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For two-dimensional many-particle systems, first-order, second-order, single step continuous, as

well as two-step continuous (KTHNY-like) melting transitions have been found in previous

studies. Recent computer simulations, using particle numbers in the�105 range, as well as a few

experimental studies, tend to support the two-step scenario, where the solid and liquid phases are

separated by a third, so called hexatic phase. We have performed molecular dynamics simulations

on Yukawa (Debye-H€uckel) systems at conditions earlier predicted to belong to the hexatic phase.

Our simulation studies on the time needed for the equilibration of the systems conclude that the

hexatic phase is metastable and disappears in the limit of long times. We also show that simply

increasing the particle number in particle simulations does not necessarily result in more accurate

conclusions regarding the existence of the hexatic phase. The increase of the system size has to

be accompanied with the increase of the simulation time to ensure properly thermalized conditions.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866019]

I. INTRODUCTION

The debate about the properties of the melting phase

transition of two-dimensional (2D) systems did not lose its

intensity over the past several decades. Recent developments

in the fabrication of 2D materials1 simultaneously seek for

and may provide clarification of the details of the transition.

A milestone, and still the most widely accepted theory avail-

able, is the Kosterlitz-Thouless-Halperin-Nelson-Young

(KTHNY) picture.2 In the underlying physical process two

separate, continuous transitions can be distinguished, as the

solid transforms into a liquid in quasi-equilibrium steps

by slow heating. During the first stage, the translational

(positional) order vanishes, while in the second stage, the

orientational order decays. All this is mediated by the

unbinding of (i) dislocation pairs into individual dislocations,

and (ii) dislocations into point defects.3 The strength of this

theory consists of its compatibility with the Mermin-Wagner

theorem that forbids the existence of exact long range posi-

tional order in 2D for a wide range of pair potentials, at finite

temperatures.4 The most criticized weakness of it, however,

is that it assumes a dilute, unstructured distribution of the

lattice defects, which is in contradiction with observations,

where the alignment and accumulation of dislocations into

small angle domain walls were found.5

Since the birth of the KTHNY theory, the examination

of its validity for systems with different pair interactions has

been in focus. Investigations started with hard-sphere (disk),

Lennard-Jones, and Coulomb systems. More recently,

systems characterized by dipole-dipole and Debye-H€uckel

(screened Coulomb or Yukawa) inter-particle interactions

became important due to the significant advances achieved

in the field of colloid suspensions6 and dusty plasmas.7

To illustrate the incongruity of both experimental and

simulation results that had accumulated over the last three

decades on investigations of classical single-layer (2D)

many-body systems, we list a few examples:

(1) First order phase transition to exist was reported for

Lennard-Jones systems8–10 and hard-disk systems,11,12

for the phase-field-crystal (PFC) model,13,14 as well as

for Coulomb and dipole systems15 in simulations, and in

experiments with halomethanes and haloethanes physi-

sorbed on exfoliated graphite,16 as well as in experiments

on a quasi-two-dimensional suspension of uncharged

silica spheres.17

(2) Second order (or single step continuous) transition was

found in dusty plasma experiments,18–22 for a hard-disk

system,23 electro-hydrodynamically excited colloidal

suspensions,24 as well as for Coulomb10 and Yukawa25

systems.

(3) KTHNY-like transition was reported in a dusty plasma

experiment26 and related numerical simulations,27 for the

harmonic lattice model,28 in experiments and simulations

of colloidal suspensions,29–36 for Lennard-Jones,37,38

Yukawa,39,40 hard disk,41–44 dipole-dipole,45,46 Gaussian-

core,47 and electron systems,11,48,49 as well as for a sys-

tem with r�12 repulsive pair potential,50 weakly softened

core,51 and for vortices in a W-based superconducting

thin film.52

The effect of the range of the potential on two-

dimensional melting was studied in Ref. 53 for a wide range

of Morse potentials. It has been shown that extended-ranged

interatomic potentials are important for the formation of a

“stable” hexatic phase. Similar conclusion was drawn in

Ref. 54 for modified hard-disk potentials. The effect of the
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dimensionality (deviation from the mathematically perfect

2D plane) on the hexatic phase was discussed for Lennard-

Jones systems in Ref. 38. It was found that an intermediate

hexatic phase could only be observed in a monolayer of

particles confined such that the fluctuations in the positions

perpendicular to the particle layer were less than 0.15 parti-

cle diameters.

