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Abstract. The spatiotemporal relaxation of electrons in spatially one-dimensional plasmas acted upon by
electric fields is investigated on the basis of the space- and time-dependent electron Boltzmann equation.
The relaxation process is treated using the two-term approximation of an expansion of the electron ve-
locity distribution function in Legendre polynomials. To verify the complex Boltzmann equation approach
by a completely independent kinetic method, results for inhomogeneous column-anode plasmas of glow
discharges between plane electrodes are compared with corresponding ones obtained by Monte Carlo simu-
lations. The spatiotemporal electron relaxation in argon plasmas, subjected to a space-independent electric
field and maintained by a time-independent inflow of electrons at the cathode side of the plasma region,
is considered. Starting from steady state at a given electric field, the relaxation process is initiated by a
pulse-like change of the electric field strength and is traced until the spatially structured, time-independent
state associated to the changed field is reached. The behaviour of the velocity distribution function and
macroscopic quantities of the electrons in space and time is analyzed for enlarged and reduced electric field
strengths typical of the column region of glow discharges. In particular, the spatiotemporal reformation
of plasma structures has been found to progress in two phases, i.e., existing structures in the distribution
are driven to merge in wide plasma region first, followed by a formation phase of new spatial structures
which are induced by the cathode-sided inflow of electrons. The results for the macroscopic quantities and
the isotropic distribution functions obtained by Boltzmann and Monte Carlo calculations agree very well
during the spatiotemporal transient process as well as in the new steady state finally reached.

PACS. 52.25.Dg Plasma kinetic equations – 52.65.Pp Monte Carlo methods – 51.50.+v Electrical
properties (ionization, breakdown, electron and ion mobility, etc.)

1 Introduction

The study of the spatiotemporal relaxation of nonisother-
mal, collision-dominated plasmas under the action of an
electric field constitutes a topic of widespread interest. Re-
laxation processes are related, for example, to afterglow
decay, swarm techniques, pulsed discharges for plasma
light generation and problems of plasma processing.

For the physical understanding of the spatiotempo-
ral relaxation of these plasmas the behaviour of the elec-
tron component is of particular importance, since the elec-
trons energetically feed the other plasma components. The
power input to the plasma frequently takes place by the
injection of electrons in the presence of an electric field
or by an electron beam. Then, this power input is trans-
ferred to the heavy particles by elastic and different types
of inelastic electron collision processes, leading to dras-
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tic changes in the concentrations of various heavy parti-
cle components. This interplay between power input and
power dissipation in collisions causes the electron com-
ponent to usually be far from the equilibrium with the
instantaneous or local field in different stages of the relax-
ation process. Thus, the nonequilibrium behaviour of the
electron component in nonisothermal plasmas can only be
described on an appropriate microphysical basis.

In principle, two quite different approaches can be ap-
plied to microphysical studies of the behaviour of the
electrons. One of the approaches consists of the solution
of the electron Boltzmann equation. So far, the treat-
ment of this kinetic equation is widely restricted to time-
dependent, but spatially homogeneous plasmas [1–6] or to
space-dependent, but stationary plasmas [7–17]. In recent
years the spatiotemporal description of the kinetics of elec-
trons in spatially one-dimensional plasmas [18–20] became
possible, too. As a particular result of these latter studies,
it became evident that the physics of the spatiotemporal
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behaviour of the electrons differs substantially from that of
the purely time-dependent evolution in spatially uniform
plasmas. Thus, there is a basic necessity for a profound
analysis of the spatiotemporal behaviour of the electron
component, in order to obtain a deeper understanding of
the physics involved.

The other approach uses the techniques of particle sim-
ulation. Particle simulations have extensively been applied
to study particle transport under swarm conditions as well
as different types of DC and RF discharges, e.g. in [21–30].
The simulation technique has the advantage that it can
easily be applied to more complicated geometries than
the solution approach of the kinetic equation. However,
it is generally time consuming, since a large number of
electrons has to be treated in any simulation to get a
sufficient statistical resolution and thus accuracy for the
determination of e.g. the velocity distribution of the elec-
trons in the region of higher electron energies where the
inelastic collision processes occur. The treatment of the ki-
netic equation does usually not possess this limitation and
its computational expenditure is generally comparatively
low. Nonetheless, particle simulation techniques become
more and more adequate to microphysical studies because
of the continuous increase of computational power.

In the present paper, both these techniques have been
adopted to investigate the spatiotemporal relaxation of
the electron component in the column-anode plasma re-
gion of glow discharges between plane electrodes. The
plasma is acted upon by an electric field and sustained by
a continuous inflow of electrons at its cathode side. In par-
ticular, the spatiotemporal reformation of spatial plasma
structures in the axial direction caused by an abrupt
change of the electric field strength has been analyzed.

