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Abstract. The quasilocalized charge approximation (QLCA) has been used for some time as a 
formalism for the calculation of the dielectric response and for determining the collective mode 
dispersion in strongly coupled Coulomb and Yukawa liquids. The approach is based on a 
microscopic model in which the charges are quasilocalized on a short-time scale in local potential 
fluctuations. We review the conceptual basis and theoretical structure of the QLC approach and 
together with recent results from molecular dynamics simulations that corroborate and quantify the 
theoretical concepts. We also summarize the major applications of the QLCA to various physical 
systems, combined with the corresponding results of the molecular dynamics simulations and point 
out the general agreement and instances of disagreement between the two. 

Preamble 
Perhaps no other theoretical idea has played a more important role in the evolution of theoretical plasma 
physics and in the many body physics of charged particle systems than that of the linear response theory 
and the concomitant applications of the Fluctuation-Dissipation Theorem.  Both of them have created the 
very foundation for most of our works presented here and elsewhere.  A somewhat less popular, but 
equally powerful concept, upon which the central idea expounded in this article is based, is the notion of 
collective variables.  Yuri Klimontovich’s central role in the development of the use of the Fluctuation-
Dissipation Theorem in plasma physics is widely known.  The role that his seminal work on the 
microscopic phase space distribution function played in the development of the technique of collective 
variables, by emphasizing the focus on the time evolution of microscopic dynamical variables in the 
analysis of collective phenomena, although less appreciated, is not less important. We are mindful of our 
indebtedness to his ideas as we dedicate this work to the memory of Yuri Klimontovich. 

1.  Introduction 

In strongly coupled plasma physics, the classical coupling parameter Γ = q2 aT  is the customary 
measure of the ratio of the average potential energy to the average kinetic energy per particle; a is the 
interparticle distance or Wigner–Seitz radius and T is the temperature in energy units.  In strongly coupled 
classical plasma systems, Γ >>1.  Examples are numerous: laboratory dusty plasmas; charged particles in 

Institute of Physics Publishing Journal of Physics: Conference Series 11 (2005) 254–267
doi:10.1088/1742-6596/11/1/025 Kinetic Theory of Nonideal Plasmas

254© 2005 IOP Publishing Ltd



 
 
 
 

cryogenic traps; condensed matter systems such as  molten salts, ions in liquid metals, classical electrons 
trapped on the free surface of liquid helium; astrophysical systems -such a as the ion liquid in white dwarf 
interiors, neutron star crusts, supernova cores, and giant planetary interiors. A similar strong coupling 
situation arises in degenerate electron or hole liquids in solid or liquid metals and two-dimensional and 
layered semiconductor nanostructures. In these latter systems the source of the kinetic energy is the Fermi 
energy rather than the temperature and the conventional coupling parameter accordingly is given by 

  rs
= a / a

BOHR
.  

Our main concern in this paper is the analysis of the collective behavior in strongly coupled Coulomb 

and Yukawa systems. The formal tools for this are the dielectric function εµν
AB kω( ) [having a tensor 

character (subscripts) in real space and a matrix character (superscripts) in species space] and the 

dynamical structure function 
  
S AB kω( ), or more generally, the dynamical current-current correlation 

function
  
Tµν

AB kω( ). 

