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Abstract. – We report Monte Carlo simulations of a classical, strongly-coupled charged-
particle bilayer with opposite charges in the two layers. At layer separations comparable to the
Wigner-Seitz radius the two layers support each other to establish a quasi-long-range order; at
low layer separations stable dipoles (classical equivalents of bound excitons) are formed and
the long-range order is extinguished as the Coulomb interaction changes to a dipole-dipole
interaction. We identify dipole-liquid, dipole-solid, Coulomb-liquid and Coulomb-solid phases,
which are exhibited in an intuitive phase diagram of the system in the Γ (coupling)-d (layer
separation) plane.

Introduction. – Bilayer systems of charged particles formed in semiconductor nanostruc-
tures have attracted a great deal of attention over the past decade [1]. In such systems charge
carriers are confined within two quasi-two-dimensional layers. Sophisticated microelectronics
techniques allow fabrication of both unipolar (electron-electron) and bipolar (electron-hole)
bilayers characterized by different layer separation (d) and surface density (n) values. For
certain domains of these parameters (and the system temperature) the classical description of
the systems becomes quite adequate: e.g. in the strong-coupling domain —where the interac-
tion energy of particles dominates over the kinetic energy [2]— the localization of the charges
substantially reduces in-layer exchange effects.

In the case of unipolar systems (which are also relevant to particle traps [3]) the extra
degree of freedom compared to the case of a single-layered system, gives rise to a rich variety
of structural phases [4,5]. In bipolar systems it is expected that in an appropriate parameter
domain the electrons and the holes bind to each other in a dipole-like excitonic formation [6–8].
It is also expected that at low enough temperatures the system undergoes a transition into a
Wigner crystal-like solid phase [9]. The conflicting tendencies to undergo various transitions
clearly affect each other: most importantly, the formation of bound dipoles reduces the long-
range character of the (Coulombic) interparticle forces. The details of these processes are
presently unclear. The aim of the present paper is thus to investigate the structural properties
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of electron-hole bilayer systems over a wide range of system parameters within the limits of
applicability of the classical approach. As we will show, the study reveals a rich variety of
“phases” and an intricate “phase diagram” in the parameter space. It is, however, emphasized
and should be kept in mind that the phase diagram is not derived on rigorous thermodynamic
grounds and that the present simulations do not provide a detailed description of the character
of the predicted phase transitions themselves. For each of these (possible) transitions extensive
theoretical studies and additional computations are required that remain for future work.

Modeling approach. – The principal physical characteristics of the system of the two
oppositely charged species physically separated from each other allows one to represent most
of their physical properties through a classical modeling [9,10]. In a classical model the finite
temperature of the system accounts for the kinetic energy of the particles and the system
can be characterized by two dimensionless parameters: i) the plasma coupling parameter
Γ = e2/(4πε0akT ), where e is the charge of the particles, a = (nπ)−1/2 is the Wigner-
Seitz (WS) radius and n is the surface density, and ii) the distance of layers d.

Our simulation method is based on the Metropolis Monte Carlo (MC) algorithm. The
energy of the system is calculated by summation of the interaction energy over each pair of
particles taking into account periodic images of the particles. The particle configuration with
the lowest energy is searched for by random trial movements (in direction and displacement)
of randomly chosen particles. At layer separations where the particles are strongly bound
in dipole pairs, trial moves of particle pairs are also used. The quadrangular simulation cell
contains N = 400 particles in each layer; the V (volume) → ∞ condition is simulated by
using periodic boundary conditions. The MC simulation code (modified for the unipolar case)
has been cross-checked with a molecular-dynamics code [5]. It has also been verified that the
present code is insensitive to the initial setting of the particle positions. The calculations cover
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Fig. 1 – (a) Phase diagram of the bipolar bilayer system in the Γ-d/a plane. (b) Pairs of PCFs next to
the two sides of the phase boundaries, indicating the characteristic changes that take place across the
respective boundaries (marked with arrows in (a)) I: CL (heavy line)/CS (thin line), II: DL (h)/DS
(t), III: CS (h)/DS (t), IV: DL (h)/CL (t).
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Fig. 2 – In-layer (g11, symbols) and interlayer (g12, dashed lines) PCFs as functions of r/a at Γ =
150. (a): d/a = 0.6 (DL); (b): d/a = 1.2 (DS); (c): d/a = 2.0 (CS).

the 20 ≤ Γ ≤ 200 range of coupling values and layer separations 0.1 ≤ d/a ≤ 3.0. We identify
the phases by analyzing the in-layer g11(r) and interlayer g12(r) pair correlation functions
(PCFs) and by calculating the diffusion coefficient as a function of the system parameters.

