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Waves in two-dimensional superparamagnetic dusty plasma liquids
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Wave dispersion relations in the strongly coupled liquid phase of a two-dimensional system of dust grains
interacting via both Yukawa and dipole interactions are investigated. The model system comprises a layer of
charged superparamagnetic grains in a plasma in an external, uniform magnetic field B whose magnitude and
direction can be varied. Because the induced magnetic dipole moments of the grains lie along B, the interaction
between the grains becomes anisotropic as B is tilted with respect to the layer. The theoretical approach uses a
reformulated quasilocalized charge approximation that can treat dipole interactions, combined with molecular
dynamics simulations. The mode dispersion relations are found to depend on the relative strengths of the Yukawa
and dipole interactions and the direction of wave propagation in the plane.
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I. INTRODUCTION

Dusty plasmas are plasmas containing fine solid particulates
(dust grains) that get electrically charged in the plasma. Typi-
cally, the dust grains interact via a screened Coulomb (Yukawa)
interaction, where the screening of the dust charge is due to
the background plasma ions and electrons (see recent reviews
in, e.g., [1–3]). A new area of research in dusty plasmas is the
study of systems of dust grains that interact via both Yukawa
and dipole interactions. The types of dipole interactions that
have been discussed recently include (i) a magnetic dipole
interaction, either between superparamagnetic grains that
acquire a magnetic dipole moment along an external magnetic
field B (e.g., [4–6]), or between ferromagnetic particles with
intrinsic magnetic dipole moments [7], and (ii) an electric
dipole interaction that can be induced by an external alternating
electric field that polarizes the screening cloud around a grain,
the so-called electrorheological complex plasma (e.g., [8,9]).
Both these types of systems could lead to new types of dusty
plasma crystals and liquids whose structure and interparticle
spacing could be tuned by external means [4,8].

Recently, we investigated the ground-state configuration of
a two-dimensional (2D) lattice of charged superparamagnetic
grains in a plasma in an external uniform magnetic field
B whose magnitude and direction with respect to the layer
could be varied [6]. When B is normal to the layer, the dipole
interaction is repulsive. When B is tilted with respect to the
layer, the magnetic dipole interaction becomes anisotropic.
It also becomes attractive along the projection of B in the
layer if the angle α between B and the layer is smaller than a
threshold angle αth, while it is repulsive otherwise. Molecular
dynamics (MD) simulations showed that the structure could
change from hexagonal to almost rectangular depending on
α and the strength of the ratio of the magnetic to electrostatic
interaction.

In this paper, we investigate wave dispersion in the strongly
coupled liquid phase of a 2D system of grains interacting
via both Yukawa and magnetic dipole-dipole interactions. We
consider the case where the magnetic tilt angle α is larger
than a threshold αth. In this case, the interaction in the dust
monolayer is repulsive and anisotropic for α �= 90◦ and would
generate a stable equilibrium. Due to this anisotropic nature of
the interaction, the wave dispersions depend on the direction
of propagation in the plane as well as the relative strengths
of the Yukawa and dipole interactions. The attractive effect of
ion focusing, which has been considered for dust lattice waves
in a one-dimensional string of paramagnetic grains [10], is
neglected because we are considering a monolayer of dust.

The theoretical approach uses the quasilocalized charge
approximation (QLCA) that was recently reformulated by
Golden et al. [11–13] to calculate wave dispersion in a 2D
layer of dipoles with dipole moments perpendicular to the
layer. Paralleling the theoretical analysis we have performed
detailed molecular dynamics (MD) simulations of the system.
The simulation generates fluctuation spectra, which provide
the basis for comparison with the calculated collective mode
spectrum. We also extract the pair correlation function from
the simulations: this latter is needed as input for the QLCA
formalism.

The paper is organized as follows. Section II describes the
model system. Section III presents the theoretical approach
using the QLCA and discusses the MD simulations. Section IV
presents results for the mode dispersion relations. Section V
discusses possible experimental parameters, and Sec. VI gives
a summary.

