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Using a combined analytical/molecular dynamics approach, we study the current fluctuation spectra and
longitudinal and transverse collective mode dispersions of the classical two-dimensional �point� dipole system
�2DDS� characterized by the �D�r�=�2 /r3 repulsive interaction potential; � is the electric dipole strength. The
interest in the 2DDS is twofold. First, the quasi-long-range 1 /r3 interaction makes the system a unique
classical many-body system, with a remarkable collective mode behavior. Second, the system may be a good
model for a closely spaced semiconductor electron-hole bilayer, a system that is in the forefront of current
experimental interest. The longitudinal collective excitations, which are of primary interest for the liquid phase,
are acoustic at long wavelengths. At higher wave numbers and for sufficiently high coupling strength, we
observe the formation of a deep minimum in the dispersion curve preceded by a sharp maximum; this is
identical to what has been observed in the dispersion of the zero-temperature bosonic dipole system, which in
turn emulates so-called roton-maxon excitation spectrum of the superfluid 4He. The analysis we present gives
an insight into the emergence of this apparently universal structure, governed by strong correlations. We study
both the liquid and the crystalline solid state. We also observe the excitation of combination frequencies,
resembling the roton-roton, roton-maxon, etc. structures in 4He.
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I. INTRODUCTION

This paper addresses the dynamical behavior of two-
dimensional classical liquid and solid systems consisting of
point electric dipoles in a plane, with the dipole moments
oriented perpendicular to the plane. This system is equivalent
to an ensemble of point particles with a repulsive 1 /r3 inter-
action potential. The interest in such two-dimensional dipole
systems �2DDS� is twofold. First, the quasi-long-range 1 /r3

interaction makes the collective behavior of the system
somewhat similar to that of the one-component plasma with
its 1 /r Coulomb interaction, while, at the same time, the 1 /r3

interaction, with its rapid drop off at large r and its hard
singularity at r=0, resembles the typical interaction poten-
tials in classical liquids. This duality makes the 2DDS a
unique classical many-body system worthy of detailed explo-
ration. The second aspect that makes the study of the 2DDS
timely and important is that it can provide, as we will discuss
below, a good model for a semiconductor electron-hole bi-
layer, a system that is in the forefront of current experimental
interest �1�, as well as for colloidal suspensions of superpara-
magnetic particles �2�.

The existence of bound electron-hole excitons in semi-
conductors was predicted quite some time ago by Keldysh

and co-workers �3,4� and by Halperin and Rice �5�. Electron-
hole bilayers �EHBs� are structures especially well suited to
the formation of a stable dipole-like excitonic phase �6–8�.
In such systems, the charges in the two layers with opposite
polarities are physically separated from each other, reducing
their recombination rate and for sufficiently small layer sepa-
rations forming a bound dipole-like excitonic structure. The
formation of the excitonic/dipole phase in the EHB has been
confirmed by recent diffusion and path integral Monte Carlo
�MC� simulations �9–11�, by classical MC simulations �12�,
and by classical molecular dynamics �MD� simulations �13�.
Fixed-node diffusion MC simulations of the zero-
temperature symmetric �me=mh ,ne=nh� EHB �9� indicate
three phases: the excitonic liquid, the spin-unpolarized Cou-
lomb liquid, and the triangular Wigner crystal. Classical MC
simulations of the bipolar bilayer �12� indicate the existence
of four phases in the strong coupling regime: the excitonic
dipole liquid and solid and the Coulomb liquid and solid
phases. The necessary existence of these four phases was
also pointed out in �14�. Since the excitons are bosons, at low
temperatures they may also form a Bose-Einstein condensate
�9,15–18�, become superfluid �19�, or possibly a supersolid
�14�.

Based on the phase diagrams �9,12�, the closely spaced
EHB in its dipole-like excitonic phase can be, in a good
approximation, modeled as a 2D monolayer of interacting
point electric dipoles. The model 2D dipole system �2DDS�
can be described as a collection of N spinless point dipoles,
each of mass m=me+mh, occupying the large but bounded
area A; n=N /A is the average density. The dipoles are free to
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move in the x−y plane with dipolar moment oriented in the
z-direction; the repulsive interaction potential is accordingly
given by �D=�2 /r3, where � is the electric dipole strength.

The coupling strength of the symmetric �ne=nh=n, me
=mh=m /2� EHB at arbitrary degeneracy is characterized by

the parameter �̃=e2 / �a�Ekin��, where e is the electrical
charge and a=�1 / ��n� is the 2D Wigner-Seitz radius. In the
high-temperature classical domain, this becomes the custom-
ary coupling parameter �=�e2 /a ��=1 /kBT�, while at zero
temperature, it becomes rs=a /aB, �aB=�2 /me,he2 is the Bohr
radius�. By the same token, the high-temperature classical
coupling parameter for the 2DDS is characterized by �D
=��2 /a3, whereas at zero-temperature, the appropriate mea-
sure of the 2DDS coupling strength is given by rD=r0 /a,
where r0=m�2 /�2 is the dipole equivalent of the Bohr ra-
dius; note the correspondence �D⇔rD.

In the case of the symmetric EHB in the zero-temperature
quantum domain, the Coulombic and dipole coupling param-
eters are related to each other by rD=2rs�d /a�2, where d is
the spacing between layers. High coupling �rD�1� for point
dipoles corresponds to the low-density regime in the closely
spaced �d /a�1� EHB, as dictated by the ordering �2rs�−1

	 �d /a�2�1, or equivalently, a
d�aB /2. In the high-
temperature classical domain, the Coulombic and dipole cou-
pling parameters are related to each other by �D=��d2 /a2�;
high coupling ��D�1� for the classical 2DDS liquid emulat-
ing the closely spaced EHB is now dictated by the ordering
�−1	d2 /a2�1, a condition that is easily met for fixed layer
density n at sufficiently low temperatures in the classical
regime and/or d sufficiently small. In the present work we
focus on the classical 2DDS in the strong coupling regime
that includes both the dipole liquid and solid phases. Our
preliminary MD study indicates that the classical 2DDS liq-
uid freezes at �D�70.

