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We present investigations of the combined effects of Debye–Hückel repulsive and overlapping Debye
spheres attractive interaction potentials around charged dust particles on collective modes, phase
separation and ordered structures in a strongly coupled dusty plasma. We obtain static and dynamical
information via Molecular Dynamics simulations in the liquid and crystallized phases and identify the
onset of an instability in the transverse mode, by using lattice summation method. The results are useful
for understanding the origin of coagulation/agglomeration of charged dust particles and the formation of
ordered dust structures in low-temperature laboratory and space plasmas.

 2012 Elsevier B.V. All rights reserved.

1. Introduction

Dusty plasmas are composed of electrons, ions and dust par-
ticles of different sizes (ranging from nanometer to micrometer).
Dust particles, which are negatively charged by absorbing elec-
trons from the background plasma, respond to electrostatic and
electromagnetic fields and become active components of the dusty
plasma system, especially when their dynamics comes into the pic-
ture at kinetic levels [1,2]. Dusty plasmas are ubiquitous in many
physical environments, viz. in interstellar media and nebulas, in
our solar system (e.g. Saturn’s ring system, cometary tails and co-
mas, in the Earth’s mesosphere and ionosphere), in industrial and
laboratory processing plasmas for high-technological applications
(also in medicine), as well in laboratory gas discharges and mag-
netically confined fusion reactors. In low-temperature laboratory
dusty plasmas on ground and on International Space Station under
microgravity, dust is intentionally introduced in plasmas for fun-
damental studies of collective phenomena at kinetic level (e.g. the
discovery of the dust acoustic wave [3]), involving an ensemble
of charged dust grains. In astrophysics, the coagulation of charged
dust particulates plays a significant role in the formation of large
scale structures (e.g. planetesimals). There are forthcoming space
missions for exploring the composition and dynamics of dust par-
ticles in the vicinity of Sun, as well on Mars and Moon.
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To describe the interaction between the charged dust particles
in dusty plasma systems, the Debye–Hückel (DH) potential φDH(r)
has been widely adopted as a model potential around a charged
dust grain that has a well defined surface potential. The DH po-
tential expresses that the Coulomb repulsion between the charged
gains of similar polarity is screened by the plasma environment,
where electrons and ions represent a polarizable background. Con-
sequently, the 1/r Coulomb potential is exponentially shielded over
a characteristics distance, the dusty plasma Debye radius [1] λD ,
and we have

φDH(r) = Q
4πε0

exp(−r/λD)

r
, (1)

where Q is the charge of the dust particles and ε0 is the permit-
tivity of free space.

At short interparticle distances, the DH interaction potential has
to be modified, since the Debye spheres of the neighboring grains
would overlap [4]. From classical electrostatics, one can then derive
an additional term of the interparticle potential that expresses the
interaction between these overlapping Debye spheres (ODS) [4,5].
The resulting (total) potential in this case becomes

φODS(r) = Q
4πε0

[
1
r

− 1
2λD

]
exp(−r/λD), (2)

which exhibits an attractive force between charged dust grains of
the same polarity at distances beyond r =

√
3λD .

In this Letter, we investigate the effect of this peculiarity
of the attractive potential on the structure of two-dimensional
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dust–plasma systems in the crystallized phase and in the strongly
coupled liquid phase, where the potential energy dominates over
the kinetic energy, i.e. Γ $ 1, where Γ is the coupling parameter,
viz.

Γ = Q 2

4πε0akB T
. (3)

Here kB is the Boltzmann constant, T the dust temperature, and
a = (1/πn)1/2 the Wigner–Seitz radius (that characterizes the
inter-dust particle spacing), with n being the dust particle number
density. We also introduce the dimensionless screening parame-
ter

κ = a
λD

. (4)

In a previous theoretical investigation [6], the attractive term
in φODS(r) has been shown to cause instability of transverse dust
lattice oscillations. Considering the nearest neighbor interactions
only, the onset of instability was identified at b/λD >

√
3 + 1,

where b is the lattice constant. For the triangular lattice b ≈
1.905a, the critical screening value in terms of the inter-grain spac-
ing becomes κc = a/λD ≈ 1.43.