The time-dependent, spatially one-dimensional
Boltzmann equation of the electrons has been solved
by means of the recently developed method reported
in [20]. It is based upon the two-term approximation of
the velocity distribution function expansion in Legendre
polynomials and the quasi-stationary description of the
anisotropic part of the distribution. In order to verify
the complex treatment of the electron kinetic equation,
the same relaxation problem has been dealt with by
means of Monte Carlo simulations. The comparison of
results obtained by both approaches has been performed
for electric fields typical of the column region of glow
discharges. It concerns the isotropic and anisotropic part
of the velocity distribution function as well as selected
macroscopic quantities of the electrons.

The investigations are mainly aimed to elucidate the
physics involved in the spatiotemporal behaviour of plas-
mas and to verify the two-term approach of the electron
Boltzmann equation. On the other hand, the comparison
of the different kinetic approaches is meant to give a feel-
ing with respect to the performance of both techniques.
In particular, the applicability of Monte Carlo simulations
to studies of the space- and time-dependent evolution of
electrons is evaluated.

anodesource

0 L z

cathode

z
0

Fig. 1. Idealized arrangement of the plasma region between
plane electrodes.

2 Theoretical foundations

In order to perform comparative investigations of the spa-
tiotemporal electron relaxation by means of the solution
of the electron Boltzmann equation and Monte Carlo sim-
ulations, the specific relaxation process has to be defined
carefully. The various space- and time-dependent relax-
ation processes which can be described by the kinetic ap-
proaches can differ from each other by the imposed con-
ditions, for example, the density, temperature and atomic
data of the background gas, the electric field strength as
well as the initial values and boundary conditions.

In the present studies the conditions are chosen to re-
semble the column-anode plasma region of low pressure
glow discharges between plane electrodes. The simplified
plane-parallel geometry is shown in Figure 1. The spa-
tial variation of the plasma occurs only along the z axis.
A main task regarding the comparison of Boltzmann and
Monte Carlo calculation results consists in the adaptation
of correlated boundary conditions and initial values. In the
framework of the present relaxation model a continuous
inflow of electrons at the cathode side of the plasma re-
gion, i.e., at the position z = 0, takes place. In Boltzmann
equation studies the influx of electrons into a plasma re-
gion is naturally determined by prescribing the anisotropic
part of the velocity distribution [20,31] and no informa-
tion about the isotropic part of the velocity distribution
is required. The direct transfer of this description to the
Monte Carlo approach is not possible. Instead, the inflow
of electrons at the position z = 0 is assumed to come
from a source releasing electrons with a constant rate RS.
For these electrons an isotropic angular distribution has
been adopted. The energetic distribution of the released
electrons is chosen to equal the Gaussian function

G(U) = exp

[
−
(
U − Uc

Uw

)2
]

×
(∫ 2Uc

0

exp

[
−
(
U − Uc

Uw

)2
]

dU

)−1

(1)

in the range from 0 to 2Uc. The parameters of the
Gaussian distribution are the centre energy Uc and the
energy width Uw.

The electrons are subjected to the spatially uniform
electric field E = E(t)ez. To allow the acceleration of the
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electrons in the positive z direction toward the anode, E is
assumed to be negative everywhere. The anode is situated
at the position z = L, where L = 10 cm has been employed
for the calculations. The electrons reaching the anode are
assumed to be partially reflected. The additional effect of
an anode fall has not been taken into account.

Because of the electron source and of collisions of elec-
trons with neutral background gas particles, there is a
certain number of electrons in the region of z < 0 as well.
These electrons are also accelerated by the electric field ac-
tion toward the anode, so that sufficiently far away from
the source no electrons exist in the region z < z0.

To start the spatiotemporal relaxation process from
well-defined initial conditions, first the spatially struc-
tured, steady state at a given electric field has been deter-
mined by means of the solution of the electron Boltzmann
equation and Monte Carlo simulations. Then, the spa-
tiotemporal electron relaxation is triggered by an instan-
taneous change of the electric field strength, while keeping
the continuous inflow of electrons at the cathode side of
the plasma region unchanged. The reformation of the spa-
tial plasma structures in space and time is traced until ap-
proaching the spatially structured, steady state associated
with the changed field.

In the following, main aspects of the treatment of the
kinetic equation of the electrons and of the Monte Carlo
simulations are reported.

2.1 Boltzmann equation approach

Starting point for the analysis of the spatiotemporal
electron relaxation in nonisothermal, collision-dominated
plasmas is the space- and time-dependent Boltzmann
equation of the electrons

∂

∂t
F + v · ∇rF −

e0

me
E · ∇vF =

Cel(F ) +
∑
m

Cin
m(F ) + P̃S, (2)

where F (r,v, t) denotes the velocity distribution function
of the electrons with the charge −e0 and the mass me

and r, v and t are the space position, velocity and time,
respectively. Cel and Cin

m represent the collision integrals
for the elastic and the various (m) inelastic collision pro-
cesses of electrons with background gas particles, respec-
tively. For simplicity in the further representation, only
inelastic collision processes conserving the electron num-
ber are taken into account in the kinetic treatment. In
addition, the right-hand side of equation (2) includes the
term P̃S describing the effect of a source of electrons.