It is well known that many body Coulomb systems can be treated with relative ease in the extreme 
limits of weak interaction and very strong interaction, respectively. In the first case, one is faced with a 
gaseous system, or a Vlasov plasma (Γ=0), where correlation effects can be treated perturbatively ( Γ<1). 
In the second case, the system crystallizes (into a Wigner crystal, if it is a single component plasma or 
electron gas) where particles are completely localized ( (Γ → ∞) and phonons are the principal 
excitations. The strongly coupled plasma is technically in the liquid state, where both free motion and 
localization intervene and there is a strong interaction between individual particle motion and collective 
excitations.  All this was recognized in the early works of Klimontovich [1] and Bohm, Gross and Pines 
[2]. Our principal observation is that from the point of view of collective behavior it is the localization—
even though imperfect localization, or quasilocalization—of particles that plays the principal role.  In 
contrast to the Vlasov plasma where the collective modes arise from the fluid-like continuum behavior, in 
the strongly coupled liquid they are more related to the normal modes of the interacting quasilocalized 
particles.  This, of course, suggests a link with the harmonic phonon theory of crystal lattices.  At the same 
time, one has to allow for the randomness of the distribution of the particles and for the finite lifetime of 
the localization in the constantly changing potential landscape.  This latter process is expected to be 
primarily responsible for the damping of the collective modes, in contrast both to Vlasov plasmas, where 
Landau damping dominates and to weakly correlated plasmas where collisional damping is the principal 
damping mechanism.  This physical picture suggests a microscopic equation-of-motion model where the 
particles are trapped in local potential fluctuations. The particles occupy randomly located sites and undergo 
oscillations around them.  At the same time, however, the site positions also change and a continuous 
rearrangement of the underlying quasi-equilibrium configuration takes place.  Inherent in this description is 
the assumption that the two time scales are well separated and that for the description of the fast oscillating 
motion, the time average (converted into ensemble average) of the drifting quasi-equilibrium configuration is 
sufficient.  Here the distinction between the "direct" and "indirect" thermal effects should be emphasized: 
The former are responsible for the actual motion and migration of the particles and give rise, e.g., to the 
3k2<v2> Bohm-Gross [2] term in the third-frequency-moment sum rule coefficient.  The latter refer to the 
accessibility of the possible configurations of the random sites and to the temperature dependence of the 
probability of a particular configuration; this aspect is well represented in the QLCA through the Γ 
dependence of the equilibrium pair correlation and static structure functions. 

The Quasilocalized Charge Approximation (QLCA) is based upon the above observations. In this paper 
we review the formal structure of the theory (Section II).  We introduce collective coordinates in terms of 
which the Hamiltonian can be rewritten.  The resulting equation of motion for the collective coordinates 
ultimately translates into an expression for the dielectric function and dispersion relations for collective 
excitations This “primitive” stage of the theory well represents the”indirect”thermal effects, insofar as the 
random distribution of the particles is concerned, but ignores the “direct” effect of the migrational-
diffusional delocalization of the particles. A further, more recent development of the theory (the “extended” 
QLCA) (Section III) allows one to include the effect in the dispersion but not in the damping of the modes.  
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The QLCA, both the primitive and the extended version, has thus far been applied to a variety of 
Coulomb liquids: (i) the three-dimensional (3D) one-component plasma (OCP)[3], (ii) the 2D OCP[4], (iii) 
charged particle classical layered structures[5], (iv) the binary ionic mixture (BIM) in a neutralizing uniform 
background [6], (v,vi) 3D and 2D Yukawa plasmas [7,8]. (vii) degenerate 2D electron liquid [9] (viiii) 
charged particle bilayer of a degenerate electron liquid [10]).  A review is given in [11].  A more up to date 
summary is a part of Section V. 

The inputs required in the calculations are the static pair correlation functions (PCF).  In earlier works 
[4,5b,7b] we relied on HNC generated PCF-s.  With the advent of computer simulation techniques it turned 
out to be both more expedient and more accurate to import simulation generated PCF-s in the calculations.  
Our works [5c, 5d, 8] used PCF-s derived from classical molecular dynamics (MD) computations, while the 
calculations of [9, 10] were based on PCF-s computed by quantum Diffusion Monte Carlo (DMC) methods. 

Over the past half decade or so, numerous MD simulations have been generated on many of these 
strongly coupled plasma systems.  One of the goals of these works was to examine in detail the validity of 
the conceptual basis of the theory [12,13,14] (discussed in Section IV); another line of studies was directed 
at generating independent data on the dynamics of strongly coupled Coulomb and Yukawa systems. A 
review of the combined assessment of the QLCA theoretical and MD simulation data is given in Section V. 