The timeline of the results listed above shows a general

trend: in earlier studies, first or second order phase transi-

tions were identified in particle simulations, but subse-

quently, as the computational power increased with time,

since approximately the year of 2000, particle based numeri-

cal studies became in favor of the KTHNY theory. A possi-

ble resolution of the ongoing debate is given in Ref. 55,

where extensive Monte Carlo simulations of 2D Lennard-

Jones systems have revealed the metastable nature of the

hexatic phase. This seems to support PFC simulations13,14

operating on the diffusive time-scale (averaging out single

particle oscillations), which is significantly longer, than what

Monte Carlo (MC) or Molecular Dynamics (MD) methods

can cover.

In this paper, we will show that the observation of the

hexatic phase is strongly linked with the thermodynamic

equilibration of the systems. The necessary equilibration time,

in turn, strongly depends on the measured quantity of interest.

Local, or single particle properties can equilibrate very rap-

idly, while long-range, or collective relaxations usually take

significantly longer. We find, consequently, that monitoring

the velocity distribution function alone to verify the equilibra-

tion of the system is insufficient. The idea that numerical sim-

ulations may have related equilibration issues (called as

kinetic bottlenecks) was raised already in 1993 in Ref. 56.

II. MOLECULAR DYNAMICS SIMULATIONS

We have performed extensive microcanonical MD sim-

ulations57 in the close vicinity of the expected solid-liquid

phase transition temperature, Tm, for repulsive screened

Coulomb (also called Yukawa or Debye-H€uckel) pair-

potential with the potential energy in form of

UðrÞ ¼ q2

4pe0

expð�r=kDÞ
r

; (1)

where kD is the Debye screening length, q is the electric

charge of the particles, and e0 is the vacuum permittivity. To

characterize the screening, we use the dimensionless screen-

ing parameter j¼ a/kD, where a ¼ 1=
ffiffiffiffiffiffi
pn
p

is the

Wigner-Seitz radius, and n is the particle density. This model

potential was chosen because of its relevance to several

experimental systems consisting of electrically charged

particles, like dusty plasmas, charged colloidal suspensions,

and electrolytes. Here, we show results obtained for j¼ 2.

Our earlier studies25,58 identified the melting transition

(without clarifying its nature) to take place around the

Coulomb coupling parameter

Cm ¼
q2

4pe0

1

akBTm
¼ 414 6 4; (2)

for this strength of screening.

Time is measured in units of the nominal 2D plasma os-

cillation period with

x2
0 ¼

nq2

2e0ma
; (3)

where m is the mass of a particle. Our simulations are initial-

ized by placing N particles (in the range of 1 920 to 740 000)

into a rectangular simulation cell that has periodic boundary

conditions. The particles are released from hexagonal lattice

positions, with initial velocities randomly sampled from a

predefined distribution. At the initial stage, which has a dura-

tion t0 (thermalization time), the system is thermostated by

applying the velocity back-scaling method (to follow the

usual approach used in many previous studies) to reach

near-equilibrium state at the desired (kinetic) temperature.

Data collection starts only after this initial stage and runs for

a time period tm (measurement time) without any additional

thermostation.

To characterize the level of equilibration, we study the

time and system size dependence of the following quantities:

(1) momenta of the velocity distribution function, f(v),

(2) the configurational temperature, Tconf (Ref. 59), and

(3) the long-range decay of the g(r) pair-correlation and

g6(r) bond-angle correlation functions.2,32

While in the case of the first two quantities t0¼ 0, in the

simulations targeting the correlation functions, t0 is varied

over a wide range and the measurement time is chosen to be

tm � t0 to avoid significant changes (due to ongoing equili-

bration) during the measurement.

