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Particles in dusty plasmas are often confined to a quasi-two-dimensional arrangement. In such layers—
besides the formation of compressional and(in-plane) shear waves—an additional collective excitation may
also show up, as small-amplitude oscillations of the particles perpendicular to the plane are also possible. We
explore through molecular dynamics simulations the properties(fluctuation spectra, dispersion relation, Ein-
stein frequency) of this out-of-plane transverse mode in the strongly coupled liquid phase of Yukawa systems.
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Layered structures of charged particles are well known to
occur in particle traps[1] and complex — e.g., dusty—
plasmas[2]. Depending on the conditions of the experiments
these systems often exhibit structural changes. The structural
phase transitions in one-dimensional(1D) and 2D systems,
relevant to particle traps, have theoretically been studied by
Dubin [3], while Totsuji et al.[4] investigated the formation
of layers in Yukawa systems confined by a one-dimensional
force field.

The properties of waves in thecrystalline phase of 2D
(single layer) Yukawa systems have thoroughly been inves-
tigated both theoretically and experimentally[5]. The collec-
tive excitations in 2D Yukawaliquids have recently been
studied by Murillo and Gericke[6] and by Kalmanet al. [7].
The ideal 2D systems exhibit two collective modes: the com-
pressional(longitudinal,L) mode and the shear(transverse,
T) mode. While the previous studies addressed only the case
of an ideal two-dimensional layer, the present study is de-
voted toquasi-two-dimensionalsystems where the particles
form a layer of finite width. Such a situation is found, e.g., in
dusty plasmas, where the particles in the layer are levitated
due to the balance between the gravitational force and the
electrostatic force originating from the sheath electric field.
(On the other hand, our system is still idealized due to the
neglect of effects such as ion wakes[8,9] that appear in dusty
plasmas.) In the one-dimensional potential well formed by
the confinement the particles can also move perpendicularly
to the plane. The aim of the present Rapid Communication is
to explore the properties of the additional(out-of-plane
transverse,P) collective mode associated with this type of
motion, in thestrongly coupled liquid phaseof the system.
Studies of this mode inplasma crystalshave recently been
reported by Qiao and Hyde[10]. It is noted that in the case of
1D Yukawa chains[11] the corresponding mode has been
referred to as an “optical” mode[12].

An ideal two-dimensional system can fully be character-
ized by (i) the plasma coupling parameterG=sQ2/4p«0d
3s1/akBTd and(ii ) the screening parameterk=a/lD, where
Q is the charge of the particles,T is the temperature,a
=1/Înp is the Wigner-Seitz(WS) radius,n is the areal den-
sity of particles, andlD is the Debye(screening) length of
the Yukawa potential:

fsrd =
Q2

4p«0

exps− r/lDd
r

. s1d

It is noted that in experimental papersa often denotes the
distance of nearest neighbors, in contrast with the present
definition.

In our quasi-2D system the particles can freely move in
the sx,yd plane while a confinement potentialVcszd~z2 acts
upon them when they are displaced from thez=0 plane; see
Fig. 1. The confinement force is given in the form

Fz = − f0cz, s2d

where the amplitudef0 is the third characteristic parameter
of the system. The constantc is set in a way that atf0=1 the
confinement force at a “vertical” displacementz=a equals
the absolute value of the force between two Coulomb par-
ticles separated bya—i.e., Fzsz=ad=−Q2/4p«0a

2.
We follow the motion of particles by molecular dynamics

simulation based on the particle-particle particle-mesh
(PPPM) algorithm [13], modified for the Yukawa potential.
The simulation domain is a three-dimensional cubic box with
periodic boundary conditions. The box is, however, only par-
tially filled with particles due to the external confinement,
which keeps them near thez=0 plane(as shown in Fig. 1). In
the PPPM method the interparticle force is partitioned into
(i) a force componentFPM that can be calculated on a mesh
(the “mesh force”) and(ii ) a short-range forceFPP, which is
to be applied to closely separated pairs of particles only(for
more details see[13]). This way the PPPM method makes it

FIG. 1. The 1D parabolicVszd potential confines the particles in
the vicinity of the shaded region(quasi-2D plane) of the cubic
simulation box.
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possible to take into account periodic images of the system
(in the PM part), without truncating the long-range Coulomb
or low-k Yukawa potentials.(For highk values the PP part
alone provides sufficient accuracy; in these cases the mesh
part of the calculation is not used.) The equations of motion
of the particles are integrated using the leapfrog scheme,
with a typical time step ofvp3Dt<1/40, wherevp3 is the
three-dimensional plasma frequency(note that the particles
move in 3D space). The number of simulation particles is
chosen to beN=1600. This systems size proved to be suffi-
ciently large, as verified by checking calculations usingN
=6400 particles. The desired system temperature is reached
by rescaling the particle momenta during the initialization
phase of the simulation. The system temperature does not
show an observable drift during the subsequent measurement
phase of the simulation, following the initialization period.
The measurements on the system are taken at constant vol-
ume sVd, particle numbersNd, and total energysEd. The re-
sults are presented forG=100 and for a wide range ofk
values. The system is in a strongly coupled liquid phase for
the whole domain of the parameter values studied here.

