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Abstract—We report comparative studies on collective exci-
tations in 2-D complex plasmas, in which particles interact
through the Yukawa potential, encompassing both the solid and
the strongly coupled liquid states. Dispersion and polarization
of the collective modes in the solid state are calculated through
the lattice summations, while in the liquid state, through molecular
dynamics (MD) simulations in conjunction with the theoretical
quasi-localized charge approximation analysis. The latter closely
emulates the dispersion, resulting from an angular averaging in
the lattice. In general, however, the lattice dispersion is substan-
tially different from that of the liquid. The MD simulations show
the dramatic transformation of the anisotropic phonon dispersion
of the crystal lattice near the solid–liquid transition into the
isotropic liquid dispersion.

Index Terms—Molecular dynamics (MD) simulation, phonon
dispersion, strongly coupled plasma, 2-D Yukawa system.

I. INTRODUCTION

THE interparticle interaction between the dust particles in
a single complex plasma layer can be modeled by the

Yukawa potential Φ(r) = (Q2/r)e−κr, where Q is the charge
of the particles. We further assume equal mass and charge for
all particles. This model system can fully be parameterized by
two dimensionless quantities: the Coulomb coupling parame-
ter Γ = β(Q2/a) and the screening parameter κ̄ = κa, where
β = 1/kBT , T is the temperature, a = (πn)−1/2 is the 2-D
Wigner–Seitz radius, and n is the particle number surface den-
sity. In the following, we use a as the length unit (e.g., r̄ = r/a,
k̄ = ka) and ωp =

√
2πQ2n/ma as the frequency unit, where

m is the mass of the particles. For a perfect triangular lattice,
the conversion between Wigner–Seitz (a) and lattice-length (b)
units can be performed using the equality b2 = a22π/

√
3.

In the following, we briefly introduce the three methods
applied in our studies.

Manuscript received August 4, 2006; revised October 25, 2006. This work
was supported in part by National Science Foundation under Grant PHY-
0206695, in part by the Department of Energy Grants DE-FG02-03ER54716,
DE-FG02-04ER54804, and in part by Hungarian Grants OTKA-T-48389,
OTKA-PD-049991, MTA-OTKA-90/46140.

P. Hartmann is with the Research Institute for Solid State Physics and Optics
of the Hungarian Academy of Sciences, 1525 Budapest, Hungary (e-mail:
hartmann@sunserv.kfki.hu).

Z. Donkó is with the Department of Laser Physics, Research Institute for
Solid State Physics and Optics of the Hungarian Academy of Sciences, 1525
Budapest, Hungary.

G. J. Kalman and P. M. Bakshi are with the Department of Physics, Boston
College, Chestnut Hill, MA 02467 USA.

S. Kyrkos is with the Department of Chemistry and Physics, Le Moyne
College, Syracuse, NY 13214 USA (e-mail: kyrkoss@lemoyne.edu).

M. Rosenberg is with the Department of Electrical and Computer Engineer-
ing, University of California, San Diego, La Jolla, CA 92093-0407 USA.

Digital Object Identifier 10.1109/TPS.2007.893259

Fig. 1. Schematic orientation of the triangular lattice.

A. Lattice Calculations

Lattice summation technique is used to study the system in
the zero-temperature limit (ground state). This method is based
on the harmonic approximation where the particles oscillate
around their equilibrium positions in a local potential well,
created by all other particles. The amplitude of the oscillation
is infinitesimal; therefore, the shape of the potential well can be
approximated with a quadratic surface, and anharmonic effects
can be neglected [1], [2].

The dispersion relations of plane waves can be obtained by
solving the eigenvalue problem [1]∥∥ω2(k, ϕ)δµν −Dµν(k)

∥∥ = 0 (1)

where k is the wavenumber vector and ϕ is the propagation
angle (with respect to a predefined direction, the x-axis in this
case, pointing toward the nearest neighbor, see Fig. 1). Dµν(k)
is the dynamical matrix defined as

Dµν(k) = − 1
m

∑
i

∂2Φ(ri)
∂riµ∂riν

(eık·ri − 1) (2)

where ri is the position and Φ(ri) is the potential contribution
of the ith triangular lattice site, respectively. Summation runs
over all lattice sites with 0 < ri < R, where R is the cutoff
radius (which is, e.g., of the order of 40 lattice side lengths for
a κ̄ = 2 system).