2.  Collective coordinates 
 
Consider now a multi-component system (species A,B,C…) with the interaction potential  
 

  
ϕ

AB
x

i
− x

j( )⇒ϕ
AB

k( ) 

 
Assume that the particles are quasilocalized (i.e. localized for the duration of the dynamics of interest) at 
quasi-equilibrium positions xi; the dynamical coordinates are the ξi, the deviations from these quasi-

equilibrium positions. Then the interaction part of the Hamiltonian becomes  
 

   
U =

1

2
Kµν

AB

i, j
∑ x i - x j( )ξi,µ

A ξ j,ν
B  (1) 

 
where the effective interaction K is related to the dipole potential M associated with ϕ  (in the following 
we omit species indices-they can be restored fairly routinely when needed): 
 

   

Mij,µν = ∂µ∂νϕ x i - x j( )
Kij,µν = Mij,µν 1− δ ij

⎡
⎣

⎤
⎦ −δ ij Mim,µν

m
∑

 (2) 

 
In Eq. (2) the first term represents the effect of the displacements of the other particles on a selected 
particle, while the second term represents the restoring force due to the fixed environment of the other 
particles. 

We now introduce collective coordinates ξk (t) defined by 

 

   
ξi,µ (t) =

1

Nm
ξk ,µ (t)eik ⋅x

i

k
∑  (3) 

 
and its conjugate momentum  
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, , ,
1

( ) ( ) ii
i it m t e

Nm
⋅

µ µ µπ ≡ ξ = π∑ k x
k

k
 (4) 

  
IInn  tteerrmmss  ooff  tthhee  ccoolllleeccttiivvee  ccoooorrddiinnaatteess  tthhee  HHaammiillttoonniiaann  nnooww  hhaass  tthhee  ssttrruuccttuurree  
 

H = T + U

T =
1

2
π q,µ

q, ′q
∑ π − ′q ,µρ ′q −q

 (5) 

   

U =
N

2m
Mµν (k) ρ ′q −k

ρ
k −q

− ρ ′q −k −q
ρ

k
+ nδ

k
ρ ′q −q

⎡⎣ ⎤⎦ξ− ′q ,µξ
q,ν

p,q,k
∑

ρk =
1

N
eik ⋅x i

i
∑

  ((66))  

 
The ρ-s represent the fluctuating background density and they are not dynamical variables.  It is 
interesting to note though that, similarity notwithstanding, the collective coordinates we use are 
substantially different from the collective coordinates originally introduced by Bohm and Gross and Bohm 
and Pines [2], which, if adapted to the in the present scenario, would be 
 

   
η

k ,µ =
1

mN
ξ

i ,µeik ⋅x i

i
∑  (7) 

 
Our collective coordinates allow for the description of correlational effects beyond the RPA in U. In 
contrast, using  an Eq. (7) description generates an RPA type U-term in the Hamiltonian and attributes 
deviations from RPA behavior to nonlinear wave-wave interaction (originating from T) and to wave-
particle interaction generated by an additional wave-particle interaction piece in the Hamiltonian. 

The principal approximation of the QLC method is to replace the fluctuating microscopic densities and 
their products by their ensemble averages. This leads to the following prescription (S(k) is the static 
structure function): 
 

{ }( )S N′ ′ ′− − − − − −⇒ = +q k k q q k k q q k q qq - kρ ρ ρ ρ δ δ  (8) 

n⇒ =k k kρ ρ δ  (9) 

 
Thhee  rreessuulltt  iiss  tthhee  QQLLCCAA  HHaammiillttoonniiaann  ffoorr  tthhee  ccoolllleeccttiivvee  ccoooorrddiinnaatteess  
 

1 1
( ) ( )

2 2

n
H

m
⎡ ⎤= + +∑ ∑ ⎢ ⎥⎣ ⎦

k -k k -k
k k
π π k kk k ξ ξD ϕ  (10) 

