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Experiment

Why do we need simulations?

Simulations are useful 

for checking theoretical results

for cases where no theoretical 
results are available

for understanding experimental 
observations

Simulations allow:

identification of important processes

visualization of the system

Most dramatic advance of resources is 
experienced in the field of simulations

Simulation

Theory

Very much
desired

interaction
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Dramatic advance of resources

Pioneering MD simulations in the 1970s-80s 
(OCP, BIM, statics, dynamics, transport, etc.)
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Systems of interest

Classification of plasmas

from the
American Physical Society 

“fusion chart”

Is there really
not much here
to look for ???
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Plasmas…. a better phase diagram

R. Redmer, Phys. Reports 282, 35 (1997)

Consider for a moment
the interaction between 
a single type of particles

(ion-ion)

Γ =
VPOT

VKIN

STRONGLY COUPLED PLASMAS
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Complex (dusty) plasmas: 
one-component plasma (OCP) model

Characteristic energies (Coulomb):

Coupling parameter:

a : Wigner-Seitz radius 

OCP model: only one type of species is considered explicitly, the presence and 
effects of other species are accounted for by the potential

Φ(r) =
1

4πε0

Q exp (−r/λD)

r
, κ =

a

λD

VPOT =
Q2

4πε0a
VKIN = kT

Γ =
VPOT

VKIN

=
1

4πε0

Q2

akT

Debye / Yukawa potential & screening parameter: 

Plasma

+

-

+

+

+

+

+

+
+

- -

-

-

-
-

-

+

-

eI

iI

h

particle d u s tr



Zoltán Donkó: Molecular dynamics simulations of strongly-coupled plasmas   

Dusty plasmas in space

1980s: Voyager2 images of Saturn rings show 
”spokes” formed of fine dust particles and  

influenced by electromagnetic fields
→ charged dust

NASA

Charging of fine particles due to 
UV radiation

Lagoon Nebula (Hubble)
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Dusty plasmas in laboratory

Discovery of micron-sized dust particle 
formation in a reactive plasma over wafers:

G. S. Selwyn, J. Singh, R. S. Bennett, 
J. Vac. Sci. Technol. A7, 2758 (1989).

"Dusty plasmas in the Laboratory, 
Industry and Space"

Robert L. Merlino and John A. Goree
Physics Today, pp. 32 - 38, July 2004  

Dust can grow in a plasma or 
can be introduced
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Molecular Dynamics (MD) basics

Equilibrium & non-equilibrium MD 

We let the system evolve 
according to interactions

Perturb the system and 
measure response
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Molecular Dynamics (MD) simulation basics

Time evolution of phase space 
trajectories of an ensemble 

of N particles

Example: finite system 
with external confinement: mr̈i =

∑

i !=j

Fi,j(t) + Fext(t) − mηvi(t) + R

SIMULATION CORE + MEASUREMENTS

Calculate quantities of 
interest from phase space 

coordinates

Fi,j = −

∂φ(rij)

∂r

Fext = −fr2 (e.g.)

Friction

Brownian randomly 
fluctuating force 
(Langevin force)

Equilibrium MD 
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Molecular Dynamics (MD) simulation basics

Integration of the equation of motion (“leapfrog scheme”)                           

i

mr̈i =
∑

i !=j

Fi,j(t) + Fext(t) − mηvi(t) + R

vi

(

t +
∆t

2

)

vi

(

t −
∆t

2

)

vi

(

t +
∆t

2

)

= vi

(

t −
∆t

2

)

+
Fi(t)

m
∆t

ri(t + ∆t) = ri(t) + vi

(

t +
∆t

2

)

ri(t + ∆t)ri(t) time

How to calculate                     ?
∑

Fi,j(t)
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Molecular Dynamics (MD) simulation basics

Short – range interaction potentials 

 Interaction is considered only between “closely-separated” pairs of 
particles (cutoff radius)

Fi(t) =
∑

rij<r
C

Fi,j(t)

Finite system Infinite system 

 PERIODIC 
BOUNDARY CONDITIONS 

Primary 
simulation cell Image 

cells
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Molecular Dynamics (MD) simulation basics

How to find the neighbors?

For particle i (i=1...N) : check every other 
particle j if they are neighbors

Use chaining mesh

Primary simulation cell
(yellow)

Image chaining
mesh cells (white)
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Molecular Dynamics (MD) simulation basics

How to find the neighbors?

For particle i (i=1...N) : check every other 
particle j if they are neighbors

Use chaining mesh

Create a list of particles in each cell, L(m,n)

go over all cells, for each particle i in cell 
(m,n) → all neighbors are in cells (m,n), 
(m,n+1), (m+1,n), (m+1,n+1), (m+1,n-1)
[i.e. own cell and half of the neighboring 
cells, due to symmetry]  

D. Frenkel and B. Smit, 
Understanding Molecular 

Dynamics Simulations 
(Academic Press, 2001)

Image chaining
mesh cells (white)
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Molecular Dynamics (MD) simulation basics

Long – range interaction potentials

 (e.g. Coulomb): 

Not possible to find cutoff radius, 
“tricks” are needed

Possible solutions:

 Ewald summation

 Particle-Particle, Particle-Mesh (PPPM,      
     P3M) method (Hockney & Eastwood)

Fi(t) =
∑

cell+images

Fi,j(t)

Primary simulation cell
(yellow)
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Molecular Dynamics (MD) simulation basics

The PPPM method

uses finite size charge clouds
ρ(r) = ρ0

(

1 −

r

R

)

∫ R

0

ρ(r)dV = Q

F ( ) F ( )=if r ≥ R :

F ( ) F ( )=if r < R : + Fcorr(r)

Fourier transform is band-limited, the interaction 
between clouds can be represented on a mesh in 

k-space, images are included (PM)

Correction force, to be applied for closely 
separated neighbors only (PP, chaining mesh)

Hockney R W and Eastwood J W 1981 
Computer Simulation Using Particles 

(New York: McGraw-Hill)  
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Molecular Dynamics : What do we see?

Γ=120, κ=1 Γ=5, κ=1

2D frictionless Yukawa liquids
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Molecular Dynamics : What do we learn?

A LOT

Calculation of 
transport parameters

Identification of 
collective modes

Correlation 
functions

Thermodynamic 
quantities

Phase space coordinates

Structure
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Dust particles dispersed in a glow 
discharge plasma acquire a charge 
of ~ 104 qe

Dust layer is levitated due to the 
balance between electrostatic force 
and gravity 

Interaction: screened Coulomb 
(Yukawa) potential

Crystallization at high Γ

Quasi-2D confinement

Extensive experimental work from 
early 1990s (Morfill, Thomas, 
Goree, Fortov, Piel, et al., ……) in 
the crystal and liquid phases

V

It’s real: experimental realization of 
2D dusty plasma 

Plasma 
crystal

Sheath

Plasma

Φ(r) =
1

4πε0

Q exp (−r/λD)

r
, κ =

a

λD
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Experimental realization of 
2D dusty plasma 

Plasma
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iI

h

particle d u s tr

melamine-formaldehyde microspheres

Dusty plasma experiment in 
RISSP, Budapest (P. Hartmann)
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Experimental realization of 
2D dusty plasma 

Crystallized phase

Oscillations near melting
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Structural and thermodynamic
properties
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Pair correlation & thermodynamic properties

Energy:

Pressure:

Isothermal compressibility:

p = nkBT −

n2

6

∫
∞

0

∂ϕ(r)

∂r
g(r) 4πr3dr

E

N
=

3

2
kBT +

n

2

∫
∞

0

ϕ(r)g(r) 4πr2dr

kBT

(

∂n

∂p

)

T

= 1 + n

∫

∞

0

[g(r) − 1] 4πr2dr

e.g. 3D Coulomb OCP 
(one-component plasma)

