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Anomalous behavior of plasma response functions at strong coupling
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Using data from equilibrium molecular dynamics computer simulations we have built up a catalog of response
functions for the Coulomb one-component plasma over a wide range of � coupling values, including the strongly
coupled � > 1 liquid regime. We focus on the domain of negative compressibility (� > 3), where the proper
response displays an acausal behavior, implying a modification of the relation between its real and imaginary
parts in the Kramers-Kronig relations. We give a description of the details of this acausal feature, in both the
frequency and time domains. We show that the viscoelastic pole of the density response function morphs into an
imaginary pole in the upper ω half-plane that is responsible for the anomalous behavior of the response in this
coupling range. By examining the plasmon dispersion relation through the dielectric response function, rather
than via the peaks of the dynamical structure function, we obtain a more reliable representation for the dispersion.
We demonstrate that there is an intimate link between the formation of the roton minimum in the dispersion and
the negative compressibility of the system. The feasibility of the extension of our analysis to systems with a
short-range interaction is explored.
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I. INTRODUCTION

Linear response functions play a pivotal role in the theory
of classical and quantum many particle systems. Expressed
in the language of frequency (ω) and wave vector (k) depen-
dence, they reveal a wealth of information about both the static
and the dynamic properties of the system, most importantly
about its collective excitation spectrum. The response func-
tions are linked to the equilibrium properties of the system
through the profound Fluctuation Dissipation Theorem (FDT)
[1,2]. At the same time, the functional dependence on the
(k, ω) variables is limited by a number of so-called sum rules
[1,3], which then can serve as either a guidance or a control
on adopting approximation schemes for actual calculations.
An additional constraint established as a consequence of the
postulated causal behavior of the response function (derived
from identifying the response of the system as the “effect”
due to the perturbation by an external agent as the “cause”)
is known as Kramers-Kronig (KK) relations: a detailed dis-
cussion of this feature will be a central theme of the present
work.

Immense efforts have been spent since the 1950s on the
calculation of plasma response functions, both for classical
plasmas [2] and for the degenerate electron gas in condensed
matter [1]. (For an up-to-date summary see [4].) Of central
interest is the question how the behavior of the response
functions is affected by interparticle correlations, i.e., the
strength of the coupling in the plasma. Coupling is determined
by the ratio of the potential and the kinetic energies of the
particles and is routinely characterized by the parameters � =
Z2e2β/a, β = 1/kBT , or rS = a/aBohr for classical or for de-
generate quantum systems, respectively [a = (3/4πn0)1/3 is

the Wigner-Seitz radius, n0 is the density of the homogeneous
system, and Z is the charge number]. Most of the existing
calculations have addressed the weak coupling regime where
correlations are negligibly small and where the Vlasov or
random phase approximation (RPA) [1,2], based precisely on
the complete disregard of correlations, has been used suc-
cessfully. Systematic perturbation calculations for classical
plasmas with finite but still weak correlations have been pur-
sued [5–7], but led only to results of great complexity and of
limited physical insight. For stronger coupling, no reliable cal-
culations, except through some rather drastic approximations,
such as the Singwi-Tosi-Land-Sjolander (STLS) scheme [8],
or the Quasi-Locized Approximation (QLCA) [9] and justi-
fiable only within restricted domains of the (k, ω) space, are
available.

In this paper, we approach the problem of exploring the
algebraic structure and physical contents of response func-
tions for classical plasmas at intermediate and strong coupling
values from a different angle. Recent progress in the com-
puter simulation of the equilibrium dynamics of plasmas has
resulted in the availability of high-quality data for the vari-
ous equilibrium dynamical fluctuation spectra of the system
in a wide range of coupling values [10]. By exploiting the
FDT, these data can be converted, as explained below, into
the complete description of the plasma response functions of
interest. A full account of our investigations along this line
will be reported elsewhere [11]. Here we use the information
gathered to study a more specific old problem that relates to
the behavior at higher coupling values: it is the long-standing
issue of the apparent acausal behavior and the concomitant
modification of the KK relations for a certain class of response
functions, which is the focus of the present work. For the
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sake of using a more compact language, in the sequel we will
use the term “violation” to refer to this modified behavior, al-
though, strictly speaking, no violation of any existing physical
or mathematical requirement takes place.

The plan of the paper is as follows. In Sec. I we review
the historical background of the problem and describe our
approach to its rigorous treatment. In Sec. II we present our
results on the detailed description of the violation and give
a quantitative discussion of its strong dependence on the
coupling strength. We also identify the minimum coupling
value for the violation to occur and delineate the region in
the (k, ω)-space where the violation actually takes place. We
point out that one can identify an anomalous part of the re-
sponse function generated by a complex pole in the ω-plane
associated with the violation, and we review the effect of
the anomalous part on the formulation of the customary sum
rules. Section III is devoted to the description of the somewhat
unexpected influence of the anomalous part on the plasmon
dispersion, in particular on the formation of the so-called
roton minimum [12]. In Sec. IV we present a simple two-pole
model in order to guide in a more intuitive fashion through the
preceding discussions and to elucidate their physical contents.
Section V serves a somewhat similar purpose, complementing
the discussion from a different point of view. There we explore
the behavior of the violating response in the time domain to
see more precisely what the violation of causality implies
for the observable physical variables. Finally, in Sec. VI we
raise the question as to what extent the findings of this paper
are relevant to systems governed by short-range forces, rather
than the long-range Coulomb interaction.

II. PURPOSE AND METHOD

The first recognition of the importance of the KK relations
in the theory of many-body response functions is due to van
Kampen [13]. Van Kampen emphasized that causality is a
physical condition, which may or may not be met, and accord-
ingly the KK relations are or are not satisfied. He clearly stated
that the validity of the KK relationships is based upon the
response function being a causal function in the time domain
(i.e., the response vanishing for times preceding the time of
the perturbation) and that the corresponding statement in the
frequency domain is that it is a plus function [14] (i.e., an
analytic function in the upper frequency half plane). While
he speculated that in the context of relativistic quantum field
theory a microscopic violation of causality may occur, he fully
expected that within the framework of conventional many-
body theory response functions would exhibit a strictly causal
behavior. Contrary to this expectation we know, though, that
not all response functions are causal. This has been clearly
established since the 1960s through the pioneering works
of Martin [15] and Kirzhnits and collaborators [16,17]. The
issue hinges upon the precise definition of the “perturbing
field.” Contemplating now a many-particle system consisting
of charged particles (a plasma) perturbed by an external elec-
tric potential �̂, one has to differentiate between this latter and
the total average electric potential �, consisting of �̂ and the
average polarization field generated by the system itself q�,

� = �̂ + q�.