In the low-temperature regime the 2DDS becomes a 2D
bosonic dipole liquid, with superfluid properties. The collec-
tive mode spectrum of this model has been considered by a
number of investigators �20–24�. Quantum Monte Carlo
�QMC� simulations carried out by Astrakharchik and co-
workers �20,21� paved the way by generating essential infor-
mation about the 2DDS ground-state energy, static structure
function S�k�, and the 2DDS liquid-solid phase transition,
which they estimate to occur at rD�30. Invoking the zero-
temperature Feynman Ansatz

��k� =
�k2

2mS�k�
, �1�

they established an upper-bound estimate of the collective
mode dispersion with the input of their MC-generated S�k�
data. Subsequently, Mazzanti and co-workers �25� generated
collective mode spectra based on the more sophisticated cor-
related basis functions �CBF� formalism �26,27�, using S�k�
as an input.

In contrast to the above studies that require additional
assumptions to make it possible to infer information about
the excitation spectrum from static structure function data, an
entirely different approach, namely classical MD simulations
can provide direct insight into the structure of the collective

modes. We argue that such information, even though based
on classical dynamics, is pertinent both to the classical and to
the quantum domains: it is expected that the nature of the
collective excitations would not be all that different in the
two domains. This is borne out by our preliminary MD stud-
ies �24,28� of the longitudinal collective mode dispersion in
the strongly coupled classical 2DDS liquid: we have ob-
served that the classical dispersion reproduces the qualitative
features of the collective mode dispersion calculated from
the Feynman formula �1� �20,21�; Fig. 1 makes this point
clear. More precisely, the dispersion curve of the classical
2DDS liquid, as generated by our MD simulations, falls in
the narrow band of dispersion curves for the 2D bosonic
dipole system: the band is bounded from above by the Feyn-
man Ansatz �Eq. �1�� and from below by the CBF calculated
dispersion.

The remarkable likeness of the strongly coupled bosonic
2DDS dispersion to the excitation spectrum in the superfluid
phase of 4He �26� has been noted by Kalman et al. �24�. The
most apparent similarity is in the formation of the “roton
minimum,” preceded by the “maxon” maximum �see Fig. 1�.
Contrasting, however, with liquid 4He, the unique feature of
the 2DDS resides in the simplicity of the purely repulsive
interparticle interaction and the possibility of tuning the cou-
pling strength by changing system parameters such as den-
sity and temperature. This makes it possible to analyze the
longitudinal collective mode dispersion and its evolution as a
function of the �D and rD coupling parameters defined above
and to relate them to the experimentally observed phonon/
maxon/roton dispersions in 4He. MD simulation studies to
this effect have been recently carried out by us to demon-
strate that the emergence of the roton minimum in bosonic
superfluids is, in fact, a consequence of strong particle cor-
relations and, as such, is basically a classical effect �24�. This
finding gives further impetus to the present more detailed
analysis of the collective mode structure of the 2DDS.

It is in the light of these observations that we have under-
taken a detailed combined analytic/computer simulation
study of the collective mode behavior of the classical 2DDS
liquid and solid phases, whose results are presented in this
paper.
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FIG. 1. Longitudinal collective mode dispersion curves gener-
ated from classical molecular dynamics �MD� simulations �squares�
at �D=28 and from the Refs. �20,21�. zero-temperature quantum
Monte Carlo �QMC� simulations �dots� at rD=28.4. �D

=�2�n�2 /ma3 is a characteristic dipole oscillation frequency.
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The theoretical calculation of the collective mode disper-
sion in the liquid phase is to be carried out using the well-
tested quasilocalized charge approximation �QLCA� �29,30�
with the input of MD-generated pair distribution function
g�r� data. The observation that serves as the basis for the
QLCA is that the dominating feature of the physical state of
a classical dipolar liquid with coupling parameter �D�1 is
the quasilocalization of the point dipoles. The ensuing model
closely resembles a disordered solid where the dipoles oc-
cupy randomly located sites and undergo small-amplitude
oscillations about them. However, the site positions also
change and a continuous rearrangement of the underlying
quasiequilibrium configuration takes place. Inherent in the
model theory is the assumption that the two time scales are
well separated, and that it is sufficient to consider the time
average �converted into ensemble average� of the drifting
quasiequilibrium configuration. The calculation of the lattice
phonons in the solid phase is to be carried out using the
well-known harmonic approximation.

MD simulations have been pursued along the lines used
for simulating other strongly interacting classical systems
�31,32�. The topical review article �31� provides an in-depth
description of the computational methodology followed in
the present work.

In the present work, we study the collective excitations in
the 2DDS liquid and solid over a wide range of wave num-
bers. In the liquid phase, both the longitudinal and transverse
modes have been identified. In the solid phase, the two
modes persist, but the system is anisotropic and the polariza-
tions become wave vector- and angle-dependent. In our ear-
lier work �33�, we have already analyzed the ka→0 longitu-
dinal acoustic behavior. Here we go further: our analysis
extends beyond the ka
2 domain where a well-defined
maximum of the dispersion curve develops followed by a
deep minimum. These extrema are analogous to what has
become known as the “maxon” and “roton” excitations in the
mode spectrum of liquid helium. For this reason, we will use
the same terminology throughout this paper. Our recent MD
study of collective modes in the 2DDS solid �24� indicate the
existence of remarkable roton+maxon, maxon+maxon,
roton+roton combination frequencies at wave numbers in
the vicinities of the maxon and the roton, again, in analogy
with what has been theoretically predicted �26,34–38� in re-
lation to liquid 4He spectra. In the present work, we continue
this line of investigation for the solid and for the liquid phase
as well. In relation to the phonon spectra we are able to make
contact with the elastic theory of solids and identify the prin-
cipal elastic constants.

