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Shear Viscosity and Shear Thinning in Two-Dimensional Yukawa Liquids
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A two-dimensional Yukawa liquid is studied using two different nonequilibrium molecular dynamics
simulation methods. Shear viscosity values in the limit of small shear rates are reported for a wide range of
Coulomb coupling parameter and screening lengths. At high shear rates it is demonstrated that this liquid
exhibits shear thinning; i.e., the viscosity � diminishes with increasing shear rate. It is expected that two-
dimensional dusty plasmas will exhibit this effect.
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Many-particle systems characterized by the Yukawa
potential include a variety of physical systems, e.g., dusty
plasmas, charged colloids, astrophysical objects, and
high energy density matter. The Yukawa potential ��r� /
Q exp��r=�D�=r models a Coulomb repulsion that is ex-
ponentially suppressed with a screening length �D.
Yukawa systems behave like a liquid when the temperature
exceeds a melting point which depends on Q, �D, and
particle spacing, e.g., [1,2].

Transport parameters of Yukawa systems—the diffu-
sion coefficient [3], the shear viscosity [4–6], and the
thermal conductivity [6,7]—have mainly been calculated
for 3D systems, but there is now an increasing interest in
2D settings. For example, in dusty plasma experiments,
charged microspheres suspended as a monolayer in a gas
discharge make a 2D Yukawa system. By creating a shear
flow in such a particle suspension, the viscosity was mea-
sured in recent experiments using 2D suspensions [8] and
quasi-2D suspensions consisting of a few monolayers of
charged microspheres [9]. The transport properties of such
ultrathin liquids are also of interest as macroscopic analogs
of molecular flow in nanoscience applications [10].

Transport coefficients are meaningful if they are part of
a valid ‘‘constitutive relation’’ between the gradients of
local variables and fluxes. For shear viscosity �, the con-
stitutive relation jy � ���dvx�y�=dy� relates a momen-
tum flux jy to the velocity gradient dvx�y�=dy, which is
also termed the shear rate. In a non-Newtonian fluid, �
may vary with the velocity gradient, whereas in Newtonian
fluids it does not. In particular, if � diminishes as shear is
increased, the fluid is said to exhibit ‘‘shear thinning.’’ This
occurs in simple liquids [11], as well as in complex
mixtures such as foams, micelles, slurries, pastes, gels,
polymer solutions, and granular flows [12]. Recently, ex-
perimenters have claimed to observe shear thinning in
dusty plasma liquids [9]. These reports motivate our simu-
lations to search for the presence of shear thinning in 2D
Yukawa liquids.

Subsequent to the experimental measurement of viscos-
ity in a 2D dusty plasma [8], a 2D molecular dynamics
06=96(14)=145003(4)$23.00 14500
simulation was used to obtain the shear viscosity from the
Green-Kubo relations [13]. In this Letter we will go be-
yond the results of Ref. [13], which were performed for
equilibrium conditions, by using nonequilibrium simula-
tions to search for non-Newtonian behavior under condi-
tions of a high shear rate. We will also compute the
viscosity over a wider range of � and �.

Our simulations use a rectangular cell with edge lengths
Lx and Ly and periodic boundary conditions. The number
of particles is between N � 990 and 7040. The system
is characterized by dimensionless parameters � �
Q2=4�"0akBT and � � a=�D, where a � �1=n��1=2 is
the Wigner-Seitz radius, with n being the areal density.
Additional parameters include the thermal velocity v0 �

�2kBT=m�1=2 and the 2D analog of the plasma frequency
!p � �Q

2=2�"0ma
3�1=2, the shear rate � � dvx=dy, and

its normalized value �� � �dvx=dy��a=v0�. Two types of
molecular dynamics techniques are applied for the studies
of the shear viscosity.

Method 1 reverses the cause-and-effect picture custom-
arily used in nonequilibrium molecular dynamics: the ef-
fect—the momentum flux—is imposed, and the cause—
the velocity gradient (shear rate)—is measured in the
simulation [14]. Momentum in the liquid is introduced in
a pair of narrow slabs A and B, which are centered at y �
Ly=4 and 3Ly=4, respectively. At regular time intervals �
we identify the particles in slabs A and B having the highest
jvxj in the positive and negative directions, respectively.
We then instantaneously exchange the vx velocity compo-
nent of these two particles without moving the particles.
This artificial transfer of momentum between slabs A andB
(which is accomplished without changing the system en-
ergy) produces a velocity profile vx�y�, the slope of which
can be controlled by the frequency of the momentum
exchange steps. The equations of motion

dri
dt
�

pi
m
;

dpi
dt
� Fi; (1)

where r � �x; y�, p � �px; py� are the positions and the
momenta of particles, m is their mass, and Fi is the force
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FIG. 1. (a) Velocity profiles vx�y� obtained from method 1 for
different frequencies (1=�) of momentum exchange steps, and
(b) Ty�y� temperature profiles for the same conditions. � � 100,
� � 1.
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acting on particle i, are integrated by the velocity Verlet
algorithm.