Information about the (thermally excited) collective
modes and their dispersion is obtained from analysis of the
correlation spectra of the longitudinal and(in-plane as well
as out-of-plane) transverse current fluctuations[lsk,td,
tsk,td, andpsk,td, respectively]:

lsk,td = ko
j

v jxstdexpfikxjstdg,

tsk,td = ko
j

v jystdexpfikxjstdg,

psk,td = ko
j

v jzstdexpfikxjstdg, s3d

wherexj andv j are the position and velocity of thej th par-
ticle. Here we assume that k is directed along thex axis [the
system is isotropic in thesx,yd plane] and accordingly omit
the vector notation of the wave number. The data are stored
and subsequently Fourier analyzed[14] for a series of wave
numbers, which are multiples ofkmin=2p /H, whereH is the
edge length of the simulation box.

The number of layers formed in the system depends on
the strength of the confinement. Figure 2(a) shows the distri-
bution of particle density along thez direction,Fszd, for dif-
ferent strengths of confinementsf0d, G=100, andk=0.27.
We observe the transition from a two-layered configuration
to a single layer atf0<1.4. Due to the finite temperature of
the system, the layers do not resemble crystal planes(like in
ion trap experiments) but they are rather broad. Atf0<1.4
the width of the layer is<0.86a (at half of the maximum of
the distribution). Doubling the amplitude of the potential re-
sults in a width 0.17a. When the repulsion between the par-
ticles decreases at higherk values, the potential with the
same amplitude results in a stronger confinement. Thus, with
increasingk the number of layers, or the width of the single
layer, decreases(in agreement with the observation of Totsuji

et al. [4]), as illustrated in Fig. 2(b). Our further studies of
the dynamical properties concern the domain of parameters
when asingle layeris formed. At a higher number of layers
the mode structure is expected to be more complicated
[15,16] but this is not within the scope of the present paper.

Representative current fluctuation spectra for all the three
(L, P, and T d modes are illustrated in Fig. 3, forG=100,
k=0.27 andk=1.33, andf0=2.0. The frequency is normal-
ized by the nominal 2D plasma frequencyv0
=sQ2n/2«0mad1/2, wherem is the mass of particles.(Note
that v0 may also have different definitions in other works.)

Considering theL mode, we can observe sharp peaks in
theLsk,vd spectra, as in the case of(ideal) 2D Coulomb and
Yukawa systems[6,7,17]. Peaks in theT mode spectra[see
Figs. 3(e) and 3(f)] show up only above a certain(cutoff)
wave number, similarly to the case of 3D Yukawa systems
[18]. The P mode posseses a finite frequency atk=0. At
small wave numbers the peaks of the spectra shift to lowerv

as k̄ is increasedsk̄=kad. The width of the peaks of the
Psk,vd spectra narrows asf0 is increased, which is an indi-
cation of an increasing lifetime of this collective excitation.

The dispersion relations derived from the spectra are dis-
played in Fig. 4 for different values off0 andk. The plasma
coupling parameter isG=100 for all the graphs. At constant
k, as shown in Fig. 4(a), the frequency of the out-of-plane
transverse mode changes significantly as the strength of the
confinement forcef0 is varied. TheL andT modes are rela-
tively unaffected by the value off0. The frequency of these
modes is somewhat smaller atf0=1.4, which is near the
lower bound off0 for the formation of a single layer[see Fig.
2(a)]. It is noted that at lowerf0 values, when two layers are
formed, two longitudinal and two in-plane transverse modes
appear, similarly to those identified in the classical(ideal)
bilayer system[15]. Additionally, two out-of-plane trans-
verse modes are also formed in the two-layered system,
which are also believed to be in-phase and out-of-phase
modes(when particles in the two layers oscillate in phase or
with a phase difference of 180° in the two layers). The L
mode exhibits a quasiacoustic behavior, with a linear portion
of the dispersion curve aroundk=0, which widens with in-
creasingk, as can be seen in Fig. 4(b). TheT mode shows an

FIG. 2. Density distribution of particles along thez direction
[normalized aseFsz/addsz/ad=1]. (a) Dependence on the strength
of confinement atG=100 andk=0.27 and(b) dependence onk at
constantf0=1.0.
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acoustic,v,k dispersion, with a cutoff at a finite wave num-
ber.

