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Cage correlation and diffusion in strongly coupled three-dimensional Yukawa systems
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K. N. Dzhumagulova,1 R. U. Masheyeva,1 T. Ott,2 P. Hartmann,3 T. S. Ramazanov,1 M. Bonitz,2 and Z. Donkó3
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The influence of an external homogeneous magnetic field on the quasilocalization of the particles—
characterized quantitatively by cage correlation functions—in strongly coupled three-dimensional Yukawa
systems is investigated via molecular dynamics computer simulations over a wide domain of the system
parameters (coupling and screening strengths, and magnetic field). The caging time is found to be enhanced
by the magnetic field B. The anisotropic migration of the particles in the presence of magnetic field is quantified
via computing directional correlation functions, which indicate a more significant increase of localization in the
direction perpendicular to B, while a moderate increase is also found along the B field lines. Associating the
particles’ escapes from the cages with jumps of a characteristic length, a connection is found with the diffusion
process: the diffusion coefficients derived from the decay time of the directional correlation functions in both the
directions perpendicular to and parallel with B are in very good agreement with respective diffusion coefficients
values obtained from their usual computation based on the mean-squared displacement of the particles.
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I. INTRODUCTION

Strongly coupled plasmas are characterized by a pair-
interaction potential energy that dominates over the kinetic
energy of the particles. Systems with this property are rather
widespread in nature and appear as well in various laboratory
settings [1]. A wide variety of physical phenomena taking
place in such a system makes them an attractive subject for
investigations [2–4]. Strongly coupled plasmas are used in
many areas of science and technology that are continuously ex-
panding, and studies are performed by both experimental [5,6]
and theoretical methods [7–9].

One of the prominent features of strongly coupled plasmas
is the quasilocalization of particles: the particles spend
substantial time in local minima of the slowly varying
potential surface developing in such systems. However, the
localization time is limited by the changing of the potential
surface due to the diffusion of the particles. It is noted
that this behavior of the particles is an important underly-
ing assumption of the quasilocalized charge approximation
(QLCA) developed by Golden and Kalman [10], which is an
important theoretical method in many-body physics, allowing
the derivation of wave dispersion relations in strongly coupled
plasmas from static properties (pair correlation function) of the
systems.

The localization of individual particles and the changes in
their surroundings can be quantified by adopting a correlation
method, which was introduced in Refs. [11,12]. This method
has already been applied in molecular dynamics simulation
studies of the localization time of particles in strongly coupled
Coulomb and Yukawa systems [13,14]. These investigations
have confirmed that in the strongly coupled liquid phase,
the localization (or “caging”) time covers several plasma
oscillation periods in these settings.

Recently, much attention was paid to the physics of dusty
plasmas under the effect of external magnetic fields [15–25].
The influence of a magnetic field on the dynamics of one-

component [15,16] and binary Yukawa systems [16] have been
analyzed. In these works, molecular dynamics simulations
have been used for the calculation of the diffusion coefficient of
the particles on the basis of the mean-square displacement. The
influence of an external magnetic field on the velocity autocor-
relation function of the particles and the cage correlation func-
tions in two-dimensional strongly coupled Yukawa systems
was investigated in Ref. [17]. In Refs. [26,27], an approach to
achieve very strong magnetization has been proposed, which is
based on the equivalence of the magnetic Lorentz force and the
Coriolis inertial force acting on moving objects in a rotating
reference frame. Experimental realization of a rotating dusty
plasma has shown the formation of magnetoplasmons [27]
in the quasimagnetized dusty plasma. Also, the generation
of higher harmonics of the magnetoplasmon frequency in
strongly coupled two-dimensional plasma liquids has been
reported in Refs. [18,19].

The purpose of this work is to investigate the influence of a
homogeneous magnetic field on the particles’ localization that
is quantified by cage correlation functions. As the external
magnetic field breaks the symmetry of the system, directional
cage correlation functions are also calculated along the
magnetic field direction and perpendicular to it. A connection
is established between the random events of single particle
escapes from the cages and the self-diffusion coefficient of
the particles obtained from the mean-square displacement of
the particles. Section II describes the model system and the
computational procedures. The results are presented in Sec. III,
while a brief summary is given in Sec. IV.

II. MODEL AND SIMULATION METHOD

For our model system we adopt the screened Coulomb
(Debye-Hückel or Yukawa) potential of the form

φ(r) = Q

4πε0

exp(−r/λD)

r
, (1)
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where Q is the charge of the particles and λD is the screening
(Debye) length. The ratio of the potential energy to the thermal
energy is expressed by the coupling parameter

� = Q2

4πε0akBT
, (2)

where T is the temperature, a = [3/(4πn)]1/3 is the three-
dimensional Wigner-Seitz radius, and n is the particle number
density.