The organization of the paper is as follows: in Sec. II, we
analyze the collective mode dispersion. We generate longitu-
dinal �L� and transverse �T� spectra from our MD simula-
tions of the 2DDS liquid and solid phases. The ensuing MD
dispersion curves, constructed from the peaks of the spectra,
serve as standards for comparison with the theoretical QLCA
L and T oscillation frequencies displayed in the same section.
In Sec. III, we consider the solid phase and apply the har-
monic approximation �HA� to the calculation of the longitu-
dinal and transverse acoustic phase velocities, �from which
we infer the elastic constants of the crystal�, and the full
phonon dispersions for the 2DDS. Conclusions are drawn in
Sec. IV.

II. CLASSICAL DIPOLE LIQUID: COMBINED MD/QLCA
ANALYSIS

We turn now to the analysis of the longitudinal and trans-
verse collective modes in the classical 2DDS liquid. This
analysis has been carried out using the QLCA theory com-
bined with MD simulations.

The successful application of the QLCA to the calculation
of collective mode dispersion in a variety of strongly coupled
charged particle systems has been well documented over the
past two decades. Its recent application to the 2DDS liquid
has resulted in an accurate description of the longitudinal
collective mode dispersion in the acoustic domain, as borne
out by tabulated comparisons with MD and thermodynamic
sound speed data �33�.

Our program of MD simulation of the dynamics of the
classical 2DDS liquid has been carried out along the lines
used for simulating other strongly interacting classical sys-
tems �31�. The present MD simulation involves 4200 par-
ticles; information about the collective modes and their dis-
persion is obtained from the Fourier transform of the
correlation spectra of the microscopic density

nk�t� = 	
j

exp�ikxj�t�� , �2�

yielding the dynamical structure function

S�k,�� = �1/2�N� lim
�T→


�1/�T�
nk���
2, �3�

where �T is the duration of the data recording period. Simi-
larly, the spectra of the longitudinal and transverse current
fluctuations, L�k ,�� and T�k ,��, can be obtained from Fou-
rier analysis of the microscopic currents

�k�t� = 	
j

v jx�t�exp�ikxj�t�� �4�

and

�k�t� = 	
j

v jy�t�exp�ikxj�t��; �5�

we assume that k is directed along the x axis �the system is
isotropic�. The collective modes are identified as peaks in the
fluctuation spectra. The widths of the peaks provide addi-
tional information about the lifetimes of the excitations: nar-
row peaks correspond to longer lifetimes, while broad fea-
tures may indicate short-lived excitations.

Before proceeding with the analysis, a recap of our recent
findings �28,33� for the ka→0 regime is in order. The crucial
observation concerning the collective behavior of the 2DDS
is that average the Hartree field does not exist, since

��D�r��H = n� d2r�D�r� �6�

is unbounded; therefore, the Fourier transform of the dipole
potential �D�r�=�2 /r3 does not exist, implying that the
2DDS can have no RPA limit. Comparing this situation with
the case of a 2D Coulomb system where either the routine
observation
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�2�k� � k2�COUL�k�, �COUL�k� � 1/k , �7�

or a simple scaling argument for the integral

��k� =� d2r��r�exp�ik · r� �8�

provide the correct

��k� � �k �9�

RPA plasmon behavior, a similar line of reasoning in the
present case would lead, via the �faulty� relation

�D�k� � − k2�COUL�k� � k , �10�

to the incorrect RPA longitudinal collective mode frequency
as �14�

��k� � k3/2. �11�

The correct approach, as established in Ref. �33�, leads to a
correlation controlled long-wavelength acoustic dispersion

��k� � k . �12�

of the strongly coupled 2DDS liquid both in the classical and
in the zero-temperature quantum domains �28,33�. This be-
havior is also similar to that of the EHB liquid �39�, with
phase velocities virtually identical in the two cases. The pre-
cise numerical value of the acoustic velocity is governed by
the average potential

��D�r�� = n� d2r�D�r�g�r� , �13�

rather than by the Hartree potential; g�r� is the statistics- and
coupling-dependent equilibrium pair distribution function.
We found that the theoretical QLCA values of the longitudi-
nal acoustic phase velocity, calculated from the Eq. �13� in-
tegral agree reasonably well with the MD simulation values
over a wide range of classical liquid-phase coupling
strengths; the disparity between the theoretical acoustic
phase velocities and thermodynamic sound speeds, though
somewhat larger, is still only about 5.3%. The longitudinal
acoustic velocity decreases with increasing coupling param-
eter and assumes its lowest value in the solid phase.

The details of the derivation of the longitudinal and trans-
verse dispersions for arbitrary k values based on QLCA
theory culminating in the 2DDS dispersion relation �14� be-
low are given in �33�. Here it suffices to take Eq. �14�, to-
gether with the QLCA dynamical tensor �Eq. �15��, as the
appropriate starting point for the present study,

��2��� − C���k�� = 0, �14�

C���k� = −
n

m
� d2rg�r��exp�ik · r� − 1������D�r�

=
3n�2

m
� d2r

1

r5g�r��exp�ik · r� − 1�
��� − 5
r�r�

r2 � .