Results and discussion. – As stated, our results reveal a rich variety of phases for the
system. The ensuing phase diagram (fig. 1(a)) is governed by the competition between the
strong in-layer Coulomb interaction favoring a long-range order and the interlayer attraction
supporting the formation of stable dipole-like structures; these latter when formed tend to
replace the Coulomb interaction by a weaker in-layer dipole-dipole potential. The various do-
mains in the phase diagram can be tentatively recognized as representing Coulomb-liquid (CL),
Coulomb-solid (CS), dipole-liquid (DL), and dipole-solid (DS) phases as shown in fig. 1(a).

Through scanning the Γ-d/a parameter space, several distinct features in the structures of
the in-layer g11(r) and the interlayer g12(r) PCFs emerge, which can be recognized as unique
signatures of the various phases in the parameter space. Figure 1(b) shows scans of g11(r)
and g12(r) across tentative interphase boundaries. Typical g11(r) and g12(r) PCFs in the DL,
DS, and CS domains are portrayed fig. 2.

The most conspicuous feature of the interlayer g12(r) PCF is that it develops a strong
peak for low r/a values around r = 0, prevailing in the dipole domains, as can be observed in
figs. 2(a) and (b). This behavior indicates the formation of (either permanent or temporary)
dipole-like particle pairs. The height of this 0th peak of g12 increases with decreasing d/a as the
attraction between the dipole-forming particles increases. Remarkably, the height g12(r = 0)
for small d is approximately proportional to d−3 as shown in fig. 3(a) and not to exp[Γ/d],
as would be expected on thermodynamic grounds. This can be understood by analyzing the
normalization integral for g12(r). For the case of a bound dipole state the overwhelming
contribution to the normalization integral C comes from the vicinity of the 0th peak and can
be written as C = I + V , where

I = π

∫ r0

0

r exp
[

βe2

4πε0

√
r2 + d2

]
dr = πd2

∫ x0

0

x exp
[

Γ√
1 + x2

]
dx, (1)

where r0 is of the order of a, a distance where g12(r) drops to its normal value of O(1) (cf.
fig. 2). V is the (2D) normalization volume, resulting from the integral from r0 to ∞. The
value of I can be easily obtained from the asymptotic expansion of the integral for Γa

d → ∞:

I → 2π
d3

Γa
exp

[
Γ

a

d

]
. (2)
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Fig. 3 – The amplitude of (a) the 0th (dipole), and (b) first peak of g12 as a function of d/a. Γ = 100
in (a) and Γ = 80 and 100 in (b).

In contrast to the case of a normal thermodynamic limit, where I � V , here, for any reasonable
choice of parameters, V is negligible and g12(r = 0) ∝ V/I ∝ Γ/d3.

In the DL and DS domains the g11(r) and g12(r) functions are identical (in contrast to
their behavior in CL and CS), except for the 0th peak discussed above, as shown for DL and
DS in fig. (2). This is an indication that in these domains the dipole-forming particles lock
into a permanent formation. This interpretation is corroborated by the snapshots of particle
positions, shown in figs. 4(a) and (b). It is clear that both at layer separation d/a = 1.2
(Fig. 4(a)), where the dipoles form an ordered hexagonal structure, and at very low separation
d/a = 0.2, where the positions of the dipoles are largely randomized, and their positions are
not fixed (fig. 4(b)), oppositely charged particles are bound to each other. In the same DL
and DS domains the g12(r) interlayer PCF exhibits in the range of r between the fall-off of
its 0th peak (dipole peak) and the first peak (first neighbor’s peak) a correlation void where
g12(r) = 0 (see fig. 1(b)/III and IV). This void evidences that there is no exchange of particles
between neighboring dipoles. Thus we have clear indications that it is justified to characterize
the D-phases as being constituted of permanently bound dipoles. To illustrate the onset of
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Fig. 4 – Snapshots of particle positions at Γ = 100, (a) d/a = 1.2 and (b) d/a = 0.2. The positions
of particles in the two layers are indicated by circles and crosses, respectively. Note that in (b) the
particle positions visually completely coincide.
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Fig. 5 – (a) First minimum of g12(r) as a function of layer separation for Γ = 80. (b) Normalized
DMC as a function of Γ for selected values of d/a. The normalization factor is chosen that DMC(Γ =
80) = 1.0.