Method 2 simulates a planar Couette flow, which is
established by the Lees-Edwards periodic boundary con-
ditions resulting in a homogeneous streaming flow field in
the simulation box: hvxi � ��y� Ly=2�, where hi denotes
a time average. The system is described by the Gaussian
thermostated SLLOD equations of motion [15]:

dri
dt
�

~pi
m
� �yix̂;

d~pi
dt
� Fi � �~pyix̂� �~pi; (2)

where ~p � �~px; ~py� is the peculiar momentum of particles,
x̂ is the unit vector in the x direction, and � is the Gaussian
thermostating multiplier. The above set of equations is
solved using an operator splitting technique [16].

In contrast to method 1, method 2 results in a homoge-
neous shear field and a constant temperature within the
whole simulation box. Thus, arbitrarily high shear rates
may be established without the need of considering any
effects of temperature gradients on the viscosity.

In both methods the pairwise Yukawa interparticle
forces are summed over a �-dependent cutoff radius, using
the chaining mesh technique. (The force due to particles at
the cutoff radius is� 10�5 smaller compared to that due to
the nearest neighbors.) Both methods neglect any neutral
gas drag, which has been observed to alter the velocity
profiles in experiments [8], i.e., they model an atomic
system where momentum transfer is dominated by
Coulomb collisions [1].

Method 1 has the advantage that resembles more closely
the experimental conditions, although the procedure for
applying shear in the simulation involves no introduction
or removal of energy from the system. In the experiment
[8] shear is applied via an external introduction of both
momentum and energy in a boundary slab while energy is
simultaneously removed elsewhere by frictional dissipa-
tion. Method 2 represents a well-established technique for
measurement of viscosity at arbitrary steady, as well as
temporally varying shear rates. Although it has little con-
nection to the conditions found in the experiment, it has
been demonstrated to be an efficient technique to inves-
tigate shear thinning [11,15]. Thus we apply this method
for the studies of this latter effect.

Near-equilibrium (small �) shear viscosity values have
been obtained using both techniques. In method 1 this is
done at the lowest practical shear rate, where dvx=dy is
uniform between slabs A and B. We calculate �eq from

jjyj � �eqdvx�y�=dy � �p=2tsimLy; (3)

where �p is the total x-directional momentum exchanged
between slabs A and B during the simulation time tsim [14].
In method 2 the off-diagonal element of the pressure tensor
is measured during the course of the simulation:
14500
Pxy�t� �
XN
i�1

�
mvixviy �

XN
j>i

xijyij
rij

d
drij

��rij�
�
; (4)

where rij � ri � rj � �xij; yij�, and the shear viscosity is
obtained as

� � lim
t!1
hPxy�t�i=�: (5)

In method 1, the spatial profiles for temperature and
velocity, Fig. 1, develop self-consistently in response to
the perturbation applied by introducing momentum in
slabs A and B. We use method 1 only for small perturba-
tions, so that the velocity profile has a linear gradient and
the temperature is isotropic, with Tx � Ty, where Tx;y �

�m=NjkB�
PNj
i�1h�vix;y�t� � vjx;y�

2i. The index i runs over
the Nj particles in slab j. We verified that vjy is negligibly
small.

Obtaining reliable results for � at small � requires a
simulation duration of typically !pt	 104–105 for both
methods. The required time step is smallest and the simu-
lations are most costly at low �. In method 1, system size
effects are expected to appear when (i) particles traverse
the simulation box without significant interaction with the
others, or (ii) the compressional sound wave transits the
box in a shorter time than the decay time tc of the velocity
autocorrelation function. For (i), for our most demanding
condition (small size N � 990 and high temperature � �
1) a particle moving at the thermal velocity would transit
the cell in a time !pt � 57 if it were undeflected by
collisions. We find that the decay time is short enough,
!ptc 	 5–10, even for the smallest � values of interest.
Thus we expect no ‘‘ballistic’’ trajectories across the entire
simulation box. For (ii), the sound speed [17] at � � 1 is
v � d!=dk	 a!p, and the wave’s transit time �t across a
3-2
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FIG. 2. (a) Trajectories of particles in the simulation based on
method 2. (a) � � 10, � � 1 at a shear rate �� � 0:2; time of
recording: !p�T � 5:0. (b) � � 100, � � 1, �� � 0:05,
!p�T � 23:6. The shear field is vx � ��y� Ly=2�, i.e., there
is no flow at y � Ly=2. N � 1020.
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FIG. 3. (a) Shear viscosity at near-equilibrium conditions, �eq,
obtained from method 1, at the simulation’s lowest practical
shear rate, and normalized by �0 � mn!pa

2. For comparison,
data are shown from the Iowa equilibrium MD simulation [13]
and from simulations based on method 2 (SLLOD), in the limit
of small shear rates, at � � 1. N is the number of simulation
particles. (b) A scaling law is demonstrated by normalizing the
data in (a) using �E � mn!Ea2 and T0 � Ty=Tm, where Tm is
the melting temperature. The thick line is an empirical fit of form
�eq=�E � aT0 � b=T0 � c.
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box with length Ly is !p�t	 Ly=a � 57 for our most
demanding case, N � 990 particles. Thus, we find both
criteria fulfilled for a ‘‘sufficiently large’’ system.
Method 2 is known to produce accurate results even for
the small number of particles simulated [15]. We verified
that the results obtained from both methods did not depend
significantly on N.

