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The spatial-temporal localization of particles in the local minima of the potential surface is a
prominent feature of strongly coupled plasmas. The duration of localization is investigated by
molecular dynamics simulation, through monitoring of the decorrelation of the surroundings of
individual particles. Three- and two-dimensional systems of particles interacting through Coulomb
and Yukawa potentials are studied over a wide range of the plasma co(pliagd screeningk)
parameters in the liquid phase. The oscillation spectrum of the caged particles in the equilibrium
system as well as in the frozen environment of other partid#sstein frequency spectrynis
determined. ©2003 American Institute of Physic§DOI: 10.1063/1.1560612

I. INTRODUCTION k=0 case when the particles are immersed in a non-
polarizable (rigid) background of oppositely charged par-
ficles.

In dusty plasmas it is easy to achieve crystallizatfon
Gue to the high charge of the dust particiggically of the

v t 4 cold ol 3t | led classical order of 16—10* electron charggs The crystalline state is
cally trapped cold plasm rongly coupied quasi-classica evidently characterized by complete localization of particles.

plasmas also occur in semiconductbis. dusty plasmas the However, the localization of charged particles already shows

Coulomb interaction is screened by the oppositely charged . - 12 :
particles(polarizable backgroundand the form of interac- Up in the strongly coupled liquid phaSe”” Particles spend

tion follows the Yukawa potential: sub§tantial periods of time in Ipcal minima of the rough po-
' tential surface that develops in such systems. At the same
time, the time of localization is limited by the reformation of
(1)  the potential surface due to the diffusion of the particles.

A theoretical approximation scheme based on the obser-
vation of localization is the quasi-localized charge approxi-
mation (QLCA) that has proven to be a very useful tool in
theoretical studies of the properties of strongly coupled Cou-
ticles may be located in three-dimensiorfatD) space or |omb and Yukawa systemtS:*°In order for the QLCA to be
they can be confined to one or more two-dimensig@ab) valid one needs to assume that the period of time spent by
layer(s). Infinite model systems in their equilibrium state canthe charges in the local potential minima extends over sev-
be fully characterized by two dimensionless paramet@ys: €ral oscillation cycles.

The physics of strongly coupled plasmas has become
rapidly emerging field in the last few decade®pstly due to
its relevance to astrophysical plasmas, to rapidly progressin
laboratory experiments on dusty plasmas)d on cryogeni-

2
g exp(—r/\p)
$(r)=—",
whereq is the charge of the particles ang, is the Debye
(screening length.

Depending on the configuration of the system, the par

the plasma coupling parameter There are two major objectives addressed by the simu-
lation work presented in this paper. The first relates to the

q? quantitative formulation of the theoretically introduced no-

I'= aksT’ (2 tion of localization of particles. The principal issues here are

the operationally meaningful definition of localization and

and (ii) the screening parametar=a/\, whereT is the the measurement of the localization time as a function of the
temperature anc is the Wigner—SeitaWS) radius>® In plasma parameters in the strong coupling domain. The sec-
3-D and 2-D systems the WS radius is given bByp  ond objective is the exploration of the oscillation spectra of
=(4n3.pm/3)" 3 and a,.p=(n,.pm) Y2 respectively, individual particles in different situations: in particular, we
wherens_p andn,_p are the 3-D density and the 2-D surface are interested both in the dynamical spectra and in the spec-
density of particles. 3-D and 2-D one-component plasmasgra generated by a single patrticle in the frozen environment
(OCPsg with 1/r Coulomb interaction potential represent the of the other particles. While these questions in the ordered
crystalline phase are fairly well understood, this is not the

apaper QI2 6, Bull. Am. Phys. S0a7, 251 (2002. case in the .disordered solid and even .Iess in the strqngly
Pnvited speaker. Electronic mail: donko@sunserv.kfki.hu coupled liquid phase. Thus the data derived from the simu-
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lations should provide the foundation for the theoreticalWe call the cages decorrelated when th[g%)ggt) function
analysis of this problem. Studies along these lines have alwith ¢ being set to the half of the average number of neigh-
ready been undertaken for the case of the 3-D &QRthis  bors, i.e.,c=7 in 3-D andc=3 in 2-D) decays to 0.1. In
paper we extend our analysis to the 2-D OCP, as well as tother words, the decorrelation timgc,, is defined as
systems with screened-Coulonfbukawa interaction. N C{) (tgecor) =0.1 in 3-D andC)(tyecor) =0.1 in 2-D.
Sec. Il of the paper we describe the simulation techniques. The oscillation frequencies of selected particles are ana-
Section Il presents the results derived from the simulationslyzed both in the system in dynamical equilibrium, as well as
while Sec. IV summarizes the work. in the frozen environment of other particlégielding the
Einstein frequency