A. Velocity momenta

Using the Maxwell-Boltzmann assumption for the

velocity distribution in thermal equilibrium in the form

f ðvÞ ¼ 2

s
v expð�v2=sÞ; (4)

where s¼ 2kT/m; in two-dimensions, the first four velocity

moments are

hvi ¼ 1

2

ffiffiffiffiffi
ps
p

;

hv2i ¼ s;

hv3i ¼ 3
ffiffiffi
p
p

4
s3=2;

hv4i ¼ 2s2:

(5)

To measure the relaxation time of the velocity distribu-

tion function, we have performed MD simulations with parti-

cle numbers N¼ 184400 and N¼ 7520, with initial velocity

components (x and y) sampled from a uniform distribution

between �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
, in order to start with

the desired average kinetic energy, but being far from equi-

librium. Figure 1 shows the time evolution of the first eight

velocity moments normalized with their theoretical equili-

brium values. As already mentioned, the initial conditions
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are far from the equilibrium configuration (perfect lattice

position and non-thermal velocity distribution).

We can observe that the velocity momenta have initial

values very different from the expected Maxwell-Boltzmann

equilibrium distribution. The values approach the equilib-

rium value asymptotically with regular oscillations. These

oscillations (or fluctuations) are typical for microcanonical

MD simulations, where the total energy of the system is con-

stant, while there is a permanent exchange of potential and

kinetic energies. The relaxation time can be found by fitting

the curves with an exponential asymptotic formula in the

form y ¼ y0 þ Ae�t=tr . We find that the relaxation of the ve-

locity distribution can be characterized by a short relaxation

time of tr � 5.5/x0, and this is independent of system size

and temperature in the vicinity of the melting point.

B. Configurational temperature

In 1997, Rugh59 pointed out that the temperature can

also be expressed as ensemble average over geometrical and

dynamical quantities and derived the formula for the config-

urational temperature

kTconf ¼ �
XN

i¼1

F2
i

* + XN

i¼1

rFi

* +
;

,
(6)

where Fi ¼ �
PN

j 6¼irUðrijÞ. As the central quantity in this

expression is the inter-particle force acting on each particle,

in case of finite range interactions (like the Yukawa poten-

tial), the configurational temperature is sensitive on the local

environment within this range. Simulations were performed

for a series of particle numbers between N¼ 1920 and

N¼ 740 000 with initial velocities sampled from Maxwellian

distribution. Figure 2(a) shows examples from runs with

N¼ 184 400 for the time evolutions, while Fig. 2(b) presents

relaxation time data computed (similarly as above) for differ-

ent kinetic temperatures.

We observe relaxation times about an order of magni-

tude longer (tr� 55/x0) compared to the velocity

distribution, and a strong temperature dependence in the vi-

cinity of the melting point. No significant system size de-

pendence was found.

C. Correlation functions

The central property used to identify the hexatic phase is

traditionally the long-range behavior of the pair-, and bond-

order correlation functions, g(r) and g6(r), respectively.2,32

To be able to compute correlations at large distances, one

naturally has to use large particle numbers, otherwise the

periodic boundary conditions introduce artificial correlation

peaks. This trivial constraint led to investigations of larger

and larger systems by different groups. Figures 3 and 4 show

correlation functions for systems consisting of N¼ 104 400

particles, for a set of increasing equilibration times provided

to the systems before performing the data collection.

