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Ground-state structures of finite, cylindrically confined two-dimensional Yukawa systems composed of charged
superparamagnetic dust grains in an external magnetic field are investigated numerically, using molecular dynamic
simulations and lattice summation methods. The ground-state configuration of the system is identified using,
as an approximation, the experimentally obtained shape of the horizontal confinement potential in a classical
single-layer dusty plasma experiment with nonmagnetic grains. Results are presented for the dependence of the
number density and lattice parameters of the dust layer on (1) the ratio of the magnetic dipole-dipole force to
electrostatic force between the grains and (2) the orientation of the grain magnetic moment with respect to the
layer.
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I. INTRODUCTION

Plasma crystals composed of dust grains that are super-
paramagnetic, where each grain can acquire a strong magnetic
dipole moment in a magnetic field, are expected to lead
to new possibilities in dusty plasma research [1]. While
the electrostatic interaction between the negatively charged
grains is repulsive and isotropic, the magnetic dipole-dipole
interaction is in general anisotropic and can be attractive or
repulsive as a function of orientation of the magnetic dipole
moments [2].

The use of superparamagnetic grains could enable the mag-
netic tuning of plasma crystal structures, similar to what has
been considered for superparamagnetic colloidal crystals (e.g.,
[3–6]). Very recently, colloidal suspensions of submicron-
sized (≈100 nm) polyacrylate capped superparamagnetic mag-
netite (Fe3O4) particles were successfully used to produce col-
loidal photonic crystals with magnetically tunable stop bands
covering the visible spectrum [7–9]. The superparamagnetic
colloids form chainlike structures along an external magnetic
field with regular interparticle spacing, enabling the diffraction
of visible light. The tuning of the diffraction wavelength was
accomplished by varying the interparticle spacing. In turn this
was done by varying the magnetic field that alters the strength
of the magnetic dipole-dipole interaction, which balances
the repulsive electrostatic interaction between the charged
colloids [8]. Single-layer experiments with superparamagnetic
particles on the water-air interface have demonstrated the
advantages of the tunable interparticle interaction in the studies
of fundamental collective phenomena, like the solid-liquid
phase transition [10,11]. Coagulation of charged, charged-
magnetic, and magnetic dust aggregates formed from a ferrous
material in various environments was studied in [12], showing
that the dipole-dipole interaction can affect the orientation and
structural formation of aggregates as they collide and stick.

While colloidal crystals typically have interparticle spac-
ings in the submicron regime, the spacing between dust
grains in plasma crystals is typically larger, on the order of
100 μm, which is in the range of terahertz (THz) wavelengths.
We investigate the possibility of using superparamagnetic
particles in the larger micrometer size range in a dusty

plasma monolayer in a magnetic field, with the aim of
producing a tunable two-dimensional (2D) lattice structure
with spacings that correspond to the THz regime [13]. The
tuning is accomplished by varying the angle the magnetic
field subtends with the plane of grains. If such structures
can be produced with the grains occupying a large volume
fraction (see [13]), they may have photonic applications in
the THz frequency range which is currently of great interest
owing to potential applications in spectroscopy, imaging,
etc. [14].

The paper is organized as follows. Section II presents
the model system, which is a confined 2D layer of charged
superparamagnetic grains in a plasma, placed in an exter-
nal magnetic field. Section III presents the results of MD
simulations of the ground-state structures of a finite 2D
system in the crystalline solid phase as the relative strength
of the electrostatic to magnetic dipole-dipole interaction and
the direction of the grains’ magnetic moment with respect
to the layer plane are varied. Section IV presents lattice
summation calculations of the corresponding infinite 2D lattice
limit of this system. A discussion of possible experimental
parameters is given in Sec. V, and a brief summary is given in
Sec. VI.

II. MODEL SYSTEM

The model system comprises a 2D lattice of superpara-
magnetic dust grains immersed in a plasma in a constant,
homogeneous external magnetic field B. Each grain acquires
an electric charge q due to plasma collection, and a magnetic
dipole moment M, which is induced by the external magnetic
field and therefore lies in the direction of B. The lattice lies in
the x-y plane with an unspecified orientation of its principal
axes. The lattice structure is characterized by the lattice spacing
b, the rhombic angle φ, and the aspect ratio ν = c/b � 1,
and the direction of its principal axes with respect to the
projection of the magnetic field onto the plane, as shown in
Fig. 1.