B. Molecular Dynamics (MD) Simulation

The numerical simulation is based on the MD method [3]
using a rectangular simulation box and periodic boundary
conditions. The exponential decay of the Yukawa interaction
potential makes it possible to introduce a cutoff radius Rcut.
Only the particle pairs separated by less than Rcut are taken
into account in the force calculation in the solution of Newton’s
equation of motion. Rcut is determined by the screening para-
meter κ and is defined to produce a relative error < 10−9 in
the force calculation. In the present case (for κ̄ = 2), Rcut ≈
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12a ≈ 0.1L, where L is the simulation box side length. At
the beginning of the simulations, the N = 3960 particles are
situated at the triangular lattice sites (oriented as shown in
Fig. 1), with random velocities sampled from a Maxwellian
distribution. Following an initialization period, during which
the velocities of the particles are scaled back in each time step
to maintain the prescribed value of the temperature, the system
reaches its stationary state and the particles move without any
thermostation. Our computer experiments are performed in
this second “measurement” phase of the simulation, where the
total energy is conserved (with a relative error of < 10−6) and
the instantaneous temperature (calculated from the per particle
average kinetic energy using 〈(1/2)mv2〉 = kBT ) fluctuates
around its equilibrium value.

Longitudinal and transverse current fluctuation spectra are
obtained through the Fourier transforms [4]

L(k, ω) =
1

2πN
lim

∆t→∞
1
∆t

|F {λ(k, t)}|2

T (k, ω) =
1

2πN
lim

∆t→∞
1
∆t

|F {τ(k, t)}|2 (3)

of the microscopic quantities

λ(k, t) = k
∑

j

vjx exp(ikxj)

τ(k, t) = k
∑

j

vjy exp(ikxj) (4)

where the index j runs over all particles and ∆t in (3) is the
duration of data recording. In the MD simulations, only two
directions of propagation are considered: along the x- and y-
axes [for the latter, x and y are interchanged in (4)]. Dispersion
curves represent the spectral peak positions.

C. Quasi-Localized Charge Approximation (QLCA)
Calculations

The concept of the QLCA theory is based on the separability
of particle-oscillation and diffusion time scales in the strongly
coupled liquid phase [5], [6]. The validity of this assumption for
the strongly coupled liquids has already been proven in earlier
studies [7]. The liquid phase can be described in terms of the
isotropic equilibrium pair correlation function g(r). To obtain
the phonon dispersion, one then has to solve the eigenvalue
problem

∥∥∥∥ω2(k, ϕ)δµν − Ω2
0(k)

kµkν

k2
−Dµν(k)

∥∥∥∥ = 0 (5)

where now

Dµν(k) = − n

m

∫
∂2Φ(r)
∂riµ∂riν

(eık·ri − 1) [g(r)− 1] dr. (6)

The g(r) is the pair-correlation function, which is obtained
from our MD simulations. Ω0 is the Vlasov value of the

Fig. 2. Lattice normal mode dispersions and polarization angles (ϑ) for the
two principal directions ϕ = 0◦ and 30◦. The polarization is the angle between
the normal mode eigenvectors and the wavenumber vector k. Full and dotted
lines represent the data of the two eigenmodes for κ̄ = 2.

longitudinal plasmon frequency for a 2-D Yukawa system

Ω2
0(k̄)
ω2

p

=
k̄2√

k̄2 + κ̄2
. (7)

The above equations result in the following dispersion formulas
for the longitudinal and transverse modes:

ω2
L/ω

2
p =

k̄2

2

∞∫
0

Λ(kr, κr)g(r)dr̄

ω2
T /ω

2
p =

k̄2

2

∞∫
0

Θ(kr, κr)g(r)dr̄ (8)

with

Λ(x, y) =
e−y

x2

[
(1 + y + y2)− (4 + 4y + 2y2)J0(x)

+ (6 + 6y + 2y2)
J1(x)
x

]

Θ(x, y) = 2
e−y

x2
(1 + y + y2) [1− J0(x)]− Λ(x, y) (9)

where J0(x) and J1(x) are the Bessel functions of the first kind.

