Molecular dynamics simulations of strongly coupled plasmas

Zoltán Donkó

Research Institute for Solid State Physics and Optics of the Hungarian Academy of Science, Budapest, Hungary

and

Physics Department, Boston College, Chestnut Hill, MA, USA

Workshop on Dynamics and Control of Atomic and Molecular Processes Induced by Intense Ultrashort Pulses - CM0702 WG2, WG3 meeting -

27-30 September 2011, Debrecen, Hungary
Molecular dynamics simulations of strongly coupled plasmas

Results obtained in collaboration with:

- G. J. Kalman - Boston College, USA
- P. Hartmann - RISSP Budapest, Hungary
- K. I. Golden - University of Vermont, USA
- J. Goree - University of Iowa, USA

Supported by:

- NSF / MTA (HU Academy of Sciences) / OTKA (HU Sci. Research Fund)
Outline

- Why do we need simulations?
- Systems of interest
- Basics of Molecular Dynamics (MD) simulations
- What do we learn from MD?
- Structural & thermodynamic properties
- Localization and transport
- Collective excitations
Why do we need simulations?

- **Simulations are useful**
 - for checking theoretical results
 - for cases where no theoretical results are available
 - for understanding experimental observations

- **Simulations allow**:
 - identification of important processes
 - visualization of the system

- *Most dramatic advance of resources is experienced in the field of simulations*
Dramatic advance of resources

Monte Carlo Study of a One-Component Plasma. I*

S. G. BRUSH†
Lawrence Radiation Laboratory, University of California, Livermore, California

AND

H. L. SAHLIN AND E. TELLER
Lawrence Radiation Laboratory, University of California, Livermore, California, and
Department of Applied Science, University of California, Davis/Livermore, California

(Received 28 March 1966)

been made of a plasma of heavy ions immersed in a uniform neutralizing back-ground from 32 to 500 particles, with periodic boundary conditions, were used. The results in terms of a dimensionless parameter $\Gamma = (4\pi n/3)^{1/3} (Ze)^{1/3} T^{1/3}$, where n is the number density per cubic centimeter, T is the temperature (degrees Kelvin), Z is the ionic charge, and E is the atomic number. Thermodynamic properties were obtained for values of Γ ranging from 0.0 to 100. (MC) method.

Pioneering MD simulations in the 1970s-80s (OCP, BIM, statics, dynamics, transport, etc.)
Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons, computers in the future may have only 1,000 vacuum tubes and weigh only 1.5 tons.

[Popular Mechanics, 1949]
Systems of interest

Classification of plasmas from the American Physical Society “fusion chart”

Is there really not much here to look for ???
Plasmas…. a better phase diagram

Consider the interaction between a single type of particles (ion-ion)

\[\Gamma = \frac{V_{\text{POT}}}{V_{\text{KIN}}} \]

\(\Gamma = 1 \)

STRONGLY COUPLED PLASMAS

The one-component plasma (OCP) model: only one type of species is considered explicitly, the presence and effects of other species are accounted for by the potential.

Coulomb

Coulomb potential:
\[
\Phi(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}
\]
non-polarizable background

Debye-Hückel / Yukawa

D-H / Yukawa potential & screening parameter:
\[
\Phi(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q \exp(-r/\lambda_D)}{r}
\]
polarizable background

Characteristic energies (Coulomb):
\[
V_{\text{POT}} = \frac{Q^2}{4\pi\varepsilon_0 a} \quad V_{\text{KIN}} = kT
\]
a : Wigner-Seitz radius

Coupling parameter:
\[
\Gamma = \frac{V_{\text{POT}}}{V_{\text{KIN}}} = \frac{1}{4\pi\varepsilon_0} \frac{Q^2}{akT}
\]
Molecular Dynamics (MD) basics
(one-component plasma ⇒ strongly interacting classical many-body system)

Equilibrium & non-equilibrium MD

- We let the system evolve according to interactions
- Perturb the system and measure response
Molecular Dynamics (MD) simulation basics

Equilibrium MD

SIMULATION CORE + MEASUREMENTS

Time evolution of phase space trajectories of an ensemble of N particles

Calculate quantities of interest from phase space coordinates

Example: finite system with external confinement:

$$m\ddot{r}_i = \sum_{i\neq j} F_{i,j}(t) + F_{\text{ext}}(t) - m\eta v_i(t) + R$$

