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We analyze via theoretical approaches and molecular dynamics simulations the collective mode structure of
strongly coupled two-dimensional binary Yukawa systems, for selected density, mass, and charge ratios, both
in the liquid and crystalline solid phases. Theoretically, the liquid phase is described through the quasilocalized
charge approximation (QLCA) approach, while in the crystalline phase we study the centered honeycomb and
the staggered rectangular crystal structures through the standard harmonic phonon approximation. We identify
“longitudinal” and “transverse” acoustic and optic modes and find that the longitudinal acoustic mode evolves
from its weakly coupled counterpart in a discontinuous nonperturbative fashion. The low-frequency acoustic
excitations are governed by the oscillation frequency of the average atom, while the high-frequency optic
excitation frequencies are related to the Einstein frequencies of the systems.
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I. INTRODUCTION

Yukawa systems, i.e., many-particle systems where the pair
interaction potential energy is

φ(r) = Z1Z2ϕ(r), ϕ(r) = exp(−κr)

r
, (1)

have been of interest for some time. The Yukawa potential has
the unique feature that by varying the screening parameter
κ the potential can assume the features both of a short-
range (hard-sphere-like) and of a long-range (Coulomb-like)
interaction potential. Since the 1970s this feature has motivated
a number of investigations relating to the properties of
Yukawa liquids and solids, their phases and phase transitions
[1–3]. Quite apart from this academic interest, the Yukawa
potential has been recognized as a good approximation for the
interaction potential between charged particles in colloids [4]
and, more recently, in complex (dusty) plasmas, where the
original Coulomb interaction between the main constituents is
transformed by Debye screening into a Yukawa-type potential
(for a review, see, e.g., [5,6]). Complex plasmas constitute
an especially suitable medium for the study of waves and
collective excitations because these are much less damped than
in colloidal systems. In recent years the authors of a host of
papers, both theoretical [7–15] and experimental [16,17], have
studied collective modes in Yukawa systems [18–25]. Most
of the experimental work on colloidal systems and complex
plasmas has focused attention on two-dimensional (2D) layers.
We note that the physics of the 2D and 3D systems, the
dynamics of the collective excitations in particular, is, in fact,
quite different and addressing 2D and 3D systems separately
is also warranted on theoretical grounds [4].

The strength of the coupling between the particles can
be characterized by the nominal bare coupling parameter
� = (Z2e2)/(kbT a), with a being the Wigner-Seitz radius.
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A physically more meaningful �eff that basically represents
the ratio of the potential and kinetic energies can be defined
for orientation purposes as �eff = � exp(−κa) [26], although
more sophisticated expressions are available [27–29].

The main interest lies in the behavior of the strongly coupled
state, �eff � 1. In this strongly coupled state the system can
be either in the dense liquid or in the crystalline solid phase.

Past works on the dynamics have overwhelmingly con-
centrated on Yukawa systems consisting of one single com-
ponent, the equivalent of the one-component plasma, in
both three and two dimensions (YOCP3D and YOCP2D,
respectively). A great deal of theoretical [9,11–15,30,31]
and computer simulation [10,32–35] effort has been devoted
to the mapping and understanding of the collective mode
structures in these systems, in both the liquid and solid
phases. The theoretical methods required in the two situations
are, of course, quite different. Once the lattice structure is
identified, the crystalline solid is amenable to the standard
harmonic phonon analysis. Concerning the treatment of
the collective modes in the strongly coupled liquid phase,
the quasilocalized charge approximation (QLCA) approach
developed by Kalman and Golden [36,37] has turned out
quite successful. The observation that serves as the basis
for the QLCA is that the dominating feature of the physical
state of a classical charged liquid with coupling parameter
�D � 1 is the quasilocalization of the constituent charged
particles. The ensuing model closely resembles a disordered
solid where the dipoles occupy randomly located sites and
undergo small-amplitude oscillations about them. However,
the site positions also change and a continuous rearrangement
of the underlying quasiequilibrium configuration takes place.
Inherent in the model is the assumption that the two time
scales are well separated, and that it is sufficient to consider the
time average (converted into ensemble average) of the drifting
quasiequilibrium configuration. The latter is calculated via the
equilibrium pair correlation function, which may be provided
by molecular dynamics simulations (MD) (for details see [37]).
As a result of these works, the collective mode spectra of
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the YOCP3D and YOCP2D are well understood and this
understanding is well corroborated by observations [16,17].

As to strongly coupled Yukawa mixtures consisting of more
than one single species, in particular binary Yukawa mixtures
(YBM3D and YBM2D), the collective dynamics of these
systems constitutes a largely unexplored area (see, however,
a recent work by Daligault [38]), even though the problem
is of great theoretical interest. (For a related one-dimensional
problem, see [39,40].) One expects that the simple analytic
structure of the Yukawa potential will allow one to derive
nearly exact solutions, which will elucidate the common
features of the dynamics of binary liquids and solids [41,42].
Also, the flexibility of the Yukawa interaction would make the
qualitative features of the results serve as paradigms for the col-
lective mode structures of binary systems interacting through
other potentials as well (alloys, dipole systems, etc.). From
the point of view of actual applications, the creation of binary
complex plasmas has technical problems, but, nevertheless,
one expects that such strongly coupled complex plasmas of two
different grain species will become available in the near future.