Even though it is the � field that the particles experience, it
is only �̂ that is under the experimentalist’s control with the
ability to impose an arbitrary time dependence on it. Therefore
response functions that relate to the �̂ as the perturbing field
are bona fide causal functions, while those that relate to �

do not necessarily exhibit a causal behavior (although under
certain conditions they may do so).

For plasmas there exists a family of closely related re-
sponse functions [1,18], which can be classified according
to the above criteria to belong to either of the two groups.
The inverse dielectric function η(k, ω), the (external) density
response function χ (k, ω), and the (external) conductivity
σ (k, ω) belong to the first group, while the dielectric function
ε(k, ω), the proper density response function χ (k, ω), the
conductivity σ (k, ω), and the polarization function π (k, ω)
fall in the second category. It is this violating second group of
interrelated response functions, whose features carry the most
direct imprint of the fundamental dynamics of the system,
which are of interest in this paper.

We consider a one-component plasma (OCP), consisting
of classical charged particles of the same kind, embedded in
a neutralizing background. The system is fully characterized
by the plasma frequency, ωp = (4πZ2e2n0/m)1/2 and the cou-
pling constant �. The (external) density response function of
a plasma χ (k, ω) is defined by the relationship

n(k, ω) = χ (k, ω)�̂(k, ω). (1)

In a similar fashion the proper density response function
χ (k, ω) is provided by

n(k, ω) = χ (k, ω)�(k, ω). (2)

At this point we also recall the connection with the dielec-
tric function

ε(k, ω) = 1 − ϕ(k)χ (k, ω), (3)

η(k, ω) = 1 + ϕ(k)χ (k, ω). (4)

In these relationships, n(k, ω) is the first-order perturbed
density and ϕ(k) = 4πZ2e2/k2 is the Fourier transform of
the Coulomb potential. The response functions are complex
quantities, e.g., χ (k, ω) = χ ′(k, ω) + iχ ′′(k, ω), etc. For a
causal function, such as χ (k, ω), the KK relations connect the
imaginary and real parts through

χ ′(k, ω) = 1

π
P

∫ ∞

−∞

χ ′′(k, ν)

ν − ω
dν

= 2

π
P

∫ ∞

0
ν
χ ′′(k, ν)

ν2 − ω2
dν, (5)

χ ′′(k, ω) = − 1

π
P

∫ ∞

−∞

χ ′(k, ν)

ν − ω
dν

= − 2

π
ωP

∫ ∞

0

χ ′(k, ν)

ν2 − ω2
dν, (6)

where P denotes the Cauchy principal value. In contrast,
as pointed out above, the proper density response function
χ (k, ω) may violate these relationships.

As discussed in the Introduction, the objective of this work
is to provide an exact description of the violation, relying
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on equilibrium data provided by computer simulations. High-
quality data for the dynamical structure function

S(k, ω) = 1

2πN

∫ ∞

−∞
〈nk(t )n−k(0)〉(0)eiωt dt (7)

and independently for the equilibrium static structure function

S(k) = 1

N
〈nk(0)n−k(0)〉(0), (8)

where nk(t ) = ∑N
j=1 e−ik·r j (t ) is the microscopic density in

Fourier space, by now have become available through molec-
ular dynamics (MD) computer simulations for a wide range of
parameter values (e.g., [10,19–21]) and are extended here to
cover the entire domain of interest in parameter space.

In the present simulations, we trace a single species of
N=10 000 charged particles within a cubic box with peri-
odic boundary conditions. To fully account for the long-range
Coulomb interparticle potential we use the Particle-Particle
Particle-Mesh (P 3M) [22] in the calculation of the forces
acting on the particles. The integration of the equations of
motion of the particles is performed using the velocity-Verlet
scheme. To compute the dynamical structure function we use
the expression [23]

S(k, ω) = 1

2πN
lim

T →∞
1

T
|nFL

k (ω)|2, (9)

which is equivalent to the definition (7), but it involves time
average instead of ensemble average and where

nFL
k (ω) = lim

T →∞

∫ T

0
nk(t )eiωt dt (10)

is the Fourier-Laplace transform of the microscopic density.
This transform is carried out numerically based on computing
the fluctuating nk(t ) during a sequence consisting of Nt =
75 600 time steps. To improve the signal-to-noise ratio of
the S(k, ω) data we compute the average of nFL

k (ω) result-
ing from more sequences. The finite T = Nt
t time length
of the sequences provides 
ω = 2π/T = ωp/400 frequency
resolution (
t is the time step of the simulation). Beside
the dynamical structure function, we also measure its static
counterpart S(k), using again the time average along the phase
space trajectories of the particles. This quantity can also be
computed as

S(k) =
∫ ∞

−∞
S(k, ω) dω. (11)

The comparison of the value of this integral with the S(k)
obtained directly from the simulation shows a perfect agree-
ment, which verifies the consistency of our calculations. The
simulation provides access to wave-number vectors of the
form (2π/l )(m1, m2, m3), where l is the length of the edge of
the cubic simulation box and m1, m2, m3 are integer indexes.
In our simulations we collected data only for wave vectors
parallel to one of the principal directions. Because of the
isotropy of the system the structure functions depend only
on the absolute value of their wave-number vector argument,
which is the multiples of kmin = 2π/l , or in normalized units
kmina = 0.181. Our studies cover a set of � values in the
strongly coupled liquid phase (1 < � < 160).