In the equilibrium system in the high-coupling domain
the p,—Xx phase space trajectories of individual particles
have been found to include characteristic loops, representing

The trajectories of particles are followed by molecularcaged particle$? Such loops are searched for in the collec-
dynamics simulation, based on the particle—particle particle-tion of the phase space trajectories recorded during the simu-
mesh (PPPM method'’*8 using periodic boundary condi- lation of the equilibrium ensemble, and then the frequencies
tions. Both the 3-D and 2-D systems are simulated with a&associated with their characteristic times are calculated. Fi-
3-D PPPM code, in the simulation of the 2-D system thenally a histogram of these frequencies is obtained for déach
particles are confined into a single plabet their interaction ~ and «.
remains three-dimensionalThe number of particles it The Einstein frequencies of a system are defihed the
=1600, at the start of the simulations random initial particle3 (in 3-D) or 2 (in 2-D) eigenfrequenciesd(g;, i=1, 2, 3 in
configurations are set, the initial velocities of the particles3-D andi=1, 2 in 2-D) of an oscillating particle around its
are sampled from a Maxwellian distribution with a tempera-guasi-equilibrium position in the potential generated by the
ture corresponding to the prescribed valud ofThe system frozen environment of the other particles. Thus, in the simu-
is thermostated for several thousand time steps, and the pa@tions aimed at the determination of the Einstein frequency,
ticle trajectories are traced typically for an additional severapll but the selected particle are immobilized at a certain in-
thousand time steps following the thermalization period. ~ stant. Then the simulation proceeds for a given number of

In order to study the localization of particles we focus onadditional time steps and the trajectory of the freely moving
the changes of the surroundings of individual particlesparticle is recorded. The system is subsequently thermalized
which is analyzed through the correlation techniques develfor 1000 time steps and the experiment is repeated several
oped by Rabanet al1®% The neighbors of a selected par- times. Thex(t), y(t), andz(t) trajectories, recorded during
ticle are defined as those situated within its first coordinatiorthe experiments, are frequency analyzed and a histogram is
shell[identified by the first minimum of the pair correlation constructed from the &) peaks of the spectra. In each run,
functiong(r)]. Following the formalism of Rabarét al1%%°  the characteristic frequendYe=(Z;wg)"? is also recorded
a generalized neighbor ligt; is defined for particlé as¢;  and a histogram fof) is constructed, as well. Theg data
={f(r;0.f(ri2),....f(rin)}, where f(r; )=0(rc—r;;), obtained from individual runs also_make it possible to calcu-
is the Heaviside function, i.ef=1 if r, ;<r., andf=0 late the average Einstein frequenoy=((wg))"
otherwise. Here . is the cutoff radius, and the neighbors are
said to be closely separatéaind particlej is said to belong
to the surrounding, or “cage” of particlg) if r; ;<r.. Ill. RESULTS

The correlation between the surroundings of the particle
att=0 andt is measured by the “list correlation” function,
derived from the scalar product of the neighbor list vectors:  To illustrate the appearance of the potential surface, Fig.
1 shows a snapshot of the potential distribution in a plane of

II. SIMULATION TECHNIQUE

A. Localization (caging)

()= MQO_)) (33 a3-DOCP ati’=160. If a test particle is located in any of
(¢,(0)%) the potential minimashown by dark color it is evidently

where(.) denotes averaging over particles and initial times.momentarily trapped. To quantify the duration of trapping
The number of particles that have left the original cage ofllocalizatior) we make use of the correlation techniques pre-

particlei at timet can be determined as sented in Sec. Il, by calculating the cage correlation func-
tions.
n?(0.)=€;(0)% = €;(0)¢i(t), 4) The behavior of the cage correlation functions is illus-

