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ABSTRACT

Optical emission spectroscopy (OES) is a highly valuable tool for plasma characterization due to its nonintrusive and versatile nature.
The intensities of the emission lines contain information about the parameters of the underlying plasma–electron density ne and temperature
or, more generally, the electron energy distribution function (EEDF). This study aims to obtain the EEDF and ne from the OES data of argon
plasma with machine learning (ML) techniques. Two different models, i.e., the Kernel Regression for Functional Data (KRFD) and an artificial
neural network (ANN), are used to predict the normalized EEDF and Random Forest (RF) regression is used to predict ne. The ML models are
trained with computed plasma data obtained from Particle-in-Cell/Monte Carlo Collision simulations coupled with a collisional–radiative
model. All three ML models developed in this study are found to predict with high accuracy what they are trained to predict when the simulated
test OES data are used as the input data. When the experimentally measured OES data are used as the input data, the ANN-based model pre-
dicts the normalized EEDF with reasonable accuracy under the discharge conditions where the simulation data are known to agree well with
the corresponding experimental data. However, the capabilities of the KRFD and RF models to predict the EEDF and ne from experimental
OES data are found to be rather limited, reflecting the need for further improvement of the robustness of these models.

Published under an exclusive license by the AVS. https://doi.org/10.1116/6.0003731

I. INTRODUCTION

Low-temperature plasma has emerged as a versatile technology
with diverse applications across various sectors, including semicon-
ductor processing, electric propulsion, ozone generation, and plasma
agriculture and medicine.1–3 One crucial factor in achieving significant
progress in these domains lies in the ability to precisely characterize

and control the plasma required for these applications. For this
reason, over several decades, significant efforts have been placed into
developing plasma diagnostics.4,5

In certain applications, such as in semiconductor manufactur-
ing and in plasma propulsion systems, it is desirable to be able to
determine the plasma characteristics without disturbing the plasma.
This necessitates using noninvasive diagnostics such as spectroscopy
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methods, laser-based methods,4,6 and wall-mounted measurement
systems.5,7 Optical emission spectroscopy (OES) is a widely used
noninvasive plasma diagnostic valued for its versatility and simplicity
as compared to other diagnostic tools. It is extensively employed in
characterizing plasma composition and tracking dynamic changes in
the plasma.8,9 Moreover, OES can be employed to determine plasma
parameters, such as the electron density ne and the electron energy
distribution function (EEDF) or the electron temperature Te, as the
electron kinetics are reflected in the excitation dynamics. There exist
a number of methods to determine ne and EEDF from the optical
emission spectra. One such method relies on determining the excita-
tion temperature Texc from the slope of the Boltzmann plot of ln
(Iλ=g2A12) vs the energy of the higher excited level, wherein I, λ, g2,
and A12 are the intensity, wavelength, statistical weight, and Einstein
A-coefficient of the corresponding transition. The electron tempera-
ture Te can be set equal to Texc at local thermal equilibrium (LTE) or
can alternatively be determined using the Saha equation and the line-
continuum ratio. The electron density ne is then determined using
the measurement of the Stark broadening of the lines.10–12 However,
such a method assumes that the plasma is in local thermal equilib-
rium, which typically exists only at high electron densities and high
pressures.10

Another approach involves assuming a corona regime and
relating Te to the ratio of the emission line intensities from two
excited levels. In this method, one line typically originates from an
ionic level, while the other comes from a neutral level of the same
atomic species.10,13,14 However, the assumption of a corona model
is usually valid only at low pressures.15,16 If trace gases are added to
the plasma, actinometry and trace rare gas OES can also be used to
determine the density of ground-state species and Te.

10,17

Another method that is commonly used to relate spectral line
intensities to plasma parameters employs so-called collisional-
radiative models (CRMs). A CRM takes into account the processes
that populate and depopulate each excited level to solve a rate
balance equation for these levels. In this way, plasma parameters
such as ne and the EEDF can be related to the rate of spontaneous
emission reflected in the intensities of spectral lines. One way a
CRM is often utilized is by varying ne and Te until the resulting
intensities agree closely with the measured OES intensities.15,18–25

However, such calculations usually need an assumption on the dis-
tribution of the electron energies. The usual assumptions of a
single-temperature Maxwellian or two-temperature distributions
are often not accurate enough to represent the actual conditions.16

A more straightforward way to use the model is to employ ne and
the EEDF as input parameters to the CRM in order to yield the
corresponding spectral intensities. This way, “inverting” the CRM
would lead to the determination of the plasma parameters from
the OES spectra. However, solving for the inverse of the CRM is
often challenging due to the complexity of determining the realis-
tic shape of the EEDF represented with a limited number of
parameters.

