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I. INTRODUCTION

Dusty plasmas are systems where millimeter to nanometer
sized particles are suspended in a partially ionized gaseous
environment consisting of neutral atoms/molecules, elec-
trons, and ions. The initial interest in dusty plasmas origi-
nated in the fields of space physics and astrophysics,1,2

where it was realized that dust particles are naturally present
in these environments. More recent developments in gas dis-
charge physics and microelectronics3 have led to the recog-
nition that dust contamination is naturally present in
industrial plasmas due to plasma etching effects as well as
dust particle growth through chemical reactions.4

A recent experimental breakthrough has been the ability
to optically track individual dust grains suspended in dis-
charge plasmas, which provides the possibility of examining
the dynamics at the level of individual dust particles.5–7

In addition to its relevance to numerous topics in plasma
physics, including dust charging, dust shielding, ion drag
forces, and plasma–surface interactions, dusty plasmas play
an important role as analogue systems for investigating com-
plex cross-disciplinary phenomena. For example, experimen-
tal studies of nonlinear dynamics and long-range interactions
in strongly correlated systems are often challenging because
these systems generally require extreme conditions such as
very low temperatures (ultracold ion/atom systems) or high
densities (high energy density physics). Dusty plasmas allow
the formation and study of analogs to such strongly coupled
systems, where the potential energy dominates the kinetic
energy.8 Such studies can be conducted under laboratory
conditions at close-to-room temperatures and easily attain-
able pressures.9 Dusty plasma analogues have recently been
used to model crystallization dynamics in two dimensions,10

quantum dot excitation,11 nonlinear and shock waves,12 elec-
trorheological fluids,13 and viscoelastic materials.14

Strongly coupled dusty plasmas were initially established
in radio frequency excited noble gas discharges using spheri-
cal monodisperse solid particles made of glass,15 melamine-
formaldehyde,16 silica,17 or titanium-dioxide.7 In these sys-
tems, the dust particles acquire a negative electric charge to
balance the electron and ion currents flowing to their surfa-
ces, and become confined by the sheath electric fields that
form near the electrodes and other surfaces surrounding the
gas discharge plasma. In the presence of gravity, thousands
of micrometer sized particles can arrange themselves in a
quasi-two-dimensional (2D) layer.

In Sec. II, we discuss experimental systems in more detail.
We then discuss the “one component plasma” model and its
main parameters in Sec. III. This model has successfully
been applied to 2D dusty plasma systems. The basics of the
molecular dynamics method, which is one of the main tools
for the simulation of dusty plasmas, are presented in Sec. IV,
along with illustrative numerical results. Section V explains
the implementation of this technique using a web-based tool
that is freely available and supplements this article.
Suggested problems are given in Sec. VI.

II. EXPERIMENTAL SYSTEMS

A schematic of an experimental setup is shown in Fig. 1.
A low-pressure capacitively coupled radio frequency plasma
is established within a vacuum chamber (not shown)
between the powered and grounded electrodes. When small
dust grains (with a diameter typically in the micrometer
range) are introduced into this plasma, they acquire a nega-
tive charge18 of typically 103–104 elementary charges.
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Because of their high electric charge, the dust particles are
levitated above the powered electrode due to the balance of
gravity and the electrostatic force that originates from the
sheath electric field.19 The horizontal confinement of the dust
suspension is ensured by the radial electric field which arises
due to the charging of a confining element, for example, a glass
tube surrounding the system (not shown in Fig. 1).

Images of the particle layer are recorded by a video cam-
era. The observation is aided by illuminating the dust layer
with an expanded laser beam with a specific wavelength.
The spectral filter placed in front of the camera transmits this
wavelength but blocks most of the radiation from the plasma
thereby significantly increasing the contrast. A sequence of
recorded images can be used to identify and trace individual
particles, providing the position and velocity coordinates of
each particle. The length and time scales allow relatively
easy observation of the dynamics.

