equilibrium51 and non-equilibrium simulations in the

limit of small shear rates. The two non-equilibrium approaches (the reverse molecu-

lar dynamics method and the homogeneous shear algorithm) used by us53 presented

data which were in excellent agreement with each other in this limit. By applying

the homogeneous shear algorithm of Evans and Morriss55 we observed a decrease in

the shear viscosity of the 2D Yukawa liquid (shear thinning) with increasing shear

rate.
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