Recently, there have also been a growing number of studies
employing machine learning (ML) to determine the plasma param-
eters from the OES line intensities.26–29 Shojaei and Mangolini
used the OES and Langmuir probe measurements to predict the
electron energy probability function (EEPF) from normalized emis-
sion spectral intensities.28 van der Gaag et al. used a genetic

algorithm to predict regions of the EEDF from the emission from
electron-atom bremsstrahlung.29 Park et al. also predicted Te and
ne from the OES intensities.27

The final goal of this study is to develop ML models to predict
the (normalized) EEDF and ne of Ar plasma from its OES data
under various discharge conditions. Because the total gas pressure of
the plasma system can be measured easily, it can also be used as an
input parameter. The EEDF may not be represented by a combina-
tion of Maxwell distributions or other known distribution functions,
so we do not assume any particular parametrized functional forms
for the EEDF. We consider a plasma system with limited diagnostic
accessibility and assume that the optical emission is measured at a
single point in space and the absolute value of the photon flux
cannot be determined. Therefore, the relative (i.e., normalized) emis-
sion line intensities accumulated over a certain time interval, rather
than the absolute emission line intensities, are used as input data for
the ML models. Because the observed optical emission signals are
integrated along the line of sight, the nonuniformity of the plasma
can also affect the observed line intensities. The assumption is then
made that the relative emission line intensities are related to the elec-
tron density and EEDF averaged over the line of sight and that this
information can be extracted by the ML models.

If such ML models are successfully developed and the predic-
tion is fast enough, real-time monitoring of the plasma density and
EEDF of Ar plasmas can be achieved based on the real-time infor-
mation of measured OES data and gas pressure. Furthermore, if the
ML models developed in this study can be extended to chemically
reactive plasmas, they can be used as real-time monitoring tools for
industrial plasma systems.

In this study, as the first step toward the final goal, we devel-
oped such ML models using numerical simulation data as their
training data. The decision to use simulation data for training our
machine learning models is driven by the need for noninvasive
diagnostics and a higher dynamic range of the EEDF. Although
training on experimental data might seem ideal for developing
accurate predictive models, it is important to recognize that each
diagnostic method comes with its own uncertainties and biases,
which can be imprinted onto the model. For instance, Langmuir
probes tend to be invasive and their applicability becomes ques-
tionable at elevated pressures. Thomson scattering is challenging at
low densities and requires long measurement times, making the
collection of sufficient data for the training of the models unrealis-
tic. Finally, all experimental methods lack the sensitivity to cover
the large dynamic range of variation of the EEDF while models
such as the particle-in-cell/Monte Carlo collision (PIC/MCC) sim-
ulation readily provide this capability.

The numerical simulation data for training are those of Ar
capacitively coupled plasmas obtained from the simulation codes
described in Ref. 16. The prediction capability of the developed ML
models is tested with the simulated OES data as their input param-
eters at various gas pressures. The simulation data used for our ML
training are known to agree well with the corresponding experi-
mental data when the gas pressure is about 20 Pa or lower although
some discrepancy always exists between the simulated and experi-
mentally measured OES data. The discrepancy can arise from
various reasons, ranging from the inaccuracy of the simulation
model to the presence of impurities and nonuniformity in the

ARTICLE pubs.aip.org/avs/jva

J. Vac. Sci. Technol. A 42(5) Sep/Oct 2024; doi: 10.1116/6.0003731 42, 053001-2

Published under an exclusive license by the AVS

 11 July 2024 12:53:21

https://pubs.aip.org/avs/jva


actual plasma used for the measurement. The presence of a small
amount of impurities, such as nitrogen, could already cause notable
quenching of the argon excited states. In addition, the simulation
models assume a uniform profile of the plasma along the line of
sight; therefore, any variations in plasma uniformity add to predic-
tion errors in the simulated data and in the ML models. However,
if the developed ML models are robust enough, they should be able
to predict the electron density and EEDF of the actual plasma at a
pressure of up to 20 Pa from experimental OES data. The robust-
ness of the ML models was also tested in this study.

This paper is divided into five parts. The preparation of train-
ing and test data is outlined first in Sec. II, followed by an introduc-
tion to the ML models used in Sec. III. Subsequently, the
prediction results for simulated data are then presented and dis-
cussed in Sec. IV, followed by those for experimental data in Sec. V.
Finally, the concluding remarks are given in Sec. VI.

II. DATA PREPARATION

This study used the intensities of 15 spectral lines as the input
vector to predict the EEDF and ne as the output data. In addition
to the OES intensities, the pressure was also included as an input
variable, resulting in a 16-dimensional input vector. The details of
the spectral lines used in this study are provided in Table I. The
functional variable EEDF was discretized on an equidistant grid
having 1999 points, while ne was given as a discrete scalar variable.
First, the preparation of the input vectors from calculated and mea-
sured data is outlined in the following.

A. PIC+CRM simulation data

The simulation dataset used for ML was generated through
the one-way coupling of a one-dimensional (1D) PIC/MCC model
and a CRM, denoted as “PIC+CRM,”16 of capacitively coupled
plasmas (CCPs) in argon (Ar) gas. The CRM was used to compute

the OES spectral line intensities corresponding to a specific combi-
nation of EEDF and ne, both calculated using PIC/MCC simula-
tions. The same PIC+CRM model described in detail in Ref. 16
was employed in this work. In this previous work, only the pressure
was varied between 2 and 100 Pa at a constant peak-to-peak voltage
of 300 V. Here, data for other voltages between 200 and 500 V
(peak-to-peak) for the same pressure values have also been gener-
ated. In this way, a total of 108 sets of OES intensities and plasma
parameters were generated for the training and testing of the ML
models.