 
The central role is played by the Dynamical Matrix DD  which plays a role similar to that of the eponymous 
quantity in the description of lattice phonons, but here it is the functional of the equilibrium pair 
correlation function:  
 

    

DAB (k) =
n

A
n

B

m
A
m

B

qqϕ
AB

q( )
q
∑ S AB k - q( )− δ AB n

C

n
A

ϕ
AC

q( )S AC q( )
C
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  (11) 
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Straightforward algebra (see e.g. [11]) leads from this Hamiltonian both to equations of motion 
for the collective coordinates of the type 
 

{ }2
0 ( ) ( )= ω +k kξ k k ξD  (12) 

 
and, more interestingly, to the dielectric tensor: 
 

( ) ( )
( )

2
0

2
= −

−
k

k
k

ω
ε 1

D
ω

ω
 (13) 

 

The frequency matrix 
   
ω

0
AB k( )represents the RPA frequencies of the system, 

 

   
ω

0
2 k( )⎡⎣ ⎤⎦

AB

=
n

B

m
B

ϕ
AB

k( )k 2  (14) 

 
while the dynamical matrix D is responsible for all the correlational effects,  
 

    

DAB (k) =
n

A
n

B

m
A
m

B

qqϕ
AB

q( )
q
∑ S AB k - q( )− δ AB n

C

n
A

ϕ
AC

q( )S AC q( )
C
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  (15) 

The dielectric tensor of Eq. (13) leads to the dispersion relations for the collective modes along the 
standard procedure, through its longitudinal (L) and transverse (T) matrices.  With the neglect of 
retardation effects, one finds 
 

( ) ( )
( ) ( )1

0

0

L L

-
T T

= →

= →

ε k k

ε k k

ω ω

ω ω
 (16) 

Insofar as the longitudinal modes are concerned, correlations affect the RPA mode structure in a number 
of ways: changing the character of the dispersion (OCP), removing the degeneracy of modes (BIM), 
generating an “energy (finite frequency) gap” at k=0 (bilayer), etc. Transverse shear modes are, of course, 
purely correlational phenomena and would not appear in any perturbative (weak coupling) description of 
the liquid state. 

The theoretical structure described so far represents the “primitive” QLCA.  It has been applied with 
considerable success to a number of physical systems, both with Coulomb and Yukawa interaction, as it 
will be elaborated in Section V.  The primitive QLCA, however, by ignoring the random motion, either 
due to temperature (”direct thermal effect” ), or to the Fermi energy in the degenerate electron gas, is 
deficient in two important ways: first, the thermal dispersion (that is responsible for the positive slope of 
the plasmons dispersion in a Vlasov plasma, as first pointed out by Bohm and Gross [2] and by 
Klimontovich [1], and also for the development of the ion-acoustic mode in a two component plasma) is 
not accounted for, and, second, all mechanisms leading to damping are absent in the description.  In the 
strongly coupled phase, where particles are quasi-localized, both Landau and collisional damping are 
suppressed and one expects that the migrational-diffusional delocalization of the charges is the main 
source of the finite lifetime and thus of the damping of the oscillations.  While the precise description of 
this scenario is still to be worked out, a technique to include some aspects the random motion is discussed 
in the next Section. 
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3.  Extended QLCA 
In the foregoing derivations it was implied that the base densityρ

k is time independent.  This is a good 

approximation from the point of view of high-frequency oscillations, but becomes less so at lower 
frequencies.  This random motion will affect the evolution of correlations between a selected pair of 
charges and will also give rise to a direct wave-particle interaction.  It is this latter that we address in the 
following.  We follow a one component longitudinal formalism whose results, however, can be easily 
generalized to include other than longitudinal polarization and multi-component scenarios. 