Strong correlation, 
liquid-like structure 

at high coupling 

Pair correlation function
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Phase transitions: 3D Coulomb / Yukawa systems

S. Hamaguchi, R.T. Farouki and D.H.E. Dubin, 
Phys. Rev. E 56, 4671 (1997).

E. L. Pollock and J. P. Hansen
Phys. Rev. A 8, 3110 (1973)

G. S. Stringfellow, H. E. DeWitt and W. L. Slattery, 
Phys. Rev. A 41, 1105 (1990).

S. G. Brush, H. L. Sahlin and E. Teller, 
J. Chem. Phys. 45, 2102 (1966). 

Coulomb
(Monte Carlo)

Yukawa

Γ≅125

Γ≅175

http://prola.aps.org/search/field/author/Pollock_E_L
http://prola.aps.org/search/field/author/Pollock_E_L
http://prola.aps.org/search/field/author/Hansen_J_P
http://prola.aps.org/search/field/author/Hansen_J_P
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Phases in two dimensions:

  Theoretical finding: “There is no exact long-  
      range order in one and two dimensions for T ≠ 0”
      [Ginzburg, Landau, Goldstone, Peierls,  
      Penrose, Bogoliubov; ~1950]

  But: finite sized systems can develop crystal-like 
      stable structures for T > 0

  No thermodynamic limit - need for finite particle
      thermodynamics 

  Continuous temperature dependence of 
      measured quantities

   ??? Nature of solid-liquid phase transition ???

   Possible multi-phase melting (unproven theory)
       intermediate “hexatic” phase

Solid to liquid transition in 2D

“Melting experiment”

Bond-angular order parameter

GΘ =
1

N

∣

∣

∣

∣

∣

N
∑

l=1

1

6

6
∑

m=1

exp(i6Θl,m)

∣

∣

∣

∣

∣

2

l

m

x

Θl,m

P. Hartmann, G. J. Kalman, Z. Donkó, and K. Kutasi, 
Phys. Rev. E 72, 026409 (2005) 

Much more careful studies are required (under way)
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Solid to liquid transition in 2D

Γ = 420

Γ = 406

Investigated quantities:

Bond angular order parameter

Einstein frequency distributions

Angular distribution of Einstein 
frequencies

Potential energy

Long-range behavior of g(r)

Peak amplitude of S(k) 

Diffraction patterns - S(k)

P. Hartmann, Z. Donkó, P. Bakshi, G. J. Kalman, S. Kyrkos, IEEE Trans. Plasma Sci., 35 332 (2007) 

WORK IN 
PROGRESS
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Localization and transport phenomena
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Quasi-localization: an important feature of 
the strongly coupled liquid state

- Localized oscillation of particles in 
local minima of the potential surface

- Slow deformation of the potential 
surface due to particle diffusion

- Localized state covers several plasma 
oscillation cycles

Quasilocalized charge approximation in strongly coupled plasma physics

Kenneth I. Golden
Department of Mathematics and Statistics, Department of Physics, University of Vermont,
Burlington, Vermont 05401-1455

Gabor J. Kalman
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467

!Received 16 June 1999; accepted 9 August 1999"

The quasilocalized charge approximation !QLCA" was proposed in 1990 #G. Kalman and K. I.
Golden, Phys. Rev. A 41, 5516 !1990"$ as a formalism for the analysis of the dielectric response

tensor and collective mode dispersion in strongly coupled Coulomb liquids. The approach is based

on a microscopic model in which the charges are quasilocalized on a short-time scale in local

potential fluctuations. The authors review the application of the QLC approach to a variety of

systems which can exhibit strongly coupled plasma behavior: !i" the one-component plasma !OCP"
model in three dimensions !e.g., laser-cooled trapped ions" and !ii" in two dimensions !e.g., classical
2D electron liquid trapped above the free surface of liquid helium", !iii" binary ionic mixture in a
neutralizing uniform background !e.g., carbon–oxygen white dwarf interiors", !iv" charged particle
bilayers !e.g., semiconductor electronic bilayers", and !v" charged particles in polarizable

background !e.g., laboratory dusty plasmas". © 2000 American Institute of Physics.

#S1070-664X!00"01701-8$

I. INTRODUCTION

In strongly coupled plasma physics, the classical cou-

pling parameter %!&Z2e2/a is the customary measure of
the ratio of the average potential energy to the average ki-

netic energy per particle; a!(3/4'n)1/3 is the interparticle
distance !or Wigner–Seitz radius" and &"1 is the tempera-

ture in energy units. The coupling parameter (
!1/#4'n()DEBYE)

3$ , conventionally used for laboratory

and space plasmas, is related to % as (!)%3/2. In these
plasmas both parameters are much smaller than unity. How-

ever, there are a great number of physical systems where the

opposite is true. Examples are astrophysical systems !such as
the ion liquid in white dwarf interiors, neutron star crusts,

presupernova cores, and giant planetary interiors", molten
salts, ions in liquid metals, laboratory dusty plasmas, classi-

cal electrons trapped on the free surface of liquid helium, and

charged particles in cryogenic traps. A similar strong cou-

pling situation arises in relation to electrons or holes in con-

densed matter plasmas such as the electron gas in solid or

liquid metals and two-dimensional semiconductor nanostruc-

tures. In these latter systems the source of the kinetic energy

is the Fermi energy rather than the temperature and the con-

ventional coupling parameter accordingly is given by rs
!a/aBOHR . For a recent review of the various systems, see

Ref. 1.

Studies of the behavior of strongly coupled plasmas be-

gan in earnest more than two decades ago along two inde-

pendent lines of research, computer simulations and theoret-

ical models.

Advances in computer simulation techniques have made

it possible to study the dynamics of many-particle systems

with Coulomb interactions. Since then there have been nu-

merous Monte Carlo !MC" simulations for the classical2–7

and quantum8–10 one-component plasma !OCP; one species
of mobile charged particles immersed in a uniform rigid neu-

tralizing background" in three2,5–8,10 and two3,4,9 dimensions.
MC simulations have also been carried out for binary ionic

mixtures.11 These simulations have provided a wealth of pair

correlation function and correlation energy data as well as

predictions of Wigner crystallization2,4,5,8–10 and formation

of exotic supercooled and glassy !rapid quenches of equilib-
rium fluid at %!160–400) phases.6 Molecular dynamics
!MD" simulations,12–17 have provided information about dy-
namical structure functions, transverse current correlation

functions, and collective mode dispersion in normal,12,13,16

supercooled,14 and glassy14,15 classical Coulomb liquids in

three12,14–16 and two13 dimensions.

On the theoretical side, motivated by efforts to under-

stand the behavior of the electron gas in metals where the

coupling parameter is substantially greater than unity, vari-

ous nonperturbative !in the coupling parameter" approaches
were put forward for calculating both static and dynamic

properties.18–20 Focusing on the dynamical aspect which is of

interest in this paper, it is the Singwi–Tosi–Land–Sjolander

!STLS" treatment20 that emerges as the most prominent.
Their approach is built on a self-consistent approximation,

via the linear fluctuation-dissipation theorem, for calculating

the dielectric response function by ignoring the modification

in the particle correlations by the perturbation !i.e., by ex-
pressing the nonequilibrium two-particle distribution func-

tion in terms of the equilibrium pair correlation function".
The resulting STLS mean field theory, which features a static

local field correction to the Vlasov field, failed to satisfy

important sum rules and was, moreover, incapable of de-

scribing collisional or long-time effects in the dynamical

structure function and collective mode behavior. These de-

PHYSICS OF PLASMAS VOLUME 7, NUMBER 1 JANUARY 2000

141070-664X/2000/7(1)/14/19/$17.00 © 2000 American Institute of Physics

Downloaded 22 Jul 2008 to 148.6.27.121. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

Quantification: 
CAGE CORRELATION FUNCTION

Static g(r) →Dynamics
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Quasi-localization in the strongly coupled 
liquid phase

Time needed for the decorrelation of the surroundings of the particles ( in units of        )

Localization covers 
several plasma 

oscillation cycles

Assumptions of 
QLCA tested

Z. Donkó, G.J. Kalman, K.I. Golden, Phys. Rev. Lett. 88, 225001 (2002),
Z. Donkó, P. Hartmann, G.J. Kalman, Physics of Plasmas 10, 1563 (2003). 