Considering a spatially inhomogeneous plasma with
the plasma inhomogeneity in the direction of the electric
field, i.e., parallel to the z direction, the velocity distribu-
tion function becomes symmetrical around the field and
gets the reduced dependence F (z, U, vz/v, t) on the space
coordinate z, the kinetic energy U = mev

2/2 with the ve-
locity magnitude v = |v|, the direction cosine vz/v and
the time t. Thus, the velocity distribution function can be

given an expansion in Legendre polynomials, which gets
the representation

F (z, U, vz/v, t) =
1

2π

(me

2

)3/2

×
(
f0(z, U, t) +

vz
v
f1(z, U, t)

)
(3)

in the lowest approximation order, the so-called two-term
approximation. When substituting this expansion and the
relation

P̃S(z, U) =
1

2π

(me

2

)3/2

U−1/2PS(z, U) (4)

into the Boltzmann equation (2) and when additionally
adopting the widely used assumption that the temporal
evolution of the anisotropic part f1(z, U, t) of the velocity
distribution function takes place in a quasi-stationary way
with respect to the temporal evolution of the isotropic
part f0(z, U, t) of the velocity distribution function and of
the electric field E(t), finally the three-dimensional partial
differential equation [20](me

2

)1/2

U1/2 ∂

∂t
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∂
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1
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−
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PS(z, U) = 0 (5)

for the isotropic distribution f0(z, U, t) results. Here N
and M denote the density and mass of the background gas
particles assumed to be at rest. Qd and Qin

m are the cross
sections for momentum transfer in elastic collisions and for
themth inelastic collision process with the energy loss U in

m .
On deriving equation (5) a truncation of each collision in-
tegral after the leading term of a further expansion with
respect to the ratio me/M of electron to gas particle mass
has been performed. As usual, the scattering processes as-
sociated with the inelastic collisions are assumed to be
isotropic, while arbitrary scattering in elastic collisions is
considered [32,33]. The isotropic source function PS(z, U)
describing the continuous inflow of electrons at z = 0
is specified by the relation PS(z, U) = RSG(U)h(z) with
h(z) = 1 close to z = 0 and h(z) = 0 elsewhere.

Equation (5) determines the evolution of the isotropic
part f0(z, U, t) of the velocity distribution in the space of
the coordinate z, the kinetic energy U of the electrons and
the time. After the abrupt field variation the isotropic dis-
tribution changes in time because of the overlapping im-
pact of the spatially varying electron motion, the electron
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acceleration in the electric field, the injection of electrons
by the source and different binary collision processes of
electrons with neutral background gas particles.

As regards the temporal evolution of the anisotropic
part f1(z, U, t) of the velocity distribution, a quasi-
stationary description is applied. Thus, the spatiotem-
poral behaviour of the anisotropic distribution is deter-
mined by that of the isotropic distribution according to
the relation

f1(z, U, t) = − 1
NQd(U) +

∑
mNQ

in
m(U)

×
(
∂

∂z
f0(z, U, t)− e0E(t)

∂

∂U
f0(z, U, t)

)
. (6)

Almost all relevant macroscopic quantities of the elec-
trons can be obtained by appropriate energy space aver-
aging over the isotropic and anisotropic distribution func-
tions. Thus, the determination of the spatiotemporal be-
haviour of the isotropic and anisotropic distribution makes
it possible to calculate the spatiotemporal evolution of
e.g. the density ne(z, t), the mean energy um(z, t), par-
ticle flux density j(z, t) = jz(z, t)ez and the energy flux
density je(z, t) = jez(z, t)ez of the electrons. The first two
quantities are obtained by energy space averaging over the
isotropic distribution f0(z, U, t), while the latter two are
averages of the anisotropic distribution f1(z, U, t). They
have the representation

ne(z, t) =
∫ ∞

0

U1/2f0(z, U, t)dU, (7)

um(z, t) =
1

ne(z, t)

∫ ∞
0

U3/2f0(z, U, t)dU, (8)

jz(z, t) =
1
3

(
2
me

)1/2 ∫ ∞
0

Uf1(z, U, t)dU, (9)

jez(z, t) =
1
3

(
2
me

)1/2 ∫ ∞
0

U2f1(z, U, t)dU. (10)

For the determination of the spatiotemporal relaxation
of the electrons in the framework of the two-term ap-
proximation and the quasi-stationary description of the
anisotropic distribution, equation (5) has been solved. The
powerful technique for the solution of this equation for
the isotropic distribution f0 in high accuracy has been de-
scribed in detail in [20]. A brief representation of main
aspects of the solution technique follows.