This paper, the first in a series, presents a systematic study of
he collective mode spectra of the YBM2D system. The system
consists of two species, with charges Z1 and Z2, masses m1

and m2, and densities n1 and n2 (or concentrations c1 and
c2), respectively. Our strategy is similar to the one followed
in our previous works on the YOCP3D and YOCP2D: for the
theoretical analysis of the liquid state we apply the QLCA
formalism; for the crystalline solid we calculate dispersion
relations by the standard method. In both cases, we parallel
our theoretical analysis with detailed MD simulations of the
density and current fluctuation spectra of the system; it is,
then, the positions of the peaks of the fluctuation spectra
from which the dispersion relations are inferred. It has to be
noted, however, that following this road map is fraught with
questions stemming from the fundamental difference between
the binary and single-component systems. Concerning the
QLCA, is it justified to represent the system through separate
collective coordinates for each of the species in a liquid where

the two species are spatially not separated? Concerning the
MD, if different partial fluctuation spectra provide conflicting
information, which one of them should be accepted as most
relevant to the actual dispersion? Finally, one has to be aware of
the fact that in the presence of different charges Z1 and Z2 with
different concentrations c1 and c2, the liquid phase is governed
by a complex phase diagram [41–47] in which only certain
combinations of these parameters allows a homogeneous sys-
tem. In the solid phase, similarly, with a given set of parameters
only certain lattice structures are permissible [48,49].

We tackle these issues as they present themselves in this
work. We have to emphasize though, that our goal is restricted
to determining the existence, interrelationships, and dispersion
of the collective modes. We do not address a number of related
problems: the damping of the modes, the detailed structures
and the link between the various fluctuation spectra, the critical
freezing values of �, the nature of the underlying order in
the liquid phase, lattice stability, and structures, etc. The
issues investigated in this paper are organized according to
the following plan: Sec. II is devoted to the description of
the liquid phase and Sec. III of the crystalline solid phase. In
each case we first analyze the qualitative features of the optic
(ω finite at k = 0) and then the acoustic (ω → 0 as k → 0)
excitations, before presenting the description of the full mode
structure. In Sec. III we compare the mode structures in the
two phases and draw conclusions. (For a preliminary account
of some of the results pertaining to the optic modes, see [50],
and to the acoustic modes, see [51].)

Whenever not noted otherwise, we measure frequencies in
units of ω1, the plasma frequency of species 1, use �1, the
bare coupling value for species 1, to characterize the coupling
strength, and adopt κa = 1 (a = √

a1a2) for the screening
parameter.

II. STRONGLY COUPLED LIQUID PHASE

The theoretical analysis of the mode structure in the liquid
state is based on the QLCA approach, as discussed above. The
fundamental equation for the dynamical matrix is

C
μν

AB(k) = −ZAZBe2
√

nAnB√
mAmB

⎡
⎣∫

d2r

⎧⎨
⎩�μν(r)[exp(−ik · r) − δAB][1 + hAB(r)] − δAB

∑
C �=A

ZCnC

ZAnA

�μν(r)[1 + hAC(r)]

⎫⎬
⎭

⎤
⎦

= −ω2
AB

1

2π

∫
d2r̄�μν(r̄)[exp(−ik · r) − δAB][1 + hAB(r̄)] + δAB

1

2π

∑
C �=A

�2
AC

∫
d2r̄�μν(r̄)[1 + hAC(r̄)] (2)

with

�μν(r) = ∂μ∂νϕ(r), (3)

where ϕ(r) is the Yukawa interaction ϕ(r) = exp(−κr)/r

characterized by the screening constant κ . Then

�μν(r) = exp(−κr)

r

(
3
rμrν

r2
a(κr) − δμνb(κr)

)
,

a(y) = 1 + y + 1

3
y2, b(y) = 1 + y. (4)

Additional notational conventions are

�2
AB = 2πe2ZAZBnB

mAa
, ω2

AB = 2πe2ZAZB

√
nAnB√

mAmBa
,

a = √
a1a2, aA = 1/

√
πnA, κ̄ = κa, (5)

r̄ = r/a, y = κr,

with Z, m, n, and a representing the charge number, mass,
density, and Wigner-Seitz radius for the respective compo-
nents. The �AB and ωAB frequencies are the nominal Einstein
and nominal plasma frequencies of the system. The hAB
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pair correlation functions are to be obtained from the MD
simulations, as described below.

The elements of the C matrix can be expressed in terms of
the kernel functions K and L:

CL
AB = ω2

AB

∫
dr̄

r̄2
K(kr,y)[1 + hAB(r̄)]

−δAB

∑
C(all)

�2
BC

∫
dr̄

r̄2
K(0,y)[1 + hBC(r̄)],

(6)

CT
AB = ω2

AB

∫
dr̄

r̄2
L(kr,y)[1 + hAB(r̄)]

−δAB

∑
C(all)

�2
BC

∫
dr̄

r̄2
L(0,y)[1 + hBC(r̄)],

with the kernel functions given by

K(u,r) = − exp(−y){[1 + y + y2]J0(u)

− 3[1 + y + y2/3]J2(u)},
(7)

L(u,r) = − exp(−y){[1 + y + y2]J0(u)

+ 3[1 + y + y2/3]J2(u)}.
In order to clearly display the behavior in the vicinity of

k = 0 we also introduce

G(u,r) = K(u,r) − K(0,r),

H(u,r) = L(u,r) − L(0,r), (8)

F(r) = −K(0,r) = −L(0,r).

The integrals of the kernel functions over the pair correla-
tion functions 1 + h(r) are

KAB(k) =
∫

dr̄

r̄2
K(kr,r)[1 + hAB(r)],

LAB(k) =
∫

dr̄

r̄2
L(kr,r)[1 + hAB(r)], (9)

FAB =
∫

dr̄

r̄2
F(r)[1 + hAB(r)].

These integrals would be divergent at r = 0, were it not for
the pair correlation function 1 + h(r) that becomes 0 at r = 0.
Similarly,

GAB(k) =
∫

dr̄

r̄2
G(kr,r)[1 + hAB(r)],

(10)

HAB(k) =
∫

dr̄

r̄2
H(kr,r)[1 + hAB(r)].

