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We study analytically and by molecular dynamics simulations the ground state configuration of a
system of magnetic dipoles fixed on a two-dimensional lattice. We find different phases, in close
agreement with previous results. Building on this result and on the minimum energy requirement we
determine the equilibrium lattice configuration, the magnetic order (ferromagnetic versus antiferromag-
netic), and the magnetic polarization direction of a system of charged mesoscopic particles with magnetic
dipole moments, in the domain where the strong electrostatic coupling leads to a crystalline ground state.
Orders of magnitudes of the parameters of the system relevant to possible future dusty plasma experiments
are discussed.
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There have been extensive studies on the properties of
arrays of interacting dipoles fixed on lattice sites since the
seminal work of Luttinger and Tisza in 1946 [1–3]. Subse-
quent investigations of two-dimensional (2D) lattices of
interacting magnetic dipoles have been directed toward
surface adsorbates [4–6] and thin magnetic films (TMF)
[7]. These systems can be modeled as consisting of micro-
scopic magnetic dipoles considered as 2D classical vectors
that can rotate within the plane of the lattice [8] and
interact via both exchange and classical dipole-dipole
potentials.

Recent experiments in complex (dusty) plasmas have
demonstrated that 2D lattices of charged, micron-sized
dust grains can be levitated and confined in the sheath
region of a plasma discharge [9,10]. Experiments on 2D
colloidal suspensions have studied systems of paramag-
netic particles on a liquid-gas interface, as well [11]. These
experiments point to the emerging possibility of creating
and studying lattices composed of charged grains with
permanent magnetic dipole moments, as a macroscopic
classical analog of TMF systems without exchange
interaction.

In this Letter, we present results of a theoretical analysis
accompanied by molecular dynamics (MD) simulations
that lead us to the determination of the ground state con-
figuration of such systems. We proceed in two steps. First
we analyze systems of magnetic dipoles fixed on sites of a
given 2D lattice that interact solely via the magnetic
dipole-dipole potential. We recover earlier results by
Rozenbaum [4] (see also [12]) pertaining to the ground
state of dipoles on an arbitrary 2D Bravais lattice. Second,
we address a scenario in a complex plasma, where the
magnetic interaction competes with the dominant screened
electrostatic Yukawa interaction between the grains,
��r� � �Q2=r�e��r (with the inverse screening length �),
in the domain where the strong electrostatic coupling leads
to a crystalline ground state [13–15]. The actual equilib-

rium lattice configuration is that which minimizes the
combined electrostatic and magnetic dipole-dipole inter-
action energy of the system. The ultimate objective of this
work is to find this equilibrium configuration as a function
of the relative strengths of these two interactions. The
strength of the magnetic interaction can be characterized
by the magnetic coupling, �m � �2=a3kBT, where� is the
magnetic moment of a grain, a is the Wigner-Seitz radius,
a � �1=n��1=2, n is the density, and a relates to the square
lattice constant and hexagonal lattice constant as follows:

a � asquare=
����
�
p
� ahex=

���������������
2�=

���
3
pq

. The strength of the
electrostatic interaction is given by the conventional
plasma coupling parameter, � � Z2e2=akBT (Z is the
charge state of a grain) and �. The ratio � � �m=� is the
important parameter on which to focus.

We begin by fixing the dipoles on a lattice and ask how
the magnetic moments will order. This problem was treated
analytically for an infinite lattice by Rozenbaum who
approximated the dipole lattice sums by assuming that
the ground state energy is dominated by the intrachain
interactions. We assume a finite lattice, in keeping with
the reality of a 2D plasma setup. Our results are in close
agreement with [4].

The configuration of dipoles in a 2D lattice is partly
determined by the symmetry of the lattice whose sites they
occupy. We explore the full family of 2D Bravais lattices
that can be characterized by two parameters, which fully
describe the (generally rhombic) unit cell and can be
chosen as the rhombic angle, denoted by �, and the aspect
ratio of the two sides of the rhomboid, denoted by �.