A homogeneous external magnetic field with an induction
vector B = (0,0,B) is imposed on the system and the strength
of this field is characterized by the dimensionless parameter

β = ωc

ωp

, (3)

where ωc = QB/m is the cyclotron frequency and ωp =√
nQ2/ε0m is the plasma frequency. The parameter β, together

with the two other dimensionless quantities � and κ = a/λD

(the screening parameter), characterize the system completely.
To investigate the localization of particles the changes of the

surroundings of individual particles are monitored through the
correlation technique developed in Refs. [11,12]. Following
this formalism, a neighbor list 
i is defined for particle i as


i = {fi,1,fi,2, . . . ,fi,N }, (4)

where fij = �(rc − rij ) with rij = |�ri − �rj | and � is the
Heaviside function (i.e., fij = 1 if rij � rc, and fij = 0
otherwise). Here, rc is the cage radius, and the condition rij �
rc reflects that the neighbors are closely separated (elements
with i = j are omitted from the neighbor list).

The cage radius is chosen here as rc = 2.42, which well
approximates the position of the first minimum of the pair
correlation function, g(r), at high coupling values. (We note
that the same value has been used in previous studies of caging
in one-component plasmas [14,15].) This choice expresses that
the neighbor particles belong to the first coordination shell.
Our computations of the coordination number

∫ rc

0 rg(r)dr

resulted in values near 14, which is the sum of the closest
and second closest neighbors both in bcc and fcc lattices. In
the liquid phase, these particles form an unresolvable common
shell around the test particles. (Note that in the strongly
coupled liquid phase the pair correlation function reflects the
underlying lattice configuration, which is bcc for κ = 1 and
bcc or fcc for κ = 2 [28].)

The number of particles that have left the original cage of
particle i at time t can be determined as

nout
i (t) = |
i(0)2| − 
i(0) · 
i(t). (5)

The first part of this equation defines the number of particles
around particle at time t = 0, while the second term defines
the number of particles that remained in the surrounding after
time t .

The cage correlation function (CCF), which expresses the
probability of the escape of less than c particles from the cage,
can be calculated by averaging over particles and initial times,
the function �(c − nout

i ):

C(c)(t) = 〈
�

(
c − nout

i (0,t)
)〉

. (6)

The CCF can be obtained for different values of c. The cages
are defined here to be decorrelated when the C(c)(t) function
decays to 0.1, with c = 7, i.e., the number of particles that
leave the cage is set to half of the number of particles within
the first coordination shell (in the liquid phase).

In our system, where the external magnetic field breaks
the isotropy, it is sensible to investigate the departure of
the neighbors of test particles into different directions. This
can be performed via the “directional correlation functions”
(DCF) F (c)

x (t), F (c)
y (t), and F (c)

z (t), which [taking F (c)
x (t) as an

example] can be defined as

fij,x(t) =
{

1 if xij < rc,

0 if xij � rc,
(7)

nout
i,x (t) = |
i,x(0)2| − 
i,x(0) · 
i,x(t), (8)

F (c)
x (t) = 〈

�
(
c − nout

i,x (0,t)
)〉

, (9)

where xij = |xi − xj | is the distance in x direction between
the ith and j th particles. [For F (c)

y (t) and F (c)
z (t) we use

equivalent definitions.] It is important to note that while the
above definitions strongly resemble the definitions of the cage
correlation function, the directional correlation function for
a given direction may still keep its high value even after a
significant displacement of the particles in another direction
took place. So, a high value of these functions does not
necessarily indicate a caged state. For the computations of
the escape functions we use N = 1000 particles in the MD
simulations.

In order to calculate the diffusion coefficient from the
equilibrium dynamics, we employ the Einstein relation for
the mean-squared displacement [29], i.e.,

Dμ = lim
t→∞

〈|μ(t) − μ(t0)|2〉
2t

, (10)

where μ = x,y,z and 〈. . . 〉 denotes averaging over the entire
particle ensemble. Note that Eq. (10) is only valid for normal
diffusion, i.e., when the mean-squared displacement grows
linearly with time. In a two-dimensional system, this is not
always the case, see, e.g., Refs. [16,30,31] for observations of
“superdiffusion.” Such deviation from normal diffusion was
not observed in our 3D system.

Equation (10) is evaluated for N = 8192 particles at ωpt =
5000 [32]. As the magnetic field is aligned along the z axis, we
expect that (i) the self-diffusion coefficients measured in the
field-perpendicular directions are the same, i.e., Dx = Dy =
D⊥, and (ii) a different self-diffusion coefficient, Dz = D‖, is
found in the field-parallel direction [16].