As regards to the strongly coupled liquid phase, Molecular Dy-
namics simulations have confirmed that φODS(r) gives rise to an
uneven spatial distribution (agglomeration) of dust particles [7].

2. Methods

In our numerical work, we use a standard Molecular Dynam-
ics simulation method with Langevin dynamics [8,9]. The system
is two-dimensional and we use periodic boundary conditions. We
carry out computations with both potentials, φDH(r) and φODS(r).
The simulations are initialized either by a spatially random particle
configuration (in the studies of the liquid phase, with N = 10,000
dust particles) or by a lattice configuration (in the studies of the
crystallized phase, with N = 9180 dust particles). The side lengths
of the simulation box are chosen to accommodate a perfect tri-
angular lattice. Initial dust particle velocities are sampled from a
Maxwellian distribution of the temperature T0, corresponding to
the specified value of the coupling parameter Γ . The interaction
between the dust particles is limited to distances smaller than
a cutoff radius, r∗ , which is chosen to be large enough so that
interparticle forces at r > r∗ become very small due to the expo-
nential term in the interaction potential. The neighbors of the dust
particles within r < r∗ are searched using the chaining mesh tech-
nique.

The equation of motion includes terms representing the fric-
tional damping and random forces, which express random colli-
sions of gas molecules with the charged dust particles. We have

m
dvi
dt

= −Q
N∑

j &=i

∇φi j − νmv+ R, (5)

where φi j is the interaction potential between dust particles i
and j, ν is the frictional damping, and R is a random force, see
e.g. [8,9]. In all our simulations, we use a small friction value,
Θ = ν/ω0 = 0.01, where ω0 =

√
nQ 2/2ε0ma is the nominal 2D

dust–plasma frequency, with m being the dust particle mass. We
introduce dimensionless distance as r̄ = r/a and the wave number
as k̄ = ka.

The pair correlation function and the static structure function
are derived in the simulations in the standard manner. Information
about the (thermally excited) collective modes and their dispersion
is obtained from the Fourier analysis of the correlation spectra of

the density fluctuations,

ρ(k, t) =
∑

j

exp
[
ikx j(t)

]
, (6)

yielding the dynamical structure function as [10]:

S(k,ω) = 1
2πN

lim
+t→∞

1
+t

∣∣ρ(k,ω)
∣∣2, (7)

where +t is the length of data recording period and ρ(k,ω) =
F [ρ(k, t)] is the Fourier transform of (6).

Similarly, the spectra of the longitudinal and transverse cur-
rent fluctuations, L(k,ω) and T (k,ω), can be obtained from Fourier
analysis of the microscopic quantities, respectively,

λ(k, t) =
∑

j

v jx(t)exp
[
ikx j(t)

]
,

τ (k, t) =
∑

j

v jy(t)exp
[
ikx j(t)

]
, (8)

where x j and v j are the position and velocity of the j-th par-
ticle. Here we assume that k is directed along the x axis (the
system is isotropic) and accordingly omit the vector notation of
the wave number. This calculation allows the derivation of the
spectra for a series of wave numbers, which are multiples of
kmin,x(y) = 2π/Lx(y) , where Lx(y) is the edge length of the sim-
ulation box in the x (or y) direction. The collective modes are
identified as peaks in the fluctuation spectra.