Ignoring thermal excitation (�m ! 1) the ground state
energy is the classical magnetic dipole pair energy
summed over the entire lattice of dipoles:

 E magnetic �
1

2

X
ij

a3

r3 � ~�i � ~�j � 3� ~�i � r̂�� ~�j � r̂��; (1)
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where ~r � j ~ri � ~rjj and ~�i��� is the magnetic dipole mo-
ment vector of the ith particle, which for the purpose of this
calculation may be taken as a unit vector. We measure r in
units of a, thus rendering Emagnetic dimensionless.
Equation (1) is still ill-defined as long as the magnetic
phase and the orientation of the dipoles are not specified.
Both of these depend on the lattice structure and are
determined by the minimization of the interaction energy
for a given lattice. A configuration where the dipoles point
out of the plane of the lattice always has a higher energy
than the one with all the dipoles lying in the lattice plane.
Thus it is sufficient to consider the in-plane configurations.

In earlier studies [5] it was revealed that depending on
the rhombic angle the equilibrium alignment can be either
ferromagnetic (F) (as for the hexagonal lattice, � � 60	)
or antiferromagnetic (AF) (as for the rectangular lattice,
� � 90	). Focusing now on the F phase, we determine the
equilibrium direction of the dipole orientations (i.e., the
direction of the magnetization) by finding the ground state
energy extrema with respect to magnetization direction �.
This can be obtained analytically by minimizing the mag-
netic energy with respect to �, at a constant density. In
Fig. 1 the dependence of the preferred F magnetization
direction on � and � is shown. These results can be
compared with those of [5]. Also shown in Fig. 1 are values
generated by MD simulation, as explained below. Note that
the mere existence of an optimum � for a given � and �
does not ensure that in equilibrium the system is in the F
phase at that rhombic angle: the state may be only meta-
stable (as also explained below in relation to the MD
simulation).

For � � 1 and � � 60	 (hexagonal lattice), at zero
temperature the ground state is continuously degenerate
with respect to the magnetization direction. However, this
point seems to represent a singularity in the parameter
space. For � � 1 and � � 60, for � � 1 for all �, and
for nonzero temperature [16] the degeneracy is removed. In
the first case, for � � 1, the theoretically preferred mag-
netization direction is always � � �=2 (the next-nearest
neighbor direction), approaching � � 30	 as �! 60	. In
the second case, however, for� � 60	,�! �15	 as �!
1 (see Fig. 1). Interestingly, it was shown some time ago
[16] that the degeneracy would also be removed at nonzero
temperatures by thermal disorder even at � � 60	.

A calculation along the same lines has been performed
for the optimum � in the AF phase. In the rectangular
lattice (� � 90	) the alternating dipoles are in the � � 0	

and � � 180	 direction (columnar arrangement); for �<
90	, there is a small �-dependent deviation from the co-
lumnar alignment (see Fig. 1). These results are not dis-
played in detail, because the largest deviation is less than
3	. At the singular point � � 1, � � 90	 the system again
exhibits a continuous (vortical) degeneracy, as discovered
by [17]. However, similar to the F case, this degeneracy is
removed at other � or � values and by thermal disorder
[16]. Some examples of the internal field configurations
both in the F and in the AF phase are portrayed in Fig. 2:
observe the formation of neutral points both in the F and
AF phases.

The equilibrium value of � determines the actual inter-
action energy. These energies are plotted versus� in Fig. 3.
The intersection of the F and AF curves for a given value of
� indicates the critical rhombic angle �crit where a phase
transition between the two configurations may take place.
For�<�crit the ground state is the F phase, while for�>
�crit the ground state is the AF phase. As shown in the
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FIG. 1. Equilibrium F magnetization angles � versus the
rhombic angle � for a series of aspect ratios �. Compared are
theoretical results derived from equation (lines) and MD results
for � � 1:00, 1.05, 1.10, 1.15, and 1.20 (points). Also shown are
samples of different lattice and magnetic configurations. � is the
angle that the dipole moments make with the x axis. In the AF
case, the dipoles alternate being above and below the x axis
(results not shown).