Figure 2 shows a snapshot of the particles recorded in our
experimental setup. Due to the strong interaction between

the particles, most of the particles are located at sites of a tri-
angular lattice. The crystalline ordering is a consequence of
the strong electrostatic interaction of the highly charged dust
particles which creates a potential energy that is much
greater than the kinetic energy of the system. The particles
cannot form a perfect lattice due to the boundary conditions
in the experimental system and their density slightly varies
spatially. Therefore, we observe lattice defects, predomi-
nantly dislocations, which appear as bounded pairs of sites
with 5 and 7 particles in their nearest neighbor shells, deter-
mined by performing a Delaunay triangulation.20 The signifi-
cance of the different types of lattice defects and their
consequences on the topological phase transitions in 2D
materials was discovered by Kosterlitz and Thouless.21 In
dusty plasmas, the static and dynamical properties of these
systems have been investigated in detail.22,23

III. THE ONE-COMPONENT PLASMA MODEL

We will discuss the properties of the dust particle system
in the plasma environment within the framework of the “one
component plasma” model. This model considers only one
of the species of the system (the dust particles in our case).
As we have discussed, dust particles acquire a large negative
charge in the plasma environment. In the absence of other
charged species (the electrons and ions of the surrounding
plasma), the dust particles would interact via the r–1

Coulomb potential. However, the presence of electrons and
ions modifies this potential due to an important property of
plasmas, Debye screening, which results in deviations of the
electron and ion densities from their average density around
the dust particles, and leads to the screening of the potential
created by the dust particles. It can be shown that, as a conse-
quence, the Coulomb potential is modified by an exponential
factor, resulting in a dust particle pair potential of the form24

/ðrÞ ¼ Q exp ð$r=kDÞ
4pe0r

; (1)

where Q is the charge of the dust particles, kD is the screen-
ing (Debye) length, and e0 is the permittivity of free space.
The form of the potential in Eq. (1) is known as the
Debye–H€uckel or Yukawa potential. If the particles interact
via the potential in Eq. (1), the model is often referred to as
the “Yukawa one component plasma” model.

The main parameter of the system is the coupling
parameter

C ¼ Q2

4pe0akBT
; (2)

which is the ratio of the Coulomb potential energy at a char-
acteristic particle separation aws to the thermal energy kBT
(equal to the mean kinetic energy per particle in 2D), where
T is the dust temperature and kB is the Boltzmann constant.
The Wigner-Seitz radius is defined as

aws ¼ ðpn0Þ$1=2; (3)

where n0 is the areal number density of the particles.
The strength of the screening of the Coulomb interaction

can be expressed in terms of the dimensionless parameter

j ¼ aws=kD: (4)

Fig. 1. Schematic of a dusty plasma experiment.

Fig. 2. Experimentally recorded snapshot of a dusty plasma layer for a large
value of the coupling parameter C. The configuration is highly ordered with
an underlying triangular lattice (identification is aided by the lines in a part
of the snapshot). Although most particles have six neighbors, lattice defects
result in exceptions that are indicated by circles (five neighbors) and trian-
gles (seven neighbors).
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Another important quantity is the plasma frequency

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nQ2=2awse0m

p
; (5)

which governs the dynamics of the system. Here, m is the mass
of the particles. (Note that the plasma frequency for a 2D system
differs from the 3D plasma frequency x0;3D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3DQ2=e0m

p
.)

IV. MOLECULAR DYNAMICS SIMULATIONS

Molecular dynamics (MD) simulations produce particle
trajectories in phase space by accounting for the interactions
between the particles and for the effects of additional forces
originating from an external potential (for example, a trap-
ping potential) and/or the effect of an embedding environ-
ment (for example, friction25). The case that we discuss here
is one of the simplest:

(1) We consider a microcanonical (“NVE”) ensemble, where
the number of particles, the volume of the system, and
the total energy is conserved.

(2) We use point-like charged particles which have only
translational degrees of freedom. (Molecules may have
additional (for example, rotational) degrees of freedom
and their pair interaction may depend on their mutual
orientation. The mutual orientation may also become
important if the particles have a magnetic moment,
which also contributes to inter-particle forces.)

(3) The particles interact via an isotropic pair potential. In
experiments, the particle charging is anisotropic due to
streaming ions. Neglecting this anisotropy is well justified as
long as the particles arrange themselves into a single layer.

(4) The motion the particles is assumed to be frictionless, which
is a good approximation for low gas pressures (!1 Pa).

(5) Although particles are confined within a layer by a trap-
ping potential in experiments, we idealize the system by
assuming that the motion of the particles is restricted to a
plane.

(6) We consider a system consisting of a single type of spe-
cies, although in reality there exists a broad range of
multi-component systems.

Our simulations are relevant to the central domain of a
large experimental system where the density can be consid-
ered to be homogeneous.

The system consists of N identical particles confined to a
square, H%H simulation cell. Given the simplifications we
have discussed, the form of the equations of motion for parti-
cle i is

m€ri ¼
X

i 6¼j

Fðri;jÞ; (6)

where F (ri,j) is the force between particles i and j, which
depends only on their separation ri,j. The summation goes
over the particles that make a non-negligible contribution to
the total force acting on particle i.