The phonon dispersion in the lattice configuration is calculated
in terms of the lattice dynamical matrix defined as

Cµν(k) = − Q
m

∑

i, j

∂µ∂νφ(r)(ri − r j)
[
e−ik·(ri−r j) − 1

]
, (9)

with a summation over all the lattice sites j, keeping i fixed
(ri = 0). The lattice dynamical matrix reflects the symmetry of the
underlying lattice. The diagonalization of Cµν is possible in the co-
ordinate system of the eigenvectors, whose orientations, in general,
do not coincide either with the direction of k or with the crystal-
lographic axes. To find the eigenmodes, we follow the traditional
method of solving the secular equation
∥∥ω2 − Cµν(k)

∥∥ = 0. (10)

3. Results

In Fig. 1 we present an overview of the main static character-
istics of our dusty plasma system: the four panels display the pair
correlation function [g(r)] and the static structure function [S(k)]
for the 0.5 ! κ ! 3 domain of the screening parameter, for both
types of potentials. The coupling parameter is fixed at Γ = 120; at
this value the system is in the liquid phase for the whole range of
κ values covered. Panels (a) and (b) correspond to φDH, while (c)
and (d) correspond to φODS. At small screening values, viz. κ " 1,
the g(r) and S(k) functions are similar for both potentials, showing
slightly less organized structures (indicated by smaller amplitude
the peaks) in the case of φODS. In the case of φODS, we observe ma-
jor changes in both static quantities in the vicinity of the screening
value κ ≈ 1.3. In g(r) a strong peak develops at small separations,
indicating particle agglomeration and S(k) suddenly increases at
small wave numbers, indicating development of large-scale struc-
tures.

Fig. 2 shows a comparison between systems characterized by
φDH and φODS, at Γ = 100 and κ = 2. At this screening strength,
the system with φODS already exhibits agglomeration, as the par-
ticle snapshot and the corresponding pair correlation function (in
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Fig. 1. Static characteristics of the 2D dusty plasma obtained with φDH (top row) and with φODS (bottom row). (a), (c) Pair correlation function, g(r/a), (b), (d) static structure
function S(k). Γ = 120.

Fig. 2. MD simulation results obtained with the potentials φDH (top row) and φODS (bottom row). (a), (e) Snapshots of particle positions, (b), (f) pair correlation functions,
(c), (g) spectra of longitudinal current fluctuations, and (d), (h) spectra of transverse current fluctuations. Γ = 100, κ = 2.

panels (e) and (f) of Fig. 2) illustrate. A notable difference in the
L(k,ω) spectrum is the significant increase of the maximum mode
frequency from ω/ω0 ≈ 0.5 (at φDH) to ≈1.1 (at φODS), and an in-
crease of the wave number where this frequency is found, from
k ≈ 1.9 to ≈3.1. As the transverse mode is quite weak in the liq-
uid phase, it is more difficult to characterize quantitatively the
frequency of this mode, but an increase of the frequency is ob-
servable, too.

Next, we compare the results of our MD simulations with those
obtained from lattice summation. To be able to do that, we have
initialized the simulations with a lattice configuration and set a
very high coupling value, Γ = 104. Fig. 3 shows the results for
three cases: (i) φDH with κ = 1, (ii) φODS with κ = 1.47, and

(iii) φODS with κ = 1.48 The lattice is stable in the first two
of these three cases, while the third case belongs to the un-
stable domain with φODS. The MD and lattice calculation results
are in very good agreement for the stable cases. The figure ex-
hibits that the L and T modes are superimposed, at propaga-
tion directions of α = 0◦ (the direction of the nearest neighbor)
and α = 30◦ . In these propagation directions, the polarization of
the modes becomes purely longitudinal and transverse, in other
directions the polarizations mix. At κ = 1.49 complicated struc-
tures appear in the fluctuation spectra that are difficult to inter-
pret.

Fig. 4 displays the results of lattice summations for the
eigenfrequencies of the two modes, for φODS, characterizing the
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Fig. 3. Sum of the current fluctuation spectra, L(k,ω) + T (k,ω), derived from the MD simulations (color maps) and dispersion relations of the collective excitations obtained
from zero-temperature lattice summation (solid lines: black: longitudinal modes, white: transverse modes). Upper row (a), (c), (e): propagation direction: α = 0◦ , bottom
row (b), (d), (f): α = 30◦ . (a), (b) φDH with κ = 1, (c), (d) φODS with κ = 1.47, (e), (f) φODS with κ = 1.48. All MD runs have been initialized with lattice configuration of
particles, at Γ = 104. For the color maps the scale is logarithmic and covers three orders of magnitude.