II. MODEL SYSTEM

The model system is a 2D layer of charged superparam-
agnetic dust grains of uniform size and material properties
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FIG. 1. Geometry of the model system. (a) The dust layer lies in
the x-y plane and the magnetic moment M of each grain lies in the
x-z plane at an angle α to the x axis. (b) The angle between the wave
vector k and the x axis is χ .

in a plasma immersed in a constant, homogeneous external
magnetic field B. Each grain has a negative electric charge
Q = −Zde due to plasma collection, where Zd is the charge
state and e is the elementary charge. It is assumed that
the grains are strongly coupled in the liquid phase. The
v × B motion of the dust is neglected due to the very small
charge-to-mass ratio of the dust, which amounts to assuming
the dust motion is unmagnetized as, for example, in the case
where the dust collision frequency is much larger than the dust
gyrofrequency. Owing to their paramagnetic property, each
grain acquires a magnetic dipole moment M, which is induced
by the external magnetic field and therefore lies in the direction
of B. The dust layer lies in the x-y plane, and the magnetic
field makes an angle α with respect to the layer. Without loss
of generality, we take the x axis to be the direction of the
projection of B in the plane, so that the magnetic moment of
each dust grain lies in the x-z plane. We define the direction
of wave propagation in the dust layer plane by the angle χ

between the wave vector k and the x axis, as shown in Fig. 1.
The grains interact via an electrostatic screened Coulomb

(Yukawa) force and the induced magnetic dipole-dipole force.
The electrostatic interaction energy between two grains with
charge Q separated by a distance r is

φY = Q2

r
e−κr , (1)

where κ = λ−1
D is inverse of the plasma Debye screening

length. The strength of the effective electrostatic coupling be-
tween neighboring grains interacting via this Yukawa potential
is generally characterized by the Coulomb coupling parameter
� = Q2/akBTd and a screening parameter κ̄ = a/λD . Here
a = (πn)−1/2 is the 2D Wigner-Seitz radius, where n is the
areal density of the dust grains, kB is the Boltzmann constant,
and kBTd is the thermal (kinetic) energy of the grains. Since it is
assumed that the magnetic dipole moments of all the grains are
parallel and have the same magnitude, the interaction energy
of the two magnetic dipoles is given by [4,14]

φM = MμMν

r3

(
δμν − 3

rμrν

r2

)
. (2)

We can rewrite (2) noting that M ∝ B, and the component of
B in the plane is B‖ = B cosα. Since we have chosen B‖ to
be in the x direction, the angle between B‖ and r is the polar
angle θ . Thus we can write the magnetic dipole interaction as
(see also [14])

φM = M2

r3
[1 − 3cos2α cos2θ ]. (3)

The electrostatic Yukawa force between the like-charged
particles,

FY (r) = −∂φY

∂r
r̂ = Q2

r2
(1 + κr)e−κr r̂, (4)

is always repulsive. In (4), r̂ is a unit vector in the direction
of r, which is the vector connecting the two particles. The
magnetic dipole-dipole force between the two grains is

FM (r) = −∂μφM r̂μ = 3M2

r4

×{cosθ [1 − 5cos2α cos2θ + 2cos2α]x̂

+ sinθ [1 − 5cos2α cos2θ ]ŷ}, (5)

where x̂ and ŷ are unit vectors in the x and y directions,
respectively. The magnetic dipole force can be repulsive or
attractive depending on the relative positions and orientations
of the grains. When r is purely in the x direction, where the
force is softest,

FM (x) = 3M2

x4
(1 − 3cos2α), (6)

it can be seen that for α smaller than a threshold angle αth =
cos−1(1/

√
3) ≈ 54.74◦, the magnetic dipole force becomes

purely attractive in this direction. At small distances, the
Yukawa interaction goes like 1/r , while the magnetic dipole
interaction potential goes like 1/r3. Therefore the magnetic
dipole interaction will dominate the Yukawa interaction, and
due to thermal fluctuations, agglomeration would ultimately
occur [6]. We avoid this scenario in this paper by considering
only magnetic tilt angles larger than αth. This corresponds to
a stable equilibrium and an interaction, which is repulsive but
anisotropic in the dust layer plane for 90◦ > α > αth.

The correlation between dust grains in this system is
characterized by an equilibrium pair correlation function
g(r,θ ), which is in general a function of r and the po-
lar angle θ (measured from the x axis), with g(r,θ ) → 1
as r → ∞.