Consider the system as now being a combination of subsystems: in each subsystem the base density is 
made up of particles having a velocity v.  We can define collective coordinates for each subsystem as 
before: 
 

   
ξ

i ,µ (v) =
1

mN
ξ

k ,µ (v)
k
∑ eik ⋅xi (t )  (17) 

 
Then 
 

( ) ( )
, ,

1
( ) ( ) ii t

i i e
mN

⋅
µ µξ = − ω− ⋅ ξ∑ k x

k
k

v k v v  (18) 

 
i is now to be understood to be an index labeling a particle within the group for a given v; summation over 
the particles now involves summation both over i and v.  The force acting on a particle is determined by 
the totality of the other particles; thus the equation of motion becomes 
 

   
ω − k ⋅ v( )2

ξ
k
(v) = ω

0
2(k) + D(k;v ′v ){ }

′v
∑ ξ

k
( ′v )  (19) 

 
In this notation we have emphasized that the instantaneous correlations are, in fact, velocity dependent. 
Ignoring this aspect however, one finds 
 

   
ω − k ⋅ v( )2

ξk (v) = ω
0
2 (k) + D(k){ } ξk ( ′v )

′v
∑  (20) 

 

Dividing by
  
ω − k ⋅ v( )2

, summing over v and rearranging leads to the dispersion relation 

 

   

1−
ω

0
2(k) + D(k)

ω − k ⋅ v( )2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪v
∑ = 0  (21) 

 
We now replace the summation over velocity groups by integration over the D-dimensional equilibrium 
velocity distribution function:  
 

    

1

ω − k ⋅ v( )2
v
∑ ⇒ dDv

f v( )
ω − k ⋅ v( )2∫ = − dDv

k ⋅
∂f v( )

∂v
ω − k ⋅ v∫  (22) 
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The integral now can be identified as the ingredient of the classical RPA “screened” density response 
function. Indeed 
 

   

χ
0

kω( )=
n

m
k 2 d dv

f v( )
ω − k ⋅ v( )2∫ = −

n

m
d dv

k ⋅
∂f v( )

∂v
ω − k ⋅ v( )∫  (23) 

 
To make further contact with the language customary in many-body theory, we introduce 
 

   
G(k) = −

D(k)

ω
0
2(k)

 (24) 

 
Combining these results we find that the dispersion relation of Eq. (21.) is identical to the usual mean field 
dispersion relation 
 

   
1− ϕ k( )χ

0
kω( ) 1− G k( )⎡⎣ ⎤⎦ = 0  (25) 

 
The response function can be derived along similar lines. Consider the perturbation by an external 
potential Φ: 
 

   
ω − k ⋅ v( )2

ξ
k
(v) = ω

0
2(k) + D(k){ }

′v
∑ ξ

k
( ′v ) − i

n

m
Φ kω( ) (26) 

 
The perturbed density ρ becomes 
 

  
ρ kω( )= ik ⋅ ξk

v
∑ v( ) (27) 

Recalling that 
 

 
ρ kω( )= χ kω( )Φ kω( ) (28) 

 
a summation over v and a rearrangement immediately provides 
 

   

χ kω( )=
χ

0
kω( )

1− ϕ k( )χ0
kω( ) 1− G k( )⎡⎣ ⎤⎦

 (29) 

 
for the density response function and 
 

   

ε(kω) = 1−
ϕ k( )χ

0
kω( )

1+ ϕ k( )χ
0

kω( )G k( )
 (30) 

 
for the dielectric response function. 

The formal result of Eq (30), with 
  
χ

0
kω( ) being the Lindhard function, has been well known in the 

theory of the electron gas for a long time, where G(k) is referred to as the mean field or static local field 
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correction.  There have been countless efforts to calculate G(k) by perturbation approaches, ad hoc 
methods and through the application of the non-perturbative  Singwi-Tosi-Land-Sjolander (15) theory: 
none of these approaches is especially adaptable to the problem of strong coupling dynamics.  It should be 
realized that the structural similarity notwithstanding, here G(k) is a pure product of the QLCA, and 
neither in its domain of applicability, nor in its physical justification is the same as the conventional mean 
field. 

