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Molecular dynamics simulations of strongly coupled plasmas: Localization
and microscopic dynamics a…
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The spatial–temporal localization of particles in the local minima of the potential surface is a
prominent feature of strongly coupled plasmas. The duration of localization is investigated by
molecular dynamics simulation, through monitoring of the decorrelation of the surroundings of
individual particles. Three- and two-dimensional systems of particles interacting through Coulomb
and Yukawa potentials are studied over a wide range of the plasma coupling~G! and screening~k!
parameters in the liquid phase. The oscillation spectrum of the caged particles in the equilibrium
system as well as in the frozen environment of other particles~Einstein frequency spectrum! is
determined. ©2003 American Institute of Physics.@DOI: 10.1063/1.1560612#
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I. INTRODUCTION

The physics of strongly coupled plasmas has becom
rapidly emerging field in the last few decades,1 mostly due to
its relevance to astrophysical plasmas, to rapidly progres
laboratory experiments on dusty plasmas,2 and on cryogeni-
cally trapped cold plasmas.3 Strongly coupled quasi-classica
plasmas also occur in semiconductors.4 In dusty plasmas the
Coulomb interaction is screened by the oppositely char
particles~polarizable background!, and the form of interac-
tion follows the Yukawa potential:

f~r !5
q2 exp~2r /lD!

r
, ~1!

whereq is the charge of the particles andlD is the Debye
~screening! length.

Depending on the configuration of the system, the p
ticles may be located in three-dimensional~3-D! space or
they can be confined to one or more two-dimensional~2-D!
layer~s!. Infinite model systems in their equilibrium state c
be fully characterized by two dimensionless parameters~i!
the plasma coupling parameter

G5
q2

akBT
, ~2!

and ~ii ! the screening parameterk5a/lD , whereT is the
temperature anda is the Wigner–Seitz~WS! radius.5,6 In
3-D and 2-D systems the WS radius is given bya3-D

5(4n3-Dp/3)21/3 and a2-D5(n2-Dp)21/2, respectively,
wheren3-D andn2-D are the 3-D density and the 2-D surfa
density of particles. 3-D and 2-D one-component plasm
~OCPs! with 1/r Coulomb interaction potential represent t

a!Paper QI2 6, Bull. Am. Phys. Soc.47, 251 ~2002!.
b!Invited speaker. Electronic mail: donko@sunserv.kfki.hu
1561070-664X/2003/10(5)/1563/6/$20.00
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k50 case when the particles are immersed in a n
polarizable ~rigid! background of oppositely charged pa
ticles.

In dusty plasmas it is easy to achieve crystallization7,8

due to the high charge of the dust particles~typically of the
order of 103– 104 electron charges!. The crystalline state is
evidently characterized by complete localization of particl
However, the localization of charged particles already sho
up in the strongly coupled liquid phase.9–12 Particles spend
substantial periods of time in local minima of the rough p
tential surface that develops in such systems. At the sa
time, the time of localization is limited by the reformation o
the potential surface due to the diffusion of the particles.

A theoretical approximation scheme based on the ob
vation of localization is the quasi-localized charge appro
mation ~QLCA! that has proven to be a very useful tool
theoretical studies of the properties of strongly coupled C
lomb and Yukawa systems.13–15In order for the QLCA to be
valid one needs to assume that the period of time spen
the charges in the local potential minima extends over s
eral oscillation cycles.