The grains interact via an electrostatic screened Coulomb
(Debye-Hückel or Yukawa) force and by the induced
magnetic dipole-dipole force. The electrostatic interaction
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FIG. 1. Geometry of the model system. (a) The lattice lies in the
x-y plane and its structure is characterized by the lattice spacing b,
the rhombic angle φ, and the aspect ratio ν = c/b. (b) The magnetic
moment M of each grain lies in the x-z plane at an angle α to the x

axis. The principal lattice axis subtends an angle β with the projection
of the magnetic moment.

energy between two grains with charge q separated by a
distance r is

UE = q2

4πε0
exp(−r/λD)/r, (1)

where λD is the plasma Debye screening length, yielding a
repulsive force,

FE(r) = 1

4πε0

q2

r2

(
1 + r

λD

)
exp

(
− r

λD

)
r̂, (2)

where r̂ is a unit vector in the direction of r, which is the vector
connecting the two particles. The magnetic dipole-dipole
force between two grains, FM can be repulsive or attractive
depending on the relative positions and orientations of the
grains. Since it is assumed that the magnetic dipole moments
of all the grains are parallel and have the same magnitude, the
interaction energy of the two magnetic dipoles is given by

UM = μ0

4π

[
M2

r3
− 3(M · r)2

r5

]
. (3)

The magnetic dipole-dipole force between the two grains is

FM = μ0

4π

3M2

r4
[−r̂(5cos2 θ − 1) + 2m̂cosθ ], (4)

where r̂ and m̂ are unit vectors in the direction of r and
M, respectively, and θ is the angle between r̂ and m̂. In the
following we choose without loss of generality our coordinate
system such that M is in the x-z plane and is oriented at an
angle α with respect to the x axis (see Fig. 1).

In a typical 2D dusty plasma laboratory experiment, the
dust grains are confined by an electrostatic potential. In order
to approximate experimental conditions in our simulations,
we considered a more accurate representation of the radial
dependence of the horizontal confinement potential beyond the
usual quadratic approximation. This was done by performing
an experiment using nonmagnetic melamine-formaldehyde
(MF) particles with the aim of measuring the radial density
profile of the single-layer dust cloud. Without going into
details, the experiments used 4.36-μm diameter MF spheres,
in a 1 Pa argon gas discharge driven by 5 W of RF power at
13.56 MHz. A layer of ∼3000 MF spheres was created over the
18-cm diameter lower powered electrode. Particle detection
was performed using 650-nm wavelength laser illumination
from the side and a 1.4-megapixel CCD camera from the top.
Subpixel resolution was achieved using the center-of-mass
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FIG. 2. (Color online) Experimental (a) and MD simulation
(b) results for the radial dust density distribution in 2D layer of
nonmagnetic dust. Distances are normalized to the observed average
central lattice spacing 〈b〉. The total particle numbers are ∼3000 in
the experiment and 5000 in the simulation.

method discussed in detail in [15]. Calculating the density
of the dust layer by averaging over the nearest-neighbor
distances, the experimental density profile was approximated
by the functional form:

n(r̄) ≈ n4r̄
4 + n2r̄

2 + n0, (5)

where r̄ = r/〈b〉 and 〈b〉 is the average lattice spacing, as
shown in Fig. 2(a).

A series of molecular dynamics (MD) simulations using
N = 5000 nonmagnetic particles with parameters of the
Yukawa interaction taken from the experiment were performed
assuming different fourth-order polynomial shapes for the
horizontal confinement potential. The resulting dust density
profiles were compared with that obtained in the experiment.
A one-to-one correspondence is not expected due to the
different particle numbers; instead, the one best matching the
anharmonic characteristics of the experimental dust density
profile was searched for. The level of anharmonicity is
quantified by the ratio of the fourth- and the second-order
contributions at the outer edge on the equilibrated dust cloud as
n4r̄

4
max/n2r̄

2
max. The corresponding molecular dynamics (MD)

simulation results at an average Coulomb coupling parameter
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 ≈ 1000 are displayed in Fig. 2(b). In contrast to infinite,
homogeneous systems, the Coulomb coupling parameter does
not fully characterize the entire particle ensemble as it depends
on the particle density, which has a strong radial profile in our
confined system. Details of the simulation model can be found
in the next section.