�15�

The longitudinal �L� and transverse �T� oscillation fre-
quencies are readily calculated to be

�L
2�k� = CL�k� =

3

2
�D

2�
0




dr̄
1

r̄4g�r̄���3 − 3J0�k̄r̄� + 5J2�k̄r̄�� ,

�16�

�T
2�k� = CT�k� =

3

2
�D

2�
0




dr̄
1

r̄4g�r̄���3 − 3J0�k̄r̄� − 5J2�k̄r̄�� ,

�17�

�D
2 =2�n�2 /ma3, r̄=r /a, and k̄=ka. Note that the usual in-

terpretation of Eqs. �16� and �17� would require splitting g�r�
as

g�r� = 1 + h�r� �18�

and identifying the frequency coming from the “1” piece in
the integral as the RPA, while h�r� as the correlational con-
tribution. The discussion presented above shows the fallacy
of this reasoning for the 2DDS. For �D fixed, dispersion
curves can be generated from Eqs. �16� and �17� with the
input of g�r� pair distribution function data obtained from
our MD computer simulations. Sample data for the latter are
displayed in Fig. 2.

The wave number regimes of special interest are �i� the
long-wavelength �ka→0� acoustic regime, where both lon-
gitudinal and transverse acoustic modes develop, �ii� the fi-
nite wave number regime spanning the maxon-roton portion
of the longitudinal dispersion curve, and �iii� the high-k do-
main where the dispersion is dominated by single-particle
excitations.

Addressing first the long-wavelength �ka→0� regime,
Eqs. �16� and �17� simplify to

�L
2�k → 0� =

33

16
J��D��D

2 k̄2, �19�

�T
2�k → 0� =

3

16
J��D��D

2 k̄2, �20�

J��D� =
1

2

��D�r��
�D�a�

= �
0




dr̄
1

r̄2g�r̄� . �21�
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FIG. 2. MD pair distribution function for �D=7, 15, 30, and
60.
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The values of J��D� calculated from Eq. �21� with the
input of MD-generated pair distribution function data and the
ensuing values of the QLCA acoustic velocities calculated
from Eqs. �19� and �20� are displayed in Table I along with
the corresponding MD acoustic phase velocities and the ther-
modynamic sound speeds �sTH� calculated from the isother-
mal compressibility using the classical 2DDS equation of
state �33�. Using the MD data as a reference, the discrepancy
between longitudinal QLCA and MD sound speeds ranges
from 2.89% at �D=10 to 3.46% at �D=60. The entries for
the MD transverse acoustic speeds in column 7 are calcu-
lated as the differential slope s=�� /�k in the linear regime at
ka�1. Such data for �D�20 are not available because in
this weaker coupling regime the shear wave is too heavily
damped, similarly to the situation for the 2DOCP �40�. The
discrepancy between the transverse QLCA and MD acoustic
velocities ranges from 4.09% at �D=30 to 5.68% at �D=60.

In Table I, note that multiplication by �2�D converts a�D
units into 1 /��m thermal velocity units; �D=�2�n�2 /ma3

is a characteristic dipole oscillation frequency. In these latter
units, the thermodynamic speed decreases from a value of
13.52 at �D=60 to unity at �D=0. We observe that the MD
and QLCA longitudinal phase velocities in Table I are some-
what higher than the thermodynamic speeds. The analysis of
the 2DDS crystal in Sec. III may shed some light on the
origin of this difference.

Turning next to the finite ka domain, we have generated
MD spectra for a wide range of �D values. Representative
L�k ,�� and T�k ,�� spectra at �D=60 are displayed in Figs. 3
and 4. In Fig. 3 there are four ka domains between ka
=0.05 and ka=5.66. Looking at Fig. 3�a� we observe that the
spectral peak shifts to higher frequencies with increasing ka
values, reaching the maxon frequency �M �1.2�D around
ka�2 �Fig. 3�b��. For ka values in the subinterval �1.48,
2.64� depicted in Fig. 3�b�, we observe two well-defined
clusters of spectral peaks: the lower frequency cluster repre-
sents the domain of the maxon; within the higher frequency
cluster, the broad peaks indicate the emergence of a faint
maxon-maxon �M+M� harmonic. For ka values in the sub-
interval �2.58, 3.90� depicted in Fig. 3�c�, the lower fre-
quency peaks shift to the domain of the roton minimum
which assumes its lowest frequency value at around ka
�3.7; we note the persistence of the maxon+maxon har-
monic over this entire ka subinterval. At the higher ka values
depicted in Fig. 3�d�, the cluster of lower frequency spectral
peaks indicates the existence of a second maximum at
around ka�5.4.

The resulting MD longitudinal and transverse dispersion
curves obtained from the peaks of the L and T spectra, re-
spectively, are displayed in Figs. 5 and 6.

Addressing first the longitudinal mode dispersion in Fig.
5, we observe the progressive deepening of the roton mini-
mum with increasing �D. The broadening of the spectral
peaks becomes more and more pronounced with decreasing
coupling strength; that is, the lifetime of the collective mode
decreases with increasing temperature. The simulations indi-
cate that, for wave numbers 0�ka�2.5, spanning the entire
acoustic domain and extending somewhat beyond the maxon

TABLE I. 2D-point dipole liquid: QLCA �sL,T
QLCA�, MD �sL,T

MD�, and thermodynamic �sTH� sound speeds as
functions of the classical coupling parameter �D. The entries in columns 2–5 are quoted from �33� for �D

=10−40, �D=�2�n�2 /ma3.