In the forthcoming calculations we need the application
of the KK relations. To avoid the problem of the numerical
implementation of the principal value integral appearing in the
relations we use a method based on a double Fourier transfor-
mation [24]. To describe this method let us consider a causal
response function �(k, t ). The causality implies that �(k,

t � 0) = 0. The frequency representation of the response
function is given via the Fourier transform:

�(k, ω) =
∫ ∞

−∞
�(k, t )eiωt dt . (12)

To obtain a relation between the real and imaginary parts of
�(k, ω) we split �(k, t ) into even and odd parts:

�(k, t ) = �(k, t ) + �(k,−t )

2
+ �(k, t ) − �(k,−t )

2

= s(k, t ) + q(k, t ), (13)

where s(k,−t ) = s(k, t ) and q(k,−t ) = −q(k, t ). Using this
partition in the Fourier transform (12) we get

� ′(k, ω) = 2
∫ ∞

0
s(k, t ) cos(ωt ) dt, (14)

� ′′(k, ω) = 2
∫ ∞

0
q(k, t ) sin(ωt ) dt, (15)

for the real and imaginary parts of �, respectively.
On the other hand, we know that for t � 0 the equality

s(k, t ) = q(k, t ) stands because of the causality of �(k, t ),
therefore � ′(k, ω) and � ′′(k, ω) are the cosine and sine trans-
forms of the same function, respectively. In this representation
the real (imaginary) part can be computed as the cosine trans-
form (sine transform) of the inverse sine transform (cosine
transform) of the imaginary (real) part. Explicitly this takes
the form

� ′(k, ω) = 1

π

∫ ∞

0

[∫ ∞

−∞
� ′′(k, ν) sin(νt ) dν

]
cos(ωt ) dt,

(16)
and its counterpart is

� ′′(k, ω) = 1

π

∫ ∞

0

[∫ ∞

−∞
� ′(k, ν) cos(νt ) dν

]
sin(ωt ) dt .

(17)
Taking into account that∫ ∞

0
sin(νt ) cos(ωt ) dt = lim

ξ→0

∫ ∞

0
e−ξ t sin(νt ) cos(ωt ) dt

= P ν

ν2 − ω2
, (18)

we can see that the Eqs. (16) and (17) are equivalent to the KK
relations, but they have the advantage that they help to avoid
the actual calculation of the unwieldy Principal Part integrals.

It is now possible to obtain the χ (k, ω) from the MD gen-
erated S(k, ω) through a few simple steps. First, by invoking
the Fluctuation-Dissipation Theorem (FDT)

S(k, ω) = − 1

πβn0ω
χ ′′(k, ω), (19)

we acquire χ ′′(k, ω). Then the application of the KK relation
[recall that χ (k, ω) is a causal function] provides the full
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FIG. 1. (a) The static proper density response function χ (k) for
� values indicated. (b) Dependence of the critical wave number k∗
on the coupling parameter �. Its value is normalized to the Debye
wave number kD, kDa = √

3�.

χ (k, ω). Finally, the well-known relationship

χ (k, ω) = χ (k, ω)

1 + ϕ(k)χ (k, ω)
(20)

leads to the desired result. For the static limit we use the
notation χ (k, ω = 0) = χ (k), with a similar convention for
other response functions. Due to the reality condition they
obey, these static responses are real functions. Their value can
be independently verified by the data for the static structure
function S(k), via the static version of the FDT:

S(k) = − 1

βn0
χ (k). (21)

III. EXPLICIT FORMULATION OF THE VIOLATION

In the following we study the most fundamental quantity,
the proper density response χ (k, ω). The implications for the
other related acausal response functions of the relationships
we are about to derive can be easily established.

The long wavelength limit of the response χ (k) is gov-
erned by the compressibility sum rule

χ0 ≡ χ (k → 0) = −βn0

L
, L = ∂P/∂n

∂P0/∂n
, (22)

where n is the density, P is the pressure, P0 is the ideal gas
pressure, and L = 1 + Lcorr is the normalized inverse com-

pressibility (stiffness) with Lcorr < 0 being the correlational
contribution to L.

At weak coupling, even though L < 1, it remains positive,
similarly to its behavior in the ideal gas limit. The crucial fea-
ture now is, however, that with increasing coupling strength
the compressibility changes from positive to negative around
� = �∗ 
 3 [25,26]. (Similarly, the compressibility of a de-
generate electron liquid becomes negative around rs∗ = 5.2
[27–29].) Accordingly, χ0 changes from negative to positive
at the same point. The resulting χ0 > 0 is incompatible with
the relevant KK relation, which would require that χ (k) be
determined by the integral

2

π
P

∫ ∞

0

χ ′′(k, ν)

ν
dν. (23)

A positive value of this integral, however, is impossible since
χ ′′(k, ω) < 0 is required to ensure that ε′′(k, ω), a quantity
governing dissipation, is positive. Thus for � > �∗, χ (k, ω)
violates the KK relations and is not a plus function [15,16,30].
This violation extends beyond k = 0 over a finite range of 0 <

k < k∗ values, k∗ being the point where χ (k) reverts to its
normal negative value. The details of the way this happens
are depicted in Fig. 1(a), constructed from the MD data for
χ (k, ω), as well independently from S(k). Since χ (k∗) → ∞,
its value can be determined from

βn0ϕ(k∗)S(k∗) = 1. (24)

The resulting k∗(�) dependence is also displayed in Fig. 1(b).
In this figure, k∗ is normalized by the Debye wave number
kD = √

3�/a [2].
Within the 0 < k < k∗ domain the violation can be charac-

terized by the difference

ϒMD(k, ω) = χ ′(k, ω) − 2

π
P

∫ ∞

0
ν
χ ′′(k, ν)

ν2 − ω2
dν. (25)

The explicit determination of this violating term [the MD
subscript refers to the determination of this quantity from the
computed values of χ ′(k, ω) and χ ′′(k, ω)], which we will
refer to as its anomalous part is one of the main results of the
present work. The behavior of ϒMD(k, ω) as a function of k
and ω for a range of � values is displayed in Fig. 2. The static
ϒMD(k) exhibits a singularity at k = k∗, which, however, is
removed at finite frequencies. The full ϒMD(k, ω) landscape
in Fig. 3 is compatible with the behavior that the violation
extends to ω → ∞ (see below). As to the � dependence, it
can be seen that stronger coupling generates more substantial
violation.

The key features of the anomaly revealed by the MD sim-
ulation can be understood on an analytic basis.

χ (k, ω) not being an analytic function on the upper half
plane, it must have singularities there. In fact, it has rigor-
ously been shown by Losyakov [31] that it has one single
simple pole on the imaginary axis, say, at iy(k; �). In order
to maintain the required symmetry of the response, it must be
accompanied by an other pole at −iy(k; �). If the residues at
the poles are

Resω=±iyχ (k, ω) = ∓ i

2
Q(k; �), (26)
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FIG. 2. The behavior of the violating (anomalous) term
ϒMD(k, ω) as a function of k at ω = 0 and ω = 0.5 ωp for the range
of � values indicated. Observe that the violation disappears for
k > k∗(�).

then the contribution to χ (k, ω) from these singularities on
the real ω-axis becomes the real function

ϒ(k, ω) = Q(k)y(k)

ω2 + y2(k)
. (27)

We can refer to ϒ(k, ω) as the anomalous part of the re-
sponse (the structure of which shows that the violation extends

FIG. 3. ϒMD(k, ω) as a function of k and ω at � = 90.