The experimental dust density profile could be best re-
produced assuming a horizontal confinement potential of the
form,

V (r) = V4r
4 + V2r

2, (6)

with V4 = 5 × 10−7 and V2 = 0.004. Here and in the follow-
ing, we use distances normalized to the Debye screening length
λD , kept constant for all simulations.

Note that compared to a confinement potential with a simple
quadratic dependence on r Eq. (6) this simulation leads to a
more homogeneous distribution in the center of the cloud, with
about 10%–20% lower density and has resulted in 〈b〉 ≈ λD

and a dimensionless screening parameter κ = (λD

√
πn)−1 ≈

0.53 in the central region.

III. MOLECULAR DYNAMICS SIMULATIONS

The molecular dynamics (MD) simulations are based on a
standard method described in, for example, [16]. We consider a
2D layer particle ensemble of 5000 particles. Pair interactions
(forces) are evaluated in every time step for each pair of
particles. Time integration is performed using the velocity-
Verlet scheme. Particles are released from random positions,
a slow velocity back-scaling thermostat is applied until the
system reached an average Coulomb coupling parameter of
1000. Simulations were run for about 1000 plasma oscillation
cycles without further thermostation assuming that a near to
ground-state configuration could develop during this time.

For the simulations and the presentation of our results we
use the following reduced quantities: λD = 1 (length unit), b

is the lattice spacing in units of λD , q = 1 (charge unit) is
the dust grain charge, and η = √

μ0ε0M/qλD is a measure of
the relative strength of the magnetic dipole-dipole interaction
to the electrostatic interaction. The layer structure is further
characterized by the bulk density n, both b and n being an
average over the central region of the layer, along with the
rhombic angle φ and aspect ratio ν.

Setting FM (r,M,α) + FE(r) = 0, yields the equilibrium
distance req(M,α) where the electrostatic and magnetic forces
balance. A particle pair separated by a distance of req is,
however, an unstable configuration because a small pertur-
bation could result in collapse or expansion. The effect of
the magnetic field is the strongest when r is purely in the x

direction; in this case Eq. (4) yields

FM (x,M,α) = − μ0

4π

3M2

x4
[3(cos2α) − 1]. (7)

In this case, there is a threshold angle, αth = cos−1(1/
√

3) ≈
54.74o, below which the attractive interaction due to the
magnetic dipole-dipole force can overcome the repulsive elec-
trostatic interaction for certain values of η, and agglomeration
can set in. The variation of req with η is shown in Fig. 3
for several values of α that are below the threshold angle.
As expected, req increases as η increases, with the largest
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FIG. 3. Equilibrium distance req(M,α) for α < αth along the x

direction versus η. For strong magnetic interactions (large η) the
attraction dominates at all distances, thus no equilibrium distance can
be found, as indicated by the discontinuation of the lines for α = 0o

and 30o.

increase for small α since the magnitude of the attractive
interaction gets larger as α gets smaller. Thus the grains
could agglomerate at progressively smaller values of η as α

decreases. Furthermore at large enough η values the magnetic
attraction fully dominates over the electrostatic repulsion, thus
an equilibrium distance cannot be found at all. This trend
will also be apparent in the following discussions of the MD
simulation results on the variation of the structure of the lattice
under variation of η and α.

An illustration of the effect of the competing magnetic and
electrostatic interactions is shown in Fig. 4, displaying the
total pair potential energy U (r) = UE(r) + UM (r) of a single
particle for selected α angles above and below the threshold
value and η = 0.5. The interaction is repulsive in all directions
for α = 60o; for α = 50o an attractive region develops in a
narrow angle around the ±x direction, separated by a potential
barrier from the outside, as it can be seen from this cross section
at y = 0 (front face). Particles with high enough energy in
the tail of the thermal distribution can overcome the potential
barrier and result in particle agglomeration after a long enough
time.