III. METHODOLOGY

A. Theoretical approach

The theoretical approach uses the QLCA combined with
MD simulations, which has been successfully applied to
describe waves in various strongly coupled Yukawa systems
in the liquid phase (see review in Ref. [15]), including re-
cently waves in strongly coupled magnetized one-component
plasmas [16]. The QLCA is based on the premise that
in the strongly coupled liquid phase, the charged particles
are quasilocalized, occupying randomly located sites and
undergoing small amplitude oscillations around them. It is
assumed that the underlying equilibrium configuration, or
position of the sites, changes, but on a longer time scale so
that one can neglect the diffusion of the quasisites compared
to correlational effects (see review in Ref. [17]).

The QLCA was recently reformulated by Golden et al. [11–
13] to calculate wave dispersion in 2D layer of dipoles with
dipole moments perpendicular to the layer. In this system, there
is a 1/r3 dipole interaction whose spatial integral is divergent.
Consequently one has to combine the pair correlation function
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with the dipole interaction to obtain an tractable effective
potential. Since this reformulated QLCA enables one to treat
the dipole interaction, we use this scheme to calculate the wave
dispersions in our model system where the dust grains interact
via both Yukawa and magnetic dipole-dipole interactions. The
details of the derivation of the mode dispersion relations for
the isotropic 2D dipole system discussed above are given
in Ref. [11]. Here we include an angular dependence in the
calculation, and take into account the Yukawa interaction as
well by taking the magnetic dipole and Yukawa interactions to
be additive.

The mode dispersion relations are given by (see
Refs. [11,13])

||ω2δμν − Cμν(k)|| = 0, (7)

where Cμν(k) is the QLCA dynamical matrix,

Cμν(k) = − n

md

∫
d2rdθg(r,θ )[exp(ik · r) − 1]∂μ∂νφTot.

(8)

Here md is the dust particle mass, and φTot is the total
interaction potential, which is the sum of the Yukawa potential
(1) and the magnetic dipole interaction potential (3). For the
Yukawa interaction, we have

∂μ∂νφY = −Q2

r3
exp(−κr)

×
[
(1 + κr)

(
δμν − 3

rμrν

r2

)
− rμrν

r2
κ2r2

]
. (9)

For the magnetic dipole-dipole interaction, we have

∂μ∂νφM = −3M2

r5

[
(m2 − 5d2)δμν − 5(m2 − 7d2)

rμrν

r2

− 10d

(
mμrν

r
+ mνrμ

r

)
+ 2mμmν

]
. (10)

Here, m = [cosα,0,sinα], m2 = mμmμ, and d = mμ(rμ/r) =
cosα cosθ . The physical meaning of the dynamical matrix Cμν

can be understood as representing the weighted average of
all the forces that act on a particle from its neighbors. It
includes two distinct contributions: one is a restoring force due
to neighboring particles at their equilibrium sites, which acts
when a particle is displaced from its equilibrium position; the
other is due to neighboring particles, which have moved from
their equilibrium positions and affect the particle to behave in
a similar fashion. In this sense it can be regarded as the dy-
namical equivalent of the elasticity tensor in a solid (see, e.g.,
Ref. [18]).

Using (9) and (10) we rewrite (8) using the quantities r̄ =
r/a, k̄ = ka, κ̄ = a/λD , and η = M/QλD . The quantity η is
a measure of the relative magnitude of the magnetic dipole
to Yukawa interaction strengths. Further, the angle between k
and r is given by (χ − θ ). Then (8) becomes

Cμν(k,α,η)

= ω2
p

2π

∫
dθ

dr̄

r̄2
g(r̄ ,θ )[exp(ik̄r̄ cos(χ − θ )) − 1]

×
{

exp(−κ̄ r̄)

[
(1 + κ̄ r̄)

(
δμν − 3

r̄μr̄ν

r̄2

)
− r̄μr̄ν

r̄2
κ̄2r̄2

]

+ 3η2

κ̄2r̄2

[(
δμν−5

r̄μr̄ν

r̄2

)
− 5cos2α cos2θ

(
δμν−7

r̄μr̄ν

r̄2

)

−10cosα cosθ

(
mμ

r̄ν

r
+ mν

r̄μ

r̄

)
+ 2mμmν

]}
.