FIG. 4. Dependence of the Q(k) and y(k) parameters of the
imaginary pole on the wave number for � values indicated.

to ω → ∞). Once subtracted from χ (k, ω) the remaining

�(k, ω) = χ (k, ω) − ϒ(k, ω) (28)

is the regular part of the response. This latter now is a plus
function, and it satisfies the KK relations. The first of these
relations can be written as

�′(k, ω) = χ ′(k, ω) − ϒ(k, ω)

= 2

π
P

∫ ∞

0
ν
�′′(k, ν)

ν2 − ω2
dν

= 2

π
P

∫ ∞

0
ν
χ ′′(k, ν)

ν2 − ω2
dν. (29)

Introducing now the Hilbert transform

�(k, ω) = − i

π
P

∫ ∞

−∞

χ (k, ν)

ν − ω
dν, (30)

the above equation may be cast in the form

χ ′(k, ω) = �′(k, ω) + ϒ(k, ω). (31)
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FIG. 5. ϒ(k, ω) obtained from the computed values of Q and
y parameters, in comparison with the MD-generated ϒMD(k, ω) for
� = 90.

Based on the above relationship we can now proceed to
determine the two parameters y(k), Q(k) by redefining the
sum rules that the physical response χ (k, ω) now satisfies.
Setting first ω = 0 we obtain the extended thermodynamic
sum rule

Q(k)

y(k)
= − 2

π
P

∫ ∞

0

χ ′′(k, ν)

ν
dν + χ ′(k, 0). (32)

Letting ω → ∞ the requirement that χ ′(k, ω → ∞) = n0
m

k2

ω2

yields the extended f -sum rule

Q(k)y(k) = n0

m
k2 + 2

π

∫ ∞

0
νχ ′′(k, ν) dν. (33)

Figure 4 shows Q(k; �) and y(k; �) as calculated from
Eqs. (32) and (33) using the MD data. Equipped with this
information, we are now able to generate ϒ(k, ω) and com-
pare it with the MD generated ϒMD(k, ω) obtained before.
This is done for � = 90 in Fig. 5. The agreement is excellent,
verifying the reliability of the MD protocol and the soundness
of the analysis.

Considering the implications of the second KK relationship
for �′′(k, ω):

�′′(k, ω) = χ ′′(k, ω)

= − 2

π
ωP

∫ ∞

0

χ ′(k, ν)

ν2 − ω2
dν

+ 2

π
ωP

∫ ∞

0

1

ν2 − ω2

Q(k)y(k)

ν2 + y2(k)
dν

= �′′(k, ω) − ω

y(k)
ϒ(k, ω), (34)

we observe that even though ϒ(k, ω) is a real function and
therefore has no contribution to the imaginary part of χ (k, ω),
when the latter is expressed via the Hilbert transform of
χ ′(k, ω), ϒ(k, ω) provides a complementary term, mirroring
the architecture of Eq. (31).

In the Eq. (34) only the ω → ∞ limit gives a useful result.
Asserting that χ ′′(k, ω) vanishes faster than 1/ω as ω → ∞,

FIG. 6. (a) Two contributions to the real part of the response
function χ ′(k, ω) in the domain of the violation (here at � = 90 and
ka = 14.48 < k∗a = 16.38): the real part of the Hilbert transform,
�′(k, ω), and the anomalous ϒ(k, ω) term, corresponding to the
modified KK relation (31). (b) Real part of the response function
χ ′(k, ω) outside of the domain of the violation, at the � and ka values
indicated.

one finds

2

π

∫ ∞

0
χ ′(k, ν) dν = Q(k), (35)

and we arrive at the extension of one of the ADNS sum
rule [3]. This relationship is redundant but serves as a useful
consistency check.

To summarize the results of this section, in Figs. 6 and 7
we present a series of graphs showing the real and imaginary
parts of χ (k, ω), in the domains both of normal behavior
(� < �∗ or k > k∗) and of the violation. In the latter, we
also show the split into the Hilbert transform �(k, ω) and
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FIG. 7. (a) Two contributions to the imaginary part of the re-
sponse function χ ′′(k, ω) in the domain of the violation (here at
� = 90 and ka = 14.48 < k∗a = 16.38): the imaginary part of the
Hilbert transform, �′′(k, ω), and the anomalous −ωϒ(k, ω)/y(k)
term, corresponding to the modified KK relation (34). (b) Imaginary
part of the response function χ ′′(k, ω) outside of the domain of the
violation, at the � and ka values indicated.

anomalous ϒ(k, ω) contributions. It is interesting to note that
in this domain both the real and imaginary parts of χ (k, ω)
are dominated by their anomalous parts.

Finally, for the sake of completeness in Fig. 8 we also show
the static ε(k) and the frequency dependence of the dielec-
tric function. ε(k, ω), in particular ε(k), becomes negative
along χ ′(k, ω), in the violating domain. The latter exhibits
the characteristic inverted U-shape, predicted by Kirzhnits. It
also satisfies the stability criterion ε(k) > 1 in the normal and
ε(k) < 0 in the violating region [32]. The role of a negative
static dielectric function in the formation of the ground state

FIG. 8. (a) Static dielectric response function ε(k) for � values
indicated. (b) Dependence of the real part of the dielectric response
function ε′(k, ω) on the frequency at the � and ka values indicated.
We note that when � > �∗ the intersection of ε′(k, ω) with the zero
axis disappears for k > k∗.

of the electron liquid has recently drawn attention in the liter-
ature [27].

IV. COLLECTIVE EXCITATION

The question how the negative compressibility and the con-
comitant acausal behavior affect the behavior of the plasmon,
the collective excitation of the OCP, is not quite meaningful,
since negative compressibility is only one of the various con-
sequences of strong coupling and what is open to observation
is only the combined effect of all these components. Infer-
ences, however, can be drawn, primarily by observing the role
played by the y-pole, the hallmark of acausal behavior. We
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now contend that there are at least two distinct patterns of
behavior in the plasmon dispersion, which can be reasonably
attributed to the existence of the y-pole.