III. RESULTS

In the following (in Sec. III A) we present representative
results obtained for the overall (directionally not resolved)
cage correlation functions for a wide domain of the system
parameters �, κ , and β. Next, in Sec. III B, we consider
the directional cage correlation functions and examine their
behavior, while in Sec. III C, we discuss the connection
between the cage correlation functions and the self-diffusion
coefficient of the system.
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FIG. 1. Cage correlation functions C(7)(t) (a, c) and their derivative with respect to time (b, d) obtained for different values of β at
� = 10, κ = 1 (a, b)and κ = 2 (c, d). Panels (a) and (c) also indicate a line C(7) = 0.1 that defines the caging time. In panels (b) and (d), the
different curves are shifted vertically for clarity.

FIG. 2. Cage correlation functions C(7)(t) (a, c) and their derivative with respect to time (b, d), obtained for different values of � at
β = 2, κ = 1 (a, b) and κ = 2 (c, d). Panels (a) and (c) also indicate a line C(7) = 0.1 that defines the caging time. In panels (b, d), the different
curves are shifted vertically for clarity.
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A. Cage correlations

Figures 1(a) and 1(c) present cage correlation functions
obtained at � = 10 and, respectively, for κ = 1 and κ = 2, for
a series of magnetic field strengths 0 � β � 5. Recall that the
caging time tcage is defined through C(7) = 0.1. For κ = 1, the
caging time at zero magnetic field is found to be ωptcage ≈ 8,
which corresponds to approximately one plasma oscillation
cycle. This “weakly caged” behavior changes significantly
when a magnetic field is applied: At β = 3, the caging time
increases by about a factor of six. A similar dependence is
obtained at κ = 2 [see Fig. 1(c)].

The curves depicted in Figs. 1(a) and 1(c), especially the
ones that correspond to intermediate values of β, exhibit
“ripples,” which can be emphasized by taking the time
derivatives of these curves. These derivatives are shown in
Figs. 1(b) and 1(d), for selected β values. The dominant
frequency in these curves turns out to be proportional to the
magnetic field strength and, based on this observation, the
occurrence of these oscillations can be explained by the effect
that particles leave and reenter the cages, while moving on
cyclotron orbits. Indeed, measurements of the frequencies ω∗
of the dC(7)/dt curves confirms ω∗ ∼= ωc. The amplitude of
oscillations of dC(7)/dt decay in amplitude with increasing
β because of the decreasing Larmor radius of the particle
trajectories that results in a diminishing importance of the
leaving-reentering effect. At low β values, on the other hand,
the oscillations are less visible too, as caging itself is less
pronounced and the cage correlation curve already decays on
the timescale of the inverse cyclotron frequency.

The dependence of the cage correlation function on the
coupling parameter � is revealed in Figs. 2(a) and 2(c), at κ =
1 and κ = 2, respectively, for a fixed magnetic field of β = 2.
The increasing coupling results in a significant enhancement
of the caging time. At high coupling the cage correlation
function decays to 0.1 at ωpt values of several hundreds,
meaning the particles undergo several tens to hundreds of
plasma oscillations within their cages. These numbers are
conceivable, as the highest � values correspond to about
70% and 45% of the critical values for the fluid-solid phase
transition (which are � = 217 and 440, respectively, for κ = 1
and 2 [33]), and the caging time in the solid phase is trivially
infinite.

Examination of the dependence of dC(7)/dt on the coupling
strength [see Figs. 2(b) and 2(d)] reveals that the oscillations
diminish with increasing � and disappear at a value of � ≈ 50.
The decreasing amplitude of the oscillations can be attributed
to the fact that at higher coupling the cages are more rigid and
the reduced thermal energy of the particles results in smaller
Larmor radii.

The results obtained for the caging time of the particles
are shown in Fig. 3. Figure 3(a) displays the dependence of
tcage on the magnetic field strength at selected � values, while
Fig. 3(b) shows the dependence on � at fixed β values. In the
first case we find a nearly linear increase of the caging time
with β, while the connection between tcage and � is nearly a
power-law function. Apart from few data points at low �, the
curves in Fig. 3(b) that belong to different β values are nearly
parallel, indicating a universal behavior.

FIG. 3. Dependence of caging time on the strength of magnetic
field β (a) and on the coupling parameter � (b), at κ = 1.

