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Molecular Dynamics Studies of Solid–Liquid
Phase Transition in 2-D Yukawa Systems
Péter Hartmann, Zoltán Donkó, Pradip M. Bakshi, Gabor J. Kalman, and Stamatios Kyrkos

Abstract—We present systematic studies aimed at investigating
the precise details of solid–liquid phase transition in 2-D classical
many-particle systems interacting with the Yukawa potential. This
is done by introducing and analyzing a variety of indicators, such
as the bond angular order parameter, the angular distribution
of the Einstein oscillations, local angular correlations, global po-
sitional correlations, and the variation of internal energy in the
vicinity of the melting temperature. Our results consequently show
rapid changes around Γ = 415 for κ̄ = 2 of the investigated
quantities.

Index Terms—Molecular dynamics (MD) simulation, phase
transition, strongly coupled plasma, 2-D Yukawa system.

I. INTRODUCTION

S TRONGLY coupled plasma layers can be created in com-
plex (dusty) plasma experiments [1] and charged colloidal

suspensions [2]. The dust particles tend to develop crystalline
structures at low enough temperatures and a liquidlike behav-
ior at intermediate temperatures. However, it has been shown
theoretically that an exact long-range order cannot survive in
1-D and 2-D systems at finite temperatures T > 0 [3]–[6]; thus,
infinite single crystals do not exist in 2-D.

The interparticle interaction between the dust particles in
a single layer can be modeled by a Yukawa-type potential
(energy) Φ(r) = (Q2/r)e−κr, where Q is the charge of one par-
ticle. We further assume equal mass and charge for all particles.
This model system can fully be parameterized by two dimen-
sionless quantities, namely 1) the Coulomb coupling parameter
Γ = β(Q2/a) and 2) the screening parameter κ̄ = κa, where
β = 1/kBT , T is the temperature, a = (πn)−1/2 is the 2-D
Wigner–Seitz radius, and n is the particle number surface
density. In the following, we use a as the length unit (e.g.,
r̄ = r/a) and ω0 =

√
2πQ2n/ma as the frequency unit, where

m is the mass of a particle.
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A. Molecular Dynamics (MD) Simulation

The numerical simulation is based on the MD method [7],
using a rectangular simulation box and periodic boundary
conditions. The exponential decay of the Yukawa interaction
potential makes it possible to introduce a cutoff radius Rcut.
Only particle pairs separated by less than Rcut are taken into
account in the force calculation in the solution of Newton’s
equation of motion. Rcut is determined by the screening pa-
rameter κ and defined to produce a relative error of < 10−9

in the force calculation. At the beginning of the simulations,
the particles are situated at triangular lattice sites with ran-
dom velocities sampled from a Maxwellian distribution. After
an initialization period, where the velocities are continuously
scaled back to maintain the prescribed average value until the
system reaches its stationary state, the particles move without
any thermostation. Our computer experiments are performed in
this second “measurement” phase of the simulation, where the
total energy is conserved (with a relative error of < 10−6) and
the instantaneous temperature (calculated using the per-particle
average kinetic energy 〈(1/2)mv2〉 = kBT ) fluctuates around
its equilibrium value.

To scan the temperature range of interest, we have carried out
identical simulations for several different Γ values. Results are
presented in the parameter range of Γ = 390 − 435 for κ̄ = 2.
The number of particles in the simulations is N = 63 360.
At this system size, the standard deviation of the statistical
fluctuation of the measured Γ value is σ = ±0.3%.

B. Computed Quantities

To study the nature of solid–liquid phase transition, we have
observed a variety of quantities that can be expected to be good
indicators of the level of order in the simulated systems. These
quantities are given as follows:

1) Bond-Order Parameter: Originally introduced by
Halperin and Nelson [8] and is given by

GΘ =
1
N

∣∣∣∣∣
N∑

k=1

1
6

6∑
m=1

exp(i6Θk,m)

∣∣∣∣∣ (1)

where k runs over all particles of the system and m runs
over the neighbors of the kth particle. Θk,m is the angle
between a predefined (e.g., x) direction and the vector
connecting the kth and mth particles. This parameter is
constructed to give a “1” for the perfect triangular lattice
and a “0” for random configurations.
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2) Einstein Frequencies: The normal modes of oscillations
of a test charge in the presence of a given (static) dis-
tribution of charges [9]. To obtain statistical data of the
oscillation frequencies and polarizations, we have con-
structed histograms based on a few hundred temporally
uncorrelated particle configurations. For the raw data, one
has to calculate the harmonic matrix for every particle for
a given configuration, i.e.,