(11)

Here ωp = (2πQ2n/mda)1/2 is the dust plasma frequency in
this system.

We will solve (7) using (11) in a Cartesian coordinate
system in the x-y plane to obtain the mode dispersions for
arbitrary wave number k. The elements of the dynamical
matrix Cμν are given explicitly in the Appendix. Since we
restrict particle displacements to the x-y plane, we retain only
the matrix elements Cxx , Cyy , Cxy , and Cyx . The other matrix
elements correspond to out-of-plane modes, whose analysis
is left for future work. In order to evaluate (11), we need
the input of the equilibrium pair correlation function g(r,θ ),
which is obtained by MD simulations, described in the next
subsection.

Note that for small k, we can expand the exponential factor
in (11) in a Taylor series. Because this results in the first
nonvanishing term in Cμν being ∝k2, the solution of (7) in this
limit yields the phase speeds of the modes.

B. Molecular dynamics simulations

Our molecular dynamics code is an extended version of our
earlier code developed for the simulation of Yukawa liquids,
see, e.g., Ref. [15]. We simulate the motion of N = 5000
particles in the (x,y) plane, within a square box (with a side
length of approximately L = 125 a) with periodic boundary
conditions, via the integration of their Newtonian equations
of motion. The spatial fast decay of the interaction forces
makes it possible to introduce a cutoff distance, beyond
which the interaction of particle pairs can be neglected
when the forces acting on the particles are calculated. For
our conditions rcutoff ≈ 30a. Time integration is performed
using the velocity-Verlet scheme. At the initialization of the
simulation runs the positions of the particles are set randomly,
while their initial velocities are sampled from a Maxwellian
distribution corresponding to a specified system temperature.
The simulations start with a thermalization phase, during
which the particle velocities are rescaled in each time step,
in order to reach the desired temperature. This procedure
is stopped before the data collection takes place, where
the stability of the simulation is confirmed by monitoring
the temperature as a function of time. In the measurement
phase of the simulation data are collected (i) for the pair
correlation function, which becomes spatially anisotropic in
the magnetized case, as well as (ii) for the quantities needed
for the derivation of the dynamical spectra: the spatial Fourier
components of the microscopic density and currents. These
are acquired for wave propagation directions at given angles
with respect from the direction of the projection of B on the
(x,y) plane. A subsequent Fourier transformation in the time
domain [19] yields the dynamical structure functions S(k,ω),
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FIG. 2. (Color online) Equilibrium pair correlation function in
the dust layer as a function of polar angle θ and r̄ , for parameters
κ̄ = 1, with (a) � = 100 and η = 0, (b) α = 60◦, � = 25, and η = 1.
For the parameters in (b), g(r̄) is shown in (c) for θ = 0◦ (red, solid
curve) and θ = 90◦ (blue, dashed curve).

as well as the longitudinal and transverse current fluctuation
spectra, L(k,ω) and T (k,ω), respectively.

IV. NUMERICAL RESULTS

In this section we present the results for the wave dispersion
relations using the QLCA, which requires input of the
equilibrium pair correlation functions obtained from MD
simulations. We also compare the QLCA results with the mode
dispersions obtained from the fluctuation spectra generated by
the simulations.

Figure 2 shows the equilibrium pair correlation function
for a dust layer with κ̄ = 1, and combinations of �, η and
α (for finite η). Because in our model system the magnetic
dipole-dipole interaction is always repulsive, the total effective
coupling increases as η increases. When η = 0 there is
no effect of the magnetic field, and the pair correlation
function is isotropic in the plane as expected, and is shown in
Fig. 2(a). However, for finite η, the total interaction potential
is anisotropic in the plane, leading to a rearrangement of the
dust particle spacings. Because the strength of the magnetic
dipole interaction is largest in the y direction, the dust particle
spacing increases in this direction. Since the dust areal density
is constant, the dust particles rearrange themselves so that
spacings in the x direction decrease somewhat compared to the

FIG. 3. (Color online) The color maps are the (a) longitudinal
and (b) transverse fluctuation spectra generated by the simulations
for a Yukawa system with � = 100 and κ̄ = 1. The solid and dashed
curves are the QLCA wave dispersion relations for the two modes
obtained from Eq. (7) as a function of ka for these parameters.
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η = 0 case. These features can be seen in Figs. 2(b) and 2(c),
which show a case with � = 25, α = 60◦, and η = 1.