Introducing the asymmetry parameters p and q,

p2 = Z2n2/Z1n1, q2 = Z2m1/Z1m2, (11)

one obtains for the longitudinal elements

CL
11(k) = ω2

1

2
[G11(k) + p2F12],

CL
12(k) = ω2

1

2
pq[G12(k) − F12], (12)

CL
22(k) = ω2

1

2
[p2q2G22(k) + q2F12],

while the transverse elements are

CT
11(k) = ω2

1

2
[H11(k) + p2F12],

CT
12(k) = ω2

1

2
pq[H12(k) − F12], (13)

CT
22(k) = ω2

1

2
[p2q2H22(k) + q2F12].

We have found it useful to introduce ω1 (=ω11) as the
reference frequency. In general, there exist four modes as the
roots of the characteristic equations

∥∥C
L,T
AB − ω2

∥∥ = 0, (14)

which will be labeled ωL
+, ωT

+, ωL
−, and ωT

−. The ± notation
identifies the polarizations in species space of the modes: the
“+” sign designates polarization where the two components
move in phase, while the “–” sign designates polarization
where the two components move out of phase. The two +
modes are acoustic (ω → 0 as k → 0) and the two − modes
are optic modes (ω finite for k = 0). In addition, the modes
are labeled as longitudinal L or transverse T , referring to their
polarization with respect to k when the propagation is along
the principal axes. We note that the elements of the C matrix,
and consequently the eigenfrequencies, depend only on the
two p and q combinations of the originally introduced three
parameters Z = Z2/Z1, M = m2/m1, and N = n2/n1.

A. Optic modes

At k = 0, GAB(k) ∝ HAB(k) ∝ O(k2), and thus
ω−(k = 0), the gap frequency, is longitudinal-transverse
degenerate, as it should be for an isotropic liquid:

ωgap = ωL
−(k = 0) = ωT

−(k = 0) = ω1

√
1

2
(p2 + q2)F12

=
√

1

2

(
�2

12 + �2
21

)
F12 =

√
1

2

(
�̄2

12 + �̄2
21

)
. (15)

In view of Eqs. (6) through (9) FAB can be interpreted as the
average potential generated by species B in the environment
of a particle of species A:

FAB = 1

2π

∫
d2r̄〈�(r)〉[1 + hAB(r)], �̄2

AB = �2
ABFAB,

(16)

with 〈· · · 〉 designating angular averaging. The �̄AB frequency
represents the oscillation frequency of a particle of species A in
the frozen environment of particles of species B. We note that
it is the correlation-dependent �̄’s rather than the nominal �’s
that are the real Einstein frequencies of the system [34], with
a similar definition being used in the theory of liquids [52].
In a single-component system the Einstein frequency �̄ also
provides the ω(k → ∞) limiting frequency [11].
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In order to find the k → ∞ limits for the binary systems
we reexpress the elements of the C matrix as

CL
11 = ω2

11

2

{
K11(k) + (

�̄2
11 + �̄2

12

)}
,

(17)

CL
12 = ω2

12

2
K12(k), CL

22 = ω2
22

2

{
K22(k) + (

�̄2
22 + �̄2

21

)}
.

In the k → ∞ limits the K terms vanish. This can be seen
by observing that

KAB(k) = k

∫
du

u2
K(u,y)[1 + hAB(u/k)] (18)

and that [1 + h(r → 0)] → 0 fast enough to make this happen.
Similar considerations apply to the transverse elements.

Thus the k → ∞ upper and lower effective Einstein
frequencies become �I and �II, respectively:

ω−(k → ∞) =
√

1

2

(
�̄2

11 + �̄2
12

) = �̄I,

(19)

ω+(k → ∞) =
√

1

2

(
�̄2

22 + �̄2
21

) = �̄II.

The calculated gap frequencies and the effective Einstein
frequencies as functions of �, together with the results
obtained by MD simulations (see below), are shown in Fig. 1;
also shown is the variation of the correlation integral F12.
In anticipation of the results of the next section, we have
also indicated the gap frequencies in the crystal lattices. We
will further comment on the relationships between these gap
frequencies in the next section.

B. Acoustic modes and sound speed

We now turn to the calculation of the acoustic modes in
the binary system. We are interested primarily in the small-k
behavior, which will lead to the determination of the sound
speed.

First we observe that by dropping h(r) in the integrals
for the G(k) and H (k) functions the resulting G0(k) and
H 0(k) integrals become doable and provide the random-phase
approximation (RPA) expressions

G0(k) =
∫

dr̄

r̄2
exp(−κr)[{1 + y + y2}{1 − J0(u)}

− 3{1 + y + y2/3}J2(u)] = k̄√
κ̄2 + k̄2

,

(20)

H 0(k) =
∫

dr̄

r̄2
exp(−κr)[{1 + y + y2}{1 − J0(u)}

+ 3{1 + y + y2/3}J2(u)] = 0,

The C-matrix equivalent to the cold RPA approximation would
be obtained by dropping the F12 terms in Eqs. (12) and (13),
and using (20) for C11, C12, and C22. Then one obtains the
RPA result

ωL
+ = ω0

k̄√
κ̄2 + k̄2

,

(21)
ωL

− = 0, ω0 = ω1

√
1 + p2q2 =

√
ω2

1 + ω2
2.

FIG. 1. Liquid state: QLCA gap (•) and Einstein (�) frequencies
vs �. The arrows indicate the positions of the corresponding gaps
in the lattice. The inset shows the � dependence of the correlation
integral F12 (symbols), which does not vary with the mass ratio.
(a) n2 = n1/2; (b) n2 = n1.

Note that the intuitively more reasonable requirement that
in order to obtain the RPA limit one sets h12 equal to zero
everywhere in Eqs. (12) and (13) would result in a meaningless
divergent integral for F12. This feature shows that there is
no smooth transition from the QLCA expression to the RPA.
In other words, in contrast to the case of the YOCP, in the
YBM the RPA Eq. (20) cannot be simply amended by adding
correlational corrections in order to obtain the strong-coupling
expression: the strong correlations show up in an essentially
nonperturbative fashion.