There are two major objectives addressed by the sim
lation work presented in this paper. The first relates to
quantitative formulation of the theoretically introduced n
tion of localization of particles. The principal issues here a
the operationally meaningful definition of localization an
the measurement of the localization time as a function of
plasma parameters in the strong coupling domain. The
ond objective is the exploration of the oscillation spectra
individual particles in different situations: in particular, w
are interested both in the dynamical spectra and in the s
tra generated by a single particle in the frozen environm
of the other particles. While these questions in the orde
crystalline phase are fairly well understood, this is not t
case in the disordered solid and even less in the stron
coupled liquid phase. Thus the data derived from the sim
3 © 2003 American Institute of Physics
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lations should provide the foundation for the theoreti
analysis of this problem. Studies along these lines have
ready been undertaken for the case of the 3-D OCP;16 in this
paper we extend our analysis to the 2-D OCP, as well a
systems with screened-Coulomb~Yukawa! interaction. In
Sec. II of the paper we describe the simulation techniqu
Section III presents the results derived from the simulatio
while Sec. IV summarizes the work.

II. SIMULATION TECHNIQUE

The trajectories of particles are followed by molecu
dynamics simulation, based on the particle–particle partic
mesh ~PPPM! method,17,18 using periodic boundary condi
tions. Both the 3-D and 2-D systems are simulated wit
3-D PPPM code, in the simulation of the 2-D system t
particles are confined into a single plane~but their interaction
remains three-dimensional!. The number of particles isN
51600, at the start of the simulations random initial parti
configurations are set, the initial velocities of the partic
are sampled from a Maxwellian distribution with a tempe
ture corresponding to the prescribed value ofG. The system
is thermostated for several thousand time steps, and the
ticle trajectories are traced typically for an additional seve
thousand time steps following the thermalization period.

In order to study the localization of particles we focus
the changes of the surroundings of individual particl
which is analyzed through the correlation techniques de
oped by Rabaniet al.19,20 The neighbors of a selected pa
ticle are defined as those situated within its first coordinat
shell @identified by the first minimum of the pair correlatio
functiong(r )]. Following the formalism of Rabaniet al.19,20

a generalized neighbor list, i is defined for particlei as , i

5$ f (r i ,1), f (r i ,2), . . . ,f (r i ,N)%, where f (r i , j )5Q(r c2r i , j ),
Q is the Heaviside function, i.e.,f 51 if r i , j<r c , and f 50
otherwise. Herer c is the cutoff radius, and the neighbors a
said to be closely separated~and particlej is said to belong
to the surrounding, or ‘‘cage’’ of particlei ) if r i , j<r c .

The correlation between the surroundings of the partic
at t50 andt is measured by the ‘‘list correlation’’ function
derived from the scalar product of the neighbor list vecto

C,~ t !5
^, i~ t !, i~0!&

^, i~0!2&
, ~3!

where^.& denotes averaging over particles and initial tim
The number of particles that have left the original cage
particle i at time t can be determined as

ni
out~0,t !5u, i~0!2u2, i~0!, i~ t !, ~4!

where the first term gives the number of particles arou
particle i at t50, while the second term gives the number
‘‘original’’ particles that remained in the surrounding aft
time t elapsed. The cage correlation functionCcagethat char-
acterizes the decay of the cages can be calculated for d
ent number of particles,c, leaving the cage, as an ensemb
and time average of the functionQ(c2ni

out):

Ccage
(c) ~ t !5^Q~c2ni

out~0,t !!&. ~5!
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We call the cages decorrelated when theCcage
(c) (t) function

~with c being set to the half of the average number of neig
bors, i.e.,c57 in 3-D andc53 in 2-D! decays to 0.1. In
other words, the decorrelation timetdecorr is defined as
Ccage

(7) (tdecorr)50.1 in 3-D andCcage
(3) (tdecorr)50.1 in 2-D.

The oscillation frequencies of selected particles are a
lyzed both in the system in dynamical equilibrium, as well
in the frozen environment of other particles~yielding the
Einstein frequency!.

In the equilibrium system in the high-coupling doma
the px2x phase space trajectories of individual particl
have been found to include characteristic loops, represen
caged particles.16 Such loops are searched for in the colle
tion of the phase space trajectories recorded during the s
lation of the equilibrium ensemble, and then the frequenc
associated with their characteristic times are calculated.
nally a histogram of these frequencies is obtained for eacG
andk.