In order to show how the magnetic dipole interaction affects
the wave dispersion relations, we first show example dispersion
relations for a pure Yukawa system with � = 100 and κ̄ = 1 in
Fig. 3. In these figures, the solid and dashed curves are the two
QLCA dispersion relations for the two modes obtained from
Eq. (7) using (11) and solved in Cartesian coordinates in the
x-y plane. These curves are superimposed on the fluctuation
spectra generated by the simulations. Figure 3(a) shows the
QLCA mode dispersions for the two modes superimposed on
the longitudinal fluctuation spectrum, while Fig. 3(b) shows
the same curves superimposed on the transverse fluctuation
spectrum. The higher (lower) frequency curve in each figure
corresponds reasonably well to the longitudinal (transverse)
modes obtained from the MD simulations for ka � 3.

Beyond this value of ka (where the two curves nearly
touch), the polarization of the modes change so that the lower
(upper) curve corresponds to the longitudinal (transverse)
mode, which again agrees reasonably well with the spectra
obtained from MD simulations.

The eigenvectors (obtained by diagonalizing the dynamical
matrix Cμν) determine the polarization (i.e., the direction of the
particle displacement, or electric field, relative to the direction
of propagation) of the modes. In general, the polarization
of the modes are mixed, but the respective longitudinal
and transverse polarizations prevail for small k [20,21]. The

FIG. 4. (Color online) Polarization angles of the two QLCA
eigenmodes obtained from (7). Solid (red) curve corresponds to the
higher frequency mode, while dashed (blue) curve corresponds to
the lower frequency mode. Parameters are � = 25 and κ̄ = 1, with
(a) η = 0, (b) α = 60◦, η = 0.5, and χ = 30◦.

polarization angle, which is the angle between the normal
mode eigenvectors and the wave vector k, depends on the wave
number k, the propagation angle χ and also the anisotropy
of the system which is characterized to some extent by the
value of η. Figure 4(a) shows the polarization angles of the
two modes in an isotropic Yukawa system with � = 25 and
κ̄ = 1. As can be seen, for ka � 3 the higher frequency mode
(denoted by the red solid curve) is longitudinal, while the
lower frequency mode (denoted by the blue dashed curve)
is transverse. For larger k, however, the mode polarization
changes. Near the cross-over point of the two curves (i.e.,
see Fig. 3) the mode polarization changes from almost pure
longitudinal to pure transverse and vice-versa. On the other
hand, when the system becomes anisotropic with finite η, the
mode polarizations are in general more mixed as a function of
k, as can be seen in Fig. 4(b).

Figure 5 illustrates how the magnetic dipole-dipole interac-
tion in a system with finite η modifies the dispersion relations
of the modes. Here � = 25, κ̄ = 1, and α = 60◦. The top panel
considers a case with lower η = 0.2 while the bottom panel
considers a case with larger η = 1. The columns correspond
to wave propagation angles of χ = 0◦ (i.e., propagation along
the projection of M in the dust layer), χ = 30◦, and χ = 90◦
(propagation perpendicular to the projection of M in the
layer). The two modes obtained from the QLCA theory
given by (7) with (11) are shown as solid curves, which are
superimposed on the longitudinal fluctuation spectra generated
by the MD simulations. As can be seen, there is very good
agreement between the higher frequency QLCA curves and
the longitudinal spectra. One can observe the formation of a
deep minimum in the longitudinal mode around ka = 4, whose
depth is consistently underestimated by the QLCA theory:
both the appearance of the minimum and the inadequacy of
the QLCA for its description seem to be a universal feature of
strongly coupled liquid systems (see Ref. [22]).