Equation (6) can be solved by using a numerical integra-
tion method. We use the velocity-Verlet algorithm26

rðtþ DtÞ ¼ rðtÞ þ vðtÞDtþ 1

2
aðtÞðDtÞ2; (7)

vðtþ DtÞ ¼ vðtÞ þ 1

2
aðtÞ þ aðtþ DtÞ½ (Dt: (8)

Because the acceleration appears both at t and t þ D t in
Eq. (8), the computation proceeds as follows:

(1) The particle positions are updated according to Eq. (7),
based on the values of the relevant quantities at time t.

(2). From Eq. (8), we compute the intermediate velocity
v) ¼ vðtÞ þ ð1=2ÞaðtÞDt.

(3) We calculate the force and aðtþ DtÞ based on the
updated positions of the particles.

(4) Finally, we calculate vðtþDtÞ¼v)þð1=2ÞaðtþDtÞDt.

These steps are repeated many times to obtain the particle
trajectories.

In the simulations, we apply periodic boundary conditions,
which eliminate any surfaces so that a particle that leaves the
simulation cell is introduced into the cell at the opposite
side, without any change of its velocity (see Fig. 3). This
condition ensures a homogeneous system and makes it
unnecessary to use a confining potential.

The solution of the equations of motion requires the com-
putation of the total force acting on each particle. For a
potential that decays sufficiently quickly, for example, the
Yukawa potential, we can define a cutoff distance rc beyond
which the pair interactions are negligible. As illustrated in
Fig. 4(a), the force acting on a particle can be obtained by
summing over neighboring particles that are situated within
a circle of radius rc, centered at the given particle. For par-
ticles near the edges of the simulation cell, the circle, which
encloses the neighbors, may be partly outside the cell, as
shown in Fig. 4(b). In this case, neighbors also have to be
searched for in the replicas of the simulation cell (which are
copies of the simulation cell shifted by the cell length in one
or both directions and which surround the primary simula-
tion cell).

Finding the neighbors efficiently is aided by the “chaining
mesh” technique: The simulation cell is divided into sub-
cells, and at each time step the particles are assigned to lists
corresponding to one of these cells.27 The edge length of the
sub-cells h is chosen such that h > rc, so that it is sufficient
to search for neighbors only in the sub-cell where the given
particle resides and in neighboring sub-cells.

Molecular dynamics simulations can be performed at con-
stant temperature, constant pressure, or constant energy. The
choice depends on the nature of the effects that are

Fig. 3. Illustration of periodic boundary conditions. Particles that leave the
simulation cell are re-introduced at the opposite side, with the same
velocity.
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investigated. The results discussed in this section were
obtained from simulations where the energy is conserved.
The interactive MD tool that supplements this article, on the
other hand, applies an Andersen thermostat26 to ensure that
the system equilibrates within a reasonable time at the given
values of C and j values set by the user.

In the following, we illustrate some of the results that can
be obtained from the simulations. Figure 5 shows particle
snapshots obtained from the simulations for different values
of C and j ¼ 1. For C ¼ 10, we observe a weak order in the
particle positions, which is significantly enhanced when the
coupling is increased to C ¼ 100. Ordering is a consequence
of the dominance of the interparticle potential energy over
the kinetic energy of the particles.

One measure of the degree of regularity of the particle
configurations is the pair correlation function g(r). To
determine g(r), we count, around a given particle, the num-
ber of particles situated within concentric rings as illus-
trated in Fig. 6(a), and normalize this number by the
respective area of these domains and by the average particle
density. We then average over all particles. For a random
arrangement of the particles (for which the most important
example is the ideal gas) the resulting value is gideal(r) ¼ 1.
The pair correlation function g(r) thus expresses the rela-
tive density of neighbors around a given particle. By
assuming isotropy of the system, which is an inherent char-
acteristic of the fluid phase, the pair correlation function

has a single scalar argument, the separation of the particles.
If the system crystallizes, the pair correlation function has a
vector argument.