B. Directional correlation functions

The anisotropy of the system established at B �= 0 suggests
that different escape rates from the cages in the field-
perpendicular and field-parallel directions may exist. To
demonstrate this behavior we have computed the directional
correlation functions introduced in Sec. II [see Eqs. (7)–(9)].
The results of these calculations are shown in Fig. 4 for � = 10
and κ = 1. Figure 4(a) corresponds to the very low magnetic
field of β = 0.001, where we find equal correlation functions
in all directions, F (7)

x (t) = F (7)
y (t) = F (7)

z (t), within the limits
of errors. When the magnetic field is increased [see Fig. 4(b) for
β = 0.5], a significantly stronger confinement (slower decay
of the directional correlation function) is found in the x and y

directions, i.e., perpendicularly to the direction of the magnetic
field, as compared to the field-parallel direction. The effect
further amplifies when β reaches higher values, as shown
in Fig. 4(c) for the strong magnetic field case with β = 2.
While the blocking of diffusion along the field-perpendicular
direction is almost a trivial result, the increase of the decay
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FIG. 4. Directional correlation functions obtained for different
values of the magnetic field strength: (a) β = 0.001, (b) β = 0.5, and
(c) β = 2, at � = 10 and κ = 1.

time along the field-parallel direction with increasing β is
less expected, but this effect is also clearly observed via
the quantification of the directional correlations functions;
compare the F (7)

z (t) curves in the panels of Fig. 4.

C. Connection between the directional correlation functions
and the self-diffusion

A link between the escapes (or “jumps”) of single particles
out of the particles’ surroundings and the process of self-
diffusion can be established as follows. As explained above,
the cage correlation function C(c)(t) gives the probability of the
escape of less than c particles from the cage. Similarly, F (c)(t)
gives the probability of the escape of less than c particles
from the vicinity of a test particle, in a given direction. The
probability of the escape of exactly one particle can thus be
calculated as

P1(t) = F (2)(t) − F (1)(t). (11)

We find that P1 exhibits an exponential decay (except at early
times),

P1(t) = A exp(−t/t0), (12)

where the characteristic time t0, related to jumps of single
particles, is a function of the system parameters (�, κ , and
β). We assign a characteristic length δ to these jumps, which
makes it possible to calculate a diffusion coefficient [14]:

Dc = δ2

t0
. (13)

By adopting a fixed value for δ, the diffusion coefficient
computed in this manner can be compared with diffusion
coefficients computed from MD simulations via the mean-
squared displacement (MSD). Figure 5 shows the comparison
between the diffusion coefficients D∗ = D/(ωpa2) based
on MSD and those obtained from the present directional
correlation functions, adopting a value of δ/a = 0.71 for the
characteristic length of jumps. This value of δ, which results
in the best agreement between the diffusion coefficient values
obtained in the two independent ways is close to the mean
particle separation ∼a, so it can be considered as a reasonable
value for jump events when two particles switch positions. The
self-diffusion coefficients obtained via the two independent
ways show a remarkable agreement for all the coupling,
screening, and magnetic field strength values considered. At
β = 0, as shown in Fig. 5(a), the diffusion coefficient is
“isotropic,” i.e., is equal in all directions. With the growth
of the magnetic field the difference between the diffusion
coefficients in the field-perpendicular and the field-parallel
directions increases; see Figs. 5(b)–5(d).

IV. CONCLUSIONS

We have investigated the effect of a homogeneous magnetic
field on the cage correlation functions in three-dimensional
strongly coupled Yukawa liquids, for a wide range of system
parameters: the coupling parameter, the strength of magnetic
field, and the screening parameter. The results show that both
with an increasing magnetic field strength (β) and an increas-
ing coupling strength (�), the caging time is significantly
prolonged due to the decreasing Larmor radius of the particle
trajectories and the reduced thermal fluctuations. Oscillations
of the cage correlation functions at β > 0 arise from the
gyrating motion of particles close to the cage boundaries.

The directionally resolved correlation functions were found
to reflect the anisotropy of the system created by the mag-
netic field B. The decay time of these functions increased
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FIG. 5. Normalized “directional” diffusion coefficients, D∗ = D/ωpa2, as obtained from mean-squared displacements of the particles
(lines) and from the directional correlation functions (symbols). (a) κ = 1, β = 0, (b) κ = 1, β = 0.5, (c) κ = 1, β = 1, and (d) κ = 2,

β = 0.5. × D∗
x , ◦ D∗

y , � D∗
z ; −−−−D∗

x , − − − D∗
y , · · · D∗

z .

significantly in the field-perpendicular direction, while a mod-
erate increase was also found in the field-parallel direction.

The self-diffusion coefficient (D) of the system was
calculated based on the rate of escape of particles into different
directions and associating these escape events with jumps of a
characteristic length scale. A very good agreement was found
across the whole domain of system parameters between D

computed this way and via the mean-squared displacement of
the particles.
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199 (2012).
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