II. COMPARISON OF THE RESULTS

In this section, we compare the results obtained using the
methods discussed in Section I, both with each other and with
the experimental results of Piel et al. [8].
1) Lattice Dispersion: While it is sufficient to consider k

values within the first Brillouin zone to obtain a full information
on the frequency spectrum, it is instructive to follow the dis-
persion for high values of k and study the angular dependence
of the periodicity of the ω(k) curves. Simple periodicity of
ω(k) in k prevails only in the principal directions of the lattice
(Fig. 2). In a general direction 0 ≤ ϕ ≤ 30◦, the period in k is
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Fig. 3. Lattice normal mode dispersions and polarization angles (ϑ) for a di-
rection corresponding to m = 4 and n = 10 (ϕ = 13.8979◦). The periodicity
in this case is k̄ = ka = 23.7891. κ̄ = 2.

given by [9]

k̃period =
4π√
3

√
m2 +mn+ n2 (10)

in the lattice-length units, where m and n are minimal integers
satisfying

tan
(π

6
− ϕ

)
=

m
√
3

m+ 2n
. (11)

Moreover, “longitudinal” and “transverse” polarizations occur
only in the principal directions, while in general, the polariza-
tions are mixed and the polarization angle ϑ (the angle between
the normal mode eigenvectors and the wavenumber vector k) is
a sensitive function of k and ϕ (Fig. 3).

Longitudinal (L) and transverse (T ) modes can be projected
based on the normal-mode data with

ω2
L =(k̂ · ê1)2ω2

1 + (k̂ · ê2)2ω2
2

ω2
T =

[
1− (k̂ · ê1)2

]
ω2

1 +
[
1− (k̂ · ê2)2

]
ω2

2 (12)

where k̂, ê1, and ê2 are the unit vectors parallel to the
wavenumber (k) and normal-mode eigenvectors (e1 and e2),
respectively. ω1 and ω2 are the normal-mode frequencies.
2) Lattice Versus MD: Lattice dispersions represent the

T = 0 ground state situation. Finite temperature dispersions
in the solid phase can be computed with the MD simulation
method. For comparison with the lattice data, we have per-
formed a simulation at a very low temperature with a coupling
parameter Γ = 104 and with particles initially placed at the lat-
tice sites. In the simulations, the measurements are performed
along the two principal directions (k parallel to x- and y-axes).
Due to the hexagonal symmetry of the underlying lattice, the
ϕ = 90◦ and ϕ = 30◦ cases are equivalent.

The comparison in Fig. 4 shows a very close agreement
between the two methods. Since the lattice calculations rests

Fig. 4. Lattice (lines) and MD dispersions (symbols) for Γ = 104 and κ̄ = 2.
Compared are both x (0◦, Lx/Tx) and y (90◦, Ly/Ty lattice equivalent is
ϕ = 30◦) k directions.

Fig. 5. Angularly averaged lattice (dashed lines) and QLCA (solid lines)
dispersions of longitudinal and transverse modes using pair-correlation (g(r))
data from an MD simulation at Γ = 360 and κ̄ = 2.