- Friction
- Brownian randomly fluctuating force (Langevin force)

$$F_{i,j} = -\frac{\partial \phi(r_{ij})}{\partial r}$$

$$F_{\text{ext}} = -fr^2 \text{ (e.g.)}$$
Molecular Dynamics (MD) simulation basics

Integration of the equation of motion ("leapfrog scheme")

\[
\begin{align*}
\mathbf{v}_i\left(t - \frac{\Delta t}{2}\right) & \quad \mathbf{r}_i(t) \quad \mathbf{v}_i\left(t + \frac{\Delta t}{2}\right) \quad \mathbf{r}_i(t + \Delta t) \\
\mathbf{v}_i\left(t + \frac{\Delta t}{2}\right) & = \mathbf{v}_i\left(t - \frac{\Delta t}{2}\right) + \frac{\mathbf{F}_i(t)}{m} \Delta t \\
\mathbf{r}_i(t + \Delta t) & = \mathbf{r}_i(t) + \mathbf{v}_i\left(t + \frac{\Delta t}{2}\right)
\end{align*}
\]

How to calculate \(\sum F_{i,j}(t) \) ?
Molecular Dynamics (MD) simulation basics

Short – range interaction potentials
Interaction is considered only between “closely-separated” pairs of particles (cutoff radius)

\[F_i(t) = \sum_{r_{ij} < r_C} F_{i,j}(t) \]
Molecular Dynamics (MD) simulation basics

Long – range interaction potentials (e.g. Coulomb):

Not possible to find cutoff radius, “tricks” are needed

\[F_i(t) = \sum_{\text{cell+images}} F_{i,j}(t) \]

Possible solutions:
- Ewald summation
- Particle-Particle, Particle-Mesh (PPPM, P3M) method (Hockney & Eastwood)
Molecular Dynamics (MD) simulation basics

The PPPM method uses finite size charge clouds

$$\rho(r) = \rho_0 \left(1 - \frac{r}{R}\right)$$

$$\int_0^R \rho(r) dV = Q$$

Fourier transform is band-limited, the interaction between clouds can be represented on a mesh in \(k\)-space, images are included (PM)

if \(r \geq R\):

$$F(\cdot \cdot \cdot) = F(\cdot \cdot \cdot)$$

if \(r < R\):

$$F(\cdot \cdot \cdot) = F(\cdot \cdot \cdot) + F_{\text{corr}}(r)$$

Correction force, to be applied for closely separated neighbors only (PP, chaining mesh)
Molecular Dynamics: What do we see?

$\Gamma = 120, \kappa = 1$

$\Gamma = 5, \kappa = 1$

2D frictionless Yukawa liquids
Molecular Dynamics: What do we learn?

- Phase space coordinates \((r_i, v_i) \; i = 1 \ldots N\)
- Correlation functions
- Identification of collective modes
- Calculation of transport parameters
- Structure
- Thermodynamic quantities

\[(r_i, v_i) \; i = 1 \ldots N \]
It’s real: experimental realization of 2D dusty plasma

- Dust particles dispersed in a glow discharge plasma acquire a charge of $\sim 10^4 q_e$
- Dust layer is levitated due to the balance between electrostatic force and gravity
- Interaction: screened Coulomb (Yukawa) potential
- Crystallization at high Γ
- Quasi-2D confinement
- Extensive experimental work from early 1990s (Morfill, Thomas, Goree, Fortov, Piel, et al.,) in the crystal and liquid phases

$\Phi(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q \exp(-r/\lambda_D)}{r}, \quad \kappa = \frac{a}{\lambda_D}$
Experimental realization of 2D dusty plasma

Dusty plasma experiment in RISSP, Budapest (P. Hartmann)

melamine-formaldehyde microspheres
Experimental realization of 2D dusty plasma

Laser manipulation to measure complex viscosity

Structural and thermodynamic properties
Pair correlation & thermodynamic properties

Pair correlation function

- Energy:
 \[\frac{E}{N} = \frac{3}{2} k_B T + \frac{n}{2} \int_0^\infty \varphi(r)g(r) \, 4\pi r^2 \, dr \]