J. Daligault, “Liquid-State Properties of a One-Component Plasma”,
Phys. Rev. Lett. 96, 065003 (2006) 

The properties of the systems critically depend on the caging: 
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Measurements of transport coefficients

D =
1

2

∫
∞

0

Cvdt

η =
1

V kT

∫
∞

0

Cηdt

Cv ≡ 〈v(t) · v(0)〉

Cη ≡ 〈Pxy(t)Pxy(0)〉

λ =
1

V kT 2

∫
∞

0

Cλdt Cλ ≡ 〈JQx(t)JQx(0)〉

VACF

SACF

EACF

Equilibrium Molecular Dynamics:

Non-Equilibrium Molecular Dynamics:

Equilibrium Molecular Dynamics:Equilibrium Molecular Dynamics:

Perturb the system and measure the response

Measure correlation functions
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“Measurement” of transport coefficients: 
Shear viscosity
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Equilibrium MD

P xy =
N

∑

i=1

[

mvixviy −

1

2

N
∑

j !=i

xijyij

rij

∂φ(rij)

∂rij

]

η =
1

V kT

∫
∞

0

〈P xy(t)P xy(0)〉dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External  
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transfer 
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x 

A 

v
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y 
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Nonequilibrium (transient perturbation) MD

W (yk) = WM0 sin

(

2πyk

L

)

∂vx

∂t
=

η

ρ

∂2vx

∂y2

W (y, t) = WM0 sin

(

2πy

L

)

exp

(

−

t − t0

τ

)

η =
ρ

τ

(

L

2π

)2

Z. Donkó and B. Nyíri, Phys. Plasmas 7, 45 2000
K. Y. Sanbonmatsu and M. S. Murillo, Phys. Rev. Lett. 86, 1215 2001.
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“Measurement” of transport coefficients: 
Shear viscosity
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=

∆p

2tsimS

F. Müller-Plathe, 
Phys. Rev. E 59, 4894 (1999).

Reverse Molecular Dynamics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External  
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transfer 
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v
x
 

B 

x 

A 

v
x
 

y 

y 

time 

dri

dt
=

p̃i

m
+ γyix̂

dp̃i

dt
= Fi − γp̃yix̂ − αp̃i

η = − lim
t→∞

〈P xy(t)〉

γ

D. J. Evans and G. P. Morriss, “Statistical mechanics of 
nonequilibrium liquids” (Academic Press, 1990)

Homogeneous Shear Algorithm
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Shear viscosity of 3D Coulomb liquids

η
′
=

η

mnωpa2

Kinetic                 Potential P xy =
N

∑

i=1

[

mvixviy −

1

2

N
∑

j !=i

xijyij

rij

∂φ(rij)

∂rij

]
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Complex shear viscosity of 3D Coulomb liquids

Pxy =
N

∑

i=1

[

mvixviy −

1

2

N
∑

j !=i

xijyij

rij

∂φ(rij)

∂rij

]

η(ω) =
1

V kT

∫
∞

0

Cη(t)eiωtdt

η(ω) = η′(ω) − iη′′(ω)

γ(t) = γ0 cos(ωt)
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Equilibrium MD

Cη(t) = 〈Pxy(t)Pxy(0)〉

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External  
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v
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y 

time 

dri

dt
=

p̃i

m
+ γyix̂

dp̃i

dt
= Fi − γp̃yix̂ − αp̃i

Homogeneous Shear Algorithm

Viscous
dissipation

Elasticity

Laplace-Fourier transform 
in the GK integral

Harmonic shear perturbation, 
measure phase and amplitude of Pxy
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Complex shear viscosity of 3D Yukawa liquids

Z. Donkó, J. Goree, H. Hartmann, Phys. Rev. E   81, 056404 (2010) 

lation methods, it is a continuous variable resulting from the
Fourier transform of the time series data.!

One reason that it is useful to perform both EMD and
NEMD simulations is that their results can be compared as a
validation test. Examining Fig. 2, we find good agreement
between these methods: the data points for NEMD coincide
with the smooth curves for EMD. The EMD data shown in
Fig. 2 are averages of eight simulation runs, while the
NEMD data originate from single simulation runs at the
given frequencies.

Another reason to compare NEMD and EMD simulations
is to affirm the physical relationship between transport coef-
ficients derived with and without the presence of macro-
scopic gradients. While the equations of motion in the two
methods are very similar, the viscosity is computed from the
pressure tensor at quite different conditions, with "NEMD!
and without "EMD! macroscopic shear. The agreement seen
in Fig. 2 affirms that viscosity derived both ways have the
same values, for all frequencies studied here.

We find that the dissipative "real! part of the viscosity !̄!
decreases with frequency. This is observed in Fig. 2 for all "
values that we tested.

The elastic "imaginary! part !̄" at first increases with fre-
quency well below the plasma frequency #p. It then has a
maximum and diminishes with frequency. The maximum of
!̄" is most definitive for high ", while for lower values of ",
we find that !̄" flattens within the frequency range studied. In
general, the maximum occurs at a frequency that decreases
with ".

For the frequency dependence of the viscosity, we have
carried out different validation tests:

"1! We note agreement of our results with previously re-
ported simulations for static viscosity. In the limit of #̄→0,
our results for the real part !! agree with NEMD results #14$
for static viscosity, indicated with a star in the panels of Fig.
2.

"2! For selected frequencies "#̄=0.3, 0.9, and 1.5!, we
have also run the NEMD code with N=17 576 particles;
agreement between these data in Fig. 2 shows no significant
system-size effects.

"3! Comparison of the results of our EMD simulations
carried out with N=2197 and 17 576 particles for selected
"" ,$! pairs, displayed in Fig. 3, shows no significant system-
size effects.

To reveal the richness of the dependence of ! on both "
and #, we present Fig. 4. The viscous part !! and elastic
parts !" are shown as color maps in the top and bottom
panels, respectively, for many more values of " than in Fig.
2. For the viscous part !!, we find that the minimum viscos-
ity at low frequency vanishes at higher frequencies. To see
this, we direct the reader’s attention to vertical profiles in
panel "a!: at low frequency #̄%1, the viscosity has a mini-
mum with respect to ", at "%30 as was previously known,
but for higher frequencies #̄&0.3, this minimum vanishes
and the viscous part !! decays monotonically with ".

We can identify an underlying physical reason for the
disappearance of the minimum viscosity !! in Fig. 4. Recall
that the Green-Kubo approach offers the insight that the vis-
cosity has two major contributions, kinetic and potential. In
the static case #=0, it is well known that these terms vary
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FIG. 2. "Color online! Complex viscosity !̄"#!= !̄!"#!
− i!̄""#! from our EMD and NEMD simulations. Results are shown
for different values of the coupling parameter, always at $=1. EMD
results in conjunction with the generalized Green-Kubo relation:
solid blue line: real part; dashed red line: imaginary part. NEMD
results with N=2197 particles: filled blue squares: real part; filled
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For comparison, the stars indicate static !̄"0! NEMD results from
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lation methods, it is a continuous variable resulting from the
Fourier transform of the time series data.!