Figures 2(a) and 2(b) illustrate particle trajectories in
simulations based on method 2, for conditions � � 10,
� � 1 at a shear rate �� � 0:2, and for � � 100, � � 1,
�� � 0:05, respectively.

Our results for�eq as a function of �, for different values
of � are plotted in Fig. 3(a). We find a good agreement with
the earlier equilibrium molecular-dynamic (MD) simula-
tion of Ref. [13]. In contrast with most simple liquids,
which have a viscosity that varies monotonically with
temperature, a prominent feature of the viscosity of the
present system is a minimum (e.g., at � 
 20 for � � 1),
which has been noted previously in both one-component
plasma (OCP) and Yukawa liquids. The shape of the�eq���
curve can be explained by the prevailing kinetic and po-
tential contributions to the viscosity at low and high values
of �, respectively. The near-equilibrium shear viscosity
values obtained with method 2 for � � 1 are also displayed
Fig. 3(a). We find an excellent agreement between the
results of methods 1 and 2.

Similar to what was observed in [5] for 3D Yukawa
liquids, we find that the near-equilibrium viscosity �eq

obeys a scaling law as demonstrated in Fig. 3(b), where
viscosity has been normalized by �E � mn!Ea2. The
Einstein frequency !E depends on �, and we computed it
from Eq. (7) of Ref. [17] using pair-correlation functions
measured from our simulations. The horizontal axis is a
normalized temperature T0 � Ty=Tm � �m=�, where Tm
and �m are melting-point values reported in Ref. [2]. Using
these normalizations, the data fall on the same curve,
demonstrating the existence of a scaling law for the 0:5 �
14500
� � 2:0 range of the screening parameter. We note that for
this purpose we found !E was more significant than !p.
The near-equilibrium viscosity is fit by an empirical form
(like in [5] for three dimensions) �eq=�E � aT0 � b=T0 �
c with coefficients: a � 0:0093, b � 0:78, and c � 0:098.

A shear-thinning effect is revealed in Fig. 4(a), which
shows that � diminishes significantly as the shear rate �� is
increased. In other two-dimensional systems the reduction
in �, as compared to the value at small shear, was observed
to vary as the square root of �� [11]. We find that this scaling
also occurs for the Yukawa system, as indicated by data
that fall on nearly straight lines in Fig. 4(a) for �� > 0:2. At
smaller shear rates, �� < 0:2, however, the shear-thinning
effect is less profound and the liquid is more nearly
Newtonian, especially for large �. Results are shown for
�� * 0:01, which we found to be reliable, whereas at lower
��, method 2 yielded noisy data even for very long
simulations.

Because viscosity arises from both kinetic and potential
contributions, Eq. (4), we evaluate which of these contri-
3-3
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FIG. 4. (a) Shear viscosity as a function of normalized shear
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tributions to the shear viscosity. � � 1.
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butions is most responsible for the observed shear-thinning
effect in Fig. 4(b). Recall that for equilibrium conditions,
the kinetic term dominates for �� 20 and the potential
term dominates for �
 20. Here, we find that for non-
equilibrium conditions, as the shear rate increases the
reduction in viscosity is mostly due to a reduction of the
kinetic contribution at low � and a reduction of the poten-
tial contribution at high �. In other words, at extreme
values of �, it is the same term dominating the equilibrium
viscosity that also dominates the shear-thinning effect. At
an intermediate value of � � 20, however, where the equi-
librium viscosity has a minimum and the two equilibrium
contributions are comparable (for � � 1), we find that it is
mostly a reduction of the kinetic term that accounts for the
observed shear-thinning effect.

In summary, we have calculated the shear viscosity
coefficient of 2D Yukawa liquids in a wide domain of
parameters � and � using two different molecular dynam-
ics approaches. The small shear rate calculations con-
firmed that the two techniques used are consistent and
14500
yielded � values in fair agreement with equilibrium MD
calculations [13]. The small shear rate data were found to
obey a universal scaling: � normalized by the Einstein
frequency was found to depend only on the reduced tem-
perature (ratio of the temperature to melting temperature).
The high shear rate simulations based on method 2 unam-
biguously demonstrated a non-Newtonian behavior of the
Yukawa liquid: � was significantly reduced for these con-
ditions in a manifestation of shear thinning, except at the
lowest shear rates where the liquid is more nearly
Newtonian. Regimes of the plasma coupling parameter
were identified to distinguish whether the kinetic or poten-
tial contribution to the shear viscosity is primarily respon-
sible for the shear-thinning effect.
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