Recalling that χ (k, ω) consists of a regular and an anoma-
lous part, we observe from Figs. 2(b) and 7(a) that at high �

values, and especially in the high ω domain, the anomalous
ϒ(k, ω) part becomes dominant. To asses the influence of
this anomalous part on the plasmon dispersion we propose to
create a truncated dielectric response function

ε̃(k, ω) = 1 − ϕ(k)ϒ(k, ω) (36)

and examine the approximate dispersion relation

ε̃ ′(k, ω) = 0. (37)

The result of this procedure compared with the quasiexact
[the qualifier refers to the neglect of ε′′(k, ω)] plasmon dis-
persion calculated from

ε′(k, ω) = 0 (38)

is shown in Fig. 9. A major feature of the plasmon dispersion
at strong coupling is the formation of the so-called roton
minimum for kRMa = kRM 
 4.5 at ωRM/ωp 
 0.25 [10]. The
roton minimum was originally identified in the collective
mode spectrum of liquid He [33,34], (according to the most
recent measurements [35] the position of the roton minimum
in 4He is at k = 4.3), but by now it is fairly well understood
that it is the common feature of most strongly correlated
many-body systems [12,36]. What we observe now is that the
truncated dispersion relation, Eq. (37), reproduces the roton
minimum of the quasiexact spectrum with remarkable accu-
racy. In particular, the position of the minimum is determined
by the position of the maximum of y(k). In other words, the
roton minimum is the consequence of the presence of the
y-pole in the response function. Then the conclusion, which
is certainly valid for the OCP studied here but may reasonably
be surmised to be of more general applicability, that the roton
minimum is the consequence of the negative compressibility
of the system follows.

At the k = k∗ singularity ε(k) changes sign and remains
positive for all wave numbers (see Fig. 8). Consequently,
in this domain Eq. (38) ceases to lead to real ω solutions.
The dispersion curve seems to terminate at a finite ω∗(�) =
ω(k∗(�)) frequency, which seems by inspection to be the
lowest frequency the system can reach in the liquid phase.
However, the limited resolution of the MD simulation does
not allow us to state with certainty that the dispersion curve
does not continue all the way down to ω = 0. In either case,
the high value of damping in this high k-domain (also shown
in Fig. 9) makes these nominal frequency values of little phys-
ical significance. How these results can be reconciled with
the result of the QLCA analysis [9,37–40] that predicts that
in general for any Coulomb-like system ω(k → ∞) = �E,
the Einstein frequency of the system (and with the verifying
MD and experimental [41] findings) will be discussed else-
where (see also a recent discussion of the various possible
approaches to and interpretations of the plasmon dispersion
in [42]).

We now turn to examining the influence of the y-pole on
ε′′(k, ω) = −ϕ(k)χ ′′(k, ω), which is responsible for generat-
ing the damping of plasmons. Our detailed study of χ ′′(k, ω)

FIG. 9. The truncated dispersion relation resulting from
ε̃ ′(k, ω) = 0, in comparison with the quasi-exact relation obtained
from ε′(k, ω) = 0. The dispersions terminate at ω∗ = ω(k∗). The
imaginary part of the dielectric response function at the quasi-exact
dispersion frequency is also shown. (a) � = 90, (b) � = 160.

across coupling domains [11], especially its ω-dependence,
verifies that the shape of the function, which for � → 0 in
the RPA emulates the derivative of the Maxwell velocity dis-
tribution function, remains grossly invariant under � being
increased to higher values [cf. Fig. 7(b)]. Thus its behavior is
well characterized by the two parameters p(k) and h(k), the
position and height of its peak value. Characteristically, for
� < �∗, p(k)/k stays in the vicinity of p(k)/k = b(�), a k-
independent constant. However, as demonstrated by Fig. 10, a
dramatic change in this behavior occurs once one is inside the
violation domain: here p(k) closely follows the nonmonotonic
k-dependence of y(k): p(k) 
 y(k). While we do not have
a clear understanding of the physics that brings about this
feature, a brief model calculation in the next section provides
an insight of how the interaction between the dissipation and
the y-pole leads to this peculiar phenomenon.

We also note that the damping of the oscillation at the roton
minimum is quite low [10], ensuring that it is a well-defined
collective excitation. The reason for this can be understood
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FIG. 10. Comparison of the k-dependence of the peak position
p(k) of χ ′′(k, ω) with the k-dependence of y(k) parameter at (a) � =
30 and (b) � = 90.

on the basis of what has been discussed in the previous
paragraph. Since the damping is determined by the value of
χ ′′(kRM, ωRM), a little reflection shows that the behavior de-
scribed above maximizes the separation between y and ωRM,
thereby forcing the latter into the tail of the distribution, where
χ ′′ assumes only a very low value.

V. MODEL CALCULATION

The foregoing derivation provides a completely satisfac-
tory formal description of the acausal behavior of the class
of response functions in question. Nevertheless, this behavior
is sufficiently lacking in intuitive appeal to make it desirable
to seek a physically more understandable explanation of its
origin.

While it is clear from the integral (23) and the discussion
leading to it that it is the negative compressibility of the
system that ultimately causes the breakdown of causal behav-

ior, what is intuitively certainly not clear, indeed somewhat
mysterious, is how these two, seemingly physically unrelated
phenomena are linked with each other. To see this, we ex-
amine a simple two-pole model with a k-dependent collision
frequency or damping rate, γ (k) with γ (k → 0) = 0. In this
approximation the external density response function takes the
form

χ (k, ω) = A

2

[
1

ω − [ω(k) − iγ ]
− 1

ω − [−ω(k) − iγ ]

]
,

(39)

where ω(k) is the collective mode frequency and A = A(k)
is arbitrary. Using Eq. (20) one obtains the proper density
response function

χ (k, ω) = A

2F

[
1

ω − [�(k) − iγ ]
− 1

ω − [−�(k) − iγ ]

]
,

(40)

where

�(k) = F (k)ω(k), (41)

F (k) =
[

1 − ϕ(k)A(k)

ω(k)

] 1
2

. (42)

χ (k, ω), being a plus function, has poles in the lower half
of the ω-plane only. In contrast, χ (k, ω) has now a pair of
complex poles

z1 = �(k) − iγ , (43)

z2 = −�(k) − iγ (44)

not constrained to the lower half-plane. These poles become
pure imaginary when [1 − ϕA/ω(k)] turns negative:

z1 = i(y − γ ), (45)

z2 = i(−y − γ ) (46)

with

y(k) = ω(k) f (k), (47)

f (k) =
[
ϕ(k)A(k)

ω(k)
− 1

] 1
2

. (48)

z2 is always in the lower half-plane, but z1 may be in the upper
half-plane, if the condition

ω(k) f (k) − γ (k) > 0 (49)

is satisfied. This we will assume to be the case in the sequel,
and we will take γ → 0 accordingly.