Turning now to the lattice structure, first consider the
case when there is no magnetic field, so that there are no
induced magnetic moments (η = 0). The underlying hexag-
onal structure is due to the isotropic repulsive electrostatic
interaction and is characterized by φ = 60o and ν = 1.
Due to the boundary condition imposed by the cylindrical
symmetry of the confinement and to the fact that a perfect
hexagonal configuration cannot form in a system with density
gradient, lattice frustrations result in slight fragmentation of
the ground-state structure. Next, consider the case in which
there is an external magnetic field perpendicular to the layer,
α = 90o. The lattice structure remains hexagonal, since both
the magnetic dipole-dipole and electrostatic interactions are
repulsive and isotropic. As expected, the density decreases as
η increases (as q = 1 and λD = 1 are kept constant), that is,
the average lattice spacing increases owing to the increased
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FIG. 4. (Color online) Total pair potential energy U (r) =
UE(r) + UM (r) around a single particle situated at r = (0,0) at
a relative strength of the magnetic interaction to the electrostatic
interaction η = 0.5: (a) α = 60o > αth and (b) α = 50o < αth. The
potential energy surface is cut at y = 0 to display the variation of the
interaction energy along the x axis. The central particle is shown.

repulsive force, as can be seen in the density profile results in
Fig. 5. Figure 6 shows a snapshot of the system for α = 90o

and η = 0.1.
Consider now the more interesting cases when the direction

of the induced magnetic moments is tilted with respect to
the dust layer (α < 90o). The shortest lattice distance forms
along the x axis; thus the lattice forms with β = 0 (see
Fig. 1), as might be expected since the magnetic repulsion
weakens or eventually turns purely attractive in that direction
(depending on the value of α). Thus the system appears to
align along that direction. Figure 7 shows a snapshot of
the system for α = 60o and η = 0.8, where a crystal struc-
ture without domain fragmentation is formed, showing that
the ordering effect arising from the magnetic enhancement
of the interaction overcomes the frustration induced by the
boundary condition. The variation of the lattice spacing b, the
bulk density n, the rhombic angle φ, and the aspect ratio ν

are shown in Figs. 8–11, respectively, as a function of η for
various values of α. For the large angles α � 70o, the lattice
spacing increases and the density decreases as η increases,
because the magnetic dipole-dipole interaction is repulsive
and its anisotropy is not strong. For this range of angles α,
both the rhombic angle and aspect ratio of the lattice increase
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FIG. 5. Radial density distribution in the dust layer as a function
of r (the distance from the center), for α = 90o and several values
of η.

somewhat as α decreases, as the magnetic interaction becomes
less repulsive. For the small angles, α = 45o and 50o, the
lattice spacing decreases as η increases, owing presumably to
the dominance of the attractive magnetic interaction, which
significantly weakens the electrostatic repulsion. At this low
α angles the system becomes unstable against aggregation,
in the sense discussed above, at intermediate η values. In the
true (T = 0) ground state, low α configurations are stable
as long as b > req, however, our simulations are run at
very low, but finite temperatures, where agglomeration can
start (causing the simulation to stop) due to thermal energy
fluctuations at long enough times. The η values at which
this occurs (η ≈ 0.3) are for this particular set of simulation
parameters, simulation time in particular. During this time
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FIG. 6. Snapshot of layer for α = 90o and η = 0.1
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FIG. 7. Snapshot of layer for α = 60o and η = 0.8.

the system reaches only kinetically stable states, and not a
thermodynamical equilibrium state.

This is illustrated in Fig. 12, where the total potential due
to the lattice particles, as experienced by a particle in the
center is shown. In the large α > αth case (a) the potential
energy U (r) surface exhibits a deep, well-confined potential
minimum. This can be contrasted with the case of a selected
low α < αth value (b) where a minimum enclosed by a low
potential barrier is formed along the ±x directions around the
vacant particle position at r = (0,0).

While the central density tends to increase somewhat with
η, both the rhombic angle and aspect ratio increase rapidly,
tending toward a rectangular configuration.