There are several physical effects that can be seen in Fig. 5.
First, the wave dispersion relations clearly depend on the angle
of propagation. Second, for fixed angle of propagation χ , both
the sound speed at small k and the maximum frequency of
the higher frequency mode increase as η increases. Physically,
this reflects the fact that the magnitude of the total repulsive
interaction potential increases as η increases, so the mode
becomes harder. A third effect is that for fixed η in the larger
η = 1 case, the maximum frequency and the sound velocity of
the longitudinal mode appears to decrease as χ increases. On
the contrary, the transverse sound velocity increases with χ .
This can perhaps be explained by the following observation.
As η increases, the particle spacing increases in the y direction
owing to the enhanced repulsive interaction in this direction.
However, because the areal density is constant, the particles
rearrange and the spacings decrease in the x direction, as
discussed in relation to Fig. 2. For some parameters (e.g.,
the η = 0.2 case in Fig. 5), the total repulsive interaction in
the x direction can be comparable to that in the y direction,
so there is relatively little variation of the dispersion curve
with χ . However, for larger η (e.g., the η = 1 case in Fig. 5)
the total repulsive interaction is substantially larger in the
x direction owing to the decreased particle spacing in this
direction. This can be roughly quantified by considering the
location of the peaks in g(r̄) for this set of parameters shown
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FIG. 5. (Color online) The color maps are the longitudinal fluctuation spectra generated by the simulations. Parameters are � = 25, κ̄ = 1,
and α = 60◦, with the values of η and χ shown in the figure. The solid and dashed curves are the QLCA wave dispersion relations for the two
modes obtained from Eq. (7) as a function of ka for these parameters.

in Fig. 2(c). In the x direction, the first peak occurs at x̄ ∼ 1.5,
while in the y direction the first peak occurs at ȳ ∼ 2. Thus
the softness of the force is compensated by reduced spacing
in the x direction and increased spacing in the y direction.
Then the second derivative of the interaction potential, which
goes roughly like 1/r times the force, will be larger in the x

direction than in the y direction. Thus the restoring force acting
on an oscillating particle for the longitudinal mode, which is
proportional to the second derivative of φTot along the direction
of propagation, is larger for propagation along the x direction
[shown in Fig. 5(d)] relative to that for propagation along the y

direction [shown in Fig. 5(f)]. At the same time, the restoring
force acting on an oscillating particle for the transverse mode,
which is proportional to the second derivative of φTot in the
direction perpendicular to the propagation direction, will be
larger for propagation along the y direction (also shown in
Fig. 6).

Figure 6 shows the same QLCA curves as in Fig. 5,
superimposed on the transverse fluctuation spectra generated
by the simulations. It can be seen that there is reasonable
agreement between the lower frequency QLCA curves and
the transverse fluctuation spectra, although the QLCA curves
are somewhat higher. Note, however, that the cutoff in the
transverse mode at small k is not included in the present QLCA
theory (see, e.g., Refs. [15,17,23–25]).

The variation of the sound speeds of the two QLCA modes
at small k as a function of propagation angle χ can be seen
in Fig. 7. The sound speeds were obtained from Eq. (7) using
(11) with the exponential function expanded in a Taylor series.
Here � = 100 and κ̄ = 1. Figure 7(a) shows that the sound
speeds are isotropic as expected when η = 0. It can be seen
from Fig. 7(b), which is for a case with α = 60◦ and η =

0.5, that both sound speeds increase as η increases. In this
case, the sound speed of the longitudinal mode exhibits little
anisotropy, presumably because the magnitude of the total
interaction potential does not vary much with polar angle.
However, the sound speed of the transverse mode, which is
purely a correlational effect, shows more anisotropy.

V. POSSIBLE EXPERIMENTAL PARAMETERS

To aid in the design of a possible experiment to investigate
the wave behavior discussed in this paper, we explore a range of
possible parameters for nominal values of �, κ̄ and η discussed
in Sec. III. We have used the quantity η as a figure-of-merit to
characterize the relative strength of the magnetic dipole-dipole
to electrostatic interaction between neighboring grains. For a
spherical grain of radius R and magnetic permeability μ, its
induced magnetic dipole moment can be expressed as [5]

M = R3

(
μ − 1

μ + 2

)
B. (12)

The grain charge is given by Q = R|φs | where φs is the grain
surface potential. Thus we have that

η = M

QλD

∼ 0.03
R2(μm)B(G)

|φs(V )|λD(μm)

(
μ − 1

μ + 2

)
. (13)

In the following, we consider possible parameters for systems
with � = 100, κ̄ = 1, and η = 0.5.

