Shear Viscosity and Shear Thinning in Two-Dimensional Yukawa Liquids

Z. Donkó*, J. Goree**, P. Hartmann*, K. Kutasi*

*Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, Budapest, Hungary

**Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA
Transport coefficients of Yukawa liquids

Motivation:

1) There is an increasing interest in transport phenomena in strongly coupled plasmas: diffusion, viscosity, thermal conductivity have been studied both experimentally and via simulations. → Calculate shear viscosity for strongly-coupled 2D Yukawa liquids.

2) Various systems exhibit dependence of the viscosity on shear rate (non-Newtonian behavior), usually shear thinning. → Check whether this effect exists in dusty plasmas?
Transport coefficients of Yukawa liquids

<table>
<thead>
<tr>
<th>Authors</th>
<th>Reference</th>
<th>D</th>
<th>η</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. Salin and J.-M. Caillol</td>
<td>Phys. Plasmas 10, 1220 (2003)</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>G. Faussurier and M. S. Murillo</td>
<td>Phys. Rev. E 67, 046404 (2003)</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>G. Faussurier</td>
<td>Phys. Rev. E 69, 066402 (2004)</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>K. Dzhumagulova and T. S. Ramazanov</td>
<td>PNP-12, Poster 07 (2006)</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Molecular dynamics calculation of shear viscosity

Equilibrium MD for Yukawa systems

Short – range interaction makes it possible to find cutoff radius

Periodic boundary conditions avoid edge effects

Force calculation:

\[\mathbf{F}_i(t) = \sum_{r_{ij} < r_{\text{cutoff}}} \mathbf{F}_{ij}(t) \]

“Neighbors” must be searched for in image cells, too.

... and integrate equation of motion
Molecular dynamics calculation of shear viscosity

Equilibrium MD for Yukawa systems

\[P^{xy}(t) = \sum_{i=1}^{N} m v_{x_i} v_{y_i} - \sum_{j<i} x_{ij} v_{ij} \frac{d}{d\mathbf{r}_{ij}} \phi(r_{ij}) \]

The shear viscosity is obtained through the Green-Kubo relation:

\[\eta = \frac{1}{V k T} \int_0^\infty C(t) dt \]

\[C(t) = \left\langle P^{xy}(t) P^{xy}(0) \right\rangle \]

Nonequilibrium MD for determination of shear viscosity

Constitutive relation for shear viscosity:
(Shear flow \Rightarrow momentum transport)

$$j_{px}(y) = -\eta \frac{dv_x(y)}{dy}$$

FLUX = - TRANSPORT COEFF. X FIELD

The idea of nonequilibrium simulation:

to determine transport coefficient:
apply FIELD (some kind of perturbation) and measure FLUX

BUT NEXT WE'LL DO SOMETHING TOTALLY DIFFERENT
METHOD #1: "Reverse Molecular Dynamics"

- F. Müller-Plathe, *Phys. Rev. E* 59. 4894 (1999): "Reverse Molecular Dynamics" exchanges the cause and the consequence:
 - Exchanging p_x momenta of particles in cells A and B in a way that $< p_x > (A) < 0$ and $< p_x > (B) > 0$
 - we (artificially) induce a flux and a velocity field builds up as a consequence.
- Measure velocity profile $v_x(y)$
- Shear viscosity is calculated as:

$$\eta = \frac{\Delta P_x}{\Delta T} \frac{1}{2L} \frac{\Delta v_x(x)}{\Delta y}$$
Shear viscosity of 2D Yukawa liquids

Velocity profiles at different rates of momentum exchange

\[\Gamma = 100, \ \kappa = 1.0 \]

\[\frac{v_x(y)}{v_0} \]

\[y / L_y \]