Returning now to Eqs. (12) and (13) we now calculate the
small-k expansion. The result is given in terms of the integrals

UAB = − 5

16

∫ ∞

0
dy

[
1 + y + 3

5
y2

]
exp(−y)hAB(r),

VAB = − 1

16

∫ ∞

0
dy[1 + y − y2] exp(−y)hAB(r). (22)
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Thus the longitudinal and transverse CL
AB and CT

AB matrix
elements in the k → 0 limit become

CL
11(k → 0) = ω2

1

2

{
(1 − U11)

k̄2

κ̄
+ 1

2
p2κ̄F12

}
,

CL
12(k → 0) = ω2

1

2

{
pq(1 − U12)

k̄2

κ̄
− 1

2
pqκ̄F12

}
,

CL
22(k → 0) = ω2

1

2

{
p2q2(1 − U22)

k̄2

κ̄
+ 1

2
q2κ̄F12

}
,

(23)

CT
11(k → 0) = ω2

1

2

{
V11

k̄2

κ̄
+ p2κ̄F12

}
,

CT
12(k → 0) = ω2

1

2

{
pqV12

k̄2

κ̄
− 1

2
pqκ̄F12

}
,

CT
22(k → 0) = ω2

1

2

{
p2q2V22

k̄2

κ̄
+ 1

2
q2κ̄F12

}
.

Proceeding now from (23), after some algebra one finds
the small-k expansion of the relevant ωL

+(k) and ωT
+(k) mode

frequencies as

(ωL
+)2(k → 0) = ω̄2

{
1 − U11 + 2p2U12 + p4U22

(1 + p2)2

}
k̄2

κ̄
,

(24)

(ωT
+)2(k → 0) = ω̄2

{
V11 + 2p2V12 + p4V22

(1 + p2)2

}
k̄2

κ̄
.

While the first term in (ωL
+)2 is RPA-like in appearance since

it shows no explicit dependence on h(r), in fact it reflects an
essentially strong-coupling behavior, the correlational effects
manifesting themselves through the ω̄ coefficient, which we
will refer to as the “virtual average atom” (VAA) frequency
(this frequency has also been mentioned in relation to the
self-diffusion coefficient of a plasma in Ref. [53]).

ω̄2 = ω2
1

q2

p2 + q2
(1 + p2)2. (25)

The VAA in fact represents an entity created from the averages
of the system parameters. To see this, Eq. (25) is rewritten in
terms of the average charge and mass as

ω̄ =
√

2πe2

a

〈Z〉2

〈m〉 n, n = n1 + n2. (26)

The averages are defined through

〈X〉 =
∑

i Xini∑
i ni

. (27)

Compare now ω̄ with the frequency ω0 of Eq. (21): the dramatic
difference in the dependence on the plasma parameters, in
particular on the mass ratio, is evident. (A similar result
but restricted to the Z1 = Z2 case was already anticipated
in Ref. [51].)

The notion of the VAA originates from the literature
pertaining to liquid alloys and disordered binary systems
[54–56] as a heuristic concept. Here the derivation of this
behavior, as a result of the evolution of the system from weak
to strong coupling, is given.

All the observations now made on the k → 0 behavior of
the acoustic mode can be translated into statements about the

sound speeds

sL,T = [ωL,T
+ (k)/k]k→0. (28)

Thus, according to (23) and (28), the longitudinal sound speed
at weak coupling has its RPA value, governed by ω0; for
strong correlations the sound speed is substantially reduced
and strong correlations manifest themselves, in contrast to
the YOCP, in two ways: first, by morphing the mean-field
contribution into one whose properties are dictated by the
VAA and do not explicitly depend on the correlations and,
second, by generating an explicit correlational correction. For
the transverse sound speed, similarly to the YOCP, there is no
h-independent contribution.

In parentheses we remark that to what extent the weak-
coupling value of the sound velocity is well represented by the
RPA (or “cold fluid”) expression is not clear. It is generally
assumed that it is [53,57]. Nevertheless, the issue is that
while for a Coulomb system there exists a clear rigorous
derivation (also supported by ample observational evidence)
that shows that in the � → 0 limit the RPA is correct, no
such demonstration is currently available for a Yukawa system.
In fact, there is reason to believe [58] that for a finite-range
system the description of the behavior of the system in the
weak-coupling limit is more involved. All this, however, has
very little bearing on our conclusion that the sound speeds and
the low-frequency excitations in the strongly coupled system
are governed by the frequency of the VAA and thus are quite
different from their weak-coupling counterparts.

We have studied the � dependence of the sound speeds
and of the related effective masses, the latter being defined by
subtracting the explicitly correlation-dependent term from the
sound speed coefficient

meff

m1
= ω2

1a
2

sL2

〈Z〉2

κ̄

[
1 + n2

n1

]
(1 − U ) (29)

by MD simulations for the parameter set given previously.
Results are shown in Figs. 2 and 3 for � values between
� = 5 and � = 120. For � = 1 and � = 5 sound speed values
calculated through the (Vlasov-equation-based) RPA approach
are also displayed.

At the high-� end the QLCA-predicted behavior is in
excellent agreement with simulation results. As � approaches
the freezing boundary, the sound speeds smoothly join their
values in the crystal lattice, which are also given, in anticipation
of the results of the next section. Some further comments on
the relationship between the sound speeds in the two domains
will be given there. In the liquid, as � is lowered, a remarkable
decrease of the effective mass and a concomitant increase
of the sound speed can be observed. At the same time, the
QLCA sound speed, in general, stays below the observed value
because the QLCA ignores the modification of the effective
mass as � is reduced. It can be noted, that even at the relatively
low � = 5 value the strong-coupling behavior seems to be still
dominant and the sound speed is much below its calculated
RPA value. The behavior of the sound speed below this �

value is not clear: it is a domain that would require substantial
theoretical, simulation, and experimental work to arrive at a
reliable and coherent picture.
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KALMAN, HARTMANN, DONKÓ, GOLDEN, AND KYRKOS PHYSICAL REVIEW E 87, 043103 (2013)
(u

ni
ts

 o
f a

ω
1)

 
(u

ni
ts

 o
f a

ω
1)

 
(u

ni
ts

 o
f a

ω
1)

 
(u

ni
ts

 o
f a

ω
1)

 

FIG. 2. Liquid state: Longitudinal sound speeds. (•), MD; line,
QLCA; gray shaded area and line, lattice value. For � = 1 and � = 5
the RPA (Vlasov-equation-based) values of the sound speeds are also
indicated (�). (a) n2 = n1/2; (b) n2 = n1.