One reason that it is useful to perform both EMD and
NEMD simulations is that their results can be compared as a
validation test. Examining Fig. 2, we find good agreement
between these methods: the data points for NEMD coincide
with the smooth curves for EMD. The EMD data shown in
Fig. 2 are averages of eight simulation runs, while the
NEMD data originate from single simulation runs at the
given frequencies.

Another reason to compare NEMD and EMD simulations
is to affirm the physical relationship between transport coef-
ficients derived with and without the presence of macro-
scopic gradients. While the equations of motion in the two
methods are very similar, the viscosity is computed from the
pressure tensor at quite different conditions, with "NEMD!
and without "EMD! macroscopic shear. The agreement seen
in Fig. 2 affirms that viscosity derived both ways have the
same values, for all frequencies studied here.

We find that the dissipative "real! part of the viscosity !̄!
decreases with frequency. This is observed in Fig. 2 for all "
values that we tested.

The elastic "imaginary! part !̄" at first increases with fre-
quency well below the plasma frequency #p. It then has a
maximum and diminishes with frequency. The maximum of
!̄" is most definitive for high ", while for lower values of ",
we find that !̄" flattens within the frequency range studied. In
general, the maximum occurs at a frequency that decreases
with ".

For the frequency dependence of the viscosity, we have
carried out different validation tests:

"1! We note agreement of our results with previously re-
ported simulations for static viscosity. In the limit of #̄→0,
our results for the real part !! agree with NEMD results #14$
for static viscosity, indicated with a star in the panels of Fig.
2.

"2! For selected frequencies "#̄=0.3, 0.9, and 1.5!, we
have also run the NEMD code with N=17 576 particles;
agreement between these data in Fig. 2 shows no significant
system-size effects.

"3! Comparison of the results of our EMD simulations
carried out with N=2197 and 17 576 particles for selected
"" ,$! pairs, displayed in Fig. 3, shows no significant system-
size effects.

To reveal the richness of the dependence of ! on both "
and #, we present Fig. 4. The viscous part !! and elastic
parts !" are shown as color maps in the top and bottom
panels, respectively, for many more values of " than in Fig.
2. For the viscous part !!, we find that the minimum viscos-
ity at low frequency vanishes at higher frequencies. To see
this, we direct the reader’s attention to vertical profiles in
panel "a!: at low frequency #̄%1, the viscosity has a mini-
mum with respect to ", at "%30 as was previously known,
but for higher frequencies #̄&0.3, this minimum vanishes
and the viscous part !! decays monotonically with ".

We can identify an underlying physical reason for the
disappearance of the minimum viscosity !! in Fig. 4. Recall
that the Green-Kubo approach offers the insight that the vis-
cosity has two major contributions, kinetic and potential. In
the static case #=0, it is well known that these terms vary
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FIG. 2. "Color online! Complex viscosity !̄"#!= !̄!"#!
− i!̄""#! from our EMD and NEMD simulations. Results are shown
for different values of the coupling parameter, always at $=1. EMD
results in conjunction with the generalized Green-Kubo relation:
solid blue line: real part; dashed red line: imaginary part. NEMD
results with N=2197 particles: filled blue squares: real part; filled
red circles: imaginary part. NEMD results with N=17 576 particles:
open up triangles: real part; open down triangles: imaginary part.
For comparison, the stars indicate static !̄"0! NEMD results from
Ref. #14$.
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lation methods, it is a continuous variable resulting from the
Fourier transform of the time series data.!

One reason that it is useful to perform both EMD and
NEMD simulations is that their results can be compared as a
validation test. Examining Fig. 2, we find good agreement
between these methods: the data points for NEMD coincide
with the smooth curves for EMD. The EMD data shown in
Fig. 2 are averages of eight simulation runs, while the
NEMD data originate from single simulation runs at the
given frequencies.

Another reason to compare NEMD and EMD simulations
is to affirm the physical relationship between transport coef-
ficients derived with and without the presence of macro-
scopic gradients. While the equations of motion in the two
methods are very similar, the viscosity is computed from the
pressure tensor at quite different conditions, with "NEMD!
and without "EMD! macroscopic shear. The agreement seen
in Fig. 2 affirms that viscosity derived both ways have the
same values, for all frequencies studied here.

We find that the dissipative "real! part of the viscosity !̄!
decreases with frequency. This is observed in Fig. 2 for all "
values that we tested.

The elastic "imaginary! part !̄" at first increases with fre-
quency well below the plasma frequency #p. It then has a
maximum and diminishes with frequency. The maximum of
!̄" is most definitive for high ", while for lower values of ",
we find that !̄" flattens within the frequency range studied. In
general, the maximum occurs at a frequency that decreases
with ".

For the frequency dependence of the viscosity, we have
carried out different validation tests:

"1! We note agreement of our results with previously re-
ported simulations for static viscosity. In the limit of #̄→0,
our results for the real part !! agree with NEMD results #14$
for static viscosity, indicated with a star in the panels of Fig.
2.

"2! For selected frequencies "#̄=0.3, 0.9, and 1.5!, we
have also run the NEMD code with N=17 576 particles;
agreement between these data in Fig. 2 shows no significant
system-size effects.

"3! Comparison of the results of our EMD simulations
carried out with N=2197 and 17 576 particles for selected
"" ,$! pairs, displayed in Fig. 3, shows no significant system-
size effects.

To reveal the richness of the dependence of ! on both "
and #, we present Fig. 4. The viscous part !! and elastic
parts !" are shown as color maps in the top and bottom
panels, respectively, for many more values of " than in Fig.
2. For the viscous part !!, we find that the minimum viscos-
ity at low frequency vanishes at higher frequencies. To see
this, we direct the reader’s attention to vertical profiles in
panel "a!: at low frequency #̄%1, the viscosity has a mini-
mum with respect to ", at "%30 as was previously known,
but for higher frequencies #̄&0.3, this minimum vanishes
and the viscous part !! decays monotonically with ".

We can identify an underlying physical reason for the
disappearance of the minimum viscosity !! in Fig. 4. Recall
that the Green-Kubo approach offers the insight that the vis-
cosity has two major contributions, kinetic and potential. In
the static case #=0, it is well known that these terms vary
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FIG. 2. "Color online! Complex viscosity !̄"#!= !̄!"#!
− i!̄""#! from our EMD and NEMD simulations. Results are shown
for different values of the coupling parameter, always at $=1. EMD
results in conjunction with the generalized Green-Kubo relation:
solid blue line: real part; dashed red line: imaginary part. NEMD
results with N=2197 particles: filled blue squares: real part; filled
red circles: imaginary part. NEMD results with N=17 576 particles:
open up triangles: real part; open down triangles: imaginary part.
For comparison, the stars indicate static !̄"0! NEMD results from
Ref. #14$.
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oppositely with !: the kinetic term is large for high tempera-
tures !low !" and diminishes as the temperature is reduced,
while the potential term has the opposite dependences. For
the static case, a minimum viscosity occurs approximately
where these two contributions are equal. Our result here is
that this minimum vanishes at higher frequency and the vis-
cosity "! varies inversely with !. This inverse dependence
indicates that at high #, the kinetic term is dominant for all
values of !. In other words, we find that the potential term
becomes insignificant as #̄ increases above unity, i.e., as #
increases above #p. For the elastic part, "̄", we find in Fig.
4!b" that it too has minimum with respect to ! at low fre-
quencies. As it was for the viscous part "̄!, this minimum
vanishes at higher frequencies. The clarification of this com-
plex behavior of "̄! and "̄" could be well aided by an ana-

lytical model, which is beyond the scope of this paper.
We next explore the effects of friction and random forces

as revealed by our LD !Langevin dynamics" simulation. Fig-
ures 5!a" and 5!b" compare the results for "̄!#" from the LD
and the frictionless EMD simulation, for $=1. Here, the fric-
tion level was chosen to have a relatively high value %̄=0.3.
For the higher-temperature case of !=10 in panel !a", the
effect is mostly to reduce the elastic part "̄" for all frequen-
cies and the viscous part "̄! at low frequencies. For the
lower-temperature case of !=100 in panel !b", the effects of
friction and random forces have a greater frequency depen-
dence: the viscous and elastic parts are both suppressed at
high frequencies and enhanced at low frequencies, as com-
pared to the frictionless case.