The CRM used here16 was derived from the work of Ref. 21.
It takes into account the lowest 14 excited levels of argon, namely,
the 1s and the 2p levels (in Paschen’s notation). A CRM has several
input parameters, including the collision cross sections, the param-
eters of the chamber geometry, a list of radiative transitions consid-
ered and a set of coefficients corresponding to the processes
involved. In this work, these parameters were set in accordance
with the specifications shown in Ref. 16. More specifically, the zero-
dimensional CRM was computed for an argon plasma within a
cylindrical chamber enclosing highly symmetrical parallel-plane
electrodes. Each electrode had a diameter of 14.2 cm, and the gap
distance between them was set at 4 cm. For each pair of input and
output data, all other parameters are the same except for the EEDF
ne, the gas temperature Tg, and the pressure. The values used for
Tg ranged from 304 to 348.4 K and were interpolated from experi-
mental tunable diode laser absorption spectroscopy (TDLAS) mea-
surements done in Ref. 16. The resulting intensities calculated from
the CRM were given in units of photons, m!3 s!1.16,31

The EEDF and ne were calculated using a one-dimensional
(1D) electrostatic PIC/MCC model.32,33 The simulations were con-
ducted for a capacitively coupled radio frequency argon plasma
with the same chamber configurations described above. The EEDF
and ne values utilized in the ML study were averaged over the
central 1 cm diameter region of the plasma to align with the region
of measurement in the OES experiments detailed in Sec. II B. The
PIC/MCC simulations also employed the same interpolated Tg

values as described above. Before being employed in the CRM, the
EEDF fe calculated from PIC/MCC simulations was normalized
over the electron energy ε such that16,21

ð1

0
fe(ε)dε ¼ 1: (1)

In the same way, the predicted EEDFs were normalized according
to Eq. (1) before being used in the CRM.

Out of the 108 data sets that were generated, 80% were ran-
domly selected for training, and the remaining samples were
reserved for testing. The logarithm of the EEDFs was taken and
these resulting EEDFs were used as the training data as it was
observed that predictions in linear scale tend to neglect the higher
energy region. Additionally, to ensure that even zero values could
be transformed into the logarithmic scale, a small constant value of
10!10 eV−1 was added to each data point in the EEDF. For compar-
ison with experimental intensities, the intensities calculated from
the CRM were normalized to the total intensity of the selected

TABLE I. List of the selected argon lines used in the ML study. The levels of the
transitions are denoted in Paschen notation and the data are taken from Ref. 30.

Wavelength (nm) Lower level Upper level

696.543 1s5 2p2
706.722 1s5 2p3
714.740 1s5 2p4
727.294 1s4 2p2
738.398 1s4 2p3
750.387 1s2 2p1
751.465 1s4 2p5
763.510 1s5 2p6
772.376 1s5 2p7
772.422 1s3 2p2
794.818 1s3 2p4
800.616 1s4 2p6
801.479 1s5 2p8
810.369 1s4 2p7
811.531 1s5 2p9
826.452 1s2 2p2
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spectral lines such that

~I ¼ Ik=
X

Ik, (2)

where Ik denotes the intensity of each selected argon line and ~I rep-
resents the resulting normalized intensity. It should be noted that
the intensities at 772.38 and 772.42 nm were not well-resolved in
the measurements. Therefore, in order to compare with the experi-
ments, the two intensities calculated from the CRM were combined
into a single value corresponding to an effective wavelength of
772.4 nm.

B. Experimental data

The experimental data used in this study were taken from
Ref. 16. The readers are, therefore, referred to this paper for more
details. Briefly, the experimental measurements were conducted on
an argon plasma employing the same chamber configurations
described in the simulations outlined in Sec. II A. However, the
experimental measurements were limited to a single peak-to-peak
voltage setting, specifically at 300 V. Three sets of measurement
data were incorporated in this study: intensities obtained from the
OES, gas temperature Tg, and 1s5 density measured using tunable
diode laser absorption spectroscopy (TDLAS).

The experimentally measured OES intensities served as a
second set of test input data for the evaluation of the predictive
performances of the ML models. Similar to the treatment applied
to calculated intensities, the measured relative intensities were also
normalized using Eq. (2). The measured Tg data were interpolated
and employed as input parameters for both the PIC/MCC simula-
tions and the CRM. On the other hand, the measured 1s5 density
data served as reference data for additional validation of the pre-
dicted results.

III. ML MODELS

Three different ML models were used in this study—two for
EEDF prediction and one for predicting ne. Specifically, the Kernel
Regression for Functional Data (KRFD) and Artificial Neural
Network (ANN) models were employed to predict the EEDF, while
ne was predicted using an Random Forest (RF) regressor. The
hyperparameters for each model were selected by Bayesian optimi-
zation using Optuna Python library34 separately for each model,
with the number of trials set to 300. Fivefold cross-validation was
employed to choose the validation set and calculate the validation
loss. Fivefold cross-validation is an ML technique to assess the
model performance where the dataset (excluding the test subset) is
divided randomly into five equal parts. The model is then trained
and tested five times, each time using a different part as the test set
and the remaining parts as the training set.