the transition from dipole liquid to Coulomb liquid (DL → CL) we plot in fig. 5(a) the value
of the first minimum of g12(r) across the DL-CL boundary as a function of layer separation
d/a. One can observe the dramatic rise of this value from zero as d/a is slightly increased.

At high layer separations, in domain CL, d/a ≥ 2.0, there is no appreciable interlayer
correlation, and the two layers behave independently, similarly to a 2D one-component plasma
(OCP). When the separation of the two layers is decreased, a strong enhancement of the
first peak of g12(r) can be observed. This is shown in the Γ = 80 and Γ = 100 scans
in fig. 3(b). At intermediate separations (d/a ∼= 1) the two layers support each other to
establish a quasi-long-range order. This behavior is similar to that of the unipolar bilayer
where an enhanced correlation [5] and higher melting temperature [11] has also been found
for intermediate (although somewhat lower) layer separations. When the two layers further
approach each other the system transform into dipole liquid (DL) phase and the trend for the
formation of an enhanced correlation peak is reversed: for d/a ≤ 1.2 the in-layer correlation
rapidly decreases. This behavior is an indication of the change of the long-range Coulomb
force into a short-range dipole-dipole interaction.

A salient feature of the change both from the DL into the DS and from the CL into the CS
domains is the emergence of a quasi-long-range order. This is demonstrated in fig. 1(b)/I and
II, where PCFs calculated near these liquid-solid phase boundaries are shown. The correlation
function changes drastically, showing the onset of the long-range order when the interlayer
separation is slightly increased at constant Γ.

While the long-range order prevails both in the DS and CS phases, as shown through the
portrayal of the similar g11(r) PCFs in figs. 2(b), (c), there is a strong difference between the
two interlayer g12(r) PCFs: an abrupt reduction of the interlayer PCF as the system changes
from the DS phase to a CS phase ensues (see fig. 1(b)/III). Analysis of the coordination
numbers associated with the PCFs shows that the lattice structure in the DS and the CS solid
phases and the underlying structure in the CL and DL liquid phases are always hexagonal
and do not change with changing layer separation (in contrast to unipolar bilayers [4, 5]).

The interpretation of the transition from the DL into the DS and from the CL into the CS
phases, respectively, as a liquid-solid phase transition is further supported by the calculation
within the MC simulation of the quantity [12]: DMC = 1

k

〈[
r(k) − r(0)

]2〉, where k is the
number of MC steps. DMC is analogous to the diffusion coefficient in “real-time” (e.g. MD)
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simulations. Although time does not appear in the MC simulation, DMC can distinguish
between the diffusive/non-diffusive state of the system [13]. Figure 5(b) shows normalized
DMC as a function of Γ, for selected values of d/a. At all values of d/a there exists a marked
drop of “diffusion” at a certain value Γ = Γm. At high separation, Γm approaches the value
137, characterizing the melting of the 2D one-component plasma (OCP).

An additional indicator of the phase change can be provided by observing the bond-angular
correlations, which has been shown to develop a sudden drop across the solid-liquid melting
line (see, e.g., [11]). We have verified that the bond-angular order parameter indeed exhibits
this expected behavior (both in the Coulomb and dipole systems), at Γm values (depending
on d/a), which are in good agreement with the data obtained from the diffusion analysis.
We note that the transition from the CL to the DL phase, if it is indeed abrupt, should be a
Metal/Insulator transition, with a corresponding change in the characteristics of the dielectric
response function.