In order to proceed we have to determine the value of the
coefficient A(k) in Eq. (39). We do this by requiring that
Eq. (39) satisfies the static FDT, Eq. (21), which then provides

A(k) = βn0S(k)ω(k). (50)

Then

F 2(k) = − f 2(k) = 1 − βn0ϕ(k)S(k)

= 1 + ϕ(k)χ (k)

= 1/ε(k). (51)
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This relationship lends itself to the interpretation of �(k) as
the pressure contribution to the viscoelastic plasma frequency
[4]. As the sign of ε(k) is identical to that of the compress-
ibility, it is now obvious that this viscoelastic frequency �(k)
morphs into the y-pole as the compressibility turns negative.
Even though this statement is derived only from the simplified
model calculation, there seems to be no doubt that the physical
picture it provides is of general validity.

A further simplification can be achieved by observing that
the k → 0 limit of Eq. (39) is equivalent to

χ ′′(k, ω)

= π

2
βn0S(k)ω(k){δ[ω + ω(k)] − δ[ω − ω(k)]}, (52)

which may be seen to be tantamount to the classical version
of the familiar Feynman ansatz [43,44] for S(k, ω),

S(k, ω) = 1
2 S(k){δ[ω − ω(k)] + δ[ω + ω(k)]} (53)

with its corollary

ω(k) = ωp
1√

S(k)

k√
3�

, (54)

where k = ka. The values of the �(k) pole and of the linked
y(k) pole are determined from Eqs. (41) and (47):

�(k) = ωp
1√−χ (k)/βn0

k√
3�

, (55)

y(k) = ωp
1√

χ (k)/βn0

k√
3�

(56)

with

χ (k) = βn0
S(k)

βn0ϕ(k)S(k) − 1
. (57)

At this point we may adopt the language of Sec. II and split
χ (k, ω) into its regular �(k, ω) and anomalous ϒ(k, ω) parts.
Then we observe that for � < �∗ or for k > k∗

�(k, ω) = Aω(k)
1

ω2 − �2(k)

= ω2
pβn0

k
2

3�

1

ω2 − �2(k)
, (58)

ϒ(k, ω) = 0, (59)

and for � > �∗, k < k∗

�(k, ω) = 0, (60)

ϒ(k, ω) = Aω(k)
1

ω2 + y2(k)

= ω2
pβn0

k
2

3�

1

ω2 + y2(k)
. (61)

Comparing Eq. (61) with the earlier definition [Eq. (27)] of
ϒ(k, ω) we can express the parameter Q(k) as

Q(k) = A(k)

f (k)
= βn0ωp

√
χ (k)/βn0

k√
3�

. (62)

FIG. 11. Comparison of the Q(k) and y(k) parameters of the
imaginary pole resulting from the model calculation with the exact
findings from the MD simulations at � values indicated.

With the aid of the small-k expansion of S(k)

S(k → 0) = k
2

3�

(
1 − L

k
2

3�

)
, (63)

one can work out, as a by-product, the small-k expansions of
Q(k) and y(k) in the expectation that they will serve as a guide
for the small-k expansion of the exact expressions.

Q(k → 0) = −ωpβn0

L

(
ck + 1

2
c3k

3
)

, (64)

y(k → 0) = ωp

(
ck − 1

2
c3k

3
)

, (65)

where

c =
(

− L

3�

) 1
2

. (66)
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Using the MD data for S(k), in Fig. 11 we compare the
approximate results (56) and (62) with the exact findings from
the MD simulations in Fig. 4: we see a reasonable agreement,
showing that the somewhat unexpected behavior of these
quantities is well reproduced by the model calculation. This
may be taken as an indication that the physical mechanism
identified in the model calculation operates in the exact for-
malism as well.

The essence of the collective behavior discussed in
Sec. III can be easily illuminated by employing the current
model. Now, in view of Eqs. (36) and (61) ε̃(k, ω) ≡ ε(k, ω)
and the exact dispersion relation becomes

1 − ω2
p

ω2 + y2(k)
= 0, (67)

which does not provide any new information beyond Eqs. (45)
and (46). As to the imaginary part χ ′′(k, ω), we let γ assume
a small, but finite value, yielding

χ ′′(k, ω) = −2βn0ω
2
pγ (k)

ω

[ω2 + y2(k)]2

k
2

3�
. (68)

The maximum of this expression is at

p(k) = y(k)/
√

3, (69)

qualitatively explaining the origin of the structure of Fig. 10.
To summarize the moral of the model calculation, it

has elucidated how the connection between the violation
of causality and the negative value of the compressibility
emerges. As long as the compressibility of the system stays
positive, the pressure-generated �(k) pole in χ (k, ω) leads to
a positive addition to the plasma frequency; once, however,
the compressibility turns negative, the pole migrates into the
upper half-plane: the existence of such a pole entails the
development of the anomalous part of the response, which is
the pivotal quantity of the acausal behavior.

VI. TIME DOMAIN

A deeper insight about the physical processes implied by
the acausal behavior can be gained by examining the time
domain developments of the various response functions and
of the related physical quantities. In Fig. 12(a) we display the
χ (k, t ) and χ (k, t ) time functions, obtained by calculating the
inverse Fourier transforms of χ (k, ω) and χ (k, ω). It is evi-
dent that they possess the expected time behavior: the external
χ (k, t ) is causal, i.e., it vanishes for all t < 0 values, while
the proper χ (k, t ) is acausal, carrying an exponential tail in
the t < 0 domain. This anomalous part is the offspring of the
y-pole, discussed above. To see this clearly, we have separated
in Fig. 12(b) the anomalous part from the well-behaved reg-
ular, causal contribution. Figures 13(a) and 13(b) also show
that once we are outside the negative compressibility domain,
either by reducing � below its �∗ value or by increasing k over
its k∗ value, χ (k, t ) recovers its normal causal behavior.

There are two measurable physical quantities in the current
scenario: the total perturbed (induced) density n(k, t ) and the
total (external plus induced) potential �(k, t ) = �̂(k, t ) +
q�(k, t ). These are necessarily causal quantities. Nevertheless,
the connection between them is expressed through the acausal

FIG. 12. (a) Time dependence of the external and the proper den-
sity response functions, χ (k, t ) and χ (k, t ), at � = 5 and ka = 0.91,
k∗(� = 5)a = 3.71. (b) Split of χ (k, t ) into the anomalous ϒ(k, t )
and the regular �(k, t ) terms at the same parameter values.