We first consider a thermal plasma, with low electron
temperature Te ∼ 0.2 eV comparable to the ion temperature
Ti . Because the dust surface potential would be smaller than
in an rf or dc discharge with much larger Te, we expect that
a correspondingly smaller magnetic field would be required
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FIG. 6. (Color online) The color maps are the transverse fluctuation spectra generated by the simulations. Parameters are the same as in
Fig. 5. The solid and dashed curves are the QLCA wave dispersion relations for the two modes obtained from Eq. (7) as a function of ka for
these parameters.

to attain substantial η. Assuming an (argon) ion density
ni ∼ 4 × 108 cm−3, the linearized Debye length is given by
λD ∼ 0.012 cm. If we assume that μ ∼ 4, R ∼ 5 μm, and
|φs | ∼ 0.5 V, we obtain η ∼ 0.5 for B ∼ 100 G. In order
to have κ̄ = 1, we require that a = λD , which implies that
n = 1/πa2 ∼ 2.2 × 103 cm−2. The grain coupling parameter
requires an estimate of the grain charge and thermal energy.
Using Qd = Rφs = −Zde we have that the grain charge state
Zd ∼ 2100. Thus � = 100 implies that Td should be about
0.5 eV (i.e., the dust thermal speed is about 0.3 mm/s, assum-
ing the dust mass density is about 2 g/cm3, so the dust mass md

is ∼6.3 × 1014 times the proton mass). For these parameters,
the dust plasma frequency ωp ∼ 34 rad/s, which implies that
the neutral gas pressure should be �2 Pa in order for the dust-
neutral collision frequency, νdn ∼ δ(8

√
2π/3)R2nnvnmn/md ,

to be � ωp (here nn, vn, and mn are the neutral density, thermal
speed, and mass, respectively, and δ ranges from about 1.2–
1.4 [26]). Owing to the relatively small charge-to-mass ratio of
the grains, however, the electric field E0 required to levitate the
dust grains in the plasma sheath via the electrostatic force QE0

could be very large for a terrestrial experiment, so this set of
parameters might be more relevant for a possible microgravity
experiment. We note, however, that dusty plasma experiments
in microgravity have generally produced three-dimensional
dust clouds in rf or dc plasmas (e.g., [27,28]), so its unclear if
dust monolayers could be generated in microgravity.

Next we consider a low-temperature rf or dc discharge type
plasma with Te ∼ 2 eV, Ti ∼ 0.025 eV, and (argon) ion density
ni ∼ 1 × 109 cm−3. We assume the dust layer lies in or near
the plasma sheath and that the ions come in to the sheath with
an energy ∼Te, so that the Debye length can be estimated

using the electron temperature to be about λD ∼ 0.03 cm.
Requiring that κ̄ = 1 implies that the areal density of the dust
is n ∼ 3.5 × 102 cm−2. We again assume the grains have radius
R ∼ 5 μm, and taking |φs | ∼ 5, we obtain a dust charge state
of Zd ∼ 1.7 × 104. Again assuming that μ ∼ 4, we find from
(13) that a magnetic field of strength of about B ∼ 2000 G
would be needed in order for η = 0.5. To have the quantity
� = 100 would imply a dust thermal energy of about 14 eV
(i.e., a dust thermal speed of about 0.3 cm/s, assuming the dust
mass density is ∼2 g/cm3). With these parameters, one might
consider a terrestrial experiment, but the sheath electric field
needed to levitate the grains would be of the order of about
30–40 V/cm. The dust plasma frequency for these parameters
would be ωp ∼ 70 rad/s, so that the neutral gas pressure should
be �4 Pa in order that νdn � ωp.