At the intermediate angle α = 60o, there appears to be non-
monotonic characteristics of some of the lattice parameters.
When η is small, the trends follow those described previously
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FIG. 12. (Color online) Total potential energy U (r) = UE(r) +
UM (r) of the lattice experienced by a test particle situated at r = (0,0).
Lattice parameters are taken from the MD simulations for (a) an
α > αth and (b) an α < αth configuration.

for small α, with b decreasing, and φ and ν increasing, as η

increases. However, at larger η � 0.4−0.5, the lattice spacing
b begins to somewhat increase, although still remaining below
its value at α = 90o. Meanwhile the central density decreases
significantly, which may indicate that the overall magnetic
repulsion starts to overcome the complex effect of the force
anisotropy. This nonmonotonic behavior may be consistent
with the trends pointed out in Fig. 5 in [1], for intermediate
magnetic field values, where it was found that for small
intergrain distances, the total force FE + FM from Eqs. (2)
and (4) was attractive, while at intermediate distances the total
force was repulsive.

Overall, it can be seen from Figs. 8–11 that for these
parameters, it may be possible to tune the lattice spacing and
structure by changing η and α. The lattice spacing could be
tuned by a factor of about 2, with a corresponding factor of
∼2 in the particle density and changing together with other
lattice parameters. The lattice structure could be tuned from
triangular (hexagonal) to almost rectangular; depending on η

and α, the rhombic angle can vary between 60 ◦ and 80 ◦, and
the aspect ratio between 1 and 2.

IV. INFINITE LATTICE

We have investigated the ground-state energy at T = 0
(where T is the thermal energy of the dust grains) for an
infinite, isotropic lattice when α = 90o, by using the lattice
summation technique. This provides a reliable basis with high
accuracy for validation of our MD simulations. The lattice
summation was performed by summing the contributions of
about 109 neighboring grains on a perfect lattice characterized
by the lattice spacing b, the aspect ratio ν, and the rhombic
angle φ. In addition, in contrast to our previous studies of
structural phase transitions in 2D complex plasma composed of
ferromagnetic grains with intrinsic magnetic dipole moments
[17] where the density was kept constant, in this case the
pressure is kept constant as η is varied. The pressure was
computed from the diagonal elements of the pressure tensor,
which in this case has the form,

pγ = 1

b

∑
rγ <0

rγ

|r|∇rU (r), (8)

where γ denotes the Cartesian coordinates (x or y), and
r is the distance between the particle at the origin (0,0)
and another lattice particle. Summation is performed for
particles located on a half-plane. U (r) is the interparticle
pair potential energy, including electrostatic and magnetic
contributions. In the calculations the lattice is oriented along
the x axes, but due to the force isotropy of a perfect hexagonal
lattice, the calculated pressure value does not depend on
the lattice orientation. More graphically this is the force per
unit length acting on a fictitious line of particles inserted at
x = 0 (or y = 0) interacting with all particles on one side
only.

The configuration with the minimal total energy was sought.
The initial lattice parameters were adopted from the η = 0
MD simulation (λD ≡ 1, ν = 1, φ = 60 o, b = 0.81) and the
initial pressure value, which was kept constant during the
subsequent η > 0 calculation, was evaluated for this initial
lattice. The results are shown in Fig. 13, which compares
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the lattice spacing as a function of η for the infinite lattice
with the MD simulation results for the finite system. Note
that in the finite case, the lattice spacing is an average over
the central part of the particle cloud. The comparison shows
good agreement for the lower magnetization (η < 0.4) cases,
where the deformation of the finite dust cloud is not too large
(�b/b = 10%) and confinement can be approximated by the
constant pressure condition.

V. POSSIBLE EXPERIMENTAL PARAMETERS

To aid in the design of a possible experimental realization
of ground-state structures studied in this paper, we estimate
a range of possible plasma and dust parameters necessary
to observe such effects. The quantity η is a figure of merit,
which characterizes the relative strength of the magnetic
dipole-dipole to electrostatic interaction between neighboring
grains. Assuming that the grain is spherical, with radius R,
and that it can be characterized by a magnetic permeabil-
ity μ, its induced magnetic dipole moment can be expressed
as [2]

M = μ0

4π
R3

(
μ − 1

μ + 2

)
B. (9)

Expressing the magnitude of the grain charge as q = R|φs |
where φs is the grain surface potential, we have that

η = √
μ0ε0

M

qλD

∼ 0.03
R2(μm)B(G)

φs(V )λD(μm)