where the first term gives the number of particles aroundrated for the 2-D system. Figurda? shows theC(3), func-
particlei att=0, while the second term gives the number ofions for a series of" values, for the Coulomb case ¢ 0)
“original” particles that remained in the surrounding after While Fig. 2b) displays the dependence of the cage correla-
time t elapsed. The cage correlation functiBp,gethat char- tion function of « for cons_tanﬂ". The cage cprrelat|on _func—
acterizes the decay of the cages can be calculated for diffeflons are plotted against the dimensionless time,
ent number of particles;, leaving the cage, as an ensemble = @pt/27 (equal to the number of plasma oscillation cygles

and time average of the functidgh(c— n%: For the 3-D system the plasma frequency is givendgy
(c) ou | :(47Tn3-Dq2/m)1/21 while in  2-D wP:(ZTrnZ'DqZI
CO=(O(c—n! 01))). ) may,.p)¥2 As can be seen in Figs(@ and 2b), both the
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FIG. 1. Snapshot of a 2-D section of the potential surface in a 3-D OCP at
I"'=160. Light and dark shades indicate high and low values of the potential

respectively. FIG. 3. Trajectory segments in a 2-D Yukawa systenfr at120 andk=1

recorded forAT=w At/2m~6.5. The circle shows a region with strong

caging, while the square shows a region characterized by significant migra-

tion of the particles(Only one quarter of the simulation box is shoyn.
decreasingl’ and the increasing screenirg) result in a

shorter-time decay of the cage correlation function.

It is noted that the cage correlation functions represenhificant migration of the particles is observed. This behavior
the average behavior of the cages as prescribed by the defiray also be related to the recent experimental observations
nition (5). On the other hand, one can also monitor the decotin a 2-D Yukawa plasmawhere some of the particles were
rrelation of individual cages. Such a study, as done for thdound to be caged for a long time, while others moved rela-
3-D OCP*® indicated that the decorrelation time has a broadively freely in the system.
distribution for any given set of system parameters. This be-  The dimensionless decorrelation tifigecor= @ ptgecor/

havior can also be identified from the plot of trajectory seg-2+ (with t g, defined in Sec. )lis shown as a function of
ments plotted in Fig. 3 obtained in a 2-D Yukawa syste@n
I'=120 andk=1). The plot clearly shows some regions

where the localization is almost complete during the time of AR DL BN
the recording g,At/2m~6.5), while in other regions a sig- 100F —g—x=0 E
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FIG. 2. Cage correlation functior@%efor the 2-D system(a) Dependence  FIG. 4. Decorrelation time of the cages as a functiod dbr the (a) 3-D
onT at k=0, (b) dependence or atI'=120. and (b) 2-D systems, for a series afvalues.
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FIG. 5. Histogram of frequencies obtained from nearly closed trajecton/ /G- 6. Histogram of fr'eque'nmes obtalneq.frqm nearly closed trajectory
segments of caged particles in the 3-D equilibrium systei-al60 and a  Segments of caged particles in the 2-D equilibrium systein-ai20 and a
series of« values.N is the number of events a particular oscillation fre- S€ries ofx values.N is the number of events a particular oscillation fre-
quency has been observed. The arrows mark the position of the averag/€ncy has been observed. The arrows mark the position of the average
Einstein frequencyog . instein frequencyoe .