H
(i)
αβ =

N∑
j �=i

∂2Φ(|req
i − rj |)

∂riα∂riβ
(2)

where req
i is the equilibrium position of the ith particle

(local minimum of the potential surface), Φ(r) is the
interaction potential, and α and β represent the Cartesian
coordinates. The eigenvalues of Hαβ are the squared
Einstein frequencies (two for every particle), while the
eigenvectors provide the polarization of the oscillation.

3) Disorder-Related Energy: A global measure of the level
of disorder in the system compared to the perfect lattice
state.

The total energy of the system is the sum of the kinetic
K and potential V contributions, i.e.,

E = K + V =
N∑

i=1

1
2
mv2

i +
N−1∑
i=1

N∑
j>i

Φ(|ri − rj |) . (3)

The “excess” potential energy is Vexc = V − L, where
L is the ground state energy of the perfect triangular
lattice [L = 0.0365964(Q2/a) per particle for κ̄ = 2, as
calculated by numerical lattice summation]. Based on the
theorem of equipartition, in the harmonic approximation,
〈Vexc〉 = 〈K〉, where 〈〉 denotes the time and ensemble
average value per particle. The harmonic approximation
is valid only for very low temperature systems, where the
oscillation amplitude of the particles is low enough. Near
the melting transition,

W =
〈Vexc〉 − 〈K〉

〈K〉 (4)

is expected to deviate significantly from zero, due to
the increasing disorder in the particle distribution and
anharmonicity of the particle motions.

4) Long-Range Pair Correlation: To measure positional
long-range correlations, we have computed the g(r) pair-
correlation function (PCF) in the range of 0 ≤ r̄ ≤ r̄max

(which is limited by the size of the simulation box and the
periodic boundary condition; in our case, r̄max = 120).
To quantify the strength of the positional correlations, we
have tentatively introduced the quantity

G =

rmax∫

0

[g(r) − 1]2 dr. (5)

We expect that this quantity (aside from its significant
dependence on rmax and the short-range structure) is

Fig. 1. Bond-order parameter versus Γ for κ̄ = 2.

Fig. 2. Average of Einstein frequencies versus Γ for κ̄ = 2.

able to show rapid changes in the long-range tail of the
PCF (for large enough rmax, the short-range contribution
becomes less important).

II. RESULTS OF THE SIMULATION

In this section, we present the study of the dependence of
the quantities described previously on the measured coupling
parameter Γ in the vicinity of the expected solid–liquid phase
transition. The error-bars, where available, indicate the standard
deviation of the fluctuating quantities.

The bond-order parameter GΘ (Fig. 1) shows a rapid change
from GΘ < 0.05 to GΘ < 0.6 in the range of Γ = 407− 418
with an inflection point around Γ = 414.

The average value of the Einstein frequencies [ωE = 〈ω2〉1/2

(Fig. 2)] also shows significant dependence on Γ. In the solid
phase, lower frequencies are expected, due to the fact that the
triangular lattice is energetically the “best” configuration in
2-D, where the interparticle distances are maximized. Conse-
quently, the average steepness of the potential surfaces around
the local equilibrium positions of particles is minimized. The
inflection point of the plotted curve is around Γ = 415.

Fig. 3 shows the distribution of the polarization angle of
the first (higher frequency) normal mode in a polar plot for
several values of Γ. The polarization of the Einstein oscillations
also depends on the underlying structure. The perfect trian-
gular lattice is isotropic to second order in the expansion of
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Fig. 3. Distribution of the polarization angle of the higher frequency mode for
several values of Γ for κ̄ = 2. The curves are scaled for better visualization, the
units are arbitrarily chosen, and there are zero-angle points in the direction of
the first neighbor in the lattice (x-axis).

Fig. 4. Modulation strength of the angular distribution of Einstein oscillations
versus Γ for κ̄ = 2. The inset shows the slow decay of P for large Γ values.