We can observe a clear long-time evolution of the corre-

lation functions. On the double-logarithmic plot, the g(r)

pair-correlation functions show already at early times a long-

range decay, which is faster than power-law [Figs. 3(a) and

3(b)], while the g6(r) orientational correlations smooth out to

near perfect straight lines [Fig. 3(c)], representing power-law

type decay for relatively long times. On the semi-logarithmic

graphs, all the g(r) functions have almost straight upper

envelopes [Figs. 4(a) and 4(b)] in the intermediate distance

range 10< r/a< 70, where the statistical noise is still negli-

gible. This indicates almost pure exponential decay, although

the characteristic decay distance does decrease with increas-

ing simulation time. On the other hand, it is only the last

g6(r) orientational correlation function, belonging to the lon-

gest simulation that shows linear apparent asymptote on the

semi-logarithmic scale [Fig. 4(c)], representing a clear expo-

nential decay, meaning the lack of long range order. To con-

clude these observations: in short simulations, we observe

short-range positional and quasi-long-range orientational

order, signatures of the hexatic phase, which, however,

FIG. 1. Moments of the computed velocity distribution functions relative to

the theoretical equilibrium values vs. simulation time at temperatures

slightly above (full lines) and below (dashed lines) the melting point, Tm.

The dashed lines are mostly hidden behind the full lines, indicating a low

sensitivity on the temperature. The dark red curve shows functional fit in the

form y ¼ y0 þ Ae�t=tr to hv7i. N¼ 184 400.
FIG. 2. (a) Time evolution of the configurational temperature Tconf for dif-

ferent kinetic temperatures T. (b) Relaxation time vs. kinetic temperature

(N¼ 184 400).
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vanish if we provide the system longer time for equilibration.

As a consequence, in the case, we would stop the simulation

at, e.g., t0¼ 8000/x0 (which already means simulation

time-steps in the order of 105, as plasma oscillations have to

be resolved smoothly), we may identify the system to be in

the hexatic phase, exactly as shown in Ref. 40, which, how-

ever, is not the true equilibrium configuration.

In addition, as the accessible length scale strongly

depends on the system size (typically less than 1/3 of

the side length of the simulation box), smaller systems

apparently equilibrate faster. We have found t0� 4000/x0

to be sufficient to reach equilibrium for a system of

N¼ 1920 particles, while t0� 64 000/x0 was needed for

N¼ 104 400.

To verify that the observed slowdown of relaxation is

not an artifact of the applied microcanonical (constant NVE)

simulation, we have implemented the computationally much

more demanding, but, in principle, for phase transition stud-

ies better suited isothermal-isobaric (constant NPT) molecu-

lar dynamics scheme.60

Although the NPT simulations were performed for much

smaller systems (N¼ 1020), limiting the calculation of the

correlation functions to a shorter range and resulting in

higher noise levels, the same long-time tendency of decaying

long-range correlations could be identified as already shown

with the computationally much more efficient microcanoni-

cal simulations.

III. CONCLUSIONS

During the equilibration of an interacting charged many-

particle system, we have identified three different stages of

relaxation:

(1) The velocity distribution does approach the Maxwellian

distribution within a few plasma oscillation cycles. In the

close vicinity of the melting transition, the speed of this

process is found to be independent of temperature and

system size.

(2) Compared to the velocity distribution function, the con-

figurational temperature (determined by the local neigh-

borhood within the range of the inter-particle interaction

potential) relaxes at time scales about an order of magni-

tude longer for our systems. The relaxation time scale is

not sensitive to the system size, but has a strong depend-

ence on the temperature.

(3) The equilibration of the long range correlations is signifi-

cantly slower compared to the above quantities, and

depends strongly on the systems size (larger systems

need longer time to equilibrate).

From this study, we can conclude that increasing the

system size in particle simulations alone can be insufficient

and can result in misleading conclusions, as the length of the

equilibration period also plays a crucial role in building up

or destroying correlations.

FIG. 3. Log–log plots of (a) an example of g(r) – 1 pair correlation function

with its upper envelope, (b) a series of envelope curves of pair correlation

functions, (c) g6(r) bond-order correlation functions measured after letting

the systems equilibrate for various times indicated, t0, at a temperature 1%

above the melting point. The systems consisted of N¼ 104 400 particles, the

data acquisition took tm¼ 500/x0 and started after t0 has elapsed.