(
μ − 1

μ + 2

)
. (10)

For example, consider a plasma with Te ∼ 2 eV and ni ∼
108 cm−3 so that the effective Debye length in the sheath, given
approximately by the ion Debye length with Ti ∼ Te, is about
λD ∼ 1 mm. Assuming that μ = 4, R = 5 μm, B = 5000
G, φs = 2 V, we obtain η ∼ 0.94. Thus for these dust and
plasma parameters, varying the external magnetic field from 0
to 5000 G can vary η from 0 to about 1. Another possibility
is a denser plasma, with Te ∼ 2 eV and ni ∼ 1010 cm−3, and
the other parameters the same as in the last example. In this
case, varying the magnetic field from 0 to 500 G can vary
η from 0 to about 1. Thus it seems that there could be a
range of reasonable experimental parameters for observing the
variation of lattice parameters and structures predicted in this
paper.

It is expected that an external magnetic field can affect
the properties of the background gas discharge as well [18].
Electrons and possibly ions can become magnetized at

higher magnetic fields, and the transport of these charged
particles can result in variations in the charging process and
the effective confinement potential experienced by the dust
particles. Furthermore, new types of instabilities may arise. It
is well beyond the scope of this paper to discuss the possible
experimental challenges. However, it would be very interesting
to see under what conditions the tendency of alignment of
the lattice structure, as depicted in Figs. 6 and 7, would be
pronounced enough to overcome the possible rotation of the
dust cloud due to an ion drag force in the case where the ions
are magnetized (see, e.g., [19]).

VI. SUMMARY

The ground-state configuration of a 2D dusty plasma
crystal composed of superparamagnetic grains immersed in
an external magnetic field has been investigated using MD
simulations with parameters that may be close to realizable
experimental conditions. Since the magnetic dipole moments
of the grains are induced by the external magnetic field, the
dipole moments of the grains all lie in the same direction. This
study determined the dependence of the lattice parameters
and structure on the parameter η (which characterizes the
relative strength of the magnetic dipole-dipole to electrostatic
interactions) and α (the angle between the direction of the
magnetic dipole moment and the lattice plane). It was found
that, for a given set of dust and plasma parameters, it may be
possible to vary the lattice spacing within a factor of about
2 by changing the magnitude of the external magnetic field
or the direction of the field with respect to the dust layer.
Correspondingly, the particle density can be varied by about a
factor of 2. Moreover, the lattice structure can be tuned from
triangular (hexagonal) to almost rectangular; depending on η

and α, the rhombic angle can vary between 60◦ and 80◦, and
the aspect ratio between 1 and 2. It was shown that there could
be sets of reasonable experimental parameters for observing
the effects discussed in this paper.
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E 68, 061406 (2003).

[6] S. Pu, T. Geng, X. Chen, X. Zeng, M. Liu, and Z. Di, J. Magn.
Magn. Mater. 320, 2345 (2008).

[7] J. Ge, Y. Hu, and Y. Yin, Angew. Chem. Int. Ed. 46, 7428
(2007).

[8] J. Ge, Y. Hu, T. Zhang, T. Huynh, and Y. Yin, Langmuir 24,
3671 (2008).

016409-7

http://dx.doi.org/10.1088/1367-2630/5/1/324
http://dx.doi.org/10.1088/1367-2630/5/1/324
http://dx.doi.org/10.1109/TPS.2004.826091
http://dx.doi.org/10.1002/1521-4095(200111)13:22<1681::AID-ADMA1681>3.0.CO;2-G
http://dx.doi.org/10.1021/cm010811h
http://dx.doi.org/10.1103/PhysRevE.68.061406
http://dx.doi.org/10.1103/PhysRevE.68.061406
http://dx.doi.org/10.1016/j.jmmm.2008.04.134
http://dx.doi.org/10.1016/j.jmmm.2008.04.134
http://dx.doi.org/10.1002/anie.200701992
http://dx.doi.org/10.1002/anie.200701992
http://dx.doi.org/10.1021/la7039493
http://dx.doi.org/10.1021/la7039493


HARTMANN, ROSENBERG, KALMAN, AND DONKÓ PHYSICAL REVIEW E 84, 016409 (2011)
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