The natural solution region of the relaxation problem
is the region (z0 ≤ z ≤ L, 0 ≤ U ≤ U∞, t ≥ 0), where
z = z0 and z = L are the spatial margins and U∞ is
an appropriate upper limit of the kinetic energy above
which the isotropic distribution becomes negligibly small.
In order to solve equation (5), a transformation from the
kinetic energy U to the total energy ε = U + W (z) with
the potential energy W (z) = e0E(z − z0) has been per-
formed. The resulting three-dimensional partial differen-
tial equation for the transformed isotropic distribution is
numerically solved as an initial-boundary value problem
over the space of the spatial coordinate z and the total

energy ε proceeding in time. For the solution appropriate
boundary conditions in space and energy have to be given.
In particular, at the spatial margin z = z0 the isotropic
distribution equals zero, since sufficiently far away from
the source no electrons exist in the region of z ≤ z0. At
the anode, located at z = L, a condition characterizing
the absorption and partial reflection of electrons has to
be adopted. In accordance with the literature [15] it is as-
sumed that the anisotropic distribution at the anode is
proportional to the isotropic distribution with a constant
of proportionality describing the fraction of reflection.

The numerical solution of the partial differential equa-
tion for the transformed isotropic distribution has been
obtained by using a finite difference approximation on a
three-dimensional grid in the (z, ε, t) space. The discretiza-
tion has been done on an equidistant grid in space, total
energy and time and the discrete form of the partial dif-
ferential equation has been derived using second-order-
correct difference analogues for the transformed distri-
bution function and its partial derivatives following the
Crank-Nicolson scheme with respect to time. For each
time step a parabolic equation with regard to ε results
and the discrete representation of this equation has been
solved in the (z, ε) plane by using the powerful tridiag-
onal algorithm [34], where a progression of the solution
from higher to lower total energies has been found to be
favourable. Typically, an energy step size ∆ε of 0.05 eV
and a corresponding step size ∆z = ∆ε/(e0|E|) of the
space coordinate have been employed for the calculations
reported below in this paper. The time step sizes ∆t
ranged between 0.01 (at the beginning of the relaxation)
and 1 ns. Several thousand time steps were necessary to
approach the new spatially structured steady state [20].
To determine the relaxation behaviour up to steady state
for a given situation, a computing time of less than half a
day was required using a 400 MHz processor of a Silicon
Graphics Origin 2000 server.

2.2 Monte Carlo approach

Monte Carlo simulations of the spatiotemporal relaxation
processes have also been performed with the intention to
confirm or to find possible limitations of the two-term ap-
proach adopted for the solution of the Boltzmann equa-
tion. In the Monte Carlo simulation the trajectory of each
electron between collisions has been obtained by the simul-
taneous, numerical integration of the equation of motion
of the electrons

d2r

dt2
= − e0

me
E (11)

and the equation assigning the length of the free flight∫ sc

s0

NQT (U(s))ds = − ln(1−R01), (12)

where QT (U) = Qd(U) +
∑
mQ

in
m(U) is the energy-

dependent total cross section of electron collisions with
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the gas particles, s0 and sc denote the position of the free
flight start and that of the next collision measured on the
curvilinear path s along the trajectory and R01 is a ran-
dom number uniformly distributed between 0 and 1. Ow-
ing to the assumption that the electric field acts parallel
to the z direction (i.e., perpendicular to the plane elec-
trodes), the electron motion becomes symmetrical around
the field and the study of the electron motion reduces to
the phase space (z, U, vz/v, t) (see e.g. [35]). Sequences of
random numbers are used as well to determine (i) the type
of collision process that occurred after a free flight, tak-
ing into account the cross section values of the different
collision processes at the energy of the colliding electron,
and (ii) the change of velocity direction during a colli-
sion [36].

A second-order Runge-Kutta method has been used for
the simultaneous time integration of equations (11, 12).
This method has been found to represent a good com-
promise between accuracy and computational speed. It
provides sufficient accuracy, where a time step of 5 ps has
typically been employed. Further simulations have been
done using a fourth-order Runge-Kutta method. These
simulations confirmed the results obtained by the second-
order Runge-Kutta method at nearly doubled computing
time. Two independent simulation codes written in differ-
ent languages by different authors and executed on differ-
ent computers provide additional confidence in the relia-
bility of the Monte Carlo results.

The electron velocity distribution function and re-
lated macroscopic quantities have been determined dur-
ing the Monte Carlo simulation. Details about appro-
priate sampling methods can be found in the literature
(see e.g. [37,38]). In the present paper results for the
isotropic part f0 and the anisotropic part f1 of the ve-
locity distribution function as well as for related macro-
scopic quantities, namely the density, mean energy and
the particle and energy flux density of the electrons, are
represented. Several tests have been carried out to deter-
mine the adequate energy resolution and appropriate time
and space intervals. The results shown below have usu-
ally been obtained with the sampling intervals ∆UMC =
0.5 eV, ∆tMC = 0.1 µs and ∆zMC = 0.05 cm. These val-
ues provide a good statistics while ensuring that no spatial
or temporal structures are significantly smeared. To allow
the comparison between Monte Carlo and Boltzmann cal-
culation results of the velocity distribution function over
about five orders of magnitude, several months of comput-
ing time on one 400 MHz processor of a Silicon Graphics
Origin 2000 server are needed to determine the entire spa-
tiotemporal relaxation behaviour at a typical situation
reported in this paper. The use of a null-collision tech-
nique [21] could reduce the computational expenditure of
the Monte Carlo calculations, but to a limited extent only.