A. KRFD model

The KRFD was originally developed in Ref. 35. The method
allows to obtain a function Y(t) from an input vector X. The

predicted output Y(X, t) is modeled by

Y(X, t) ¼
XT

i¼1

βi(X)kT(t, ti)þ μ(t)þ δ: (3)

Here, T is the total number of data points in t. In this study, t is
set to be the electron energy, Y(t; X) is assigned as the EEDF at
that energy, while X represents the 16-dimensional input vector
comprising OES intensities and pressure. A set of T positive defi-
nite kernel functions, k(t, ti) (i ¼ 1, . . . , T), is placed at arbitrarily
specified centers ti (i ¼ 1, . . . , T) within the support of the elec-
tron energy. The regression coefficient or weight parameter βi(X) is
modeled as a function of X, which activate or deactivate each
kernel. While in Ref. 35, the coefficients were modeled with ANNs,
in this study kernel regressors are used to achieve more robust and
cost-effective modeling. Additionally, μ(t) is a baseline function
that relies only on t and δ is the noise term. Unlike ordinary regres-
sion, where the output is typically given as a scalar variable or rela-
tively low-dimensional vector, the output variable here is treated as
a function of t. Such a task is called functional output regression.
For the kernels k(t, ti), we use the Gaussian radial basis kernel
function (RBF) given by

k(t, ti) ¼ l exp ! kt ! tik2

2σ2

" #
, (4)

where l is a length scale parameter, σ is the bandwidth parameter
of the basis function, and kt ! tik is the Euclidean distance of the
electron energy t from the ith kernel center ti. While the use of
other RBF can be explored as a future work, a Gaussian RBF was
chosen due to its wide usage as a kernel function in kernel regres-
sion models.

The coefficient functions βi(X) (i ¼ 1, . . . , T) are modeled
with additional kernel regressors. Specifically, Eq. (3) is expressed as

Y(X, t) ¼
XN

k¼1

XT

l¼1

θklkG(X, Xk)kT (t, tl)þ
XN

m¼1

cmkM(X, Xm)þ δ: (5)

Here, θkl and cm represent the regression coefficients,
kG(X,Xk) and kM (X,Xm) denote the Gaussian RBF kernels on vari-
able X, kT (t,tl) is the RBF kernel on t, and N denotes the number
of the kernel functions for X. This can be obtained by setting
βi(X) ¼

PN
k¼1 θkikG(X, Xk) in Eq. (3).

In this study, ridge regression with ‘2 regularization was per-
formed to estimate the coefficient parameters, θkl and cm, where
the objective function O to be minimized during model training is
given by

O(Θ, c) ¼ kY ! GΘT !Mc1Tk2F þ αGkG1=2ΘTk2F þ αTkGΘT1=2k2F
þ αGαTkG1=2ΘT1=2k2F þ αMkM1=2c1Tk2F ,

(6)

where Y , G, Θ, T, and M are N $ T , N $ N , N $ T , T $ T , and
N $ N matrices whose entries are given by Y ij ¼ Y(Xi, tj),
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Gij ¼ kG(Xi, Xj), Θkl ¼ θkl , T ij ¼ kT (ti, tj), Mij ¼ kM(Xi, Xj), and
c ¼ (c1, . . . , cN )

T. Here, 1 denotes a T-dimensional vector whose
entries are all one and a square matrix raised to the power 1=2 is
another square matrix whose product with itself gives the original
matrix. Additionally, k kF represents the Frobenius norm. The
optimal solutions for Θ and c were determined by solving the
system of equations obtained by setting @O(Θ, c)

@Θ ¼ 0 and @O(Θ, c)
@c ¼ 0.

Each of the 16 input variables was standardized to have a
mean of 0 and a standard deviation of 1 in the training dataset.
Note that this procedure does not preserve the line ratios within a
given spectrum. About 20% of the total data was randomly selected
for the test set, and the remainder was used as the training set. The
hyperparameters were selected using Optuna through fivefold
cross-validation within the training set. The parameters to be
selected were σG, σT , and σM [ [1, 100], which are the bandwidth
parameters for the Gaussian RBF kernels kG(X, Xk), kT (t, tl), and
kM(X, Xm), and the regularization coefficients αG, αT , and αM

[ [10!6, 1]. For the regularization coefficients, the values were
sampled from the logarithmic domain. The bandwidth parameter

σ2 in Eq. (4) was adjusted by σ2 ¼ dðDÞσ2
scale

2 , where dðDÞ is the
median nearest distance (measured in the square Euclidean dis-
tance) of the training dataset D and σ2

scale is the bandwidth
scaling parameter. The best hyperparameters were selected
to be σG = 90.079, σT = 98.626, σM = 24.894, αG ¼ 1:141$ 10!4,
αT ¼ 3:965$ 10!6, and αM ¼ 0:128.