Shear viscosity as a function of coupling parameter

\[\eta / \eta_0 = \frac{n \omega_P a^2}{\eta_0} \]

\[\Gamma \]

\[\kappa \]

\[N \]

\[\text{IOWA EMD} \]

\[k = 800 \]

\[k = 400 \]

\[k = 250 \]

\[k = 125 \]

\[\text{IOWA EMD} \]

\[\kappa = 0.5 \]

\[\kappa = 0.56 \]

\[\kappa = 1.0 \]

\[\kappa = 2.0 \]

\[N = 1600 \]

\[N = 1024 \]

\[N = 990 \]

\[N = 3960 \]

\[N = 990 \]

\[N = 3960 \]
Shear viscosity of 2D Yukawa liquids

Scaling property of the viscosity:

\[\frac{\eta_{eq}}{\eta_E} \]

\[\begin{array}{c|c|c} \kappa & N \\ \hline 0.5 & 1600 \\ 1.0 & 990 \\ 1.0 & 3960 \\ 2.0 & 990 \\ 2.0 & 3960 \end{array} \]

\[\eta_E = m n \omega_E a^2 \]

\[\omega_E : \text{Einstein frequency} \]

\[\frac{\eta_{eq}}{\eta_E} = a T' + \frac{b}{T'} + c \]

\[T' = T / T_{\text{melting}} \]

Similar as found by T. Saigo and S. Hamaguchi, *Phys. Plasmas* 9, 1210 (2002); for 3D case.
Method #2: Homogeneous shear algorithm

\[\langle v_x \rangle = \gamma \left(y - \frac{L}{2} \right) \]

Shear rate

Sliding (Lees-Edwards) boundary conditions

Equations of motion

\[
\frac{d\mathbf{r}_i}{dt} = \frac{d\mathbf{p}_i}{m} + \gamma y \hat{x}
\]

\[
\frac{d\mathbf{p}_i}{dt} = \mathbf{F}_i - \gamma \mathbf{p}_y \hat{x} - \alpha \mathbf{p}_i
\]

[Evans & Morris: “Statistical physics of nonequilibrium liquids”]
Shear viscosity of 2D Yukawa liquids

Example: $\Gamma = 140$, $\kappa = 1$,
Shear rate: $\gamma = 0.1$

Measure off-diagonal element of pressure tensor:

$$P^{xy}(t) = \sum_{i=1}^{N} \left[m v_{i} v_{iy} + \sum_{j>i}^{N} \frac{x_{ij} y_{ij}}{r_{ij}} \frac{d}{d r_{ij}} \phi(r_{ij}) \right]$$

... and calculate:

$$\eta = \lim_{t \to \infty} \frac{-\langle P^{xy}(t) \rangle}{\gamma}$$
The results obtained from methods #1 and #2 agree well in the limit of small shear rates. BUT: What happens at high shear rates? Is Newtonian behavior violated?
Shear viscosity of 2D Yukawa liquids

At high shear rates: non-Newtonian behavior:
shear thinning: decrease of viscosity
with increasing stress

Dependence of kinetic and potential contributions to the viscosity on the shear rate

\[\bar{y} = \frac{d v_x}{d y} \frac{a}{v_{th}} \]

A real life example of shear thinning: “The ketchup mystery”

Shear Mystery

Some fluids have a mysterious property: one moment they’re thick, the next they’re thin. Physicists aim to find out why with the aid of an experiment in space.

Listen to this story via streaming audio, a downloadable file, or get help.

“Shake and shake the ketchup bottle. None’ll come, and then a lot’ll.” --Richard Armour

June 7, 2002: Everyone has fallen prey to the ketchup bottle at one time or another.

After struggling to dislodge a meager few drops of the red liquid, an avalanche suddenly gushes out and buries your perfectly cooked burger. With suspiciously perfect timing, the ketchup changes from a thick paste to a runny liquid.

If you find yourself splattered and wondering "why?", you’re in good company. Theoretical physicists are puzzled, too.

Above: The sudden surge of ketchup from a bottle typifies an important and puzzling property of many liquids: shear thinning. Credit: MackKingShow.com.
Shear Viscosity and Shear Thinning in Two-Dimensional Yukawa Liquids

Summary

• Shear viscosity of 2D Yukawa liquids has been calculated for a wide range of coupling and screening parameters. Minimum of viscosity is found at intermediate coupling, similarly to 3D.

• In the limit of small shear rates two independent NEMD methods gave results in agreement with each other

• The shear viscosity was found to exhibit universality: $\frac{\eta_{eq}}{\eta_E} = f\left(\frac{T}{T_m}\right)$

• At high shear rates the homogeneous shear algorithm indicated the existence of shear thinning

THANK YOU FOR YOUR ATTENTION