Since the most profound effects of friction are shown in
Figs. 5!a" and 5!b" to occur at low frequencies, we examine
the #=0 case more closely in panel !c". The effect of damp-
ing is small for values %̄&10−2 where "̄!0" is almost con-
stant, but it becomes progressively more profound at higher-
damping values. This profound dependence on damping rate
has opposite tendencies for high and low !.

The physical reason for this contrasting behavior is the
opposite response of the kinetic and potential contributions
to the viscosity on the increased friction. We found that in
our simulations, the kinetic term decreases with increasing
friction, while the potential term does the opposite and in-
creases with increasing friction. This result is in agreement
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FIG. 3. !Color online" Complex viscosity "̄!#"= "̄!!#"
− i"̄"!#" from our EMD simulations for different values of the cou-
pling and screening parameters. N=2197 particles: solid blue line:
real part; dashed red line: imaginary part. N=17 576 particles: open
up triangles: real part; open down triangles: imaginary part. Stars
indicate static "̄!0" NEMD results from Ref. #14$.

FIG. 4. !Color online" Complex viscosity "̄!! ,#" from our
EMD simulations for 5'!'200 and $=1. !a" Viscous part "̄!. !b"
Elastic part "̄".
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lation methods, it is a continuous variable resulting from the
Fourier transform of the time series data.!

One reason that it is useful to perform both EMD and
NEMD simulations is that their results can be compared as a
validation test. Examining Fig. 2, we find good agreement
between these methods: the data points for NEMD coincide
with the smooth curves for EMD. The EMD data shown in
Fig. 2 are averages of eight simulation runs, while the
NEMD data originate from single simulation runs at the
given frequencies.

Another reason to compare NEMD and EMD simulations
is to affirm the physical relationship between transport coef-
ficients derived with and without the presence of macro-
scopic gradients. While the equations of motion in the two
methods are very similar, the viscosity is computed from the
pressure tensor at quite different conditions, with "NEMD!
and without "EMD! macroscopic shear. The agreement seen
in Fig. 2 affirms that viscosity derived both ways have the
same values, for all frequencies studied here.

We find that the dissipative "real! part of the viscosity !̄!
decreases with frequency. This is observed in Fig. 2 for all "
values that we tested.

The elastic "imaginary! part !̄" at first increases with fre-
quency well below the plasma frequency #p. It then has a
maximum and diminishes with frequency. The maximum of
!̄" is most definitive for high ", while for lower values of ",
we find that !̄" flattens within the frequency range studied. In
general, the maximum occurs at a frequency that decreases
with ".

For the frequency dependence of the viscosity, we have
carried out different validation tests:

"1! We note agreement of our results with previously re-
ported simulations for static viscosity. In the limit of #̄→0,
our results for the real part !! agree with NEMD results #14$
for static viscosity, indicated with a star in the panels of Fig.
2.

"2! For selected frequencies "#̄=0.3, 0.9, and 1.5!, we
have also run the NEMD code with N=17 576 particles;
agreement between these data in Fig. 2 shows no significant
system-size effects.

"3! Comparison of the results of our EMD simulations
carried out with N=2197 and 17 576 particles for selected
"" ,$! pairs, displayed in Fig. 3, shows no significant system-
size effects.

To reveal the richness of the dependence of ! on both "
and #, we present Fig. 4. The viscous part !! and elastic
parts !" are shown as color maps in the top and bottom
panels, respectively, for many more values of " than in Fig.
2. For the viscous part !!, we find that the minimum viscos-
ity at low frequency vanishes at higher frequencies. To see
this, we direct the reader’s attention to vertical profiles in
panel "a!: at low frequency #̄%1, the viscosity has a mini-
mum with respect to ", at "%30 as was previously known,
but for higher frequencies #̄&0.3, this minimum vanishes
and the viscous part !! decays monotonically with ".

We can identify an underlying physical reason for the
disappearance of the minimum viscosity !! in Fig. 4. Recall
that the Green-Kubo approach offers the insight that the vis-
cosity has two major contributions, kinetic and potential. In
the static case #=0, it is well known that these terms vary

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.00

0.05

0.10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.00

0.05

0.10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.00

0.05

0.10

0.15

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.00

0.05

0.10

0.15

0.20

0.25

η'
,η

''

(a) Γ = 5

η' NEMD N=17 576
η'' NEMD N=17 576

η' EMD/GK NEMD N = 2197
η'' EMD/GK NEMD N = 2197

η(0) NEMD

η'
,η

'' (b) Γ = 10

η'
,η

'' (c) Γ = 50

η'
,η

'' (d) Γ = 100

η'
,η

''

ω

(e) Γ = 200

FIG. 2. "Color online! Complex viscosity !̄"#!= !̄!"#!
− i!̄""#! from our EMD and NEMD simulations. Results are shown
for different values of the coupling parameter, always at $=1. EMD
results in conjunction with the generalized Green-Kubo relation:
solid blue line: real part; dashed red line: imaginary part. NEMD
results with N=2197 particles: filled blue squares: real part; filled
red circles: imaginary part. NEMD results with N=17 576 particles:
open up triangles: real part; open down triangles: imaginary part.
For comparison, the stars indicate static !̄"0! NEMD results from
Ref. #14$.
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η’
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Viscous → elastic transition

oppositely with !: the kinetic term is large for high tempera-
tures !low !" and diminishes as the temperature is reduced,
while the potential term has the opposite dependences. For
the static case, a minimum viscosity occurs approximately
where these two contributions are equal. Our result here is
that this minimum vanishes at higher frequency and the vis-
cosity "! varies inversely with !. This inverse dependence
indicates that at high #, the kinetic term is dominant for all
values of !. In other words, we find that the potential term
becomes insignificant as #̄ increases above unity, i.e., as #
increases above #p. For the elastic part, "̄", we find in Fig.
4!b" that it too has minimum with respect to ! at low fre-
quencies. As it was for the viscous part "̄!, this minimum
vanishes at higher frequencies. The clarification of this com-
plex behavior of "̄! and "̄" could be well aided by an ana-

lytical model, which is beyond the scope of this paper.
We next explore the effects of friction and random forces

as revealed by our LD !Langevin dynamics" simulation. Fig-
ures 5!a" and 5!b" compare the results for "̄!#" from the LD
and the frictionless EMD simulation, for $=1. Here, the fric-
tion level was chosen to have a relatively high value %̄=0.3.
For the higher-temperature case of !=10 in panel !a", the
effect is mostly to reduce the elastic part "̄" for all frequen-
cies and the viscous part "̄! at low frequencies. For the
lower-temperature case of !=100 in panel !b", the effects of
friction and random forces have a greater frequency depen-
dence: the viscous and elastic parts are both suppressed at
high frequencies and enhanced at low frequencies, as com-
pared to the frictionless case.

Since the most profound effects of friction are shown in
Figs. 5!a" and 5!b" to occur at low frequencies, we examine
the #=0 case more closely in panel !c". The effect of damp-
ing is small for values %̄&10−2 where "̄!0" is almost con-
stant, but it becomes progressively more profound at higher-
damping values. This profound dependence on damping rate
has opposite tendencies for high and low !.