The Einstein frequencies of a system are defined21 as the
3 ~in 3-D! or 2 ~in 2-D! eigenfrequencies (vEi , i 51, 2, 3 in
3-D andi 51, 2 in 2-D! of an oscillating particle around its
quasi-equilibrium position in the potential generated by
frozen environment of the other particles. Thus, in the sim
lations aimed at the determination of the Einstein frequen
all but the selected particle are immobilized at a certain
stant. Then the simulation proceeds for a given numbe
additional time steps and the trajectory of the freely mov
particle is recorded. The system is subsequently thermal
for 1000 time steps and the experiment is repeated sev
times. Thex(t), y(t), andz(t) trajectories, recorded during
the experiments, are frequency analyzed and a histogra
constructed from the 3~2! peaks of the spectra. In each ru
the characteristic frequencyVE5(( ivEi

2 )1/2 is also recorded
and a histogram forVE is constructed, as well. ThevEi data
obtained from individual runs also make it possible to calc
late the average Einstein frequencyv̄E5(^vEi

2 &)1/2.

III. RESULTS

A. Localization „caging …

To illustrate the appearance of the potential surface, F
1 shows a snapshot of the potential distribution in a plane
a 3-D OCP atG5160. If a test particle is located in any o
the potential minima~shown by dark color!, it is evidently
momentarily trapped. To quantify the duration of trappi
~localization! we make use of the correlation techniques p
sented in Sec. II, by calculating the cage correlation fu
tions.

The behavior of the cage correlation functions is illu
trated for the 2-D system. Figure 2~a! shows theCcage

(3) func-
tions for a series ofG values, for the Coulomb case (k50)
while Fig. 2~b! displays the dependence of the cage corre
tion function ofk for constantG. The cage correlation func
tions are plotted against the dimensionless time,T
5vpt/2p ~equal to the number of plasma oscillation cycle!.
For the 3-D system the plasma frequency is given byvp

5(4pn3-Dq2/m)1/2, while in 2-D vp5(2pn2-Dq2/
ma2-D)1/2. As can be seen in Figs. 2~a! and 2~b!, both the
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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decreasingG and the increasing screening~k! result in a
shorter-time decay of the cage correlation function.

It is noted that the cage correlation functions repres
the average behavior of the cages as prescribed by the
nition ~5!. On the other hand, one can also monitor the de
rrelation of individual cages. Such a study, as done for
3-D OCP16 indicated that the decorrelation time has a bro
distribution for any given set of system parameters. This
havior can also be identified from the plot of trajectory se
ments plotted in Fig. 3 obtained in a 2-D Yukawa system~at
G5120 andk51). The plot clearly shows some region
where the localization is almost complete during the time
the recording (vpDt/2p'6.5), while in other regions a sig

FIG. 1. Snapshot of a 2-D section of the potential surface in a 3-D OC
G5160. Light and dark shades indicate high and low values of the poten
respectively.

FIG. 2. Cage correlation functionsCcage
(3) for the 2-D system.~a! Dependence

on G at k50, ~b! dependence onk at G5120.
Downloaded 18 Oct 2005 to 148.6.26.156. Redistribution subject to AIP 
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nificant migration of the particles is observed. This behav
may also be related to the recent experimental observatio22

~in a 2-D Yukawa plasma! where some of the particles wer
found to be caged for a long time, while others moved re
tively freely in the system.

The dimensionless decorrelation timeTdecorr5vptdecorr/
2p ~with tdecorr defined in Sec. II! is shown as a function o

FIG. 4. Decorrelation time of the cages as a function ofG for the ~a! 3-D
and ~b! 2-D systems, for a series ofk values.

at
l,
FIG. 3. Trajectory segments in a 2-D Yukawa system atG5120 andk51
recorded forDT5vpDt/2p'6.5. The circle shows a region with stron
caging, while the square shows a region characterized by significant m
tion of the particles.~Only one quarter of the simulation box is shown.!
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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G for a series ofk values in Figs. 4~a! and 4~b!, for 3-D and
2-D systems, respectively.