The pair correlation function for the Yukawa fluid at dif-
ferent values of C is plotted in Fig. 6(b). The function g(r)
exhibits a “correlation hole” at small separations as a conse-
quence of the repulsion between the particles, which pre-
vents them from getting close to each other due to their lack
of sufficient kinetic energy. At a distance corresponding to
the most probable first neighbor distance, g(r) exhibits a
peak, which marks the first coordination shell. This peak is
followed by a depleted region and a sequence of other coor-
dination shells, which appear as smaller amplitude peaks in
g(r) due to the decay of correlations over longer distances.
The spatial order of fluids extends over a finite distance such
that within this distance the fluid “inherits” the structure of
the lattice, which is why the peak positions of g(r) change
only slightly with increasing C in Fig. 6(b).

Fig. 4. (a) For short-range potentials, it is sufficient to consider neighbor-
ing particles within a circle of radius rc to compute the total force acting
on a particle. (b) When periodic boundary conditions are applied, these
neighbors might also need to be searched for in replicas of the primary
simulation cell.

Fig. 5. Snapshots for (a) C ¼ 10 and (b) C ¼ 100 at j ¼ 1. The spatial
coordinates are normalized by the Wigner-Seitz radius. Note the less regu-
lar particle arrangement for C ¼ 10 and the more ordered configuration for
C ¼ 100.
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The prominent structure of the system for large C gives rise
to quasi-localization of the particles, which means that the
particles oscillate in local potential wells of the potential sur-
face created by other particles. For strong coupling8 (C* 1),
the change of the potential surface due to the diffusion of
the particles is much slower than the time scale of these
oscillations. This behavior is the basis of the quasi-localized
charge approximation where the dynamical properties are
derived from the pair correlation function and the interaction
potential.28,29

An intrinsic property of many-body systems is that they can
support collective excitations; for example, gases and liquids
support sound waves, which are propagating compressional
density perturbations. Waves are not only generated by an
external perturbation of the system, but can also be thermally
excited, where the motion of the particles of the system gener-
ates a (usually low amplitude) density perturbation. The wave-
length and the frequency of the waves are determined by the
structure of the system and the interparticle interaction.

If the motion of the particles is confined to a plane, two
types of waves may develop: longitudinal and transverse
waves, as illustrated in Fig. 7(a). (If the motion is not
restricted to a plane, but is confined by a parabolic potential
that allows particles to move perpendicularly to the plane,
there are three different types of waves: Two of them are the
same as here; the third, which is also a transverse mode with
particle oscillations perpendicular to the plane, has an optic
character due to the confining potential.) For longitudinal or

compressional waves, the direction of oscillations is in the
same direction as the wave propagation [represented by the
wave vector k in Fig. 7(a)]. For transverse or shear waves,
the direction of oscillations of the particles is perpendicular
to the wave vector k. Transverse waves are unusual in gases
and liquids, which cannot sustain shear. The presence of
strong correlations enables the existence of shear waves,23,30

which are strongly damped and consequently have a shorter
lifetime compared to compressional waves.

Longitudinal waves propagating in the x–direction can be
characterized by the dynamical structure function S(kx,x),

Fig. 6. (Color online) (a) Illustration of the measurement of the pair correla-
tion function g(r). (b) The pair correlation function of the Yukawa liquid for
different values of C and j ¼ 1.

Fig. 7. (Color online) (a) Longitudinal and transverse waves in a plane; k is
the wave vector, which points in the direction of wave propagation, and the
arrows indicate the oscillations of the particles. (b) The current fluctuation
function L(kx,x) for C ¼ 100 and j ¼ 1. The argument kx of L implies that
data were collected along the x axis. The frequency and the wave number
are normalized, respectively, by the plasma frequency and the Wigner–Seitz
radius. Large values of L(kx,x) identify waves in the system, and the loci of
these values yield the dispersion relation xðkxÞ. Because the system is in the
fluid phase, the loci is not a sharp line. The dispersion relation of Yukawa
fluids is quasi-acoustic; that is, it is linear for small wave numbers and
acquires a square root form at intermediate wave numbers. The slope of
xðkxÞ at small k defines the longitudinal sound speed (Ref. 23).
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which gives the spectrum of the density fluctuations. The
peaks of S(kx,x) identify the collective excitations. If S(kx,x)
is computed for a series of wave numbers, the dispersion
relation x(kx) of the longitudinal wave can be obtained from
the simulations by identifying the x values where S has a
peak as a function of kx. This procedure is easy to carry out
for C * 1 for which S exhibits sharp peaks, but is more
ambiguous when the peaks of S become broad due to the
higher damping or decreasing lifetime of the modes at lower
C values.