Hαβ (harmonic approximation; outer curve approximated with
Γ = 105). The liquid configuration, on the other hand, is also
isotropic, on average, due to the lack of any preferred direction
(inner curve with Γ = 405). At intermediate states (starting just
below the freezing temperature), the disordered solid structure
introduces strong anisotropy (see also the inset of Fig. 4).

The angular dependence of the distribution of the polariza-
tion shows hexagonal symmetry (like snowflakes) and can be
approximated in the form y = h cos(6ϕ) + y0. The modulation
strength is therefore P = h/y0 (the so-called “snowflake am-
plitude”). Fig. 4 shows the dependence of P on Γ. The center
of the transition shows up around Γ = 414, which is similar to
the previously introduced quantities.

Fig. 5 shows the disorder-related energy, as introduced in
(4). W is expected to reach 0 in the Γ → ∞ limit. The center
(inflection) of this transition is slightly shifted to higher Γ
values around the range of 415–416.

Fig. 6 shows quantity G derived from the g(r) PCF [see
(5)]. This quantity exhibits weak Γ dependence in the liquid
phase (for more information about the structural properties of
the liquid phase, see, e.g., [10] and [11]) and somewhat stronger
Γ dependence in the solid phase. These two branches are
connected by a steep intermediate region featuring an inflection
around Γ = 417.

Fig. 5. Disorder-related energy (4) versus Γ for κ̄ = 2.

Fig. 6. Long-range pair-correlation strength (5) versus Γ for κ̄ = 2. The units
of G are arbitrary, and proper normalization is needed for the final definition of
this preliminary quantity.

The particle-number dependence of these results is investi-
gated by applying the same measurements to three different
systems with N = 63 360, N = 15 840, and N = 3960. Com-
parative plots are shown for the bond-order parameter in Fig. 7.
The standard deviation of the fluctuating quantities (such as
the measured Γ parameter) shows strong N dependence, which
can be approximated by σ ∝ N−1/2. On the other hand, no
significant change in the slope of the curves can be observed
in the transition region.

III. CONCLUSION

We have performed equilibrium analysis of the solid–liquid
phase transition in 2-D Yukawa systems. Results are shown for
κ̄ = 2 systems. All the quantities studied show a pronounced
transition in the Γ = 410− 420 interval. The central value
(Γm = 415) corresponds to an effective Coulomb coupling
parameter ([10], [11]) Γ∗

m = 137.5 in very good agreement
with the widely accepted experimentally obtained value of
Γm = 137 ± 15 [12].

Due to the finite size of the system, we cannot determine
whether the continuous changes observed are indicative of the
order of the phase transition or are caused by the finite size
itself. On the other hand, the behavior in the transition domain
according to our present studies does not show significant
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Fig. 7. System-size dependence of the bond-order parameter.

dependence on the number of particles: This makes extrapo-
lation to the thermodynamic limit very uncertain.

Theoretical investigations (see, e.g., [8] and [13]) and some
numerical studies of the melting transition in 2-D systems
indicate the appearance of two melting stages. According to this
theory, as the system is heated, it first transforms from solid to
the so-called “hexatic” phase, where the long-range positional
order is suppressed, but orientational order still survives. At
somewhat higher temperatures, the orientational order also
disappears, and the system enters the liquid phase. This issue
of the number of distinct phases in relation to the 2-D Coulomb
or Yukawa systems has been, for some time, a matter of intense
controversy [14]–[18].

Our work provides some additional insight by studying
quantities that can be characterized by their degree of depen-
dence on orientational or positional order. In particular, bond-
order parameter GΘ is very sensitive to the orientational order
but does not really depend on the positions. The same goes
for polarization of the Einstein oscillations P (the snowflake
amplitude). Disorder-related energy W and average Einstein
frequency ωE are expected to depend on both orientational
and positional orders. On the other hand, long-range pair-
correlation strength G is, by definition, an angularly averaged
quantity, so it depends purely on positional order. Approxi-
mating the “exact” transition temperature (or Γm) with the
inflection point of the measured curves, the obtained values
show slight differences for the three groups of quantities,
namely i) Γm(GΘ, P ) ≈ 414, ii) Γm(W,ωE) ≈ 415−416, and
iii) Γm(G) ≈ 417. However, we have to add the caveat that,

due to the finite (small) system size, the level of fluctuations
is too high to allow one to make reliable statements about this
issue; with this notwithstanding, the observed trend provides a
guideline for further investigations.
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