B. ANN model

A conventional ANN was also utilized for the EEDF predic-
tion. The model architecture comprises of four hidden layers posi-
tioned between the input and output layers. As with the KRFD
approach, the input variable X encompasses 15 spectral intensities
from OES and the pressure, while the output variable Y comprises
a vector of EEDF values at 1999 different energies. Each layer was
constructed by a fully connected network and the ReLU activation
function.36–38 About 20% of the total data was randomly selected
for the test set, and the remainder was used as the training set.
By performing the fivefold cross-validation within the training set,
the hyperparameters were selected using Optuna; the parameters
to be selected were the number of neurons for each layer
[ {16, . . . , 1800} and the learning rate (selected from the interval
[10!6, 10!2]). While the other hyperparameters can also be opti-
mized for a more streamlined neural network, this was not explored
in this paper. The number of neurons for each hidden layer and the
learning rate were optimized to be 355 neurons and 3:633$ 10!4.
Each model was trained using the stochastic gradient descent algo-
rithm. The number of iterations (epochs) was set to 1000 for both
the hyperparameter optimization and the final model training with
the selected hyperparameters.

C. RF regression

The RF regression uses an ensemble of decision trees to make
predictions.39–42 Each decision tree is trained independently of the
others, using a set of random samples taken from the training
dataset. Every decision tree generates a prediction, with the final
prediction derived from the average or weighted combination of

the individual predictions. The RF regression can perform both
classification for categorical data and regression for continuous var-
iables. RF regression was used to predict a discrete scalar value of
ne. Although two RF models were created, each attached to the
KRFD and ANN, they yielded almost the same results. Therefore,
for the remainder of this paper, only the RF model attached to the
KRFD was included. By hyperparameter optimization using
Optuna, the best value for the number of trees [ {10, . . . , 500}
and a number of features in each tree [ {3, . . . , 15} were selected.
This optimization resulted in 89 trees and 15 features as best hyper-
parameter values. The branches of the tree were expanded until
each leaf contained less than two samples.

IV. RESULTS: PREDICTION FROM SIMULATED DATA

This section analyzes the predictions of the trained ML
models on simulated emission line intensities. We first discuss the
predicted EEDFs, followed by the predicted ne. Finally, we present
the resulting intensities obtained by feeding these predicted plasma
parameters back into the CRM.

A. EEDF prediction

Figure 1 compares the EEDFs predicted by KRFD and ANN
with the test EEDF data. The KRFD and ANN predictions agree
very well with the test data. The excellent agreement extends over
more than six orders of magnitude. The small deviations observed
at low energies (below about 10 eV) are likely due to the fact that
the electrons in this energy range do not participate in excitation
collisions of ground-state atoms. Consequently, the emission inten-
sities are less sensitive to this region of the EEDF and, naturally,
the uncertainty here is larger. Note, however, that the low-energy
electrons still participate in stepwise excitations and deexcitation
collisions. Therefore, the intensities are not entirely insensitive to
this population of electrons and relatively reliable information
about the low-energy part of the EEDF can still be obtained.

To assess the overall performance of the EEDF prediction for
all test data, predicted data points were compared to their corre-
sponding test data values. The excellent agreement is demonstrated
in Fig. 2. Here, each predicted point of the EEDF is plotted against
the corresponding test data for both KRFD and ANN. A good
model would produce a data cloud concentrated around the x ¼ y
line, with an R2 value close to 1. The coefficient of determination
R2 is calculated by

R2 ¼ 1!
Pn!1

i¼0 (xi ! yi)
2

Pn!1
i¼0 (xi ! !x)2

, (7)

wherein xi is a test value, yi is a predicted value, and !x is the mean
of all test values. In general, both models are shown to predict the
EEDF well with high R2 values. Still, the KRFD exhibits a slightly
better accuracy. Further, it is observed that the scattering around
the diagonal line in Fig. 2 is the largest in the region of low EEDF
values (below 10!6 eV−1) for both methods. This corresponds to
the EEDF at high electron energies (typically above the ionization
energy of the argon atoms). There, the influence of the noise both
in the training data as well as in the test data used for comparison
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is the largest, resulting in the observed larger deviation between
predicted and test EEDF. Nevertheless, it is remarkable that both
models are able to achieve good predictions on an arbitrary func-
tion even with a limited dataset for training.

B. Electron density prediction

In addition to the EEDF, ML is also used to predict ne.
Figure 3(a) shows the results from an RF model. Here, the pre-
dicted ne values are compared against the entire simulated ne
dataset used for training and testing. Overall, the predictions from
the RF model agree well with the test data, with minor deviations
from the corresponding trend lines. Figure 3(b) quantifies how well

these ne predictions agree with the test data by getting the R2 of the
predicted ne as a function of the test ne, as is done for the EEDF.

C. Calculating spectral intensities from predicted
plasma parameters

One test for easy assessment of the effectiveness of the ML
model in accurately inverting the CRM involves feeding the predicted
values of the EEDF and ne back into the CRM and checking if the
model reproduces the same intensities used for predicting these
input EEDF and ne. Figure 4 shows such a comparison between the
input spectra and the spectra generated by the CRM using the pre-
dicted EEDF and ne from both the KRFD and ANN at example

FIG. 1. EEDF predictions at 3 Pa
400 V (a) and (b) and 95 Pa 300 V (c)
and (d), presented on the logarithmic
scale (a) and (c) and the linear scale
(b) and (d). Each subfigure shows the
EEDF predicted by KRFD, by ANN,
alongside the test EEDF data from sim-
ulations, labeled as “PIC+CRM (sim).”