FIG. 4. Same as in Fig. 3 with semi-logarithmic scales.
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In the vast majority of the earlier numerical studies on

charged particle ensembles (as listed in Sec. I) no simulation

time is specified, given to the system to equilibrate before

the actual measurement were performed, neither is the

method of characterizing the quality of the equilibrium

described. Based on these results, we suspect that the rapidly

increasing computational resources in the first decade of the

21st century beguiled increasing the system sizes in particle

simulations without increasing the length of the simulated

time intervals. In the majority of these studies, the systems

may got stuck in the metastable hexatic phase, instead of set-

tling in the true equilibrium configuration.
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I. Mu�sevič, Condens. Matter Phys. 13, 33601 (2010).
36S. Deutschl€ander, T. Horn, H. L€owen, G. Maret, and P. Keim, Phys. Rev.

Lett. 111, 098301 (2013).
37H. Shiba, A. Onuki, and T. Araki, EPL 86, 66004 (2009).
38N. Gribova, A. Arnold, T. Schilling, and C. Holm, J. Chem. Phys. 135,

054514 (2011).
39T. E. Sheridan, Phys. Plasmas 16, 083705 (2009).
40W.-K. Qi, Z. Wang, Y. Han, and Y. Chen, J. Chem. Phys. 133, 234508

(2010).
41K. Binder, S. Sengupta, and P. Nielaba, J. Phys.: Condens. Matter 14,

2323 (2002).
42C. H. Mak, Phys. Rev. E 73, 065104 (2006).
43E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011).
44M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard, and W.

Krauth, Phys. Rev. E 87, 042134 (2013).
45S. Z. Lin, B. Zheng, and S. Trimper, Phys. Rev. E 73, 066106 (2006).
46J. Schockmel, E. Mersch, N. Vandewalle, and G. Lumay, Phys. Rev. E 87,

062201 (2013).
47S. Prestipino, F. Saija, and P. V. Giaquinta, Phys. Rev. Lett. 106, 235701

(2011).
48S. Muto and H. Aoki, Phys. Rev. B 59, 14911 (1999).
49W. J. He, T. Cui, Y. M. Ma, Z. M. Liu, and G. T. Zou, Phys. Rev. B 68,

195104 (2003).
50K. Bagchi, H. C. Andersen, and W. Swope, Phys. Rev. E 53, 3794

(1996).
51S. Prestipino, F. Saija, and P. V. Giaquinta, J. Chem. Phys. 137, 104503

(2012).
52I. Guillamon, H. Suderow, A. Fernandez-Pacheco, J. Sese, R. Cordoba,

J. M. De Teresa, M. R. Ibarra, and S. Vieira, Nat. Phys. 5, 651 (2009).
53S. I. Lee and S. J. Lee, Phys. Rev. E 78, 041504 (2008).
54L. M. Pomirchi, V. N. Ryzhov, and E. E. Tareyeva, Theor. Math. Phys.

130, 101 (2002).
55K. Chen, T. Kaplan, and M. Mostoller, Phys. Rev. Lett. 74, 4019

(1995).
56K. J. Naidoo, J. Schnitker, and J. D. Weeks, Mol. Phys. 80, 1 (1993).
57D. C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd ed.

(Cambridge University Press, 2004).
58T. Ott, M. Stanley, and M. Bonitz, Phys. Plasmas 18, 063701 (2011).
59H. H. Rugh, Phys. Rev. Lett. 78, 772 (1997).
60C. Braga and K. P. Travis, J. Chem. Phys. 124, 104102 (2006).