Fig. 4. Results of lattice summations for the eigenfrequencies of the two modes, for φODS. Red color denotes quasi-longitudinal and blue color denotes quasi-transverse
modes; note that the polarization of the modes is purely longitudinal or transverse in the principal directions (α = 0◦ and α = 30◦) only. The panels show the frequencies
in propagation directions between α = 0◦ and α = 30◦ with 1◦ resolution. (a) Stable domain, κ = 1.49. (b) Zoomed part of (a) showing the square of the mode frequencies
at small wave numbers. In this domain, all dispersion curves for α = 0◦ . . .30◦ overlap. (c) Same as (b), but for κ = 1.50; note the splitting of the dispersion curves and the
appearance of negative (ω/ω0)

2 values, indicative of an instability. The arrow shows increasing values of α. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this Letter.)

interaction of dust particles with overlapping Debye spheres.
Fig. 4(a) shows the dispersion relation of the modes with different
propagation directions, for κ = 1.49, which belongs to the stable
regime of the lattice at T = 0. The two branches of the curves cor-
respond to “quasi-longitudinal” and “quasi-transverse” modes. The
polarization of the modes is usually mixed, except for the prin-
cipal directions (α = 0◦ and α = 30◦), where the polarization is
purely longitudinal or transverse. Fig. 4(b) exhibits (ω/ω0)

2 values
for small wave numbers at κ = 1.49. In this domain, all dispersion
curves for α = 0◦ . . .30◦ overlap. Fig. 4(c) shows also a zoomed

part of the mode dispersion relations, but for κ = 1.50; at this
screening value negative (ω/ω0)

2 values appear that correspond
to an instability of the lattice.

The critical value of the screening parameter was found to be
κc = 1.4997 in our lattice calculations (that add contributions to
the dynamical matrix up to the 126th neighbors of the particles).
The theoretical calculations [6] taking into account the nearest
neighbor interactions only resulted in κc ≈ 1.43. In our MD sim-
ulations carried out for Γ = 104 we found that the lattice disin-
tegrates between κ = 1.47 and κ = 1.48, while in the fluid phase,
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as shown in Fig. 1 for Γ = 120, an instability occurs at κc ≈ 1.3.
These changes indicate the effect of the temperature on the devel-
opment of the instability.

4. Summary

Summing up, we have investigated the effect of an attractive
term of the interaction potential in addition to the DH potential,
conventionally used to model dusty plasmas, on the static and dy-
namical characteristics of many-body dust–plasma systems. Molec-
ular Dynamics simulations (with a Langevin approach) carried out
in the liquid phase showed that the onset of particle agglomer-
ation at screening values exceeding a critical value. The particle
agglomeration was accompanied with a significant increase of the
frequencies of the longitudinal and transverse collective excita-
tions. In the crystallized phase, the MD simulations revealed that
the hexagonal lattice becomes unstable at high screening. These
observations have been confirmed by harmonic lattice summations
in the zero temperature limit, which showed the development of
an instability in the (quasi-)transverse modes at the critical screen-
ing value of κc ≈ 1.4997. In conclusion, we stress that the results
of the present investigation are useful for understanding the origin

of agglomeration/coagulation of charged dust particles and the for-
mation of ordered dust structures in low-temperature laboratory
and space dusty plasmas [2].
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[9] L.J. Hou, Z.L. Mišković, A. Piel, P.K. Shukla, Phys. Plasmas 16 (2009) 053705.

[10] J.P. Hansen, I.R. McDonald, E.L. Pollock, Phys. Rev. A 11 (1975) 1025.