FIG. 2. Comparison of each predicted
data point of the EEDF to its corre-
sponding test data point, as predicted
using KRFD (a) and ANN (b). A
perfect prediction would give a diago-
nal line with an R2 of 1.
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conditions (3 Pa 400 V and 95 Pa 300V). It is seen from the figure
that both the KRFD and the ANN models effectively predict plasma
parameters that reproduce the test spectral data. This strong agree-
ment highlights the models’ ability to successfully invert the CRM
and accurately predict the plasma parameters for test data within the
training scope.

To evaluate the agreement of the predicted line intensities
with the test input data, their discrepancy is quantified similar to
what was done in Ref. 16. This is achieved by taking the ratio of
the test input spectral intensities ICRM to the intensities calculated
from predictions of KRFD and ANN IfromML for the wavelength
values λk given in Table I, such that

rk ¼ ICRM(λk)=IfromML(λk): (8)

The line ratios rk are then scaled such that the average of all rk
values in a given spectrum is unity. To quantify the deviations of
these rk to 1, the root mean square is calculated as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q

XQ

k¼1

rk ! 1ð Þ2
vuut , (9)

where Q ¼ 15 is the number of spectral lines. A lower value of the
RMSE shows better agreement and an RMSE of 0 means perfect
agreement between the experimental and calculated intensities.

Figure 5 shows the calculated RMSE of the predicted intensities
with respect to the input test data. Relatively low RMSE values are
calculated for both KRFD and ANN, with the average for KRFD
generally slightly lower than that of ANN.

V. RESULTS: PREDICTION FROM EXPERIMENTAL DATA

Section IV shows the predictions of the ML models when
applied to test data belonging to a similar simulation dataset. In
this section, the prediction results are presented for the experimen-
tally measured intensities using the same ML models trained with
the simulation data. However, as reported in Ref. 16, it is known
that the simulation data deviate from the experimental data, partic-
ularly at pressures higher than 20 Pa.

A. EEDF predictions

Similar to the simulation data, the EEDF and ne are predicted
from the experimentally measured spectra. Figures 6(a) and 6(b)
present the EEDFs predicted from experimental spectra at 10 and
50 Pa, alongside the EEDF from PIC+CRM simulations for the same
experimental conditions. The comparison is made for data at a
peak-to-peak voltage of 300 V since experimental spectra are available
only at this condition. For reference, the EEDFs under the same con-
ditions and calculated from the PIC/MCC+DRR simulations, taken
from Donko et al.,43 (hereby denoted as Ref. 43), are also added.
Compared to the PIC/MCC simulations, the PIC/MCC+DRR model

FIG. 3. (a) Electron density ne pre-
dicted by the RF regression (RF) for
each test case, plotted alongside the
entire ne training dataset. (b)
Comparison of each predicted ne value
to its corresponding test data point. A
perfect prediction would give a diago-
nal line with R2 of 1.

FIG. 4. Normalized spectral line inten-
sities at 3 Pa 400 V (a) and 95 Pa
300 V (b) calculated from the predic-
tions of KRFD and ANN, alongside the
test input spectral data from simula-
tions, labeled as “PIC+CRM (sim).”
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in Ref. 43 couples a basic PIC/MCC code with a diffusion–reaction–
radiation (DRR) model to take into account all the processes involv-
ing the excited states. This approach demonstrates a good agreement
of the calculated intensities with the experimentally measured ones.

The ANN predictions closely replicate the EEDFs from
the PIC+CRM simulation [Figs. 6(a) and 6(b)]. Even at 50 Pa
[Fig. 6(b)], where the simulated intensities do not agree well with
the experimentally measured ones, the ANN reproduces the EEDF
from the corresponding simulation well. It is possible that the
ANN has learned to place a higher weight on the pressure during
its training. At 10 Pa, the EEDF calculated from Ref. 43 agrees

closely with that from PIC+CRM simulations and, therefore, with
the ANN predictions. On the other hand, the EEDFs predicted by
KRFD do not agree well with the simulation data it is trained with.
At 10 Pa, the KRFD predicted an EEDF that deviates from both
simulation results. Moreover, the EEDFs appear “bumpy” in con-
trast to the ANN predictions. This is likely an artefact of the
chosen kernel function [Eq. (4)]. At 50 Pa, however, the KRFD pre-
dictions agree closer to that from Ref. 43 than that from PIC+CRM
simulations. This is an interesting effect, considering that the train-
ing of the KRFD involved EEDFs with a rather different shape at
these conditions [see the PIC+CRM curve in Fig. 6(b)].

FIG. 5. Root mean square error
(RMSE) of the standard deviation of
the line ratios rk [Eq. (8)] from the
average ratio of 1 for the intensities
calculated using the EEDF and ne pre-
dicted by (a) KRFD and (b) ANN at dif-
ferent Vpp and pressures.