FIG. 2 (color online). Magnetic field lines and equi-B contours
for F and AF configurations: (a) F, � � 60	, � � 1:0 (b) F, � �
60	, � � 1:1 (c) AF, � � 90	, � � 1:0, (d) AF, � � 80	, � �
1:0. Note the formation of neutral points in all cases. The arrows
show the direction of magnetization.
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inset,�crit is a slowly varying function of �, with a value in
the vicinity of 78	.

We proceed to consider a 2D complex plasma layer of
negatively charged grains that each have a magnetic dipole
moment. The electrostatic interaction acts as a repulsive
force, keeping the particles apart, and competes with the
magnetic interaction in determining the equilibrium lattice
structure. As in the previous discussion, the density n is
kept constant for all calculations.

The total energy, Etotal, is the sum of the electrostatic
energy of the charges and the magnetic energy of the
dipoles: Etotal �

Z2e2

a �
1
2

P
ij
a
r e
��r 
 �Emagnetic�, where the

parameter � has been defined above. � is generally less
than 1. For � � 0 the system is in a hexagonal configura-
tion, ��60	 and ��1:0. However, it is well known that
the electrostatic energy difference between the hexagonal
and other lattice structures is very small [18,19]. Therefore
even for small nonzero values of � the system will deform
and assume a lattice configuration more preferable for the
magnetic interaction energy. In order to find this configu-
ration for a given set of � and � values, a local minimum in
the total energy is searched for in the ��; �� parameter
space. Based on the previous results we expect that if
� <� 78	, the system will be in the F phase, and if
� >� 78	, the system will be in the AF phase. Indeed,
this is borne out by our results. In Fig. 4 the detailed phase
diagram versus �, �, and � is displayed. The plot shows
that for �a � 0:5 the system undergoes a first order tran-
sition from the F phase to the AF phase with an accom-
panying structural phase transition from a rhombic to a
rectangular lattice at � ’ 0:13. Increasing (decreasing) �
would result in slightly lower (higher) �crit values. The
magnetization directions are not shown in Fig. 4, but can be
obtained from the previously determined dependence on
the lattice configuration (� and �) (see Fig. 1).

In an experimental scenario, the magnetic dipole mo-
ment of a grain is determined byNB, the number of aligned
Bohr magnetons per grain. We assume that NB is 10% of
the number of atoms in the grain. For a sphere of iron with
radius R � 4 �m, we estimate NB ’ 1:3� 1012. The
charge state of the sphere in an Ar plasma with electron
temperature ’ 2 eV is Z ’ 104. With a lattice spacing of
about 100 �m the value of � ’ 0:15 is high enough for the
phase transition to take place. It may be triggered by
changing the density, n (since � is proportional to n),
which in turn may be accomplished by relaxing or enhanc-
ing the confining electric potential. The signature of the F/
AF transition would be the disappearance of the magnetic
moment. One experimental concern may be the possible
coalescence of the grains due to the dominance of the
attractive dipole interaction at small distances. In order to
avoid this scenario, one would require that the position, r,
of the potential maximum between neighboring grains be
at a distance r < 2R. A way to satisfy this condition would
be by using particles with a small magnetic core Rcore <R.
In this case a dust grain with R ’ 10 �m and Rcore ’ 4 �m
may be appropriate. In order to have � ’ 0:13 for a system
composed of such dust grains would require that a ’
25 �m.

One might ask whether the magnetized electrons will
diamagnetically screen the dipole-dipole interaction, or if
the magnetization will affect the charging of the grains.
However, with a typical magnetic field strength of 1.6 G at
a distance of 25 �m from the grain the electron gyro
frequency !L would be 3� 107 rad=s, which can be
compared with the electron-neutral collision frequency
�en  3� 108 s�1 under usual experimental conditions
(P � 0:5 mbar, Te  2 eV); !L=�en � 1 then shows the
electrons to be relatively unaffected by the magnetic field.