In publications [4, 9, 10] we used what amounts to the extended QLCA, although the derivation of Eq. 
(30) in those works was based on a heuristic formal argument. The results obtained will be elaborated 
upon in Section V. 
 

  
Figure 1. Potential landscape of a 2D segment 
of a 3D OCP at Γ=80. Light (red) shading 
indicates high, dark (green) shading indicates 
low values of the potential energy. 
 

 Figure 2. Trajectory segments in a 2D Yukawa 
system at Γ=120 and κ=1, recorded for 6.5 
plasma oscillation periods. The circled area 
shows a characteristic region with strong caging 
( κ = a / λDEBYE ) . 

4.Particle localization 
The conceptual basis for the QLCA has been a model that implies the following assumptions about the 
behavior of a strongly coupled Coulomb or Yukawa liquid: 

i. in the potential landscape, deep potential minima form that are capable of trapping (caging) 
charged particles; 

ii. a caged charge oscillates with a frequency that is determined both by the local potential well and 
the interaction with the other (caged) particles in their instantaneously frozen positions; 

iii. the potential landscape changes slowly to allow the charges to execute a fair number of 
oscillations; 

iv. the uncaging of particles is caused by the gradual disintegration of the caging environment; the 
time scale of this process is determined by the coupling strength; 

v. the (time- and velocity-dependent) correlation between a selected pair of particles is well 
approximated by the (time- and velocity-independent) equilibrium pair correlation functions;  

vi. the frequency spectrum calculated from the averaged (correlated) distribution of particles 
represents, in a good approximation, the average of the distribution of frequencies originating 
from the actual ensemble. 

 
Hypotheses (i), through (iv) have undergone careful testing by a series of MD simulation experiments for 
both Coulomb and Yukawa systems and for both 2D and 3D configurations by Donko and collaborators 
[12,13,14].  We refer to the publications for details, but a brief summary of the conclusions follows. 
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With increasing Γ values, a visual inspection of the potential landscape clearly indicates the formation 
of potential wells (Figure 1). Examination of the phase space trajectories reveals a clear morphological 
difference between low Γ and high Γ situations: in the first case, the trajectories are open, interrupted by 
propagating oscillatory portions, while in the second case the trajectories are mostly closed and exhibit a 
loop structure characteristic of localized oscillatory motion (Figure 2) [12]. An accompanying inspection 
of the particle trajectories in a 2D system shows the existence of regions both with closed localized and 
with open trajectories (Figure3) [13]. 

The quantification of the relationship between localization and the strength of the coupling has been 
done by invoking a technique due to Rabani et al [16]. Here a “cage correlation function” was introduced 
to characterize the gradual disintegration of the cage created by the nearest neighbors, and to render the 
description of the process of escape of the caged particle quantifiable. The main result, shown in Figure 4 
for a 3D Coulomb system [12], illustrates the duration (in terms of oscillation cycles) of the caging 
(decorrelation time, Tdecorr) as a function of Γ; Tdecorr exhibits an exponential dependence on Γ and it is 
revealed that localization becomes significant for Γ>10. Further studies [13] verified that this picture 
remains qualitatively valid for 2D configurations and Yukawa interaction as well. 

 

 

Figure 4. Number of oscillation cycles (cage 
decorrelation time in units of the plasma period) 
over which the cage disintegrates and the particle 
gets uncaged. The sharp Γ -dependence can be 
fitted to an exponential. The D1 and D2 labeling 
refers to two different definitions of the nearest 
neighbors, to which the process is clearly 
insensitive. 

 
 

 
The analysis of the frequency spectrum is a more involved issue and is part of an ongoing program in 

collaboration with P Bakshi [14,17].  Preliminary results for the frequency spectrum of a single particle 
trapped in a cage show a distribution ranging largely between the plasma frequency and the Einstein 
frequency of the system, as expected [12, 13, 14].  A more careful analysis of the measured spectrum and 
its comparison with the one expected on the basis of the QLCA dispersion should reveal the extent to 
which hypothesis (vi) is valid. 