The computation of S(kx,x) proceeds by decomposing the
particle density in terms of its Fourier components

qðkx; tÞ ¼
XN

j¼1

e$ikxxjðtÞ: (9)

Given a time series of q(kx,t), another Fourier transform (in
time) is performed to obtain q(kx,x), from which the
dynamic structure function is computed as31,32

Sðkx;xÞ ¼
1

2pN

1

T0
qðkx;xÞq)ðkx;xÞ½ (; (10)

where q)ðkx;xÞ is the complex conjugate of q(kx,x) and T0

is the duration of the recording of q(kx,t).
In addition to the spectrum of density fluctuations, we

can compute the spectrum of the current fluctuations,
L(kx,x). The longitudinal current fluctuation spectrum is
obtained in a similar way as S(kx,x) from Eq. (10) by
replacing q(kx,t) by

kðkx; tÞ ¼
X

j

vj;xe$ikxxjðtÞ; (11)

where vj,x is the x component of the velocity vector of the
j-th particle. We note that S(kx,x) and L(kx,x) are related by
Lðkx;xÞ ¼ ðx=kxÞ2Sðkx;xÞ.33 Because L(kx,x) is usually
obtained with better signal to noise ratio in simulations, we
compute L(kx,x). (In case of sharp peaks in Sðkx;xÞ the posi-
tions of the corresponding peaks in L(kx,x) are very nearly
the same, but in general, the x2 factor in the above relation
may shift the peak positions to some extent.)

For propagation along the x direction, information can be
obtained for waves whose wavelength fits integer times
(1; 2;…) into the simulation cell, that is, for which the wave
numbers obey kx ¼ nkmin ðn ¼ 1; 2;…Þ, where kmin ¼ 2p=H
is the minimum wave number. It is conventional to introduce
the normalized wave number #k ¼ kminaws. The normalized

minimum wave number, #kmin ¼ 2
ffiffiffi
p
p

=
ffiffiffiffi
N
p

(using Eq. (3)
with n0 ¼ N=H2) decreases with increasing density.

Figure 7(b) shows an example of the longitudinal current-
current fluctuation spectrum, L(kx,x), for C ¼ 100 and j¼ 1.
The region with high amplitude indicates that longitudinal
waves are present at the given frequency and wave number.
At low wave numbers, kx aws ! 1, the peaks of L(kx,x) as a
function of x (at a given kx) are quite sharp, but at higher
wave numbers the peaks broaden due to the decrease in the
lifetime of collective excitations with increasing kx. At small
wave numbers, the dispersion relation xðkxÞ is linear, and its
slope defines the sound speed. With increasing wave number,
the mode frequency starts to deviate from this linear depen-
dence on the wave number, and the mode is said to have a
quasi-acoustic character. At even higher values of kx, the

mode frequency saturates and subsequently starts to decrease.
This behavior is reminiscent of the behavior of a mode in a
solid, where the frequency is a periodic function of the wave
number in the principal directions.

The transverse waves can be analyzed similarly to longitu-
dinal waves by computing the transverse current fluctuation
spectrum T(kx,x) from the transverse current

sðkx; tÞ ¼
X

j

vj;ye$ikxxjðtÞ; (12)

by replacing vj;x by vj;y in Eq. (11), where vj;y?kx. As men-
tioned previously, transverse waves are unusual in the liquid
phase and can exist in the present system only because of the
strong correlations at high C. Because these waves are
strongly damped for C* 1, their spectrum is quite broad
and the mode frequency is more difficult to identify com-
pared to the longitudinal modes.23 Therefore, we consider
only the longitudinal modes in our simulation tool.

V. IMPLEMENTATION

Our MD simulation follows N¼ 500 particles in a plane.34

Our desire to obtain results and visualize the system in real
time limits the value of N. For research purposes, much
larger particle numbers are routinely used. The simulation
uses a 5% 5 chaining mesh, which, with the choice of
rc ¼ H=5, provides sufficient accuracy for the forces acting
on the particles even for the smallest value of the screening
parameter, j ¼ 1, for which the decrease in the potential is
the slowest.

The particles are initially placed randomly within the square
simulation cell with their initial velocity vectors sampled from
a Maxwell–Boltzmann distribution. Due to the randomness of
the initial configuration, the system needs to be thermalized to
reach equilibrium, which is achieved by rescaling the veloci-
ties of the particles at each time step to match the desired sys-
tem temperature. This procedure ensures a fast thermalization
of the system, but creates a non-Maxwell–Boltzmann distribu-
tion from the initial Maxwell–Boltzmann distribution, and
therefore no data are collected during this initial thermalization
period.