on solid foundations, this agreement verifies the consistency of
the computational procedure.
3) Lattice Average Versus QLCA: The QLCA describes the

collective behavior of the strongly coupled isotropic liquids,
and therefore, a direct comparison of the QLCA results with
those of the lattice calculations cannot be done. Nevertheless,
on the microscopic level, the strongly coupled liquid systems
still emulate an anisotropic lattice environment (with random
orientation of the principal axes), and thus, comparison of the
QLCA results with an angularly averaged longitudinal (L) and
transverse (T ) lattice mode dispersions, in fact, is useful. This
comparison is shown in Fig. 5.
4) Solid–Liquid Transition: The changes in the dynamical

properties of the system during the solid–liquid phase transition
can be monitored by performing a series of MD simulations in
the vicinity of the expected phase transition temperature (Γm ≈
415 for κ̄ = 2) [10]. Fig. 6 shows L and T dispersions in both
principal directions for three different values of the coupling.
Γ = 500 represents a relatively high-temperature solid,

where lattice defects may already show up, but the overall
behavior (sharp separation of the x- and y-directions) reflects
the conservation of the triangular crystalline structure.

The Γ = 405 case corresponds to a temperature slightly
higher than the melting temperature, where all long-range or-
der in the system has already been extinguished, but locally,
most of the particles sit in the somewhat distorted hexagonal
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Fig. 6. Comparison of MD (L and T ) dispersions in the solid phase (Γ =
500), just after melting (Γ = 405) and in the liquid phase (Γ = 200) for
κ̄ = 2. Shown are both x and y polarizations.

environment. The “oscillatory” feature in the T mode around
ka = 2.5 can be taken as an indication for the transition from
the ordered lattice to the disordered liquid state through the
formation of disoriented domains of the local hexagonal order.
The orientations of these domains become more decorrelated
with increasing temperature.

The Γ = 200 system is a typical strongly coupled liquid.
Most prominent features are the isotropy of the dispersion (x-
and y-directions are equivalent) and the appearance of a finite
wavenumber cutoff for the T mode. This can be explained by
the fact that liquids are not able to sustain long-wavelength
shear modes.
5) MD Liquid Versus QLCA: In the liquid phase, both the

MD and QLCA methods are applicable. In fact, the QLCA uses
the pair-correlation functions (e.g., from MD simulations) as
the input data. Getting the g(r) from the MD simulation is,
however, computationally much cheaper than computing the
dynamical fluctuation spectra and dispersions. Besides its ana-
lytic nature, this computational efficiency is the main advantage
of the QLCA method.

To test the accuracy of the different approaches, we have
performed the MD simulations for a series of Γ and κ pa-
rameters. Fig. 7 shows, as an example, the dispersion curves
of the longitudinal mode for Γ = 120 and κ̄ = 0, 1, 2, and 3
[11], [12].
6) QLCA Versus Experiment: For a theoretical work it is

essential to obtain a link to the experimental findings. The com-
parison of transverse mode dispersions with the experiments
in the liquid phase is made possible by using the results of

Fig. 7. Comparison of MD (symbols) and QLCA (lines) longitudinal disper-
sion relations for Γ = 120 and κ̄ = 0, 1, 2, and 3.

Fig. 8. Comparison of QLCA (lines) transverse dispersions for κ̄ = 0 and
1 with experimental results for 1.9- and 2.3-W laser heating powers taken
from [8].

Piel, Nosenko, and Goree, as shown in Fig. 8. The experiment
was carried out in a modified GEC reference cell. Spherical
dust particles were injected into a room-temperature argon
gas discharge powered at 13.56 MHz. The temperature of the
levitating particle suspension was controlled using external
laser beams at powers of 1.9 and 2.3 W. Shear waves were
excited by an additional laser beam and were identified by
recording particle coordinates, followed by spatial Fourier
analysis (for more details, see [8]).

Since the comparison is made in absolute quantities, the
overall agreement between the experiment and the 2-D QLCA
model is quite satisfying.

III. SUMMARY

We have investigated the 2-D Yukawa systems in the solid
and liquid phases through various theoretical and computational
approaches. Lattice calculations provide a reliable reference
data for the system in the ground state. MD simulations are
capable of investigating the system in the full strongly coupled
domain, based on very few approximations (first principles).
The QLCA is a semianalytic approach useful for theoretical in-
vestigations in the isotropic (liquid) phase. Comparative studies
(using all of these methods) provide valuable information about
the reliability of the methods and the accuracy of the results.
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