I" for a series ofk values in Figs. &) and 4b), for 3-D and  displayed in Fig. 5 for the 3-D system Bt=160. At k=0
2-D systems, respectively. [Fig. 5@)] the oscillation frequency scatters roughly between
In the case of the 3-D system, at=0 andI'=160 the the plasma frequency, and the average Einstein frequency
cages decorrelate during50 plasma cycles. The decorrela- we= ({wg;))*? which also marks th&— limit of the col-
tion time is shortened to a single cyclelat 7. In the case of lective mode frequency in the QLCR.For x>0, the entire
the 2-D system it takes about 100 cycles for the cages tepectrum gradually shifts toward lower frequenciescan-
decorrelate ak=0 andI’=120, and we reachig.~=1 at  creases; this is shown in Figs(b, 5(c), and Jd) for «
I'=2.5. In the highF domain we observe a strong depen- =1, 2, and 3, respectively. The frequency spectra of the 2-D
dence of the decorrelation time anfor k=0.4, both in 3-D  system, as shown in Figs(€5—6(d) (plotted for I'=120),
and 2-D systems. At low values df, however, Ty de-  have a similar appearance.
pends only slightly onx. (For k<0.4 there is a very weak In order to highlight the effect of the dynamical interac-
dependence of the results on the valuexofor the whole tion between the particles on the frequency spectrum we
range ofl.) The decrease of the decorrelation time for in- have also analyzed the distribution of the Einstein frequen-
creasingx can be compensated by increasiigas can be cies by immobilizing all the particles except the one whose
seen in Fig. 4. spectrum is observed. A series of frequency histograms ob-
The results presented in Fig. 4 indeed confirm the basitained atl'=160 and different values of the screening pa-
assumption of the QLCA method that in the strong couplingrameterx is shown in Fig. 7 for the 3-D system. The fre-
domain the localization time of the particles largely exceedsjuency spectra are relatively sharp, compared to the
the period of plasma oscillations. dynamical spectrum. The peak of the histograms shifts to
lower frequency ax increases. It is noted that at lower val-
ues ofI" the frequency distributions become wider. This may
be due to the fact that at lower coupling there is increasing
The frequency spectra of the oscillation of caged parrandomness of particle positions and, consequently, increas-
ticles is analyzed by identifying loops in the,—x (and ing deviation from spherical symmetry in the environment
py—Y, P,~2) phase planes. These loops represent quasilocatkampled by the oscillating charge. Similar Einstein frequency
ized (bounded motion of particles; once these segmentshistograms for 2-D systems ht=120 are shown in Fig. 8.
have been identified and segregated, a frequency histogram Further understanding of the physical origin of the Ein-
of the oscillation frequencies associated with their characterstein spectra can be derived from the observation of the re-
istic times is readily obtained. The frequency histograms ardationships between the oscillation frequencies of a particle

B. Frequency spectra (Ref. 23)
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FIG. 7. Histogram of Einstein frequencies obtained from the oscillation of o/®
single caged particles in the frozen environment of the other particles in the T T T T T
3-D system al" =160 and a series of values.N is the number of events N 30 |- d .
where Einstein frequenciesg have been observed. SQ L (@ oD - J
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. | | 100 - FIG. 9. Sample of frequency spectBiw/wp) for individual runs and his-
g tograms of2% w5 in 3-D (a),(b) and in 2-D(c),(d) at k=0. wg are the
~_ 100 | 1 I 1 Einstein (eigenfrequencies observed in a single simulation r(a,(b): T’
u 5 ] =160; (c),(d) T'=20.
Zé 50 @] or b7
I | : : in an individual rur?* In 3-D there are three such frequen-
cies (wg), as illustrated in Fig. @). These frequencies ap-
pear in the vicinity ofwg. The scattering of the frequencies
aroundwe is governed by the prevailing disorder. The value
150 — 200 —T— of wg in a 3-D Coulomb systemx«(=0) is dictated by the
Kohn sum rule(KSR)?>*3that requires that in each runZ
150 :wgi consequently in 3-Dwg=w,/V3 [see Fig. §)]. In
- 100 2-D there are two frequencig¢see Fig. )] and since the
& 100 KSR does not apply)Z follows a distribution: the ensuing
s'u: qualitative difference is well illustrated in Fig(d).
> 50 5 The average Einstein frequenay as a function ofk is
shown in Fig. 10 for 3-D and 2-D systems. A0 we have
a very good agreement with the theoretical values for the 3-D
0 0 system: wg/w,=1V3=0.577, and for the 2-D system:
0.0 0.5 1.0 00 0.5 1.0 Ra s
welwp=0.642: Both the 3-D and 2-D systems exhibit a
o, / o, O, / o, distinct drop ofwg as « increases. The data obtained for the

FIG. 8. Histogram of Einstein frequencies obtained from the oscillation of
single caged particles in the frozen environment of the other particles in th
2-D system af"=120 and a series of values.N is the number of events
where Einstein frequenciesg have been observed.
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3-D system are in good agreeméaxcept atk=3) with the

fesults of the QLCA theory, which is also shown in Fig. 10.

The reason for the disagreement at highalues is not well
understood, but it may be due to the inadequacy of the hy-
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07 mrm——T—T——TTT1T T TT1 sionality in this connection. As to the dynamical spectra
- 1 (Figs. 5 and § their connection with the frequency spectrum
06 - - generated by the dynamical structure funci®Rk, ») should
i 1 be further explored: a better understanding of this relation-
0.5 |- m ship may lead to an improved description of the collective
i T mode structure in disorder dominated strongly coupled plas-
a 04} =
3 mas.
- 03 |- —
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