C. Mode dispersion

Now we turn to the description of the full mode structure in
the liquid state. By solving the characteristic equations for the
matrices (12) and (13) one obtains the full ω(k) dispersion
for the four liquid modes. The results of this calculation
are displayed for density ratios n2/n1 = 1 and 1/2 and for
the already chosen parameter values Z = Z2/Z1 = 0.7 and
1.4 (2.0), M = m2/m1 = 0.2 and 5.0. The Z2/Z1 values
have been chosen in the vicinity of the stability bound-
ary for the (staggered rectangular and honeycomb) binary
lattices.

Our theoretical analysis of the mode structure was ac-
companied by detailed molecular dynamics studies of the
dynamical fluctuation spectra of the system, as described
below. In the molecular dynamics simulations we trace
the trajectories of individual particles as obtained from the

FIG. 3. Liquid state: Effective masses for Z1 = Z2 vs �. (a),
(b) n2 = n1/2; (c), (d) n2 = n1. The arrows indicate the mass
average 〈m〉 = (n1m1 + n2Z2)/(n1 + n2). The error bars represent
5% (10%) uncertainty in the measurement of the MD sound speed for
M = 5 (20).

integration of their equations of motion:

mi

dvi

dt
= −

N∑
j �=i

∇φij , (30)

where φij is the interaction potential energy (∝ZiZj ) between
the particles i and j , and mi are the masses of the particles.
The exponentially decaying nature of the Yukawa potential
allows us to introduce a cutoff radius, and to restrict the
summation in Eq. (30) to given “neighbors” of particle i,
defined as those located within a distance from it smaller than
the cutoff radius. The latter is normally chosen in such a way
that the force between particle i and the disregarded particles
(situated at a distance greater than the cutoff radius) is less
than 10−4 to 10−3 as compared to the force between particle
i and those particles residing within its first coordination
shell. We use periodic boundary conditions. The primary
simulation cell is surrounded by image cells, in which, when
necessary, neighbors of the particles (defined above) are also
searched for. In this way edge effects are eliminated and
the properties of an infinite system are well approximated.
The edge lengths of the computational box (Lx and Ly) and
the total number of particles are chosen to accommodate a
perfect lattice for the selected density ratios (and expected
associated lattice structures). In the case of n2/n1 = 1 we use
N1 = N2 = 2040 particles, while in the case of n2/n1 = 1/2
we use N1 = 2720 and N2 = 1360 particles. Even though
we have not investigated possible effects of the system size
(number of particles), our preliminary tests have indicated that
the system sizes used throughout the paper result in a good
representation of the physical effects, the only limiting factor
being the smallest accessible wave number (see below). This,
however, did not prove to be an important constraint either.

In the simulations of liquid-phase systems normally random
initial particle configurations are set up. In all cases ample time
is given to the system to reach thermodynamic equilibrium
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before measurements on the system start. During this equi-
libration phase, rescaling of the particle velocities is applied
to reach the desired system temperature; this procedure is,
however, stopped before data collection.

The central quantities to be calculated in the simulations are
the fluctuation spectra of the densities and currents. Static pair
distribution functions gAB(r) = 1 + hAB(r) are also obtained
and used as input for the QLCA calculations. Information
about the (thermally excited) collective modes is obtained from
a Fourier analysis of the correlation spectra of the density
fluctuations of the different species (A,B = 1,2):

ρA(k,t) =
NA∑
j=1

exp[ikxj (t)], (31)

yielding the dynamical structure functions as [59]

SAB(k,ω) = 1

2π
√

NANB

lim
�t→∞

1

�t
ρA(k,ω)ρ∗

B(k,ω), (32)

where �t is the length of the data recording period and
ρ(k,ω) = F[ρ(k,t)] is the Fourier transform of (31). The
(A,B) combinations label spectra related to component 1, S11,
to component 2, S22, as well as to the cross term S12.

Similarly, the spectra of the longitudinal and transverse
current fluctuations L(k,ω) and T (k,ω) are obtained from
Fourier analysis of the corresponding microscopic quantities,

λA(k,t) =
NA∑
j=1

vjx(t) exp[ikxj (t)],

(33)

τA(k,t) =
NA∑
j=1

vjy(t) exp[ikxj (t)],

where xj and vj are the position and velocity of the j th particle.
Here we assume that k is directed along the x axis. These
calculations allow the determination of the spectra for a series
of wave numbers, which are multiples of kmin ,x(y) = 2π/Lx(y),
where Lx(y) is the edge length of the simulation box in the x

(or y) direction.
The identification of the collective modes is based on the

observation of the extrema of L11 and L22. When the peak
positions do not completely coincide (this may happen for
various reasons, which will be discussed elsewhere), it is the
position of the stronger peak that is accepted.

Distribution functions gAB(r) = 1 + hAB(r) that have been
used as input in the QLCA calculations are given in Fig. 4 for
the previously chosen n2/n1 and Z2/Z1 values. We have also
added the Z2/Z1 = 1 distribution functions, in order to show
that in this case the three correlation functions h11, h12, and
h22 are identical, independently of the density ratios (the mass
ratios obviously do not affect the correlation functions).

Some illustrative current fluctuation spectra are given in
Fig. 5.