FIG. 6. Prediction results from experi-
mentally measured input data: pre-
dicted EEDFs using KRFD and ANN at
10 and 50 Pa, plotted alongside the
EEDF from PIC+CRM simulations and
from simulations by Donko et al. (Ref.
43) at (a) 10 Pa, 300 V and (b) 50 Pa,
300 V. (c) ne predicted using RF, along
with the corresponding ne from PIC
+CRM simulations and from simula-
tions by Donko et al. (Ref. 43) at
300 V.
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B. Electron density predictions

Similar to the simulation data, an RF model was used to
predict ne from experimentally measured spectra. Figure 6(c) shows
ne values predicted by RF, along with the training data and ne
obtained in Ref. 43. In this case, we do not observe the same pres-
sure dependence of the predicted ne as seen in the PIC+CRM or
that from Ref. 43. Instead, the predicted ne values seem to fall into
two distinct regions: low pressure (below 20 Pa) and high pressure
(above 20 Pa). In each region, ne values remain nearly constant. It
was already demonstrated that the developed ML models provide a
good inverse of the CRM. The unexpected behavior of ne predicted
from experimental spectra likely hints toward the fact that the
CRM itself might not provide a good description of the actual pro-
cesses in the experiment and would require an extension. However,
this goes beyond the scope of the current work.

C. Calculating spectral intensities from predicted
plasma parameters

The prediction for the EEDF and ne from the experimental
intensities is fed back into the CRM to calculate the corresponding
intensities. This is done to investigate to what extent the inversion
of the CRM by the ANN and the KRFD works with experimental
spectra. An example of these results is shown in Fig. 7, that is for
the 10 Pa case. As is the case for the predicted EEDF, the intensities
from the ANN predictions yield intensities that closely agree with
the PIC+CRM simulations. Given that the simulations show better
agreement with experiments at low pressures, the ANN is also able
to yield good results at low pressures.

The close agreement between the ANN predictions and the
simulation spectra might seem surprising at first, given that for
pressures below 20 Pa, there is a discrepancy of about a factor of 2
between the electron densities used for generating these spectral
data [Fig. 6(c)]. However, as demonstrated in Ref. 16, the emission
intensities calculated by this CRM have a strong linear dependence
on ne and a much weaker nonlinear contribution. Then, using a
normalization of the emission intensities to their sum removes the
strong linear dependence on ne, leaving only the much weaker non-
linear contribution, which makes for the slight differences in the
intensities by ANN and PIC+CRM seen in Fig. 7.

The intensities obtained from the KRFD predictions at 10 Pa
significantly deviate from the experimental values [Fig. 6(a)]. This
is likely due to the non-negligible differences in the EEDF predicted
by KRFD from the actual EEDF [Fig. 6(a)]. Particularly, the devia-
tions in the region of electron energies close to the excitation
thresholds for Ar (11–15 eV) are probably the main cause for the
discrepancies observed in the spectral intensities.

In the pressure range above 20 Pa, it is known16 that the
intensities calculated by PIC+CRM deviate from the experimental
measurements. It is, thus, of relevance to investigate how the
intensities calculated from the CRM with the EEDF and ne pre-
dicted by the ANN and KRFD from the experimental intensities
compare to the actual experimental spectra, i.e., to what extent
the ANN and the KRFD can invert the CRM for spectra from the
experiment. Such a comparison is plotted in Fig. 8 for the 50 Pa
case. Here, similar observations can be made about ANN as
before: it replicates the PIC+CRM results. Notably, it does so even
with the larger difference in ne in this pressure range [Fig. 6(c)].
This is again likely an artefact of the normalization of the intensities.

FIG. 8. Normalized intensities at 50 Pa and 300 V peak-to-peak voltage calcu-
lated from the predictions of KRFD and ANN obtained by feeding the experi-
mental spectra. For comparison, the underlying experimentally measured
intensities denoted as “OES (expt)” together with the spectrum from simulations
“PIC+CRM (sim)” with the same conditions are also presented. The latter data
were also part of the training dataset.

FIG. 7. Normalized intensities at 10 Pa and 300 V peak-to-peak voltage calcu-
lated from the predictions of KRFD and ANN obtained by feeding the experi-
mental spectra. For comparison, the underlying experimentally measured
intensities denoted as “OES (expt)” together with the spectrum from simulations
“PIC+CRM (sim)” with the same conditions are also presented. The latter data
were also part of the training dataset.
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However, since at higher pressures, the PIC+CRM data deviate from
the experimental data, the resulting intensities from ANN do not
agree with the experimental one at 50 Pa. Surprisingly, the KRFD
predictions result in intensities that are in better agreement with the
experimental intensities. This is likely related to the better agreement
of the KRFD prediction for the EEDF with the more realistic simula-
tions of Ref. 43.

The differences in the calculated spectra from the experimen-
tally measured ones is quantified through the RMSE [Eq. (9)].
The resulting RMSE for KRFD, ANN, and the PIC+CRM case are
shown in Fig. 9. As expected, the ANN results closely follow the
trend of PIC+CRM, while KRFD shows a different behavior. It shows
poorer agreement (a higher RMSE) at low pressures and better con-
sistency (a relatively lower RMSE) with the experimental spectra at
higher pressures (above about 20 Pa). At the lowest pressure (2 Pa),
the EEDF predicted by KRFD did not allow the CRM code to con-
verge, and a data point is thus missing for this case.