It should be clear that on the basis of the analysis presented here we cannot claim that
the phase domains and phase boundaries in the diagram represent genuine thermodynamic
phases and phase transitions: such a determination would require more detailed investigations,
for example the study of the free energy functional, which is beyond the capabilities of our
current MC simulation technique. With this proviso, we now summarize the features of the
phase behavior of the system. At high d/a values the system behaves as a combination of two
independent 2D OCPs and the boundary between the CL and CS phases is at Γm ≈ 137 (cf.
fig. 1(b)/I). With decreasing d/a, Γm decreases and reaches its minimum value Γm ≈ 100 at
d/a = 1.4. The fact that the lowest Γm is found at intermediate layer separations is similar
to the behavior of the classical electronic bilayers [11]. Below d/a = 1.4, Γm increases again
and reaches very high values as the layer separation decreases. This effect is caused by the
decrease of the coupling between neighboring particle pairs, as the Coulomb potential changes
to a dipole-dipole potential at low layer separations. To describe the interaction between
the dipoles the Coulomb coupling parameter Γ ∝ e2/akT is to be replaced by a coupling
parameter for dipoles, ΓD ∝ e2d2/a3kT = Γ(d/a)2. If we assume that the freezing occurs at
some characteristic value of ΓD ≈ ΓD0, then Γm should behave as ΓD0(d/a)−2 as (d/a) → 0.
In fact, for d/a < 1 the phase boundary is well approximated by the above expression, with
ΓD0 = 75. This boundary now separates the DL and DS phases (cf. fig. 1(b)/II). Thus at low
d/a values it is always the DL phase that prevails. For high Γ values, increasing d/a across the
DS region leads to the DS/CS boundary (cf. fig. 1(b)/III). At lower Γ values this boundary
separates the DL from the CL phases (cf. fig. 1(b)/IV). The explanation of the way these
boundaries form is as follows. When the energy δE needed to displace the two hexagonal
lattices with respect to each other becomes smaller than the thermal energy kT (related to
Γ), the two lattices are no longer locked into each other. With increasing layer separation
δE rapidly decreases, and thus it has to be balanced by a matching increase of Γ. A similar
explanation applies to the boundary separating the DL and CL phases.

The precise behavior of the system in the region within which the solid/liquid and
dipole/Coulomb boundaries cross has not been resolved to the degree of precision that would
warrant a statement as to the nature of that region.

Our phase diagram may be compared with the recently calculated quantum Monte Carlo
(QMC) phase diagram of an electron-hole bilayer at zero temperature by De Palo, Rapisarda
and Senatore (DRS) [7]. DRS distinguish three phases, labeled as the excitonic phase (EP),
2 Coulomb plasma (2CP) and Wigner crystal (WC) phases, in one-to-one correspondence
with our DL/DS, CL and CS phases. In DRS there is no attempt to resolve liquid vs. solid
excitonic phases. Their triple point (found at d/a = 1.3) is in the vicinity of the region where
the phase boundaries cross in the present work; the ratio of the corresponding rs (quantum
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coupling coefficient) value (≈ 20) and Γ value (≈ 95) is similar to the ratio of the 2D freezing
rs/Γ ratio (37/137) and reflects the fact that the electron liquid freezes with a higher relative
kinetic energy than its classical counterpart. Filinov et al. [8] have also generated a QMC
phase diagram for a mesoscopic electron-hole bilayer and have identified the excitonic crystal
phase. They have concluded that their phase diagram compares favorably with ours.

Summary. – In summary, we have analyzed through MC simulation the phases of a
classical bipolar bilayer. We have shown that at low layer separation the particles combine
into stable bound dipole pairs (classical equivalents of bound excitons), destroying the quasi-
long-range order and forming a dipole liquid. Increase of the layer separation or increase of the
coupling parameter converts the dipole liquid into a dipole crystal. We have also exhibited the
adjacent parameter domains where the two charge species still behave as quasi-independent
components of two strongly coupled Coulomb systems.
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