The MD-simulated mode structures, together with the
QLCA calculated dispersion curves, are given in Fig. 6.
Although the MD spectra are sometimes quite noisy as the
collective modes have rather broad peaks in the spectra, the
agreement between the simulated and calculated dispersions,
in general, is good. A new feature shown by the simulation
but not predicted by the QLCA formalism is the merging of

FIG. 4. Liquid state: Examples of the g(r) pair distribution
functions at � = 120 (a), (c), (e) n2 = n1/2; (b), (d), (f) n2 = n1.
Note that for Z1 = Z2 we obtain g11 = g22 = g12, irrespective of the
density ratios.

a portion of the longitudinal acoustic and longitudinal optic
modes at low m2/m1 values into a new acoustic mode.

III. BINARY LATTICE

Depending on the Z and n values of the two components,
a variety of ordered and disordered phases should exist in a
2D binary crystal. In combination with the different melting
temperatures associated with the different phases, a rather
complex phase diagram can emerge. The stability of the
different structures can be analyzed through a thermodynamic
approach [48,49] (minimizing the free energy) or through a
dynamical normal mode analysis. In this paper we restrict
ourselves to the study of the T = 0 (� → ∞) lattice structures
only, which is amenable to the latter approach.

The lattice calculation is based on the evaluation of the
lattice sum for the dynamical matrix

C
μν

AB(k) = −e2 ZAZB√
mAmB

⎡
⎣∑

i

⎧⎨
⎩�μν(ri,AB)[exp(−ik · ri,AB

− δAB)] − δAB

∑
C �=A

∑
j

ZC

ZA

�μν(rj,AC)

⎫⎬
⎭

⎤
⎦ (34)

over all the particle pairs with designated A,B and A,C

indices, which now run over all the bases in the primitive
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KALMAN, HARTMANN, DONKÓ, GOLDEN, AND KYRKOS PHYSICAL REVIEW E 87, 043103 (2013)

FIG. 5. (Color online) Liquid state: Examples for the longitudinal
current fluctuation spectra. (a) left column, n2 = n1/2, Z2 = 2Z1;
(b) right column, n2 = n1, Z2 = 1.4Z1.

cell (the number of which may be equal to or greater than the
number of species, i.e., 2). The evaluation was done for ca.
105 particles.

In the following we will consider two different lattice struc-
tures with the previously studied density ratios n2/n1 = 1 and
n2/n1 = 1/2. These two cases provide a reasonable guidance
as to what lattice mode spectrum to expect in more general
situations. In both cases we choose the equilibrium hexagonal
lattice as the skeleton Bravais lattice. The descendent crystal
structures should be stable in the vicinity of Z1 = Z2. With
Z1 = 1, Z2 is restricted to Zm < Z2 < ZM . The values of Zm

and ZM have been determined by finding the onset of unstable
normal modes [60] and are given for both cases in Table I.
Then the resulting lattice structures are the following:

(1) In the equal-density case with n1 = n2 we obtain a
staggered rectangular (SR) lattice with the aspect ratio

√
3:1.

(2) In the half-density case with n2 = n1/2 we obtain a
honeycomb (HC) lattice for species 1, while the particles of
species 2 occupy the center sites of the honeycomb and form
a hexagonal lattice; the lattice constants of the two lattices are
in the ratio

√
3:1; see Fig. 7.

The SR structure is built up from two bases in the primitive
cell, while the HC structure has three bases in the primitive
cell. According to [48,49] other possible structures may exist
outside the stability domains of Table I, such as various

FIG. 6. (Color online) Liquid state: Current fluctuation spectra
from MD simulation [color map (grayscale)] compared with QLCA-
calculated dispersion (black lines) for � = 120. (a) n2 = n1/2;
(b) n2 = n1.

rhombic structures, the asymmetric hexagon (also with three
bases in the primitive cell) and various pentagonal structures
(with 3–5 bases in the primitive cell).

The number of modes r in general is r = d × b, where
d is the dimensionality and b is the number of bases in
the primitive cell. In general, the polarizations of the modes

TABLE I. Stability regions.

n2/n1 Zm ZM

1 0.646 ± 0.001 1.548 ± 0.002
1/2 0.51 ± 0.01 2.88 ± 0.01

043103-8



COLLECTIVE MODES IN TWO-DIMENSIONAL BINARY . . . PHYSICAL REVIEW E 87, 043103 (2013)

2

(a) (b)

1′ 1″

2

1

FIG. 7. (Color online) Principal lattice structures: staggered
rectangular (a), and honeycomb (b). Primitive cells are shown with
dashed lines. In (b) the positions 1′ and 1′′ are distinguished.

can be characterized only in the combined r-dimensional
species-configuration space. In specific situations, however,
(i) the r-dimensional space factorizes into the b-dimensional
species and d-dimensional configuration subspaces; moreover,
(ii) longitudinal and transverse polarizations (with respect to
k) may become the eigenpolarizations in the latter. This occurs
when k is along one of the principal axes of the crystal. Thus
the L+, etc., designations remain still meaningful and, by
continuity, can be used for the labeling of the modes, with
the proviso that since in general, more than one pair of optic
modes may exist, a further index, say β = I, II may be needed
for the full labeling. The HC mode structure consists of six
modes altogether, out of which three are “longitudinal” and
three are “transverse” modes. Due to the rotational symmetry
of the reciprocal lattice for k → 0 the L and T optic modes
are degenerate at k = 0. In this limit, one can identify a pair
of acoustic and two pairs of degenerate optic (gapped) modes.
The SR mode structure consists of four (two longitudinal and
two transverse) modes. In the absence of rotational symmetry
the L and T modes are not degenerate at k = 0, and the ωL

−
and ωT

− gaps are separated.