For the P mode dv /dk,0 in the k̄&2.1 domain. The
frequency of the mode slightly increases towards higher
wave numbers. Atk=0 the whole layer oscillates in unison in
the potential well with a frequencyvsk=0d=Îf0c/m, which
gives

vsk = 0d
v0

= Îf0/2. s4d

A decreasing confinement force amplitude results in a
smallervsk=0d andvsk→`d. At a constantf0 the value of
vsk=0d does not change whenk is varied, but—as shown in
Fig. 4(b)—vsk.0d increases with increasingk. This is ex-
plained by the decreased interparticle force(at an average
particle separation) at higherk. The dispersion properties of
theP mode are rather similar to the corresponding collective
mode of a linear chain of particles[11].

The frequency of the out-of-plane transverse mode at high
wave numbers(k→` limit—in other words, the Einstein
frequency[19]) can be calculated by considering the forces
acting upon a single particle displaced in thez direction,

while all other particles are in rest in thez=0 plane. The
force is the sum of the confining force and the force due to
repulsion of the other particles,Fszd=−f0cz+Frszd. TheFrszd
repulsive force can be calculated asFrszd=−]Vr /]z, where
Vrszd is the potential distribution due to a charge distribution
rsx,yd in the z=0 plane. In our calculationsrsx,yd is ob-
tained either from the radial(2D) pair correlation function
(PCF) or by taking the particles at hexagonal lattice sites in
the z=0 plane. TheFrszd force was found to be a nearly
linear function of the displacementz, in the uzu,0.3a do-
main, where the particle displacement is expected to fall. The
resulting (Einstein) frequency(when the particles in thez
=0 plane are situated at lattice sites) is

vE

v0
=

vsk → `d
v0

>Î f0 − 1.63 exps− 1.37kd
2

. s5d

In the case of using the disordered configuration in thez=0
plane instead of lattice sites(through PCF’s obtained in the

FIG. 3. Spectra of current fluctuation of theL mode(a),(b), P
mode(c),(d), and theT mode(e),(f). k=0.27 for (a),(c),(e) and k
=1.33 for(b),(d),(f). (a),(b),(c),(d) show the spectra for eight differ-

ent wave numbers, multiples of the smallest wave numberk̄

=2pa/H=0.0886; the arrows show increasingk̄ values.(e),(f) show
theTsk,vd spectra for higher wave numbers, indicated in the plots.

FIG. 4. Dispersion of theL, P and T modes atG=100. (a) k
=0.27 and different values of the confining force amplitudef0 and
(b) f0=2.0 and different values of the screening parameterk.
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liquid state simulations), a frequency very close to that given
by Eq.(5) is obtained. Figure 5 shows the Einstein frequency
(5) as a function ofvsk=0d /v0. At low values ofk the value
of vE is significantly lower thanvsk=0d. In the high-k limit
the two frequencies are equal, as the screening becomes very
strong and the particles interact very weakly. In this case the
frequency of theP mode becomes nearly independent ofk̄,
as can actually be seen in Fig. 4(b).

The lifetime of the collective excitations is inversely pro-
portional to the widths of the peaks of the current fluctuation
spectra(shown in Fig. 3). Our results indicate that only the

excitations with the smallest wave numbers can propagate a
distance comparable to, or longer than, the size of the com-
putational box(H). These modes could, in principle, feel the
finite size of the computational box. However, calculations
carried out with 4 times higher particle numbersN=6400d
give the same dispersion relations within the limit of errors,
as those usingN=1600 particles.

In conclusion, we have studied the spectra and dispersion
characteristics of collective excitations of strongly coupled
Yukawa liquids confined by an external(1D) parabolic po-
tential, in the domain of the system parameters where a
single layer with finite width is formed. In addition to the
well-known longitudinal (compressional) and (in-plane)
transverse modes, which exhibit the same behavior as ob-
served in ideal 2D systems, we explored the properties of the
out-of-plane transversesPd mode. TheP mode was found to
have(i) a finite frequencyvs0d at k=0, being defined by the
amplitude of the confining potential;(ii ) a negative dv /dk at

small k̄, which, however, changes to slightly positive above

k̄<2.1; (iii ) a weaker dependence ofv on k with increasing
k (in the limit of high screening valuesv becoming indepen-
dent of k); and (iv) an Einstein frequencysvEd, which, at
small screening, is significantly smaller thanvs0d, but in the
limit of high screeningvE=vs0d.
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FIG. 5. Einstein frequency of out-of-plane oscillations as a func-
tion of vsk=0d /v0, for different values ofk.
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