3 Results and discussion

Boltzmann and Monte Carlo calculations of the spatiotem-
poral electron relaxation have been performed for argon
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Fig. 2. Collision cross sections for argon.

plasmas at a gas density of N = 3.54 × 1016 cm−3 (cor-
responding to a gas pressure of 1 torr at a temperature
of 273 K). The cross sections of electron-argon collision
processes recommended by Phelps [39] have been used.
The cross section set is shown in Figure 2. It includes
cross sections of momentum transfer in elastic collisions,
total excitation with the energy loss U in

1 = 11.5 eV and
ionization with the energy loss U in

2 = 15.8 eV. Notice that,
for simplicity, in all calculations the ionization process is
treated as a conservative inelastic collision process which
does not change the electron number in the collision event.

Within the framework of the relaxation model,
column-anode plasma regions acted upon by a con-
stant electric field and sustained by a continuous inflow
Is of electrons at the cathode side have been consid-
ered. In the Monte Carlo simulations it is assumed that
2000 electrons per square centimeter are released from
the source at the position z = 0 every nanosecond, i.e.,
Is = 2× 1012 cm−2 s−1. This inflow corresponds to a rate
of Rs = Is/∆zMC = 4× 1013 cm−3 s−1 in the Boltzmann
calculations. The electrons are released isotropically and
the centre and width of their energetic distribution (1)
have been chosen to be Uc = 5 eV and Uw = 2 eV. At
the anode, i.e., at the position z = 10 cm, partial electron
reflection with a probability of 36% has been employed.

The calculations of the spatiotemporal electron re-
laxation for the argon plasma have been performed at
various electric field strengths typical of the column re-
gion of low pressure glow discharges. Here, results for
the spatiotemporal reformation of spatial plasma struc-
tures under the action of the two field strengths E = −6
and −2 V/cm are presented. The relaxation processes al-
ways start from the spatially structured, time-independent
state at a given electric field. They are triggered by an in-
stantaneous change of the electric field at the time t = 0
and are traced until the spatially structured, new steady
state associated with the changed field is reached. The
steady state at E = −2 V/cm has been used as ini-
tial condition for the electron relaxation under the ac-
tion of the field E = −6 V/cm, while the steady state
at E = −6 V/cm represents the initial condition for the
relaxation study at E = −2 V/cm. The discussion and



194 The European Physical Journal Applied Physics

0

5

10

z [cm]

0

5

10

15

U [eV]

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

f0(z,U,t) [eV -3/2 cm -3] t = 0.6 µs

0

5

10

z [cm]

0

5

10

15

U [eV]

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

f0(z,U,t) [eV -3/2 cm -3] t = 2 µs

0

5

10

z [cm]

0

5

10

15

U [eV]

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

f0(z,U,t) [eV -3/2 cm -3] t = 5 µs

0

5

10

z [cm]

0

5

10

15

U [eV]

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

f0(z,U,t) [eV -3/2 cm -3] t = 15 µs

(a) (b)

(c) (d)

Fig. 3. Isotropic distribution f0(z, U, t) as a function of the space coordinate z and the kinetic energy U for E = −6 V/cm at
the times t = 0.6 (a), 2 (b), 5 (c) and 15 µs (d).

analysis of the results presented in the following have been
performed with respect to the direction of the electron ac-
celeration starting from the electron source, i.e., for the
range between z = 0 and 10 cm. For the solution of the
electron kinetic equation (5) z0 = −5 cm has been used.

In order to illustrate the overall relaxation behaviour,
Figures 3a–3d show the spatiotemporal evolution of the
isotropic distribution f0(z, U, t) as a function of the space
coordinate z and the kinetic electron energy U at the
electric field E = −6 V/cm. The spatiotemporal alter-
ation of the isotropic distribution at the electric field
E = −2 V/cm is represented in Figures 4a–4d. The fig-
ures belong to several instants of the transient phase of
the relaxation course (Figs. 3a–3c and 4a–4c, respectively)
and to the respective established time-independent state
(Figs. 3d and 4d). The results have been obtained by the
solution of the electron kinetic equation (5).

From these figures main aspects of quite different spa-
tiotemporal relaxation processes can be observed. Starting
from the steady state distribution at E = −2 V/cm pre-
sented in Figure 4d, the sudden change of the electric field
to E = −6 V/cm at t = 0 initiates the relaxation course
illustrated in Figure 3. As it can be seen from Figure 3a,
the increase of the electric field magnitude and the corre-
sponding increase of the power input from the electric field
force the population at higher kinetic energies to grow.
The distribution function becomes spatially more homo-
geneous in wide regions of the plasma when compared

with the initial distribution. Close to the cathode side
margin the continuous inflow of electrons induces simul-
taneously the formation of new spatial structures in the
distribution function. This new spatial variation spreads
from the cathode side towards the anode with increas-
ing time (Figs. 3b and 3c) whereby the structural pattern
becomes more and more pronounced. Maintained by the
continuous inflow of electrons due to the source at the
cathode side, the structures mainly result from the over-
lapping action of the electron acceleration in the electric
field and the backscattering of electrons in their energy
space owing to the occurrence of inelastic collision pro-
cesses of electrons with the argon gas particles. Finally,
the strongly structured steady state with a period length
of the spatial structures of about 2 cm is reached after
about 15 µs (Fig. 3d).