A. Optic modes

The simple geometric structure of the primitive cell allows
one to obtain a transparent result for the ω(k → 0) frequency
gaps. The results are given below and portrayed in Fig. 10. For
the HC lattice at k = 0 the elements of the C matrix are

CL
1′1′ (0)

ω2
1

= 1

2
√

2

⎡
⎣∑

j

�L(rj,1′1′) + �L(rj,1′2)

⎤
⎦ = CL

1′′1′′ (0)

ω2
1

,

CL
22(0)

ω2
1

= 1

2
√

2

Z

m

⎡
⎣∑

j

�L(rj,21′ ) + �L(rj,21′′ )

⎤
⎦ ,

(35)
CL

1′1′′ (0)

ω2
1

= − 1

2
√

2

⎡
⎣∑

j

�L(rj,1′1′′ )

⎤
⎦ ,

CL
1′2(0)

ω2
1

= − Z

2
√

2m

⎡
⎣∑

j

�L(rj,1′2)

⎤
⎦ = CL

1′′2(0)

ω2
1

.

By symmetry, all the lattice sums are equal; the rotational
symmetry (L = T ) can be further exploited to obtain

P = 1

2
√

2

∑
j,21′

exp(−y)
1

r̄3

(
1

2
(1 + y + y2)

)
, (36)

FIG. 8. SR lattice: polarizations of the gap frequencies versus
propagation angle for Z2 = Z1.

in terms of which the roots of the cubic equation are

ω
L,T
−,I =

√
2(p2 + q2)P , ω

L,T
−,II =

√
2(1 + p2)P . (37)

Note that ωL,T
−,II is an “invariant mode,” where the gap frequency

is independent of m2; in this mode the light particles oscillate
around the inert heavy particle.

For the SR lattice a similar construction yields

QL,T = 1

2
√

2

⎡
⎣∑

j,12

�L,T (rj )

⎤
⎦ , (38)

in terms of which

ω̄L
− =

√
(p2 + q2)QL, ω̄T

− =
√

(p2 + q2)QT . (39)

Here the P ’s and Q’s are lattice sums, characteristic of the
lattice structure (SR or HC); they depend on κ only. They
can be contrasted with the F12 factor appearing in the gap
frequency expression in the liquid (16), that depends on Z2/Z1

as well (see Fig. 9), but for � → �freeze its value in the
n2 = 1/2n1 and n2 = n1 cases reasonably well approaches
the corresponding 4P (for the HC lattice) and 2(QL + QT )/2
(for the SR lattice) values, respectively.

While the gap frequencies are angle independent, the
polarizations associated with them are not: Fig. 8 shows that
T and L polarizations switch place as the propagation angle
varies from 0 to 90◦.

Figure 9 shows the Z and m dependences of the respective
gap frequencies in the SR and HC crystal lattices and the
corresponding gap frequency in the liquid. Commenting on the
HC case first, we note that the liquid has only one frequency
gap and therefore there is no equivalent of the invariant mode
in the liquid. Turning to the SR lattice, one observes the
separation of the longitudinal ωL

− and transverse ωT
− gaps.

The ωgap frequency in the liquid largely follows the angular
average of ω1 and ω2, but less closely than it does in the case
of the YOCP [61].

Figure 10 shows the dependence of the P and Q lattice
sums on the screening parameter; the smooth extrapolation
to the κ = 0 value provides the input for the calculation of
the noteworthy Coulomb gap frequencies via Eqs. (37) and
(39). In parenthesis we note that a little reflection shows that
the P (κ = 0) value bears a close relationship to the M =
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FIG. 9. (Color online) Mass and charge ratio dependence of the
gap frequencies. The QLCA and MD results are also shown. (a)
HC lattice; note the portrayal of the invariant mode in the right
(Z = const) panels. (b) SR lattice.

∑
r−3 dipole sum over a hexagonal lattice whose value is well

known [62]: M/2 = 0.7985/b3 in terms of the Wigner-Seitz
radius b. Then P (κ = 0) = 2−13/4(33/2 − 1)M/2.

B. Acoustic modes and sound speed

In contrast to the optic modes, whose dispersion is highly
structure dependent and is, in general, quite different from
the corresponding mode dispersion in the liquid, the k → 0
behavior of the acoustic phonons in the lattice is largely
similar to that of their liquid counterparts. More precisely,
the sound speeds, as calculated by the QLCA and verified

FIG. 10. The dependence of the lattice sums on the Yukawa
screening parameter (κ). (a) HC lattice; (b) SR lattice.

by simulations, go over quite smoothly to the lattice sound
speeds as � crosses the freezing boundary. This is visible in
Fig. 2. The only difference of some significance arises in the
case of the SR lattice, due to the fact that its reciprocal lattice
space is, in contrast to the HC structure, anisotropic even in
the k → 0 limit. The most important observation, however,
is that the notion of the VAA as a dominant feature for the
low-frequency excitations both in the liquid and in the solid
state is of universal validity.

C. Mode dispersion

The full calculated lattice phonon dispersion diagrams for
both the HC and SR lattices are portrayed in Fig. 11. In order
to be able to compare the MD results with lattice summation
data, simulations were carried out at very low temperatures, at
�1 = 104. In these runs the particles are initially arranged in
a perfect lattice and their thermal motion does not disrupt the
lattice in the course of the simulations. In Fig. 12 we display
the MD simulation results for these finite-temperature lattices:
the MD simulations and the results of the lattice calculations
are in full agreement.

The polarizations of the modes in the combined (in
general not factorizable) Cartesian and species space can be
assessed from Figs. 13–16, where the components of the
eigenvectors for the HC (SR) lattice modes along the six
(four) eigendirections of the dynamical matrix for a given k are
shown. The lengths of the bars labeled LA and TA (components
of the eigenvectors) are proportional to the longitudinal and
transverse displacements of particles at position A. Samples
are given for propagation angles along and off the principal
axes. Note, however, that in the HC lattice (Figs. 13 and 14),
because of the broken reflection symmetry, the eigenvectors
are complex and the bars are proportional to the absolute
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FIG. 11. Calculated mode dispersions for different propagation
angles. (a) HC lattice; note that the invariant mode frequency at k = 0
(pointed at by the arrows) remains invariant for any M = m2/m1 and
any angle; (b) SR lattice.

values of the displacements, irrespective of their phases;
thus the distinction between “in-phase” and “out-of-phase”
polarizations is blurred. This is in contrast to the polarizations
in the SR lattice (Fig. 15), where the eigenvectors are real and
the distinction is clearly displayed.