Figure 3. Phase space trajectories of a 3D OCP (a) at strong coupling (Γ=160) and (b) at relatively 
weak coupling (Γ=2.5). Note the quasilocalized, drifting harmonic oscillator-like behavior at strong 
coupling. 
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In general, one can conclude that computer simulations have placed the conceptual foundations of the 
QLCA on a solid basis. 

5.  Results and comparisons 
Over the years the QLCA has been applied to obtain collective mode dispersion for various strongly 
coupled Coulomb and Yukawa systems. The results, in most cases, have been compared with the 
corresponding outcomes of MD simulations.The following physical systems have been studied: 

i.  the 3D OCP; 
ii.  the 2D OCP; 
iii.  the classical charged particle bilayer; 
iv.  the 3D BIM; 
v.  the 3D Yukawa system; 
vi.  the 2D Yukawa system; 
vii.  the 2D degenerate electron gas; 
viii.  the degenerate electronic bilayer 
 

Figure 5. Comparison of the QLCA and MD of Ref. [19] dispersion curves for a 2D OCP at Γ=50:  
(a) longitudinal plasmon mode; (b) transverse shear mode – the MFT label represents the result of an 
extended QLCA calculation (ω = ω / ωo , k = ka, ω0

2 = 2πe2n / ma, nπa2 = 1) . 

 
Figure 6. Comparison of RPA, QLCA and MD dispersion curves for a charged particle classical 
bilayer at Γ=40;  (a) the four (L=longitudinal T=transverse, + =in-phase, – =out-of-phase) modes at 
d/a=0.3; (b) L– mode only at d/a= 0.8-5.0. Note that the QLCA data for the L– mode are not shown in 
(a), but they would be about 25% below the MD curve. Observe the gap formation for small layer 
separation in the L– mode  and that for large layer separation (weakened interlayer correlations)  the 

mode reverts to an acoustic behavior. (k = ka, ω0
2 = 2πe2n / ma, nπa2 = 1)  
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In the following we give a brief summary with some illustrative results and point out where the QLCA 
predictions have been corroborated and where discrepancies between theoretical predictions and 
simulation findings have arisen. 

In the MD computer simulations the peaks of S(kω), TL(kω) and TT(kω) were identified as the mode 
frequencies. In one case the widths and heights of the peaks were also analyzed: since no prediction on 
these quantities ensue from the QLCA, the findings were compared with a more ad hoc model, discussed 
in [18]. 

In two early papers [4] the longitudinal and transverse (shear) excitations of a 2D OCP were analyzed 
within the framework both of the primitive and extended QLCA and compared with the MD simulations  
of Totsuji and Kakeya [19] (Figure 5).  Clearly, the extended QLCA points provide a superior agreement. 

A great deal of attention has been paid, both theoretically and in terms of simulations to the behavior of  
a classical charged particle bilayer system, where two 2D layers of charged particles are separated from 
each other by a distance d, comparable to the average interparticle separation a within the layers. Such a 
classical model is expected to well represent the collective mode behavior of semiconductor bilayers, even 
though the electron gas in these systems is degenerate (see below).The most dramatic prediction of the 
QLCA emerged from the analysis of the bilayer system: it was found that the longitudinal and transverse  
out-of-phase modes develop an energy gap (frequency gap) at k=0 [5a, 5b];  this is in contrast to the 
prediction of  the RPA analysis  (for the longitudinal mode,  which is  

Figure 7. Comparison of the QLCA and MD of 
Ref. [23] dispersion curves for a 3D Yukawa 
plasma at Γ=395 and κ=2. 
(q = ka, ω p

2 = 4πe2n / m, 4 3nπa3 = 1, κ = a / λDEBYE )

 

 
Figure 8. Comparison of the RPA, QLCA and MD dispersion curves for 2D Coulomb (Γ=120 and 
κ=0) and Yukawa plasmas at Γ=160 and κ=1,  Γ=360 and κ=2,  Γ=1050 and κ=3 values. Dashed 
lines: RPA; continuous line: QLCA; symbols: MD. (a) longitudinal mode, (b) transverse shear mode. 