�D J��D�
sL

QLCA

�a�D�
sL

MD

�a�D�
sL

TH

�a�D�
sT

QLCA

�a�D�
sT

MD

�a�D�

10 0.8847 1.351 1.312 1.282 0.4073

20 0.8504 1.324 1.276 1.257 0.3992

30 0.8370 1.314 1.246 1.247 0.3962 0.38

40 0.8295 1.308 1.258 1.242 0.3944 0.38

60 0.8208 1.301 1.256 1.234 0.3923 0.37
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FIG. 3. �Color online� Longitudinal �L� current fluctuation spec-
tra for �D=60; a=1 /��n is the 2D Wigner-Seitz radius and �D

=�2�n�2 /ma3 is a characteristic dipole oscillation frequency. The
thick arrows point in the direction of increasing ka.
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peak, the longitudinal mode is fairly robust. At higher wave
numbers, the mode may be strongly damped, but can still be
viable over the approximate domain 2.5�ka�5 so long as
the 2DDS liquid is in the �D�30 strong coupling regime. At
�D=60, we observe from Fig. 5 that the location of the roton
minimum in the classical 2DDS liquid is close to the location
of its counterpart in the 2D bosonic dipole liquid at zero
temperature �20,21�. In the Conclusions we further discuss
the relevance of the observed roton-maxon behavior to the
dispersion characteristics of the 2D bosonic dipole liquid.

In the high-ka domain, we observe that the longitudinal
dispersion eventually becomes dominated by the Bohm-
Gross �BG� oscillation frequency

��k� =
3

2

k
��m

=
3

2
�D

ka
�2�D

�22�

characteristic of single-particle excitations in the classical
2DDS, and in strict compliance with the third-frequency-
moment sum rule for dipole systems �41�. The switchover ka
value for the single-particle behavior occurs between ka=5
�for �D=15� and ka=8.5 �for �D=60�. Again, making con-
tact with the 2D bosonic dipole liquid, it is of some interest

to compare this ��k→
��k asymptotic behavior with the
one predicted by the Bogolyubov theory for the quasicon-
densate 2DDS. In this latter, the high-ka behavior sets in
around similar k-values ��24� and references therein� and is
also dominated by single-particle excitations, which, how-
ever, originate, in sharp contrast to the classical system, from
the zero momentum ground state. Hence the difference in the
asymptote, which in the zero-temperature limit is ��k→
�
��k2 /2m.

The shaded region in Fig. 5�d� is seen as the emergence of
the faint maxon-maxon �M+M� harmonic detected in the
Fig. 3 spectra. More will be said about this harmonic, along
with other combination frequencies that emerge only in the
2DDS lattice, in Sec. III.

We next address the transverse shear mode dispersion dis-
played in Fig. 6. Similarly to the 2D one-component plasma
�2DOCP� �40� and to complex plasmas �42–44�, shear waves
in the strongly coupled 2DDS liquid are strongly damped,
even at �D=60, as evidenced by the sizeable line widths
shown in Fig. 6; for �D�30, the MD simulations indicate
that the shear waves are too heavily damped to be viable. In
the coupling regime where they are viable, Figs. 6 and 9
below show that, similarly to the 2DOCP �40� and to 2D
Yukawa plasmas �2DYP� �42–44�, 2DDS liquid-phase shear
waves cease to exist below a critical finite �D-dependent
wave number cutoff, k�a, marking the ka value where
��ka�=0. As expected, k�a→0 as �D→�D

SOLID from below.
Turning now to the QLCA description of the mode dis-

persion at finite wave numbers, the straightforward calcula-
tion of the QLCA oscillation frequencies �Eqs. �16� and
�17��, with the input of MD-generated g�r� data, results in
the longitudinal and transverse dispersion curves displayed
in Fig. 7 for �D=7, 15, 30, and 60. Figures 8 and 9 provide
a comparison between the QLCA dispersion curves and the
MD data.

Figure 8 shows very good quantitative agreement between
theory and simulation up to ka�2.5. As expected, the ka
range of agreement increases with increasing coupling, since
the QLCA theory is, after all, premised to be a strong cou-
pling theory. For increasing ka values, we can observe the
evolution of the roton minimum with increasing �D. Accord-
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FIG. 4. �Color online� Transverse �T� current fluctuation spectra
for �D=60.
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ing to the QLCA description, the position of the roton mini-
mum shifts to lower ka values and deepens more and more
with increasing coupling strength. The MD data, however,
indicate that the ka�3.7 position of the roton minimum re-
mains more or less the same as it progressively deepens with
increasing coupling strength. While the QLCA does capture
the qualitative features of the roton portion of the 2DDS
dispersion curve for �D�30, quantitative agreement be-
tween theory and simulation for ka
3 is less satisfactory,
even in this high coupling regime of the liquid phase.

Turning now to the transverse shear mode, Fig. 9 shows
only fair agreement between the QLCA and MD dispersion
curves. Similarly to what has been reported for 2D Yukawa
liquid plasmas �43�, the MD data, anchored by the �k�a ,�
=0� point, lie to the right of the QLCA dispersion curve and
run parallel to it in the linear regime. This discrepancy is due
to the QLCA’s inability to account for diffusional and other
damping effects that preclude the existence of long-
wavelength shear waves in the liquid phase �45�. In the case
of 2D Yukawa liquids �43�, the discrepancy was removed by
introducing a phenomenological diffusional damping time
into the QLCA formalism. We expect that a similar such
modification in the 2DDS QLCA formalism would bring
about the same outcome.

III. DIPOLE LATTICE: HARMONIC APPROXIMATION
AND MD SIMULATIONS

According to our MD simulation the 2DDS liquid freezes
at about �D�70. In this Section we turn to the analysis of
the collective modes �phonon dispersion� of the lattice phase.
As in all systems with an isotropic central force interaction,
the 2DDS crystallizes in a triangular �hexagonal� lattice. We
calculate the phonon dispersion in the harmonic approxima-
tion �HA�. The starting point is the dispersion relation �1�
with the liquid-phase dynamical tensor �Eq. �15�� replaced
by its HA counterpart �33�

C���k� = −
1

m
	

i

�exp�ik · ri� − 1������D�ri�

=
3�2

m
	

i

�exp�ik · ri� − 1�
1

ri
5
��� − 5

ri�ri�

ri
2 � ,

�23�

where k ·ri=kri cos��i−�� ;�i is the angle of the ri vector and
� is the propagation angle measured from the axis pointing
toward the nearest neighbor.