χ (k, t )

n(k, t ) = χ (k, t ) ∗ �(k, t ). (70)

(The ∗ sign designates a convolution integral.) On the
other hand, neither of the two (unphysical) constituents
χ (k, t ) ∗ �̂(k, t ) and χ (k, t ) ∗ q�(k, t ) are causal functions.
The intricate relationships that render the combination of
the various—not obviously, but in fact unphysical—quantities
causal is illustrated in Fig. 14. The figure follows the simple
sequence ensuing from a δ-function perturbation by an exter-
nal potential

�̂(k, t ) = �0(k)δ(t ), (71)

as it generates induced potential and induced density re-
sponses both via the regular (causal) and anomalous (acausal)
contributions. It is instructive to compare their behavior with
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FIG. 13. Time dependence of the proper density response func-
tion χ (k, t ) outside of the domain of the violation (a) at � = 1 < �∗
and ka = 0.91, (b) at � = 5 > �∗ and ka = 4.53 > k∗(� = 5)a =
3.71.

the one shown in the companion Fig. 15 for the domain of the
normal (causal) response. The most flagrant difference may
be observed in Figs. 15(j) and 15(k), portraying the separate
“system responses” to the external and polarization fields. One
would be inclined to believe that they are indeed separable and
measurable quantities. A little reflection shows, though, that
this is not the case. Thus their strange acausal behavior one is
confronted with in these figures should not be, in fact, of any
physical consequence. Through these figures one may also be
able to glean the details of what has been pointed out above as
to the linkage of two causal quantities via an acausal response.

VII. SHORT RANGE VERSUS LONG RANGE

As has been clear from the outset, it is the negative
compressibility that is ultimately responsible for the acausal

behavior. The system we have focused on, the Coulombic
OCP, does exhibit a negative compressibility. But the OCP
is not a self-consistent model: its thermodynamic stability
is maintained only by the rigid compensating background.
In fact, all physically realizable systems must have positive
compressibility to prevent them from collapse. Thus one may
wonder whether the acausality phenomenon would survive in
a more realistically described system, in which the long-range
Coulomb interaction is replaced by a short-range potential
that does not require the support of a rigid background. An
immediate example is the Yukawa OCP that has been widely
used in the recent literature in the context of complex plasmas,
colloids, and white dwarf interiors (see, e.g., [45–47]). Here
the interaction is described by the finite μ−1 range exponential
Yukawa potential, whose Fourier representation is

ϕ(k) = 4πZ2e2

k2 + μ2
. (72)

We now examine to what extent the previously derived re-
lationships are affected by the change from the long-range
Coulomb to the finite-range Yukawa potential. All the fun-
damentals, Eq. (1) through (21), are interaction independent
and still remain valid. However, a careful reinterpretation of
Eq. (22) is required. It should be recalled that the entirely
model-independent derivation of the compressibility sum rule
rests upon the static FDT, Eq. (21), and the thermodynamic
relationship between S(k) and the compressibility for finite
range (but not Coulomb) interactions [48]:

S(k = 0) = 1/L. (73)

Here L is the total physical inverse compressibility, which in-
cludes, in addition to the correlational contribution, a Hartree
term LH = 3�/μ̄2, μ̄ = μa. The correlational Lcorr is always
negative, while LH is positive, ensuring that the total inverse
compressibility,

L = 1 + Lcorr + LH, (74)

always stays positive. It is now this compressibility that gov-
erns the small-k behavior of χ (k):

χ (k = 0) = −βn0/L. (75)

Proceeding now to the calculation of χ (k, ω) following
Eq. (20) yields the entirely different static behavior:

χ (k = 0) = −βn0/L, (76)

where L = 1 + Lcorr. This remarkable result is the conse-
quence of the cancellation of the Hartree compressibility by
the k = 0 value of the interaction potential.

Also, calculating ε(k) we find

ε(k = 0) = 1 + 3�

L
1

μ̄2
= L

L . (77)

Now it is clear that χ (k, ω) even though in its small-k behav-
ior differs substantially from its Coulombic counterpart will
exhibit a normal causal behavior, as it must; on the other hand,
χ (k, ω) quite in line with the Coulombic case will be acausal
once L < 0, which does happen, similarly to the OCP, for
some �∗(μ) > �∗ [26,49].

Thus, whatever has been said about the acausal behavior
of χ (k, ω) for the Coulombic OCP so far stands qualitatively
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FIG. 14. Details of the time evolutions of various responses generated by the proper density response function in the violation domain.
The columns of the graphic matrix represent the external �̂, polarization q�, and total � perturbing fields. The entries in the top row in panels
(a), (b), and (c) illustrate the column headings. The rows are labeled by χ̄ (k, t ) and its regular �(k, t ) and anomalous ϒ(k, t ) components.
An entry in the matrix, in panels (d) though (l), displays the convolution product of the respective density responses and perturbing fields.
The physically measurable density perturbation n(k, t ) is the last entry, panel (l), with an obviously causal behavior. All the entries with
nonvanishing contributions for t < 0 represent auxiliary entities, without any physical observability. � = 90, ka = 1.81.

for the Yukawa OCP as well, the short-range character of
the interaction notwithstanding. Quantitatively, of course, in
the absence of relevant calculations of the response functions
not much can be stated. Some inferences, though, can be
drawn from the two-pole model, presented in Sec. IV, after the
correct reinterpretation of ϕ(k) and ω(k). One may represent
this latter through the Feynman relation (53) as well, leaving
Eqs. (54) through (57) formally invariant. Nevertheless, when
χ (k) is calculated as an explicit function of k the resulting
expression turns out to be quite complex, which we do not find
useful to display here, restricting ourselves to the analysis of
k → 0 limit only.

The long wavelength collective excitation in the Yukawa
OCP is an acoustic plasmon mode entangled with the hydro-
dynamic sound [50]:

ω(k) = ωp

√
L

3�
k, (78)

while the pole frequency �(k) remains similar to (55):

�(k) = ωp

√
L
3�

k. (79)

Using these results and proceeding now to the determination
of Q and y according to (62) and (56) yields formulas which,
except for the replacement of L by L, are identical to Eqs. (64)
through (66). This similarity exhibited by the y-poles of the
Coulomb and Yukawa OCPs, their differences notwithstand-
ing, is quite noteworthy.