The distribution function of this steady state at
E = −6 V/cm represents the initial condition of the re-
verse relaxation process, i.e., the relaxation initiated by
the reduction of the magnitude of the field strength.
Changing at the time t = 0 the electric field abruptly
to E = −2 V/cm, the relaxation course shown in Figure 4
proceeds. Because the power input from the field is re-
duced, the high energy part of the distribution function
becomes overpopulated. As can be seen from Figure 4a,
this overpopulation at higher energies is depleted rapidly
as a result of the electron backscattering to lower ener-
gies due to inelastic collision processes during the early
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Fig. 4. Isotropic distribution f0(z, U, t) as a function of the space coordinate z and the kinetic energy U for E = −2 V/cm at
the times t = 0.5 (a), 2 (b), 10 (c) and 50 µs (d).

relaxation course. At the same time the motion of the
electrons and the associated transfer of energy lead to a
mergence of the initially pronounced structures, while the
impact of elastic collisions is relatively weak. In the fur-
ther course of the relaxation processes, represented by the
distributions at the instants 2 and 10 µs (Figs. 4b and 4c),
new spatial structures in the distribution function develop
at the cathode side, which propagate towards the anode.
When approaching the new steady state after about 50 µs,
a comparatively weakly structured distribution is obtained
(Fig. 4d) as a result of the stronger spatial damping by
elastic collisions at the lower electric field strength. In ac-
cordance with [40] the period length λ of the resulting
spatial structures can be approximated by the quotient
of the lowest ground state excitation potential U in

1 /e0 and
the magnitude of the electric field E, i.e., λ = U in

1 /(e0|E|),
since the potential energy e0|E|λ gained per electron on
one period length is almost completely lost in one inelastic
collision.

In the following, comparisons between results obtained
by the solution of the electron Boltzmann equation and by
Monte Carlo simulations are reported. In order to compare
the results relevant to the spatiotemporal relaxation of the
isotropic distribution function f0(z, U, t), several instants
of the spatiotemporal reformation of spatial plasma struc-
tures at E = −2 and −6 V/cm are considered. As repre-
sentatives of the relaxation course, the same points of time
as shown in Figures 3 and 4 for the relaxation at E = −6
and −2 V/cm, respectively, have been chosen and at each

instant the isotropic distribution as a function of the ki-
netic energy U is represented for different positions z.

Figure 5 shows results belonging to the spatiotem-
poral relaxation at E = −6 V/cm. The lines denote
the isotropic distributions obtained by solving the elec-
tron Boltzmann equation. The symbols are the corre-
sponding results obtained by Monte Carlo simulations.
As one can see, the results of both approaches agree very
well during the transient phase of the relaxation course
(Figs. 5a–5c) as well as in the pronouncedly structured,
time-independent state (Fig. 5d). Similar good agreement
is found for the spatiotemporal relaxation of the elec-
trons at the electric field E = −2 V/cm, as demon-
strated by Figure 6. The comparisons span about five or-
ders of magnitude of the isotropic distribution function.
Thus, the complicated structural changes in the isotropic
distribution with space and energy during the tempo-
ral evolution found by the solution of the space- and
time-dependent electron Boltzmann equation in two-term
approximation are convincingly verified by the Monte
Carlo simulations.

The comparison between results of both ap-
proaches has been extended to the anisotropic distribu-
tion f1(z, U, t). As illustrative examples, results for the
anisotropic distribution at an intermediate time of the re-
spective spatiotemporal electron relaxation at E = −6
and −2 V/cm are shown in Figures 7a and 7b. Sat-
isfactory agreement between the two-term Boltzmann
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Fig. 5. Comparison between isotropic distributions f0(z, U, t) at various positions z obtained by Boltzmann (lines) and Monte
Carlo (symbols) calculations for E = −6 V/cm at the times t = 0.6 (a), 2 (b), 5 (c) and 15 µs (d).

calculations and the Monte Carlo results is widely found.
However, certain differences e.g. in the region of lower en-
ergies at z = 0 and 1.4 cm in Figure 7b and less pro-
nounced differences in the region of medium energies at
z = 1.4 cm in Figure 7a occur. In any case, main charac-
teristics of the anisotropic distribution evolution are ob-
tained consistently by both approaches. Since negative
values of the electric field have been used to describe the
acceleration of the electron in the positive z direction to-
ward the anode, the anisotropic distribution usually as-
sumes positive function values. However, the anisotropic
distribution at lower energies for z = 0 and 1.4 cm in
Figure 7b becomes negative, as indicated by the minus
signs in parentheses. This probably happens because the
isotropic distribution f0(z, U, t) has a branch with an op-
posite slope (∂f0/∂U > 0) in the low energy region and
the associated term becomes the dominant contribution
to the anisotropic distribution f1(z, U, t) (6) during the
relaxation at E = −2 V/cm. This particular result of the
Boltzmann calculations has been confirmed by the Monte
Carlo simulations, while the magnitude of the function
values of both approaches differ.