At long wavelengths, the hexagonal lattice is isotropic so
that the direction of k is arbitrary. So for convenience, one
can choose k to be along one of the two crystallographic
axes, say, �=00. In this case Eq. �23� then simplifies to

C���k → 0� = −
3�2k2

m
	

i

cos2 �i
1

ri
3
��� − 5

ri�ri�

ri
2 � .

�24�

Moreover, for the isotropic system, the dynamical tensor �Eq.
�24�� is diagonal, implying that the eigenvectors are parallel
and perpendicular to k, as in the liquid. The purely longitu-
dinal and transverse oscillation frequencies then follow from
the dispersion relation �14� and �24�,
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FIG. 7. QLCA Longitudinal �L� and transverse �T� dispersion
curves for �D=7, 15, 30, and 60. Note the evolution of the roton
minimum with increasing �D.
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�L
2�k → 0� = CL�k → 0�

=−
3�2k2

m
	

i

cos2 �i
1

ri
3 �1 − 5 cos2 �i� , �25�

�T
2�k → 0� = CT�k → 0�

=−
3�2k2

m
	

i

cos2 �i
1

ri
3 �1 − 5 sin2 �i� . �26�

The hexagonal lattice can be decomposed into a sequence of
concentric hexagons tilted away from the crystallographic
axes and of increasing size. Thus the lattice sum �Eq. �25��
can be decomposed into an ri-dependent part and an angular
part; this latter can be summed over the vertices of each of
the hexagons. This summation is facilitated by observing that
for any arbitrary angle �, the sum 	n=0

5 cos2��+n� /3�=1 /2
is independent of �. It therefore suffices to sum the �i portion
of the summands in Eqs. �25� and �26� around a single hexa-
gon and divide by six. This results in

�L
2�k → 0� = CL�k → 0� =

33

32
M�D

2 a2k2, �27�

�T
2�k → 0� = CT�k → 0� =

3

32
M�D

2 a2k2, �28�

where M =	i1 / r̄i
3 is the lattice sum over the triangular lattice

with r̄i�ri /a. The longitudinal oscillation frequency �Eq.
�27�� has been reported in �33� and is displayed here along-
side the new transverse result �Eq. �28�� for comparison. In
effect, the lattice sum M /2 replaces its liquid-phase counter-
part integral J��D� in Eqs. �19� and �20�. The value of M has
been calculated by a number of workers �46–49� with
slightly different results; the most recent semianalytical cal-
culation due to Rozenbaum �49� is quoted here as M
=1.642. Our own lattice sum computation for the 2DDS
crystal involving 1.9�109 particles provides M =1.597 �33�.
From Eqs. �27� and �28�, the corresponding L and T sound
speeds are

sL = 1.283�Da , �29�

sT = 0.387�Da . �30�

As expected, these values are slightly lower than their
respective �D=60 liquid-phase counterpart entries in Table I.
Note the agreement between Eq. �29� and the measured value
1.2836a�D. The thermodynamic sound speed sTH, though not
physically meaningful for a lattice, is still of interest from the
point of view of providing an estimate of the liquid-phase
thermodynamic sound speed in the large-�D limit. Table I
indicates that the thermodynamic sound speed decreases
monotonically with increasing �D. One therefore expects that
sTH assumes its minimum value when �D→
.

For an isotropic elastic medium the long wavelength �k
→0� behavior of the phonons can be described in terms of
longitudinal and transverse elastic waves, rather than in
terms of the thermodynamic sound speed, sTH, with phase

velocities expressed in terms of the elastic constants K and
G. K=−V��P /�V� is the bulk modulus, G is the shear modu-
lus. In 2D the corresponding velocities are

sTH =�K

�
,

sL =�K + G

�
,

sT =�G

�
, �31�

with �=mn being the mass density of the solid. It is impor-
tant to note the marked difference between the thermody-
namic sound velocity sTH and the elastic phase velocities sL
and sT as enunciated by Eq. �31�. There is a small, but dis-
cernible, difference between the sTH and sL and sT,

sTH = �sL
2 − sT

2 �32�

readily follows from Eq. �31�. From Eqs. �29� and �30�, the
ratio sT

2 /sL
2 =1 /11 then provides

sTH = sL/1.049 = 1.223a�D �33�

for the 2DDS hexagonal lattice. This value is in keeping with
the trend in Table I.

We address next the lattice phonon dispersion at finite
wave numbers obtained by solving the dispersion relation
�14� with the input of the dynamical tensor �Eq. �23��. The
results very closely resemble the dispersion of phonon spec-
trum of another known 2D system, the 2D Yukawa triangular
�hexagonal� lattice �31�. In particular, the value 1/11 of the
sound speed ratio sT

2 /sL
2 turns out to be the same as the sound

speed ratio for the 2D Yukawa crystal �50� with a screening
parameter �a=1.05. Phonon dispersion curves displayed in
Fig. 10 for four propagation angles: �=00 ,100 ,200 ,300 ��
=00 and �=300 are the crystallographic axes�. The angle �,
indicated in the right panels of Fig. 9, is the polarization
angle measured with respect to the propagation vector k; the
mode polarizations are purely longitudinal ��=00� or purely
transverse ��=900� for propagation along the �=00 and �
=300 crystallographic axes only. Otherwise, the polarizations
are mixed as shown in the �=100 and �=200 right panels of
Fig. 9. The dispersion curves are periodic in k; the period is
the reciprocal lattice constant only for propagation along a
crystallographic axis; for intermediate angles, the much
longer period is given by formulas �45� and �46� in �31�.