In the case of the 3-D system, atk50 andG5160 the
cages decorrelate during'50 plasma cycles. The decorrel
tion time is shortened to a single cycle atG'7. In the case of
the 2-D system it takes about 100 cycles for the cage
decorrelate atk50 andG5120, and we reachTdecorr51 at
G'2.5. In the high-G domain we observe a strong depe
dence of the decorrelation time onk for k>0.4, both in 3-D
and 2-D systems. At low values ofG, however,Tdecorr de-
pends only slightly onk. ~For k,0.4 there is a very weak
dependence of the results on the value ofk for the whole
range ofG.! The decrease of the decorrelation time for
creasingk can be compensated by increasingG, as can be
seen in Fig. 4.

The results presented in Fig. 4 indeed confirm the ba
assumption of the QLCA method that in the strong coupl
domain the localization time of the particles largely excee
the period of plasma oscillations.

B. Frequency spectra „Ref. 23…

The frequency spectra of the oscillation of caged p
ticles is analyzed by identifying loops in thepx–x ~and
py–y, pz–z) phase planes. These loops represent quasilo
ized ~bounded! motion of particles; once these segmen
have been identified and segregated, a frequency histog
of the oscillation frequencies associated with their charac
istic times is readily obtained. The frequency histograms

FIG. 5. Histogram of frequencies obtained from nearly closed trajec
segments of caged particles in the 3-D equilibrium system atG5160 and a
series ofk values.N is the number of events a particular oscillation fr
quency has been observed. The arrows mark the position of the ave
Einstein frequencyv̄E .
Downloaded 18 Oct 2005 to 148.6.26.156. Redistribution subject to AIP 
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displayed in Fig. 5 for the 3-D system atG5160. At k50
@Fig. 5~a!# the oscillation frequency scatters roughly betwe
the plasma frequencyvp and the average Einstein frequen
v̄E5(^vEi

2 &)1/2 which also marks thek→` limit of the col-
lective mode frequency in the QLCA.15 For k.0, the entire
spectrum gradually shifts toward lower frequencies ask in-
creases; this is shown in Figs. 5~b!, 5~c!, and 5~d! for k
51, 2, and 3, respectively. The frequency spectra of the
system, as shown in Figs. 6~a!–6~d! ~plotted for G5120),
have a similar appearance.

In order to highlight the effect of the dynamical intera
tion between the particles on the frequency spectrum
have also analyzed the distribution of the Einstein frequ
cies by immobilizing all the particles except the one who
spectrum is observed. A series of frequency histograms
tained atG5160 and different values of the screening p
rameterk is shown in Fig. 7 for the 3-D system. The fre
quency spectra are relatively sharp, compared to
dynamical spectrum. The peak of the histograms shifts
lower frequency ask increases. It is noted that at lower va
ues ofG the frequency distributions become wider. This m
be due to the fact that at lower coupling there is increas
randomness of particle positions and, consequently, incr
ing deviation from spherical symmetry in the environme
sampled by the oscillating charge. Similar Einstein frequen
histograms for 2-D systems atG5120 are shown in Fig. 8.

Further understanding of the physical origin of the E
stein spectra can be derived from the observation of the
lationships between the oscillation frequencies of a part

y

ge

FIG. 6. Histogram of frequencies obtained from nearly closed traject
segments of caged particles in the 2-D equilibrium system atG5120 and a
series ofk values.N is the number of events a particular oscillation fr
quency has been observed. The arrows mark the position of the ave
Einstein frequencyv̄E .
license or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 7. Histogram of Einstein frequencies obtained from the oscillation
single caged particles in the frozen environment of the other particles in
3-D system atG5160 and a series ofk values.N is the number of events
where Einstein frequenciesvEi have been observed.