The physical reason for this contrasting behavior is the
opposite response of the kinetic and potential contributions
to the viscosity on the increased friction. We found that in
our simulations, the kinetic term decreases with increasing
friction, while the potential term does the opposite and in-
creases with increasing friction. This result is in agreement
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− i"̄"!#" from our EMD simulations for different values of the cou-
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real part; dashed red line: imaginary part. N=17 576 particles: open
up triangles: real part; open down triangles: imaginary part. Stars
indicate static "̄!0" NEMD results from Ref. #14$.

FIG. 4. !Color online" Complex viscosity "̄!! ,#" from our
EMD simulations for 5'!'200 and $=1. !a" Viscous part "̄!. !b"
Elastic part "̄".
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Thermal conductivity: MD methods
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Thermal conductivity of 3D Coulomb liquids
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Transport in 2 dimensional Yukawa liquids

Motivation: experiments on 2D systems - indicate superdiffusion

Alder and Wainwright [Phys. Rev. A 1, 18 (1970)] observed t -1  decay of the VACF in computer 
simulations of 2D hard disk system. 

Ernst, Hauge, and van Leeuwen [Phys. Rev. Lett. 25, 1254 (1970)] have shown that the kinetic 
contributions to the autocorrelation functions of shear stress and energy current exhibit the 
same behavior.

This implies that the transport coefficients do not exist in 2D..... BUT : Isobe [Phys. Rev. E 
2008] → large scale simulation of hard disk fluid: the decay of the VACF is slightly faster than 
1/t for a range parameters of the system!

DO UNIQUE TRANSPORT COEFFICIENTS EXIST FOR 2D YUKAWA LIQUIDS ???
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Diffusion: Velocity autocorrelation function (2D)

Z. Donkó, J. Goree, P. Hartmann, and Bin Liu, 
Phys. Rev. E 79, 026401 (2009)

Features: initial oscillations (caging)  + 
smooth decay + sound peaks (“S”)

Need big system 
especially at 

high Γ and low κ

SUPERDIFFUSION
at low

temperature
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2D Transport: mean squared displacement

MSD(t) = 〈 |r(t) − r(0)|2 〉 D =
1

2Nd t
〈 |r(t) − r(0)|2 〉

Z. Donkó, J. Goree, P. Hartmann, Bin Liu, 
Phys. Rev. E 79, 026401 (2009)

Conclusion (2009):
looks to be superdiffusion within time limit
longer time: “ who knows ...?? ”
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2D diffusion: latest news

Is Diffusion Anomalous in Two-Dimensional Yukawa Liquids?

T. Ott and M. Bonitz
Christian-Albrechts-Universität zu Kiel, Institut für Theoretische Physik und Astrophysik, Leibnizstraße 15, 24098 Kiel, Germany

(Received 14 August 2009; revised manuscript received 26 October 2009; published 3 November 2009)

There have recently been many predictions of ‘‘superdiffusion’’ in two-dimensional strongly coupled

Yukawa systems, both by computer simulations and in dusty plasma experiments, with substantially

varying diffusion exponents. Here we show that the results crucially depend on the strength of dissipation

and the time instant of the measurement. For sufficiently large friction even subdiffusion is possible.

However, there are strong indications that, in the long-time limit, anomalous diffusion vanishes and the

system returns to normal diffusion, for dissipative as well as for frictionless systems.

DOI: 10.1103/PhysRevLett.103.195001 PACS numbers: 52.27.Gr, 52.27.Lw, 66.10.cg, 82.70.Dd

Two-dimensional (2D) systems are important models for
a large variety of processes on liquid or solid surfaces as
well as for low-dimensional structures in condensed mat-
ter. It is long known that reduction of the dimensionality to
two is accompanied by a number of anomalies in the
collective properties of many-body systems including
Bose condensation and superfluidity, the quantum Hall
effect or phase transitions (Kosterlitz-Thouless scenario).
Even purely classical systems have been predicted to ex-
hibit anomalies in 2D which are seen, e.g., in fundamental
transport properties such as diffusion [1].

Among classical 2D systems, monolayers of particles
interacting via a Coulomb or Yukawa potential which can
be produced in ion traps, e.g., [2] and dusty plasmas [3]
constitute a particularly interesting generic example which
allows one to study 2D anomalies with unprecedented
accuracy. It is, therefore, not surprising that diffusion
processes in 2D Yukawa liquids (2DYL) have, over the
last decade, attracted considerable interest, both in theo-
retical works [4–10] and experiments in dusty plasmas
[7,11–19]. While some authors found no peculiarities
[10,16], the majority of these works has reported signifi-
cant deviations from ‘‘normal’’ diffusion, i.e., from Fick’s
law and Einstein’s formula for the mean-squared displace-
ment (MSD), ur ! t! with ! ¼ 1. There were many ob-
servations of superdiffusion (!> 1), i.e., enhanced
diffusion [4–9,12–15,17–19], but in some cases also of
reduced diffusion, i.e., subdiffusion (!< 1) [5,6]. The
strength of anomalous diffusion can be conveniently quan-
tified by the value of the exponent !. However, there is a
substantial scatter of the reported experimental and theo-
retical data, ranging from below 1.0 to values as high as
1.3. The origin of these differences is unknown, and even
the existence of anomalous diffusion is being debated.

The theoretical investigations were based on equilibrium
computer simulations and have concentrated on the ideal-
ized 2D as well as on the quasi-2D case [8], both with and
without dissipation included. Possible sources of devia-
tions lie in differences in the complex plasma conditions
such as screening strength ", coupling parameter ! and
neutral gas friction. In dusty plasma experiments [3], more-

over, various forms of friction are always present as are
additional energy sources arising from the plasma dis-
charge giving rise to a nonequilibrium driven-dissipative
system.
The aim of this Letter is to resolve the puzzle about the

character of diffusion in 2DYL. To this end, we systemati-
cally analyze the effects of the interaction range (screen-
ing), coupling (temperature), and dissipation. Furthermore,
it is well known that the diffusion exponent ! varies in
time: initially it equals 2 (free ballistic motion) and later on
it is expected to approach some fixed value which deter-
mines whether the system exhibits normal, subdiffusion or
superdiffusion. It has been noted [4,9,11,15,20] that this
value depends on the choice of the time window during
which it is recorded. This may be another explanation for
the large scatter of ! values reported previously but raises
the question about the correct procedure. We therefore,
explore the whole time dependence of! in detail extending
the simulations to very long times. The results can be
summarized as follows: the character of diffusion depends
on the magnitude of dissipation. While for weak friction,
superdiffusion is observed, an increase of friction eventu-
ally gives rise to normal diffusion and subdiffusion.
However, this turns out to be only a transient phenomenon.
For sufficiently large observation times, diffusion trans-
forms to normal diffusion.
Model and simulation idea.—Our 2DYL consists of N

particles contained in a quadratic monolayer with periodic
boundary conditions. The particle motion is modeled by
coupled Langevin equations,

m€~ri ¼ ~Fi #m ## ~vi þ ~yi i ¼ 1 . . .N; (1)

where ## is the friction coefficient and ~Fi the Yukawa force,

~F i ¼ # Q2

4$"0

X

j!i

!
r e#r=%D

r

"########r¼j~ri#~rjj

with the Debye screening length %D and chargeQ. ~yiðtÞ is a
Gaussian white noise with zero mean and the standard de-
viation hy!;iðt0Þy&;jðt0 þ tÞi ¼ 2kBTm ##'ij'!&'ðtÞ, where
!, & 2 fx; yg and T is the temperature. We choose as the
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unit of length the Wigner-Seitz radius aws ¼ ðn!Þ$1=2,
where n is the areal density, and as the unit of time the
inverse of the plasma frequency!p ¼ ðQ2=2!"0ma3wsÞ1=2.
In thermodynamic equilibrium, the system is thus fully
described by three parameters—the dimensionless inverse
screening length " ¼ aws=#D, the friction coefficient $ ¼
!$=!p, and the Coulomb coupling parameter " ¼
Q2=ð4!"0akBTÞ. Equation (1) is solved by standard
Langevin dynamics [21] up to a maximum observation
time tobs which is limited by the condition that no collective
oscillations, e.g., sound waves, should be able to traverse
the entire simulation box of length L during the measure-
ment [4,22]. Thus, tobs < L=vs should be satisfied where
vs is the (sound) velocity of the fastest mode which for
2DYL is well known [23–25]. By simulating large systems
with 100 000 particles, we achieve !ptobs ¼ 2500, extend-
ing previous results [5,6,8,9] by 1 order of magnitude.