The presence of an external magnetic field can also have
physical effects on the background plasma that can affect the
dust. The magnetic field can affect the ion and electrons, which
in turn can affect dust charging (e.g., [29,30]), Debye shielding
of the grains (e.g., [31]) and ion drag or wind forces acting
on the dust arising from ion flows perpendicular to B. If the
ions are magnetized there could be ion flows due to E × B
or diamagnetic drifts that lead to ion drag forces on the dust
(see, e.g., Refs. [32,33]). For the thermal plasma parameters
discussed above, the ion Hall parameter βi , which is the ratio
of the ion gyrofrequency to the ion collision frequency, would
be about βi ∼ 0.1 at 2 Pa, so the ions would be weakly
magnetized. On the other hand, the ion Hall parameter for
the rf or dc discharge parameters discussed above would
be on the order of βi ∼ 2 at 4 Pa, so the ions would be
strongly magnetized. Although the discussion of experimental

043102-7
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FIG. 7. (Color online) Longitudinal (red, solid curve) and trans-
verse (purple, dashed curve) sound speeds as a function of propagation
angle χ obtained from the QLCA expression (7) using (11) and
expanding the exponential function for small k. Parameters are κ̄ = 1,
with (a) � = 100 and η = 0, (b) α = 60◦, � = 100, and η = 0.5.

challenges is beyond the scope of this paper, we note that there
would be an enhanced viscosity between the dust owing to the
repulsive magnetic dipole-dipole interaction.

VI. SUMMARY

The dispersion relations of dust waves in the strongly
coupled liquid phase of a 2D system of dust grains interacting
via both Yukawa and dipole interactions were investigated.
The model system comprises a layer of charged super-
paramagnetic grains in a plasma in an external, uniform
magnetic field B whose magnitude and direction can be
varied. Because the induced magnetic dipole moments of
the grains lie along B, the interaction between the grains
becomes anisotropic as B is tilted with respect to the layer.
The calculation in this paper is confined to angles between
B and the layer which are above a threshold angle, where
the interaction remains repulsive in the dust layer and
generates a stable equilibrium (i.e., with no agglomeration
effects).

The theoretical approach uses a reformulated quasilocalized
charge approximation that can treat dipole interactions: it
requires input of the equilibrium pair correlation functions
that are obtained from MD simulations. The QLCA dispersion
relations show reasonable agreement with the dispersion
relations obtained from the fluctuation spectra generated
by the MD simulations. The mode dispersion relations
depend on the relative strengths of the Yukawa and dipole
interactions and the direction of wave propagation in the
plane. In general, the sound speeds of the modes increase
as the relative strength of the magnetic dipole-dipole to
Yukawa interaction, characterized by the quantity η, increases.
There may be possible experimental parameter regimes with
moderate magnetic field strengths where such effects could be
observed.
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APPENDIX: ELEMENTS OF DYNAMICAL MATRIX

We give explicitly the elements of the dynamical matrix in
the model geometry used in this paper.

Cμν = ω2
p

2π

∫
dθ

dr̄

r̄2
g(r̄ ,θ )[exp(ik̄r̄ cos(χ − θ )) − 1]�μν.

Here

�xx = exp(−κ̄ r̄)[(1 + κ̄ r̄)(1 − 3cos2θ ) − cos2θκ̄2r̄2]

+ 3η2

κ̄2r̄2
[1−5cos2θ+cos2α(2−25cos2θ+35cos4θ )],

�yy = exp(−κ̄ r̄)[(1 + κ̄ r̄)(1 − 3sin2θ ) − sin2θκ̄2r̄2]

+ 3η2

κ̄2r̄2
[1 − 5sin2θ − cos2αcos2θ (5 − 35sin2θ )],

�xy = �yx = exp(−κ̄ r̄)[(1 + κ̄ r̄)(−3cosθ sinθ )

− cosθ sinθ κ̄2r̄2] + 3η2

κ̄2r̄2

× [cosθ sinθ (−5 − cos2α(10 − 35cos2θ )],

�zz = exp(−κ̄ r̄)(1 + κ̄ r̄)

+ 3η2

κ̄2r̄2
[1 − 5cos2α cos2θ + 2sin2α],

�zx = �xz = 3η2

κ̄2r̄2
[sinα cosα(2 − 10cos2θ )],

�zy = �yz = 3η2

κ̄2r̄2
[−10sinα cosα sinθ cosθ ].
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