In conclusion, we note that similarly to the Coulombic
OCP, high-quality MD simulation data on the equilibrium
fluctuation spectra (dynamical structure function, etc.) are
available for the Yukawa OCP as well [21,50–52]. What is
missing at the present time is the conversion of these data into
a formulation of the response functions along the pattern set
by this paper. This has to await future work.
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FIG. 15. Same as Fig. 14 outside of the violation domain. � = 1, ka = 0.72.

VIII. CONCLUSIONS

The improvements in computer molecular dynamics sim-
ulations of the equilibrium dynamics of many-body systems
over the past decade have resulted in the accumulation
of high-quality data on the dynamical structure function
S(k, ω) for Coulomb-like systems, in particular for the one-
component plasma (OCP) over a broad range of � coupling
values. These data constitute a depository of a wealth infor-
mation on the system, on the real and imaginary parts of
a family of linear response functions in particular. With the
aid of the Fluctuation-Dissipation Theorem (FDT) and the
Kramers-Kronig (KK) relations the data can be converted
into a catalog of the detailed behavior of these functions. In
this paper, we have used results of this approach to analyze
the density response functions and the dielectric response
function of the OCP in the domain of strong coupling, which
has hitherto been inaccessible either to analytic or to direct
computational methods. Our main focus is directed towards
the phenomenon that has attracted a great deal of interest
and has created some controversy for some time, namely, the
apparent acausal behavior of some of the response functions,
manifested by the violation of the KK relations in this domain.

It has been clear from the outset that the negative value of the
static response function, due to the compressibility becoming
negative for � > 3, triggers the acausal behavior.

The game-changing significance of the onset of negative
compressibility (or, equivalently, of the static dielectric func-
tion ε(k) assuming negative values) in many respects was
emphasized by Krizhnits, Dolgov, and collaborators in a series
of publications [16,17,28,29] since the 1960s. Nevertheless,
none of these authors—or, the best of our knowledge, no
other research groups either (see, however, the very recent
work [53])—have explored the consequences of this feature
on the dynamical properties of the response functions. This, of
course, to a great extent has been due to the lack of available
data on which such an analysis could have been based. It is
now in this work that we have been able to create a full picture
of the evolution of the response functions in the anomalous
domain.

Having determined the maximum k∗(�) forming the
boundary of the acausal region we have given a detailed
picture of the response function as it splits into a “regular”
(KK-preserving) and an “anomalous” (KK-violating) part, the
latter being generated by the so-called y-pole in the upper
ω half-plane. The existence of such a pole as a concomitant
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to the acausal behavior is well established on mathematical
grounds in the literature; here we have been able to trace its
physical origin to the migration of the known viscoelastic (hy-
drodynamic) pole as the compressibility assumes a negative
value.

The knowledge of the dielectric response function, ε(k, ω),
has made it possible to analyze the plasmon dispersion in the
acausal domain in a less ambiguous manner than via the usual
method of examination of the peaks of the dynamical structure
function S(k, ω). (For a recent discussion on the issues in-
volved see [42].) The dispersion relation so displayed clearly
exhibits a pronounced weakly damped roton minimum, which
seems to qualify as a bona fide collective excitation. We have
demonstrated that its existence is linked to the anomalous part
of the response function. This observation has led us to the
conclusion that the roton minimum is the consequence of the
negative compressibility, a statement that we believe to be of
quite general system-independent validity.

In order to understand better what the acausal behavior
actually means in terms of time dependence, we have com-
plemented our study of the response by analyzing its Fourier
transform back into the time domain. There are two major
conclusions we could draw from this study. Our first remark
concerns the observability of the acausal behavior, i.e., the
question whether there exists a physical quantity in whose
time evolution any activity prior to the perturbation can be
detected. The answer, perhaps trivially, is negative. What re-
mains to be understood is how this assertion can be made
compatible with the nonvanishing of the response function
for negative times. To see this, one can observe that even
though the anomalous part of the response function creates a
precursor response to the �̂ perturbation imposed, it does the
same for the polarization field q� as well. As a result, the two
precursor fields exactly cancel each other, leaving no contri-
bution to the physical response at negative times. Our second
observation concerns the argument, emphasized by Kirzhnits
and others, that the lack of causality of the response with re-
spect to the polarization field, in contrast to the external field,
is permissible. While this reasoning is certainly correct, it
should not be confused with the view that seems to have been
implied by some of the discussions on the topic, namely, that
such an acausal behavior with respect to the polarization field
q� is not only permissible but is even physically reasonable.
This would happen because q� represents a delayed response
with respect to the external perturbation �̂: an activity of n
preceding it could still be subsequent to �̂. Since, however,

as can easily be seen, n and q� are simultaneous, this scenario
cannot hold. In fact, the precursor time dependences of the
responses are entirely governed by the y-pole and are not
associated with the time behavior of any physically observable
quantity.

The anomalous behavior and the related structural features
at strong coupling we have identified in this work are probably
characteristic for a wider class of physical systems—classical
and quantum—than the OCP studied here. We have shown
through the example of the Yukawa OCP that the pivotal
role of the negative compressibility, a unique feature of the
OCP, is, in fact, not a restrictive condition: in systems with a
physically required positive compressibility it is the negative
correlational part of the compressibility that takes over this
role.

It should be clearly understood that the manifestations
of the anomalous—i.e., the dramatically and sometimes un-
expectedly novel—behavior of the response functions once
the critical �∗ coupling value is exceeded have been estab-
lished via computer simulations and that there is no cogent
theoretical framework behind them. Logical and analytical
requirements, such as sum rules, have served as anchors ensur-
ing that the results were built on solid physical foundation, but
what they did not provide is a coherent analytic structure from
which such results could have been derived. Starting with
the compressibility sum rule as an example, relying on the
behavior of the equilibrium static structure factor it determines
the anomalous positive value of the static density response
function. But, at the same time, we are missing a consistent
analytic expression for the response function that would di-
rectly deliver this result. A more profound demonstration of
our lack of knowledge is that the development of the crucially
important y-pole is not a part of any existing response func-
tion model. How an analytic formalism appropriate for strong
coupling capable of reproducing our results is a profound and
important question that evidently we have not tackled in this
work. It seems to us very unlikely that the popular local field
formalism would be the one to provide the right approach to
do this job.
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