Mean-squared displacement.—In examining the charac-
ter of diffusion, the most important quantity is the MSD,
urðtÞ ¼ hj~rðtÞ $ ~rðt0Þj2iN, where the averaging is over all
particles. A general parametrization is

urðtÞ ¼ D0t
%ðtÞ; (2)

where in the case of normal diffusion, at long times %
approaches unity, giving rise to the diffusion coefficient
D ¼ urðtÞ=4t. In contrast, in the case of anomalous diffu-
sion,% differs from unity:%> 1 (%< 1) is associated with
superdiffusion (subdiffusion).

In a first series of simulations with fewer particles and
zero friction, we establish the overall diffusion trends in
2DYL, i.e., the dependence of % on both the coupling
strength and the range 1=" of the pair interaction. To be
able to compare the data for different ", we introduce the
relative coupling "rel by normalizing the Coulomb cou-
pling parameter to the crystallization point "cð"Þ, i.e.,
"rel ¼ "="c [9]. This is only one possible definition of
the physical coupling—see, e.g., Refs. [24,26,27] for other
definitions—but a particularly physically intuitive one.
The results of these simulations are shown in Fig. 1. A
first observation is that % is larger than unity for a large
range of "rel, clearly indicating superdiffusion confirming
earlier simulations [5,6,9]. Our data are significantly more
comprehensive covering the full range of coupling
strengths from the gas phase to the strongly coupled liquid.
The dependence is nonmonotonic with a maximum around
"rel ¼ 0:2. Our data show that superdiffusion is strongly
dependent on the degree of correlations in the system. For
weak coupling, the system is dominated by binary inter-
actions, and % is only slightly larger than unity. When the
coupling is increased, superdiffusion becomes more pro-
nounced because collective effects grow. After a maxi-
mum, the value of % is again decreasing since particle
movement is increasingly hindered by entrapment in local
potential minima (‘‘cages’’) and the onset of crystal-
lization. A second conclusion from Fig. 1 is the weak but
systematic dependence of % on " in the range " ¼ 1 . . . 3.

This trend has been first observed in [9] for three values of
"rel and is here confirmed for the whole range of coupling
strengths.
Effect of dissipation.—We now turn to the influence of

friction and to the long-time behavior of diffusion. To
achieve long simulation times, tobs, it is advantageous to
consider large " values since the sound speed vs dimin-
ishes rapidly with ". Below we will, therefore, concentrate
on the case " ¼ 3 which—due to the weak " dependence
observed in Fig. 1—is representative for a 2DYL. This
allows us to perform extensive large simulations with
N ¼ 100 000 up to t!p ¼ 2500.
In Fig. 2(a), we show urðtÞ for three values of the friction

coefficient $ at a fixed coupling "rel ¼ 0:16 close to the
maximum of the curves in Fig. 1, corresponding to a
moderately coupled liquid state. The ballistic regime

FIG. 1 (color online). Diffusion exponent % as a function of
"rel for different values of " (1.0, 2.0, 3.0) obtained from a best
fit of Eq. (2) in the time window !pt 2 ½100; 320&. The three
ticks on the upper x axis indicate the three values of "rel used in
Figs. 2–5.

FIG. 2 (color online). (a) urðtÞ for "rel ¼ 0:16 and $ ¼ 0:001,
0.08, 1.0. (b) Corresponding %ðtÞ.
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nounced because collective effects grow. After a maxi-
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movement is increasingly hindered by entrapment in local
potential minima (‘‘cages’’) and the onset of crystal-
lization. A second conclusion from Fig. 1 is the weak but
systematic dependence of % on " in the range " ¼ 1 . . . 3.
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"rel and is here confirmed for the whole range of coupling
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friction and to the long-time behavior of diffusion. To
achieve long simulation times, tobs, it is advantageous to
consider large " values since the sound speed vs dimin-
ishes rapidly with ". Below we will, therefore, concentrate
on the case " ¼ 3 which—due to the weak " dependence
observed in Fig. 1—is representative for a 2DYL. This
allows us to perform extensive large simulations with
N ¼ 100 000 up to t!p ¼ 2500.
In Fig. 2(a), we show urðtÞ for three values of the friction
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Tendency towards normal diffusion at long times
Relation to dusty plasma experiments (timescale, equilibrium)
Accuracy of MD at long times???

!pt & 5 is followed by a transition period after which the
MSD eventually seems to approach an asymptotic behavior
characterized by different slopes for different !. From
these curves it is clear that the common method to extract
" from the average slope of the MSD in a given time
window, e.g., [5,8,15], can be rather ambiguous, depending
on the width and position of the latter. Therefore, here we
avoid any averaging and, instead, study an instantaneous
diffusion exponent "inst as the derivative "instðtÞ ¼
@lnt ln½urðlntÞ%.

Figure 2(b) shows "instðtÞ for the same curves (we drop
the superscript in the following). Evidently, the instanta-
neous exponent "ðtÞ is much more sensitive to the
time dependence of the diffusive motion which turns out
to be nontrivial. Consider first the curve for the friction
value ! ¼ 0:08. Here,"ðtÞ, after a transient period of about
20 plasma periods, approaches its asymptotic value " ¼ 1;
i.e., the system exhibits normal diffusion. In contrast, for
the low-friction case, ! ¼ 0:001, after a transient of similar
length "ðtÞ remains significantly larger than unity corre-
sponding to superdiffusive behavior. However, no con-
stant value "ðtÞ is reached within our simulation time,
rather "ðtÞ continues to decrease monotonically towards
unity. Even more interesting is the behavior at large fric-
tion, ! ¼ 1: after the ballistic regime, a broad intermedi-
ate phase is observed where the motion changes from
superdiffusion to subdiffusion. The latter persist for
10 & !pt & 2000 after which the diffusion is normal.
(Here, and in the following, we use the threshold
" ¼ 1:03 [" ¼ 0:97] to locate the boundary between nor-
mal diffusion and superdiffusion [subdiffusion].)

Transient and long-time behavior for different cou-
plings.—To systematically examine the influence of dis-
sipation on "ðtÞ, we repeat these simulations for a larger
number of friction coefficients ! and different couplings.
The entire time dependence of "ðtÞ for arbitrary ! at !rel ¼
0:16 is comprised in Fig. 3 [28]. A first observation is that,
in all cases, dissipation ultimately induces a transition to
normal diffusion. Superdiffusion may exist, but it is a
transient effect [29] which is possible only at sufficiently
low friction. The time window of superdiffusion rapidly
decreases as dissipation grows. At high friction, instead,
transient subdiffusion is observed within a time window
which is growing with increasing friction. Only within a
relatively small friction interval a direct crossover from
ballistic motion to normal diffusion is observed. This is an
interesting special case where the combined effect of fric-
tion and thermal fluctuations prevents the buildup of col-
lective motions in the liquid. The corresponding graphs for
the limits of very strong and very weak coupling, !rel ¼
0:40 and 0.040, respectively, are shown in Figs. 4. Here, the
overall picture is the same as for !rel ¼ 0:16 with the main
modification that, for lower [stronger] coupling, the region
of transient superdiffusivity is extended towards higher
[lower] friction, while the subdiffusive region is dimin-
ished [increased]. Thus we conclude that we have estab-
lished the general trends of time-dependent diffusion
processes in dissipative 2DYL.
Now the interesting question arises whether the emer-

gence of normal diffusion at very long time scales is the
sole consequence of dissipation or if this is an intrinsic
property of 2DYL which is observed also in the frictionless

FIG. 3 (color online). Instantaneous
diffusion exponent "ðtÞ as a function of
friction coefficient ! and time !pt for
!rel ¼ 0:16. (a) Density representation
with contour lines for " ¼ 1:50, 1.30,
1.10, 1.03, 0.97. (b) Schematic represen-
tation with labeled regions of super-,
sub-, and normal diffusion.