60 65 70 75 80 85 90

φ degrees

-6

-5

-4

-3
E

ar
b.

 u
ni

ts

AF 1.0

F 1.0

AF 1.2

F 1.2

60 65 70 75 80 85 90

φ degrees

1

1.05

1.1

1.15

1.2

1.25

F AF

FIG. 3. Lattice energies due to the magnetic dipole pair inter-
action [Eq. (1)] only versus the rhombic angle � for F and AF
alignments at two values of the aspect ratio, � � 1:0 and � �
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transition. The inset shows the �crit��� phase boundary in the
�; � parameter space.
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FIG. 4. Equilibrium lattice configurations in the �; � parame-
ter space for different values of � at �a � 0:5. In the upper
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the electric Ee and magnetic Em interaction energies are shown
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continuities in Ee and Em at �crit ’ 0:13; the total energy,
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Under low pressure conditions this may not be the case, but
even then the electronic gyro radius (2 cm) is too large to
significantly alter the domination of the electron motion by
the electric field.

All of our theoretical calculations have been carefully
checked through computer simulations. The simulations
follow the MD method from [20] (modified for a system
with both translational and rotational degrees of freedom),
using a rhombic simulation box and periodic boundary
condition. The simulations were done at constant volume,
which is appropriate for low temperatures. Only particle
pairs separated by less than a cutoff radius Rcut are taken
into account in the force and torque calculation in the
solution of the equation of motion. At the beginning of
the simulations the N � 1600 to 10 000 particles are
placed at rhombic lattice sites with random angular veloc-
ities and velocities sampled from Maxwellian distribu-
tions. The computer experiments are performed after a
proper thermalization, when the system has settled in an
equilibrium state.

For the pure dipole system simulations are performed to
investigate the equilibrium configurations, where only ro-
tation is allowed. During the initial thermalization, the
system is slowly cooled from �m � 1 to 1000. Our results
confirm the theoretical value of the critical rhombic angle
�crit ’ 78	 for the phase boundary between the F and the
AF state. However, due to the long relaxation times simu-
lation of the F phase can continue well beyond 78	 in a
metastable state (see Fig. 1), characterized by discrete F
domains and interacting domain walls featuring vortices.
When started in the AF phase, the MD simulations can
reproduce the fully ordered ground state configurations
more easily. In the full 2D complex plasma simulation
the particles are charged and free to move. The system is
started in the F phase with sufficiently low temperature to
allow small angle oscillations only. To find the ground state
lattice parameters we compute the � stress tensor in every
time step. During the computation the simulation box is
slowly transformed (adjusting � and �) in order to fulfill
the stability conditions �xx � �yy and �xy � �yx � 0,
which defines the equilibrium lattice geometry. As shown
in Figs. 1 and 4, the simulation results are in excellent
agreement with theoretical predictions.

In summary, we have mapped, through analytic and MD
methods, the phase diagram of the ground state configura-
tions for a system of classical magnetic dipoles fixed on the
sites of a 2D Bravais lattice. The appearance of F and AF
phases and the variation of the direction of the magnetiza-
tion as functions of the parameters � (rhombic angle) and
� (aspect ratio) that characterize the lattice structure are the
hallmarks of the combined effect of the electrostatic and
magnetic interactions. We have considered the realization
of such systems as 2D complex plasmas of mesoscopic
charged particles also carrying a classical magnetic dipole
moment. At sufficiently strong values of the electrostatic

coupling a plasma crystal forms whose lattice structure and
the concomitant magnetic order are determined by the
competition of the relative strength � of the magnetic
interaction to the electrostatic interaction: it is shown that
at a critical value of � a structural phase transition from a
rhombic to a rectangular lattice occurs, accompanied by a
magnetic transition from the F phase to an AF phase. For
the Yukawa screening parameter �a � 0:5, �crit � 0:13
has been found. Experiments on plasma crystals within
the desired parameter ranges seem to be feasible: confirm-
ing the theoretical predictions and further investigating the
remarkable physics of such systems would be of great
interest.
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