In addition to the intensities, the density of the lowest excited state
of argon, 1s5, is also calculated from the CRM. In Ref. 16, 1s5 density
from the PIC + CRM simulations and the TDLAS experiments are
compared. Figure 10 shows the same TDLAS data, which is given along
with the resulting 1s5 density obtained from PIC+CRM simulations
and those predicted using plasma parameters from ML. Unsurprisingly,
the ANN and the PIC+CRM values are very close. At low pressures,
they also follow the TDLAS data. However, at high pressures (above
20 Pa), the predicted 1s5 density from ANN continuously increases
and deviates from the experimental measurements. Conversely, the
KRFD predictions show poor agreement with the experiment at low
pressures but surprisingly good agreement at high pressures.

To use the ML model for other experimental setups, the spec-
trometer used for measurements must be calibrated according to its
wavelength-dependent sensitivity and be able to distinguish the
specific lines of interest. The ML model is trained using CRM data

specific to an argon plasma with pressures ranging from 2 to
100 Pa, which sets the applicable experimental range of the model.
Moreover, the metastable diffusion profile and self-absorption
profile of the excited states assumed in the CRM also depend on
the electrode radius and on the length of the gap between the elec-
trodes. Therefore, this current model is limited to plasma sources
having a geometry close to the one used in the experimental setup
in this study, i.e., an electrode radius of '7 cm and gap '4 cm.

VI. CONCLUSIONS

In this study, ML models were developed to predict the nor-
malized EEDF and ne of Ar plasma from its relative (i.e., normal-
ized) optical emission line intensities at various gas pressures. The
models were trained on 86 sets of numerical simulation data
obtained from the 1D PIC/MCC simulation code coupled with a
CRM code described in Ref. 16 for Ar CCPs under various dis-
charge conditions. Two different types of models, i.e., KRFD and
an ANN, were used to predict the normalized EEDF and the RF
regression was used to predict ne. The input data for the ML
models are the gas pressure and the relative emission line intensi-
ties. When the simulated OES data were used for the input data,
the ML models predicted the corresponding EEDF and ne with
high accuracy. In other words, the ML models developed in this
study performed well for what they were trained for.

The simulation data of Ref. 16 are known to agree well with
experimental data at a gas pressure of up to about 20 Pa. However,
even under these conditions, some discrepancy always exists between
the simulated and experimentally measured OES data. The discrep-
ancy stems from various reasons, ranging from the inaccuracy of the
CRM to the profile effects of the three-dimensional actual plasma.

FIG. 9. Root mean square error (RMSE) of the ratios rk of the intensities from
“PIC+CRM” and from KRFD and ANN predictions to the experimentally mea-
sured intensities at a peak-to-peak voltage of 300 V. FIG. 10. Ar 1s5 metastable density as measured by TDLAS,16 simulated using

PIC+CRM,16 and calculated from the predictions from KRFD and ANN via the
CRM at a peak-to-peak voltage of 300 V.
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If the developed ML models are robust enough, they may also work
for the experimentally measured OES data used as their input data
for a gas pressure of up to about 20 Pa. The robustness of the ML
models developed in this study was then tested. It was found that the
ANN-based ML model was able to predict the normalized EEDF
reasonably well at a pressure of 20 Pa or lower for the experimentally
obtained relative line intensities and the gas pressure. However,
under the same conditions, the predictions by the KRFD-based ML
model exhibited relatively large errors. The RF regression model for
ne was not able to show the pressure dependence under the same
conditions and, therefore, deemed not satisfactory. The results show
that, in general, the ML models, which were trained only with the
simulation data and performed well with simulated OES data, were
not robust enough to handle the discrepancy between the simulated
and experimental OES data.

Therefore, the future direction of this study includes the
improvement of the robustness of the ML models. The use of a
larger and more diverse set of simulation data and experimental
data can also be used to improve the model. However, a fundamen-
tal question remains as to whether the relative emission line inten-
sities contain sufficient information on the electron density and its
energy distribution. Although the optical emission’s relative line
intensity spectrum may depend on ne, the dependence may be too
subtle to be detected if other effects modify the spectrum shape.
Furthermore, the emission spectra are likely to be more sensitive to
a particular energy range of the EEDF. Therefore, different EEDFs
can give rise to similar OES spectra. These issues will also be
addressed in future work.

The recent study of Ref. 43 performed 1D PIC/MCC simula-
tions with stepwise excitation and ionization and a self-consistent
CRM, which produced OES line intensity data in good agreement
with the experimental data for Ar CCPs at a gas pressure up to
100 Pa. Training of the ML models presented here with large-scale
simulation data generated by the simulation code of Ref. 43 can
make these models valid in all pressure ranges.

Using the EEDF presented in Ref. 43, we also tested the
current ML models of this study at a high pressure of up to 100 Pa
with experimentally obtained relative optical emission line intensi-
ties. As discussed earlier, the current ML models were not trained
for the actual plasma at a pressure higher than 20 Pa (where the
training simulation data do not agree well with the experimental
data) Therefore, it is not surprising that most predictions failed
under these conditions. However, the KRFD-based ML model pre-
dicted the EEDF and other plasma properties similar to those data
obtained from the latest numerical simulations given in Ref. 43 at a
pressure above 20 Pa. The KRFD-based ML model was not trained
for such discharges and, therefore, these predictions should not be
trusted. Nevertheless, the KRFD-based ML model’s seemingly good
performance at high pressure reflects some nature of optical emis-
sion spectra of Ar discharges and its discussion is deferred to a
future study.
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