FIG. 4 (color online). Instantaneous
diffusion exponent "ðtÞ as a function of
friction coefficient ! and time !pt for
!rel ¼ 0:40 (top) and !rel ¼ 0:040 (bot-
tom).
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transient effect [29] which is possible only at sufficiently
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transient subdiffusion is observed within a time window
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tion and thermal fluctuations prevents the buildup of col-
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of transient superdiffusivity is extended towards higher
[lower] friction, while the subdiffusive region is dimin-
ished [increased]. Thus we conclude that we have estab-
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!rel ¼ 0:40 (top) and !rel ¼ 0:040 (bot-
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D ¼ urðtÞ=4t. In contrast, in the case of anomalous diffu-
sion,% differs from unity:%> 1 (%< 1) is associated with
superdiffusion (subdiffusion).

In a first series of simulations with fewer particles and
zero friction, we establish the overall diffusion trends in
2DYL, i.e., the dependence of % on both the coupling
strength and the range 1=" of the pair interaction. To be
able to compare the data for different ", we introduce the
relative coupling "rel by normalizing the Coulomb cou-
pling parameter to the crystallization point "cð"Þ, i.e.,
"rel ¼ "="c [9]. This is only one possible definition of
the physical coupling—see, e.g., Refs. [24,26,27] for other
definitions—but a particularly physically intuitive one.
The results of these simulations are shown in Fig. 1. A
first observation is that % is larger than unity for a large
range of "rel, clearly indicating superdiffusion confirming
earlier simulations [5,6,9]. Our data are significantly more
comprehensive covering the full range of coupling
strengths from the gas phase to the strongly coupled liquid.
The dependence is nonmonotonic with a maximum around
"rel ¼ 0:2. Our data show that superdiffusion is strongly
dependent on the degree of correlations in the system. For
weak coupling, the system is dominated by binary inter-
actions, and % is only slightly larger than unity. When the
coupling is increased, superdiffusion becomes more pro-
nounced because collective effects grow. After a maxi-
mum, the value of % is again decreasing since particle
movement is increasingly hindered by entrapment in local
potential minima (‘‘cages’’) and the onset of crystal-
lization. A second conclusion from Fig. 1 is the weak but
systematic dependence of % on " in the range " ¼ 1 . . . 3.

This trend has been first observed in [9] for three values of
"rel and is here confirmed for the whole range of coupling
strengths.
Effect of dissipation.—We now turn to the influence of

friction and to the long-time behavior of diffusion. To
achieve long simulation times, tobs, it is advantageous to
consider large " values since the sound speed vs dimin-
ishes rapidly with ". Below we will, therefore, concentrate
on the case " ¼ 3 which—due to the weak " dependence
observed in Fig. 1—is representative for a 2DYL. This
allows us to perform extensive large simulations with
N ¼ 100 000 up to t!p ¼ 2500.
In Fig. 2(a), we show urðtÞ for three values of the friction

coefficient $ at a fixed coupling "rel ¼ 0:16 close to the
maximum of the curves in Fig. 1, corresponding to a
moderately coupled liquid state. The ballistic regime

FIG. 1 (color online). Diffusion exponent % as a function of
"rel for different values of " (1.0, 2.0, 3.0) obtained from a best
fit of Eq. (2) in the time window !pt 2 ½100; 320&. The three
ticks on the upper x axis indicate the three values of "rel used in
Figs. 2–5.

FIG. 2 (color online). (a) urðtÞ for "rel ¼ 0:16 and $ ¼ 0:001,
0.08, 1.0. (b) Corresponding %ðtÞ.
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Collective excitations
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Collective excitations in 3D liquids

S(k, ω) =
1

2πN
lim

∆T→∞

1

∆T
|ρ(k, ω)|2 ρ(k, ω) = F

[

ρ(k, t)
]

L(k, ω) T (k, ω)

k k

Longitudinal wave Transverse wave

ρ(k, t) =
N

∑

j=1

exp
[

ikxj(t)
]

λ(k, t) =
N

∑

j=1

vjx(t) exp
[

ikxj(t)
]

τ(k, t) =
N

∑

j=1

vjy(t) exp
[

ikxj(t)
]

Microscopic density fluctuations: Dynamical structure function:

Microscopic current fluctuations: Longitudinal and transverse 
current-current fluctuation spectra
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Collective excitations in 3D liquids

H. Ohta & S. Hamaguchi, 
Phys. Rev. Lett. 84, 6026 (2000)

G. Kalman, M. Rosenberg, and H. E. DeWitt, 
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QLCA theory:

First MD simulations

 N = 250 / 800

N = 12800

Z. Donkó, G. J. Kalman & P. Hartmann, 
J. Phys. Cond. Matter 20, 413101 (2008)  
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Collective excitations in 3D liquids

Coulomb:

L : const. freq.
T : acoustic

Yukawa:

L : quasi-acoustic
T : acoustic
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Collective excitations in 3D liquids: MD vs. theory

Λ3D(x, y) = −2
e−y

x

[

(

1 + y + y
2
)

(

sin(x)

x
+ 3

cos(x)

x2
− 3

sin(x)

x3

)

−

y
2

6

(

1 + 3
sin(x)

x
+ 12

cos(x)

x2
− 12

sin(x)

x3

)

]

Θ3D(x, y) =
1

2

[

e−y

x
y
2

(

1 −

sin(x)

x

)

− Λ3D(x, y)

]

Ω2
L(k) = Ω2

0(k) + ω2
0,3D

k̄2

2

∫

∞

0

Λ3D
(

k̄r̄, κr̄
)

h(r̄)dr̄

Ω2
T(k) = ω2

0,3D

k̄2

2

∫

∞

0

Θ3D
(

k̄r̄, κr̄
)

h(r̄)dr̄

Ω2
0(k) = ω

2
0,3D

k̄2

k̄2 + κ2

QLCA 
theory:

Cutoff of T-mode 
at finite k: liquid

M.S. Murillo
Phys. Rev. Lett. 
85, 2514 (2000)
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Collective excitations in a quasi-2D liquid

k

Shear (transverse) wave [T]
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Out-of-plane transverse wave [P]

Compressional (longitudinal) wave [L]
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Longitudinal mode                 In-plane transverse mode             Out-of-plane transverse mode

Γ= 100,   κ = 0.27

Collective excitations in a quasi-2D liquid

L : quasi-acoustic                                     T : acoustic                                        P : optical

  Z. Donkó, P. Hartmann, G. J. Kalman, M. Rosenberg, Contrib. Plasma Phys. 43, 282-284 (2003).
  G. J. Kalman, P. Hartmann, Z. Donkó, M. Rosenberg, Phys. Rev. Lett. 92, 065001 (2004).
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Summary

Simulation studies aid the understanding of theoretical and experimental results

Simulations are suitable for a wide variety of strongly coupled many-particle 
systems

Equilibrium / non-equilibrium Molecular Dynamics simulations can be used to 
study

structural & thermodynamical properties

collective excitations 

localization and transport

... and numerous other physical phenomena
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