After turning on data collection at later times, the
Andersen thermostat35 is applied to the system: Randomly
chosen particles interact with a defined frequency with a heat
bath that has a temperature defined by the value of C. Upon
interaction with the heat bath, the particles acquire new
velocity vectors that are randomly sampled from a
Maxwell–Boltzmann distribution at the desired temperature.

During the simulation, the particle positions are displayed
as a function of time, while the actual value of C, the pair
correlation function g(r), and the wave behavior are moni-
tored in separate panels.

The system parameters C and j can be adjusted using the
graphical interface shown in Fig. 8. Following a change,
velocity rescaling is conducted for 1000 time steps, and then
accumulation of data for g(r) and L(kx,x) at the new parame-
ter values begins.

The simulation is implemented in JavaScript with the lay-
out and interactions defined using HTML and CSS, which
runs either in a browser or as a self-contained Electron36

package with the open source Chromium browser bundled
with the contents. The rendering of the particles, graphs, and
the wave dispersion map use the Web Canvas technology.37
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To increase performance, the application is divided into
four kinds of threads as illustrated in Fig. 9.

• The Main thread handles the front-end, while the three
others running in the background handle the bulk of the
computation. The results of these worker threads are then
sent back to the main thread and displayed on the
interface.

• The Simulation thread provides the necessary data for the
visualization and other calculations.

• The Buffer thread preprocesses the data it receives, thus
providing buffer contents for the Wave dispersion thread.
There are two instances of this thread running at the same
time, one for handling each of the dimensions in the
simulation.

• When enough information is accumulated, the Wave dis-
persion thread executes the final steps needed to produce
the “heat map” displayed on the interface.

Further details about the implementation can be found in
the Readme file, which is attached to the source code of the
application, that is available at: https://github.com/Isti115/
dusty-plasma-molecular-dynamics. The online version can
be accessed by visiting: https://isti115.github.io/dusty-
plasma-molecular-dynamics/. The packaged executables are
downloadable from the AJP servers.34

VI. SUGGESTED PROBLEMS

(1) In a hexagonal lattice, the six nearest neighbors are situ-
ated at a distance of r1 ¼ b, and the second and third

nearest neighbors are at r2 ¼
ffiffiffi
3
p

b and r3 ¼ 2 b, respec-
tively, where b is the lattice constant, which is related to

the Wigner-Seitz radius by b¼aws

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
p

=2p
q

ffi1:905aws.

The first peak of g(r) occurs at r ¼ r1 for C*1. In the
fluid phase, the coordination shells at r2 and r3 are

usually not resolved in g(r). Find the value of C for j ¼
1, which results in distinct peaks in g(r) for the second
and third coordination shells. Does this value of C
belong to the fluid or the solid phase? (The transition
between the two phases occurs at C,186.22)

Fig. 8. (Color online) Screenshot of the output of the simulation program. The simulation cell on the right is indicated by the square. When the switch
“Periodic display” is on, the particles situated in the replicas are also visible.

Fig. 9. Schematic representation of the program’s structure and the commu-
nication between its parts.
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(2) Observe the domain coarsening process after a tempera-
ture quench by setting the screening parameter to a low
value j ¼ 1, and quickly changing C from a low to a
high value (for example, from C ¼ 10 to 500). The sys-
tem should change from a fluid to a crystalline phase.
This process is not instantaneous, and some time is
needed for crystalline order to form. There are in princi-
ple different pathways for this process, such as crystalli-
zation front propagation, simple diffusion, and domain
coarsening, where in the beginning several small crystal-
lites form, and then later merge into a few bigger ones,
which eventually form a single ordered structure.10

(3) Observe how the peak value of the frequency of the longi-
tudinal waves depends on C and j. Which of these param-
eters results in a strong dependence and which in a weak
dependence? The slope of the xðkÞ dispersion relation at
small k defines the sound speed. How does this speed
change with the dust-dust interaction potential? Note that
the potential depends on j, but not C [see Eq. (1)].

(4) Similar values of g(r) can be obtained for certain combi-
nations of C and j. Find the value of C for j ¼ 1; 2;
3; 4; 5 that results in the same amplitude, for example,
2.0, of the first peak of g(r). Observe how the L(kx,x)
spectrum differs for the different ðC; jÞ pairs, even
though the structure of the system is very nearly the
same. Recall that the interaction potential between the
particles softens with increasing j, which then slows
down the dynamics.
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