For a macroscopically disordered lattice one can view the
system as an aggregate of locally ordered domains with ran-
domly distributed crystallographic axes. One may also con-
template this as an alternate model for the strongly coupled
liquid. We can then seek the similarity to the liquid-phase
dispersion through a suitably angle-averaged dispersion of
the lattice. The procedure, which parallels that of Ref. �31�,
consists in projecting out the longitudinal and transverse
components of the lattice eigenmodes and comparing their
respective angular averages with the longitudinal and trans-
verse modes in the liquid phase. The calculation of the angle-
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averaged longitudinal and transverse lattice dispersions pro-
ceeds according to the following prescription: First, we
compute the lattice eigenmodes for k vectors with angular
directions between �=00 and �=300 in one degree steps. We
next perform the longitudinal and transverse projections
based on the normal mode data with

�L
2 = �k̂ · ê1�2�1

2 + �k̂ · ê2�2�2
2,

�T
2 = �1 − �k̂ · ê1�2��1

2 + �1 − �k̂ · ê2�2��2
2, �34�

where k̂, ê1, and ê2 are unit vectors parallel to the wave
vector �k� and normal-mode eigenvectors �e1 and e2�, respec-
tively; �1 and �2 are the normal-mode frequencies �51�. We
can then simply average the frequency values belonging to
equal k values for the longitudinal and transverse dispersions
separately.

The results are displayed in Fig. 11. Addressing first the
agreement between the two approaches and the MD we see
that the QLCA provides a superior description for 0�ka
�2.8 and somewhat less satisfactory quantitative agreement

thereafter. In contrast the lattice average dispersion, while it
shows excellent agreement with the MD data over the nar-
rower interval 0�ka�1, compares somewhat less favorably
with the MD data than the QLCA thereafter, but becomes
superior to the QLCA in the neighborhood of the high-k
roton region. As to the transverse collective mode dispersion
shown in Fig. 11�b�, we observe the same trend. The discrep-
ancy between the QLCA dispersion and the MD data were
discussed earlier in connection with the finite ka cutoff.

In Figs. 12 and 13, we have displayed a series of L�k
=kx ,�� and L�k=ky ,�� spectra generated over a wide range
of ka values at �D=1000. Our findings reaffirm the observa-
tions from our previous simulations �24� carried out at �D
=500 and over a narrower range of wave numbers: The ac-
cumulation of weight in the vicinity of three combination
frequencies, labeled as “1,” “2,” and “3” is clearly visible.
The emergence of harmonics appears to be a general feature
of Yukawa, Coulomb, and other types of similar interaction
�52� as well, although the quantitative relationships between
the amplitudes of the different combination frequencies
should be sensitive to the actual interaction potential.

The identification of the “1,” “2,” “3” peaks with the
roton-roton �R+R�, maxon-roton �M+R and perhaps M-R�,
maxon-maxon �M+M� combinations, respectively, is tempt-
ing, but the full understanding of this process requires more
study. It should be realized that due to the anisotropy of the
medium, the formation of combination frequencies in a lat-
tice is a much more intricate matter than in an isotropic liq-
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FIG. 10. Electric dipole hexagonal lattice eigenmodes and cor-
responding mode polarizations for angular directions �with respect
to the nearest neighbor direction� �=0–300 in 100 steps. The mea-
sured sound velocity sL=1.284a�D.
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uid. First, since the positions of the minima and maxima of
the dispersion curves are angle dependent, the notions of
roton frequency and maxon frequency become ill-defined
and the strengths and positions of the combination frequen-
cies become also angle dependent; this is well illustrated by
the comparison of Figs. 12 and 13 where modes propagating
along the two different crystallographic axes are compared.
Second, most of the weight should now originate from the
vicinity of the local extrema of the two-dimensional disper-
sion surface, rather than from the extrema of the selected
dispersion curves; but the nature and locations of these
former have not yet been explored. Third, the appropriate
matching of the k-vectors may become a delicate issue, and
one would expect that directions in which the highest ampli-
tude harmonics appear may be quite different from the direc-
tions associated with their parent frequencies. In fact, as
pointed out by �37�, it is the very close proximity of the k
=0 region where the largest possible number of combination
k-vectors could end up, thus leading to the expectation that
high-amplitude combination frequencies would appear in
this domain. It is therefore remarkable that our data do not
indicate the presence of any weight in the k=0 region:
whether this is due to the limitations of the simulation pro-

tocol or a real effect, still remains to be understood.

IV. CONCLUSIONS

In this paper, we have carried out a combined analytic/
molecular dynamics �MD� study of the dynamics and collec-
tive mode dispersion of a classical two-dimensional dipole
system �2DDS� in its strongly coupled liquid and solid
phases. The analytical methodology is based on the quasilo-
calized charge approximation �QLCA� for the description of
the liquid-phase dispersion, and on the companion harmonic
approximation �HA� for the description of the lattice
phonons. As we stated in the Introduction to this paper, we
had two objectives in mind: the first objective was to under-
stand how the dynamics of classical many-body system with
a 1 /r3 interaction potential are related to the dynamics of
similar systems, such as the 2D OCP and the 2D Yukawa
plasma. The second objective was to relate the collective
mode behavior of the classical 2DDS to that of its quantum
counterpart, the 2D bosonic dipole system.

As to the first objective, in contrast to the 2D OCP which
features an ��k→0���k longitudinal mode, the 2DDS ex-
hibits an ��k→0��k acoustic excitation. In this sense, the
behavior of the 2DDS is similar to that of the 2D Yukawa
system. The 2DDS, however, is unique in that the longitudi-
nal acoustic mode is wholly maintained by strong short-
range correlations.