As is obvious from the comparison of Figures 7a
and 5c for E = −6 V/cm and of Figures 7b and 6c for
E = −2 V/cm, the requirement of a sufficiently small
magnitude of the distribution anisotropy, involved in the
two-term Boltzmann approximation, generally holds and,
therefore, the magnitude of the distribution anisotropy is
not responsible for the observed discrepancies at small z
positions. Furthermore, falsifications of the Boltzmann
calculation results owing to the quasi-stationary descrip-
tion of the distribution anisotropy are rather improbable
at the considered later times of the relaxation processes.
Thus, the differences primarily have to be attributed to
the reduced accuracy of the determination of the dis-
tribution anisotropy in the Monte Carlo simulations. In
that approach the isotropic distribution f0 is simply ob-
tained by a summation of the number of electrons, while
the determination of the anisotropic distribution f1 in-
cludes a summation of the direction cosine vz/v of the
electrons. The quantity vz/v ranges from −1 to 1. Since
the velocity distribution function is substantially isotropic
close to the isotropic electron source at z = 0 occurring
in the range of lower kinetic energies, main parts of the
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summation over vz/v at these energies compensate for
each other and it becomes difficult to determine the very
small anisotropic distribution f1(z, U, t) with sufficient ac-
curacy. In particular, this holds at the case of the low
electric field magnitude.

Concerning the macroscopic quantities of the electrons
the spatiotemporal evolution of the density ne(z, t), the
mean energy um(z, t) as well as the particle flux density
jz(z, t) and the energy flux density jez(z, t) is subsequently
discussed. In Figure 8 results for these macroscopic quan-
tities as a function of the space coordinate z are shown
at different times of the relaxation course related to E =
−6 V/cm. The lines display the Boltzmann calculation re-
sults, while the results obtained by the Monte Carlo simu-
lation are represented by the symbols. The same line styles
and symbol types have been employed to mark correlated
results of the different macroscopic quantities.

The excellent agreement between the results of both
approaches for the electron density (Fig. 8a) and mean en-
ergy (Fig. 8b) is apparent. It simply reflects the very good
agreement found for the isotropic distribution f0(z, U, t)
(Fig. 5), because both quantities are averages of it accord-
ing to relations (7) and (8). The particle flux density (9)
and energy flux density (10) are related to the anisotropic

distribution f1(z, U, t). Although certain differences have
been found for f1(z, U, t), the results for the related macro-
scopic quantities obtained by Boltzmann and Monte Carlo
calculations are in quite good conformity, as can be seen
from Figures 8c and 8d.

The activation of the spatiotemporal relaxation pro-
cess by switching the electric field E from −2 to −6 V/cm
leads initially to an increase of the particle and energy
flux density (Figs. 8c and 8d), because the larger power
input from the electric field increases the mean transport
velocity of electrons and their energy transport velocity in
the z direction. Thus, the spatial structure of the electron
density (Fig. 8a) is transported from the cathode side to
the anode, where about 64% of the electrons are absorbed.
A continuous electron inflow Is of 2×1012 cm−2 s−1 takes
place at the cathode side. The released source electrons
enforce a different spatial pattern after the abrupt in-
crease of the magnitude of the field. The complex struc-
tural change of the electron density starts at the cathode
side and propagates towards the anode. A similar change
of the structure is found for the mean energy (Fig. 8b) and
the energy flux density (Fig. 8d). When approaching the
time-independent state after about 15 µs, the flux density
has to decrease to the constant value prescribed by the



198 The European Physical Journal Applied Physics

0 5 10
U [eV]

10
0

10
1

10
2

10
3

10
4

10
5

f 1(z
,U

,t)
 [e

V-3
/2
 c

m
-3

] parameter: z [cm]

E=-2V/cm, t=10µs

0

1.4

9.8
8.0

(-)

0 5 10 15
U [eV]

10
0

10
1

10
2

10
3

10
4

10
5

f 1(z
,U

,t)
 [e

V-3
/2
 c

m
-3

]

parameter: z [cm]

E=-6V/cm, t=5µs

0

1.4

3.0
8.0

(a)

(b)
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electron source. The time-independent state is addition-
ally characterized by almost spatially periodic structures
of the density, mean energy and energy flux density of the
electrons resulting from the action of the field accelera-
tion and the electron backscattering in inelastic collision
processes. The structures are slightly damped towards the
anode mainly because of the power loss in elastic collisions.