- Pressure:
 \[p = nk_B T - \frac{n^2}{6} \int_0^\infty \frac{\partial \varphi(r)}{\partial r} g(r) \, 4\pi r^3 \, dr \]

- Isothermal compressibility:
 \[k_B T \left(\frac{\partial n}{\partial p} \right)_T = 1 + n \int_0^\infty [g(r) - 1] \, 4\pi r^2 \, dr \]

E.g. 3D Coulomb OCP (one-component plasma)

Strong correlation, liquid-like structure at high coupling
Phase transitions:
3D Coulomb / Yukawa systems

Coulomb
(Monte Carlo)

S. G. Brush, H. L. Sahlin and E. Teller,

$\Gamma \approx 125$

E. L. Pollock and J. P. Hansen

G. S. Stringfellow, H. E. DeWitt and W. L. Slattery,

$\Gamma \approx 175$

Yukawa

S. Hamaguchi, R.T. Farouki and D.H.E. Dubin,

Γ
Transport phenomena

Diffusion, shear viscosity and thermal conductivity in 3D systems
(although 2D is more interesting 😊)
Measurements of transport coefficients

Equilibrium Molecular Dynamics:

Measure correlation functions

\[
D = \frac{1}{2} \int_0^\infty C_v \, dt \\
\eta = \frac{1}{V kT} \int_0^\infty C_\eta \, dt \\
\lambda = \frac{1}{V kT^2} \int_0^\infty C_\lambda \, dt
\]

\[C_v \equiv \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle \quad \text{VACF}\]

\[C_\eta \equiv \langle P_{xy}(t) P_{xy}(0) \rangle \quad \text{SACF}\]

\[C_\lambda \equiv \langle J_{Qx}(t) J_{Qx}(0) \rangle \quad \text{EACF}\]

Non-Equilibrium Molecular Dynamics:

Perturb the system and measure the response
Diffusion coefficient

\[D^* = \frac{D}{a^2 \omega_p} \]

\[D^* = \alpha(T^* - 1)\beta + \gamma \]
\[T^* = \frac{T}{T_M} \]

Universal scaling:

Shear viscosity: methods (1)

\[P_{xy} = \sum_{i=1}^{N} \left[m v_{ix} v_{iy} - \frac{1}{2} \sum_{j \neq i}^{N} \frac{x_{ij} y_{ij}}{r_{ij}} \frac{\partial \phi(r_{ij})}{\partial r_{ij}} \right] \]

\[\eta = \frac{1}{V kT} \int_{0}^{\infty} \langle P_{xy}(t) P_{xy}(0) \rangle dt \]

\[W(y_k) = W_{M0} \sin \left(\frac{2\pi y_k}{L} \right) \]

\[\frac{\partial v_x}{\partial t} = \frac{\eta}{\rho} \frac{\partial^2 v_x}{\partial y^2} \]

\[W(y, t) = W_{M0} \sin \left(\frac{2\pi y}{L} \right) \exp \left(-\frac{t - t_0}{\tau} \right) \]

\[\eta = \frac{\rho}{\tau} \left(\frac{L}{2\pi} \right)^2 \]

Z. Donkó and B. Nyíri, Phys. Plasmas 7, 45 2000

Shear viscosity: methods (2)

Reverse Molecular Dynamics

External momentum transfer

\[
\eta \frac{dv_x(y)}{dy} = \frac{\Delta p}{2t_{\text{sim}} S}
\]

Homogeneous Shear Algorithm

\[
\frac{dx_i}{dt} = \tilde{p}_i + \gamma y_i \hat{x} \\
\frac{d\tilde{p}_i}{dt} = F_i - \gamma \tilde{p}_{yi} \hat{x} - \alpha \tilde{p}_i
\]

\[
\eta = - \lim_{t \to \infty} \frac{\langle P_{xy}(t) \rangle}{\gamma}
\]

Shear viscosity of 3D Coulomb liquids

\[\eta' = \eta \frac{m n \omega_p a^2}{\Gamma} \]