Similarly to the 2DOCP �28� and complex plasmas
�29–31�, our MD simulations reveal that transverse shear
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FIG. 12. �Color online� Illustration of the appearance of combi-
nation frequencies in the longitudinal current-current correlation
functions L�k=kx ,��, measured along the direction of the nearest
neighbor in a hexagonal lattice simulated at �D=1000. The center
color map of the L�k=kx ,�� fluctuation spectra shows the strong
primary dispersion and the ghosts of the combination frequencies;
thin white lines are the dispersion curves from both L�k=kx ,�� and
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ance of the combination frequencies is the most manifest.
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FIG. 13. �Color online� Same as Fig. 12 for wave numbers
perpendicular to the nearest neighbor direction, L�k=ky ,��.
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waves propagating in the strongly coupled 2DDS liquid are
strongly damped, especially for coupling strengths �D�60.
Moreover, the waves cease to exist below a critical wave
number cutoff, marking the point where the excitation fre-
quency becomes identically zero. As expected, this critical
wave number decreases with increasing coupling strength,
tending to zero when the 2DDS liquid freezes.

Using the harmonic approximation, we have calculated
the longitudinal and transverse phonon dispersions of the
crystalline solid phase. The morphology of the lattice
phonons closely emulates that of the 2D Yukawa lattice; this
is not surprising since the morphology appears to be dictated
primarily by a common hexagonal lattice structure rather
than by the nature of the interaction. For the macroscopically
disordered lattice, where the system can be viewed as an
aggregate of locally ordered domains whose symmetry axes
are randomly distributed, we have calculated the angle-
averaged lattice dispersion curves. One may also contem-
plate this approach as a model alternate to the QLCA for the
strongly coupled liquid. The comparison of the two of them
with the MD results show reasonable agreement up to high
ka values: the QLCA seems to perform better in the lower,
while the averaged lattice model in the higher ka regions.

Addressing the second objective, we note that the main
interest in this regard lies in the understanding of the forma-
tion of the so-called maxon-roton structure of the dispersion
in the 2D bosonic dipole liquid, which is also shared by
liquid 4He. The terms “maxon” and “roton” serve as conve-
nient labels for the first maximum followed by a deep mini-
mum of a longitudinal dispersion curve. We have found that
in this domain and in the strong coupling regime, there is a
close affinity between the dispersion curves of the classical
2DDS liquid and the low-temperature bosonic dipole liquid.
More precisely, in a recent work �24� we have shown that the
dispersion curve of the classical 2DDS liquid, as generated
by our MD simulations, falls in the narrow band of disper-
sion curves for the 2D bosonic dipole system: the band is
bounded from above by the Feynman Ansatz �Eq. �1�� and
from below by the CBF calculated dispersion.

Thus, we believe that a detailed analysis of the collective
mode behavior of the classical 2DDS liquid will reflect—
except for the broadening of the spectral peaks—the collec-
tive mode behavior of its quantum counterpart. The high-ka
modes, in general, are strongly damped in a classical liquid
to the extent that they become unobservable. This seems to
be the case in the 2D OCP and Yukawa plasmas. Here, we
have found that strong damping may prevail in the 2DDS
liquid as well. By contrast, the collective modes in the 2D
quantum system in its superfluid phase are virtually un-
damped. Thus, we expect that the collective mode features
that we analyze in the classical domain will correspond to
the observable features in the collective modes of the 2D
bosonic dipole system in its superfluid phase. We have con-
sidered three wave number domains for the analysis of the
collective modes in the liquid phase: �i� the long-wavelength
�ka→0� domain, where both longitudinal and transverse
acoustic modes develop, �ii� the finite wave number domain

spanning the maxon-roton portion of the longitudinal disper-
sion curve, and �iii� the high-k domain where the dispersion
is dominated by single-particle excitations. Our findings
from the MD simulations are as follows: For wave numbers
0�ka�2.5 extending somewhat beyond the maxon portion
of the dispersion curve, the longitudinal collective excita-
tions are robust over a wide range of coupling strengths 7
��D�60. During the progressive deepening of the roton
minimum with increasing coupling, its ka�3.7 position re-
mains more or less the same. In keeping with what we have
already stated, this wave number value in the classical 2DDS
liquid is quite close to the location of the roton minimum in
the quantum 2DDS at zero temperature �14�. For wave num-
bers well above the roton minimum, the dispersion assumes
the character of single-particle excitations. This feature is
also qualitatively the same—albeit with different
k-dependence, as the one predicted and observed in the
high-k domain for the 2D bosonic dipole system.

Additionally, we observe the existence of a faint maxon-
maxon �M+M� harmonic frequency that persists over the
broad range of wave numbers 0.05�ka�5. This feature can
be related to the observation of roton-roton, roton-maxon,
and maxon-maxon combination frequencies in the superfluid
phase of 4He. Whether the absence of the first two combina-
tion frequencies is a feature that distinguishes the 2DDS
from liquid 4He, due to the difference in interaction poten-
tials, or these two combination frequencies are simply
masked by classical noise is not clear. More combination
frequencies have been observed in the crystalline solid
phase. However, due to the anisotropy of the medium, the
formation of combination frequencies in a lattice is a much
more intricate matter than in an isotropic liquid. The definite
identification of the frequencies with the maxon-maxon �M
+M�, maxon-roton �M+R and perhaps R-M�, roton-roton
�R+R� combinations would still require more study and fur-
ther understanding of this process.

We have compared the MD data with the theoretical
analysis based on the QLCA approach. As expected, the
range of ka values marking agreement between QLCA
theory and MD data increases with increasing coupling. At
0.05�ka�2.5 there is near-perfect agreement between
theory and simulation. While, however, the QLCA dispersion
closely emulates the qualitative features of the dispersion
even at higher ka values, in the neighborhood of the roton
minimum it underestimates the roton frequency and overes-
timates its wave number. An improvement of the QLCA,
with the capability to account for the strong angular correla-
tions in the strong coupling domain may be needed to deliver
even better agreement with MD observations.
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