The corresponding results for the spatiotemporal re-
laxation at E = −2 V/cm are represented in Figure 9.
Again, the Boltzmann and Monte Carlo calculation re-
sults for the density (Fig. 9a) and mean energy (Fig. 9b) of
the electrons agree very well, while sufficient conformity is
found for the particle flux density (Fig. 9c) and the energy
flux density (Fig. 9d). Considering the results for the flux
densities at E = −2 V/cm and those at−6 V/cm (Figs. 8c
and 8d), it becomes obvious that the statistical fluctu-
ations of the Monte Carlo results are more pronounced
at E = −2 V/cm, although more electrons are usually
involved at that electric field strength. The total num-
ber of electrons included in the spatiotemporal relaxation
amounted to about 34×106 when approaching steady state

at E = −2 V/cm, while about one third of this electron
number is ultimately involved at E = −6 V/cm.

The spatiotemporal relaxation triggered by the sud-
den change of the electric field E from −6 to −2 V/cm
at t = 0 processes rather differently from the reverse one.
Now, the reduced power input from the field and the ini-
tially predominant depopulation of energetic electrons ow-
ing to inelastic collisions lead to a slower mean transport
velocity of the electrons in z direction. The pronounced
spatial structures of the density, mean energy and energy
flux density at the beginning (shown in Figs. 8a, 8b and 8d
at t = 15 µs) merge in the early phase of the relaxation,
as is obvious from Figures 9a, 9b and 9d, respectively.
Then, a reformation of the spatial structure of these quan-
tities starts at the cathode side and the resulting struc-
tural change propagates towards the anode. This finding
is mirrored well in the behaviour of particle flux density
(Fig. 9c). The time-independent state is reached not until
about 50 µs, i.e., about three times later than the steady
state related to the relaxation at E = −6 V/cm.

4 Concluding remarks

The spatiotemporal relaxation of the electron component
in spatially inhomogeneous column-anode plasma regions
of glow discharges between plane electrodes has success-
fully been studied by means of the solution of the space-
and time-dependent Boltzmann equation in two-term
approximation and by corresponding Monte Carlo sim-
ulations. A realistic relaxation model has been elaborated
that allows the direct comparison between results obtained
by both approaches. In the framework of the relaxation
model, plasmas acted upon by a constant electric field
and sustained by a continuous inflow of electrons at the
cathode side are considered. The spatiotemporal electron
relaxation starts from steady-state at a given field and is
triggered by an instantaneous change of the electric field
strength, while keeping the inflow of source electrons con-
stant. The temporal reformation of spatial plasma struc-
tures in the velocity distribution function and in related
macroscopic quantities of the electrons has been followed
until approaching the time-independent state associated
to the changed field strength.

The spatiotemporal relaxation of electrons in argon
plasmas has been analyzed for electric fields typical of the
column region of glow discharges. The magnitude of the
electric field has been found to have a remarkable influence
on the relaxation behaviour. The relaxation progresses in
two phases controlled by different mechanisms. When in-
creasing the electric field strength, the enlarged power in-
put causes an increase of electrons with higher kinetic en-
ergy and tends to homogenize the distribution function in
wide regions of the plasma. During the further temporal
evolution pronounced, spatially periodic structures in the
distribution function and essential macroscopic quantities
are generated as a result of the enlarged impact of the in-
elastic collision processes. On the other hand, a decrease of
the field leads to a mergence of the spatial plasma struc-
tures in the beginning of the relaxation. This mergence
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results mainly from the interplay of the electron motion
and action of inelastic collision processes. Then, new, but
weaker spatial structures are formed because the larger
effect of the elastic collisions leads to a stronger spatial
damping. In any case, the formation of the spatial struc-
tures is induced by the continuous electron inflow at the
cathode side and the spatial variations propagate towards
the anode with a speed which is approximately given by
the mean transport velocity.

The comparison between results obtained by solving
the electron Boltzmann equation and by Monte Carlo sim-
ulation reveals very good agreement for the isotropic part
of the velocity distribution function and the macroscopic
quantities during the transient process as well as in steady-
state. The results of the anisotropic distribution functions
show satisfactory conformity, where some remaining dis-
crepancies can be attributed to difficulties of the Monte
Carlo approach to obtain the anisotropic distribution close
to the isotropic electron source and at energies where the
velocity distribution function is essentially isotropic. The
complex mechanisms of the spatiotemporal electron re-
laxation found in former and present Boltzmann equation
studies are impressively confirmed by the particle simula-
tion approach. Thus, the two-term treatment of the elec-
tron kinetic equation is appropriate to study a variety of
spatiotemporal relaxation processes related to basic re-
search and technologically relevant plasmas as well.

When considering the performance of both approaches,
much better efficiency of the Boltzmann equation method
has been found. At the same time it became clear that
Monte Carlo simulations will become increasingly ade-
quate to study spatiotemporal relaxation processes with
the anticipated further increase of computational speed in
next years.
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