Equilibrium MD:
- B. Bernu, P. Vieillefosse, and J. P. Hansen, Phys. Lett. A 63, 301 (1977);
- J. Daligault, Phys. Rev. Lett. 96, 065003 (2006) (Scaled) high \(\Gamma \) Arrhenius fit
- G. Salin and J.-M. Caillol, Phys. Rev. Lett. 88, 065002 (2002);
- G. Salin and J.-M. Caillol, Phys. Plasmas 10, 1220 (2003) (\(\kappa = 0.01 \))
- T. Saigo and S. Hamaguchi, Phys. Plasmas 9, 1210 (2002) (\(\kappa = 0.1 \))

Transient perturbation MD:
Thermal conductivity: MD methods

Reverse molecular dynamics

Spatial temperature modulation

\[
\frac{\partial T}{\partial t} = \frac{\lambda}{c \rho} \frac{\partial^2 T}{\partial x^2}
\]

\[
\lambda = \frac{c \rho}{\tau_H} \left(\frac{L}{2 \pi} \right)^2
\]

\[
\lambda = \frac{\Delta E}{2 S t_{\text{sim}} \langle \frac{\Delta T}{\Delta x} \rangle}
\]

F. Müller-Plathe,

Z. Donkó, B. Nyíri, L. Szalai, and S. Holló,
Thermal conductivity of 3D Coulomb liquids

\[\lambda' = \frac{\lambda}{nk\omega_p a^2} \]

\[\text{Slope} = \frac{1}{\tau_H} \]

\[x/L \]

\[t [\text{ps}] \]

\[t [\text{ps}] \]

\[\ln(T_m) \]

N=8192

N=1024

N=128 ... 864, \(\kappa = 0.01 \)

N=6400, \(\kappa = 0.1 \)

N=1600, \(\kappa = 0.1 \)
Collective excitations
Collective excitations in 3D plasma liquids

Microscopic density fluctuations:
\[\rho(k, t) = \sum_{j=1}^{N} \exp[i k x_j(t)] \]

Dynamical structure function:
\[S(k, \omega) = \frac{1}{2\pi N} \lim_{\Delta T \to \infty} \frac{1}{\Delta T} |\rho(k, \omega)|^2 \]
\[\rho(k, \omega) = \mathcal{F}[\rho(k, t)] \]

Microscopic current fluctuations:
\[\lambda(k, t) = \sum_{j=1}^{N} v_{jx}(t) \exp[i k x_j(t)] \]

Longitudinal and transverse current-current fluctuation spectra
\[L(k, \omega) \quad T(k, \omega) \]

\[\tau(k, t) = \sum_{j=1}^{N} v_{jy}(t) \exp[i k x_j(t)] \]
Collective excitations in 3D plasma liquids

Coulomb:
- L : const. freq.
- T : acoustic

Yukawa:
- L : quasi-acoustic
- T : acoustic
Collective excitations in 3D liquids: MD vs. theory

\[\Lambda_{3D}(x, y) = -2 \frac{e^{-y}}{x} \left[(1 + y + y^2) \left(\frac{\sin(x)}{x} + 3 \frac{\cos(x)}{x^2} - 3 \frac{\sin(x)}{x^3} \right) - \frac{y^2}{6} \left(1 + 3 \frac{\sin(x)}{x} + 12 \frac{\cos(x)}{x^2} - 12 \frac{\sin(x)}{x^3} \right) \right] \]

QLCA theory:

\[\Omega_L^2(k) = \Omega_0^2(k) + \omega_{0,3D}^2 \frac{\bar{k}^2}{2} \int_0^\infty \Lambda_{3D}(\bar{k}\bar{r}, \kappa\bar{r}) h(\bar{r}) d\bar{r} \]

\[\Omega_T^2(k) = \omega_{0,3D}^2 \frac{\bar{k}^2}{2} \int_0^\infty \Theta_{3D}(\bar{k}\bar{r}, \kappa\bar{r}) h(\bar{r}) d\bar{r} \]

Cutoff of T-mode at finite \(k \): liquid

M.S. Murillo

EXP: J. Goree

\[\Omega_0^2(k) = \omega_{0,3D}^2 \frac{\bar{k}^2}{\bar{k}^2 + \kappa^2} \]
Simulation studies aid the understanding of theoretical and experimental results.

Simulations are suitable for a wide variety of strongly coupled many-particle systems.

Equilibrium / non-equilibrium Molecular Dynamics simulations can be used to study:

- Structural & thermodynamical properties
- Localization and transport properties
- Collective excitations
-

Thank you for your attention.