FIG. 8. Histogram of Einstein frequencies obtained from the oscillation
single caged particles in the frozen environment of the other particles in
2-D system atG5120 and a series ofk values.N is the number of events
where Einstein frequenciesvEi have been observed.
Downloaded 18 Oct 2005 to 148.6.26.156. Redistribution subject to AIP 
in an individual run.24 In 3-D there are three such freque
cies (vEi), as illustrated in Fig. 9~a!. These frequencies ap
pear in the vicinity ofv̄E. The scattering of the frequencie
aroundv̄E is governed by the prevailing disorder. The val
of v̄E in a 3-D Coulomb system (k50) is dictated by the
Kohn sum rule~KSR!25,13 that requires that in each runVE

2

5vp
2 : consequently in 3-Dv̄E5vp /) @see Fig. 9~b!#. In

2-D there are two frequencies@see Fig. 9~c!# and since the
KSR does not apply,VE

2 follows a distribution: the ensuing
qualitative difference is well illustrated in Fig. 9~d!.

The average Einstein frequencyv̄E as a function ofk is
shown in Fig. 10 for 3-D and 2-D systems. Atk50 we have
a very good agreement with the theoretical values for the
system: v̄E/vp51/)>0.577, and for the 2-D system
v̄E/vp50.642.13–15Both the 3-D and 2-D systems exhibit
distinct drop ofv̄E ask increases. The data obtained for th
3-D system are in good agreement~except atk53) with the
results of the QLCA theory, which is also shown in Fig. 1
The reason for the disagreement at highk values is not well
understood, but it may be due to the inadequacy of the

FIG. 9. Sample of frequency spectraS(v/vp) for individual runs and his-
tograms ofVE

2/vp
2 in 3-D ~a!,~b! and in 2-D ~c!,~d! at k50. vEi are the

Einstein ~eigen!frequencies observed in a single simulation run.~a!,~b!: G
5160; ~c!,~d! G520.
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pernetted chain generated pair correlation functions use
an input in the QLCA calculations.

IV. SUMMARY

In this paper we have obtained quantitative informat
about the localization of particles in strongly coupled Co
lomb and Yukawa plasmas by analyzing through molecu
dynamics simulation the dependence of the particle dyn
ics on the couplingG and screeningk parameters. The simu
lation results support the physical basis of the QLCA; at h
values ofG the particles are caged by their nearest neighb
and spend several oscillation cycles in local minima of
rough potential surface without experiencing substan
changes in their surroundings. The caging time is a
growing function ofG; it decreases, however, with increasin
k. The caged particles exhibit a characteristic oscillat
spectrum. The mean oscillation frequency of the caged
ticles has been found to decrease with increasingk both in
the equilibrium system and in the frozen environment of
other particles.

Our ability to theoretically describe the results obtain
is rather limited. While the localization of particles in th
strong coupling domain was predicted on theoreti
grounds,13 the understanding of the crucialG dependence o
the caging time and of the difference between 3-D and 2
scenarios is lacking. The problem of the distribution of t
Einstein frequencies~Figs. 7 and 8! in topologically disor-
dered systems has been a long-standing problem of
densed matter physics:21 in the present context it is furthe
compounded by difficulties associated with the long-ran
character of the Coulomb interaction and the issue of dim

FIG. 10. Mean Einstein frequency as obtained from the MD simulations
the 3-D and 2-D systems~symbols!, and the prediction of the QLCA theory
for the 3-D system~heavy line!. G5160 for 3-D andG5120 for 2-D.
Downloaded 18 Oct 2005 to 148.6.26.156. Redistribution subject to AIP 
as

-
r
-

h
rs
e
l

st

n
r-

e

l

D

n-

e
n-

sionality in this connection. As to the dynamical spec
~Figs. 5 and 6!, their connection with the frequency spectru
generated by the dynamical structure functionS(k,v) should
be further explored: a better understanding of this relati
ship may lead to an improved description of the collect
mode structure in disorder dominated strongly coupled p
mas.
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