023706-5 Derzsi et al. Phys. Plasmas 21, 023706 (2014)

http://dx.doi.org/10.1039/c0nr00323a
http://dx.doi.org/10.1103/PhysRevLett.41.121
http://dx.doi.org/10.1103/PhysRevLett.41.519
http://dx.doi.org/10.1103/RevModPhys.60.161
http://dx.doi.org/10.1103/PhysRev.176.250
http://dx.doi.org/10.1103/PhysRevLett.98.075701
http://dx.doi.org/10.1063/1.3188948
http://dx.doi.org/10.1103/RevModPhys.81.1353
http://dx.doi.org/10.1103/PhysRevB.23.6145
http://dx.doi.org/10.1016/0375-9601(83)90413-9
http://dx.doi.org/10.1016/0375-9601(89)90297-1
http://dx.doi.org/10.1103/PhysRevB.51.8789
http://dx.doi.org/10.1103/PhysRevB.46.11190
http://dx.doi.org/10.1039/c0sm00944j
http://dx.doi.org/10.1039/c0sm00944j
http://dx.doi.org/10.1080/14786435.2010.487476
http://dx.doi.org/10.1023/A:1022231602436
http://dx.doi.org/10.1103/PhysRevE.61.4036
http://dx.doi.org/10.1103/PhysRevE.53.2757
http://dx.doi.org/10.1143/JJAP.38.4561
http://dx.doi.org/10.1103/PhysRevE.64.051404
http://dx.doi.org/10.1063/1.2993180
http://dx.doi.org/10.1103/PhysRevLett.103.015001
http://dx.doi.org/10.1103/PhysRevE.55.750
http://dx.doi.org/10.1103/PhysRevLett.111.128302
http://dx.doi.org/10.1103/PhysRevLett.111.128302
http://dx.doi.org/10.1109/TPS.2007.894438
http://dx.doi.org/10.1109/TPS.2007.894438
http://dx.doi.org/10.1103/PhysRevE.64.015601
http://dx.doi.org/10.1134/S106377611306023X
http://dx.doi.org/10.1103/PhysRevB.73.024113
http://dx.doi.org/10.1103/PhysRevB.51.5746
http://dx.doi.org/10.1103/PhysRevLett.82.2721
http://dx.doi.org/10.1103/PhysRevLett.85.3656
http://dx.doi.org/10.1103/PhysRevE.75.031402
http://dx.doi.org/10.1103/PhysRevLett.104.205703
http://dx.doi.org/10.1103/PhysRevLett.104.205703
http://dx.doi.org/10.5488/CMP.13.33601
http://dx.doi.org/10.1103/PhysRevLett.111.098301
http://dx.doi.org/10.1103/PhysRevLett.111.098301
http://dx.doi.org/10.1209/0295-5075/86/66004
http://dx.doi.org/10.1063/1.3623783
http://dx.doi.org/10.1063/1.3205882
http://dx.doi.org/10.1063/1.3506875
http://dx.doi.org/10.1088/0953-8984/14/9/321
http://dx.doi.org/10.1103/PhysRevE.73.065104
http://dx.doi.org/10.1103/PhysRevLett.107.155704
http://dx.doi.org/10.1103/PhysRevE.87.042134
http://dx.doi.org/10.1103/PhysRevE.73.066106
http://dx.doi.org/10.1103/PhysRevE.87.062201
http://dx.doi.org/10.1103/PhysRevLett.106.235701
http://dx.doi.org/10.1103/PhysRevB.59.14911
http://dx.doi.org/10.1103/PhysRevB.68.195104
http://dx.doi.org/10.1103/PhysRevE.53.3794
http://dx.doi.org/10.1063/1.4749260
http://dx.doi.org/10.1038/nphys1368
http://dx.doi.org/10.1103/PhysRevE.78.041504
http://dx.doi.org/10.1023/A:1013884616321
http://dx.doi.org/10.1103/PhysRevLett.74.4019
http://dx.doi.org/10.1080/00268979300102041
http://dx.doi.org/10.1063/1.3592659
http://dx.doi.org/10.1103/PhysRevLett.78.772
http://dx.doi.org/10.1063/1.2172601

	s1
	s2
	d1
	d2
	d3
	s2A
	d4
	d5
	s2B
	d6
	s2C
	f1
	f2a
	f2b
	f2
	s3
	f3a
	f3b
	f3c
	f3
	f4a
	f4b
	f4c
	f4
	c1
	c2
	c2a
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60