(k = ka, ω p
2 = 2πe2n / ma, nπa2 = 1, κ = a / λDEBYE ) . Note the finite k cut-off of the shear mode.  
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the only one accessible to the RPA), where the out-of-phase mode has an acoustic dispersion. While this 
prediction sounded controversial, subsequent MD simulation unambiguously verified its correctness [5c, 
5d, 20]. The comparison of the theoretical and simulation data is shown in Figure 6. There is one 
remarkable difference between the two sets of results for the out-of-phase mode: for small layer separation 
(d/a<1) the MD data are systematically higher (maximum 30%) and for larger layer separation (d/a>1) 
systematically lower than the corresponding QLCA data. The origin of this discrepancy is not well 
understood. 

QLCA analysis of the two component BIM system led to the identification of the expected four (two 
longitudinal and two transverse) modes [6].  This should be contrasted with the single longitudinal mode 
resulting from a “cold” RPA calculation (the ion acoustic type mode is a thermal effect).  Thus 
correlations remove the degeneracy of modes, but one would expect a substantial modification of the 
primitive QLCA results when thermal effects are included. Computer simulation work on this system is in 
progress [21] without definitive results at this time. 

The application of the QLCA to Yukawa plasmas [7, 8] (as a model for dusty plasmas or charged 
colloidal systems) has reproduced the MD results both for 3D [22] (see Figure 7) and for 2D [8] ( see 
Figure 8), with the applicable proviso noted below. 

A general feature that emerges from all the QLCA theory vs. MD simulation analyses is that there are 
two major areas of discrepancy. One relates to the behavior of the dispersion for relatively high k (ka>3) 
values: in this domain the QLCA generates an oscillatory ω(k) behavior (see e.g. Figure 5).  On the one 
hand, this domain is not accessible to current MD simulations and thus no real comparison seems to be 
possible. On the other hand, from the trend discernible from the available data, it seems questionable 
whether  the ocillatory dispersion is a realistic feature of the liquid state.  The other discrepancy concerns 
the k->0 behavior of the transverse shear modes.  It is well known that the liquid state cannot support 
shear in this limit: this can be regarded as the direct consequence of the diffusional-migrational behavior, 
whose characteristic time certainly becomes shorter than the acoustic ω->0 period of the shear mode. 
Since the primitive QLCA does not account for this process, it is not surprising that it provides an 
incorrect acoustic (ω->0 as k->0) shear dispersion.  In fact, simulation results converge to confirming the 
existence of a finite kc cut-off (ω->0 as k-> kc) in all the systems investigated. 

 

Figure 9: Comparison of RPA and extended 
QLCA plasmon dispersion curves for rs=10, 20 
40 values with experimental data of Ref [23] 
with an effective r

s
*=13.44. Dashed lines: 

RPA; continuous line: QLCA; symbols: MD. 
The hatchured region is the RPA pair 
continuum 
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It has recently become possible to perform realistic extended QLCA calculations for 2D and bilayer 
systems of degenerate zero temperature electron systems, by importing g(r) pair correlation functions 
generated by DMC technique.  The results of our 2D analysis [9], using g(r) data of Tanatar and Ceperley 
[23] are shown in Figure 9. Here the comparison with actual experimental data for the highest available, 
but relatively low r

s
 values (r

s
=13) [24] indicates a better agreement for the low-k plasmon dispersion than 

what has been obtained through other approaches. As to the electronic bilayer, our work] is based on the 
g(r) data, generated by Senatore and Rapisarda [10].  The analysis confirms  the validity of the expectation 
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that the degenerate system would have the same qualitative behavior—in particular would develop an 
energy gap—as the more thoroughly analyzed classical one.  To date though, there is no well analyzed 
experimental confirmation of the energy gap [see, however [25]). 
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