Finally we address the question of how the collective
mode dispersion depends on κ , the screening parameter of
the Yukawa potential, and, in particular, how the transition to
the κ = 0 Coulomb limit occurs. Figure 17 shows that there
is a smooth evolution of the mode dispersions towards the
Coulomb limit and towards the changeover of the longitu-
dinal acoustic mode into the characteristic quasiacoustic

√
k

Coulombic behavior. It will be shown in another work that
this behavior is in sharp contrast to what happens in the 3D
case [63]).

FIG. 12. (Color online) Current fluctuation spectra from MD
simulation at �1 = 10 000 (color map) compared with dispersion
from lattice calculations (black lines). (a) HC lattice; (b) SR lattice.

IV. COMPARISONS AND CONCLUSIONS

The results of earlier analyses [10–15] of the collective
mode structure of the YOCP have established the close affinity
of the mode structures in the strongly coupled liquid and in
the crystalline lattice states. More precisely, what has been
found is that the QLCA model, which essentially portrays the
strongly coupled liquid as a superposition of randomly oriented
microcrystals and determines the eigenmodes as those of the
averaged crystal, provides an adequate description of wave
propagation in the liquid. Whether such a simple picture would
prevail in the binary liquid, where the nonrandom distribution
of the particles belonging to the two species is an issue as well,
was not a priori obvious. The study presented in the previous
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FIG. 13. (Color online) HC lattice: Mode polarizations for 0◦

propagation. Z = 0.7, M = 5, α = 0◦ (k‖x), ka = 0.5 in the panels,
particle “2” is the heavy one (see Fig. 7).

sections shows, however, that this is the case. In the following,
we discuss the relationship between the phonon dispersion
in the binary crystal, as calculated by lattice summation and
corroborated by MD simulations, and collective excitations in
the binary liquid, as provided by the QLCA description and
the MD simulations. Judged by comparison with the results
of the MD simulations, the QLCA results are quite reliable,
with two exceptions, which we will discuss below. In compar-
ing mode structures in the liquid and in the solid, the effect
of the different density ratios has to be kept in mind: while in
the former the difference between the n2 = n1 and n2 = n1/2
cases does not make a major difference, in the latter the two
different crystal structures (SR and HC) substantially affect
the mode structure.

Focusing first on the low-k acoustic excitations, we see that
there is an almost perfect agreement between the liquid QLCA
and MD sound speeds, on the one hand, and the corresponding
values in the liquid and in the two crystal structures studied,
on the other hand. The only difference of note, as we have
already pointed out, arises in the case of the SR lattice, due
to its anisotropy, which results in a narrow band of sound
speeds; in the liquid, as represented by the QLCA, it is

FIG. 14. (Color online) HC lattice: Mode polarizations for 90◦

propagation. Z = 0.7, M = 5, α = 90◦ (k ‖ y), ka = 0.5 in the
panels.

replaced by an angular average. The most important result
that emerges from all this is the fact that the low-frequency
excitations are governed by oscillation frequency ω of the
virtual average atom [see Eq. (26)] which is created by the
average charges and masses of all the components. This effect,
as was discussed in some detail elsewhere [51], has its most
dramatic manifestation in the effective mass of the nominal
plasma frequency of the binary (with respective masses m1

and m2), which in the weakly coupled case is formed, in
general, through the “parallel connection” of the two masses
(1/meff = 1/m1 + 1/m2), but which in the strongly coupled
case becomes the “series connection” of the two masses
(meff = m1 + m2). While the VAA has been a useful heuristic
concept for liquid alloys [64] and for disordered systems
[65–68], and also in connection with self-diffusion [53], here
we have been able to give a rigorous demonstration through
the QLCA of the emergence of this phenomenon. The MD
simulation has shown (see Figs. 1–3) that in the � → �freeze

limit the VAA concept becomes “exact”, in the sense that
after the subtraction of the explicitly identifiable correlational
contribution that is dependent on the pair correlation h12

it determines the sound speed. With decreasing � the meff
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FIG. 15. (Color online) SR lattice: Mode polarizations for 0◦

propagation. Z = 0.7, M = 5, α = 0◦ (k ‖ x), ka = 0.2 in the panels,
and particle 2 belongs to species 2.

FIG. 16. (Color online) SR lattice: Mode polarizations for 10◦

propagation. Z = 0.7, M = 5, α = 10◦, ka = 0.5 in the panels, and
particle 2 belongs to species 2. Note the L-T and 1-2 polarization
mixings.

FIG. 17. The dependence of the HC lattice dispersions on the
Yukawa screening parameter (κ) at m2 = 5m1 and Z2 = 0.7Z1.

decreases, seemingly marching towards the weak-coupling
limit, but within the boundaries of our MD simulation which
covers only the � > 5 domain, the behavior is still essentially
strongly coupled, in that the decrease of meff from its high-�
value is quite slow. However, this decrease of meff in the
moderately coupled domain is not reflected by the QLCA
model: there meff preserves its high-� value [Eq. (29)] for
any �. This is the first inadequacy of the QLCA and it is
the consequence of the fact that the appearance of the VAA
structure is formally correlation independent. Correlational
effects appear only indirectly, through the model from which it
is derived and which adopts quasilocalization as its basis. That
the quasilocalization can lead to such a qualitative effect is an
additional feature of the approximation which manifests itself
only in binary systems. In contrast, in the single-component
system, the weakly coupled and strongly coupled states
differ through their explicit correlation function dependence
only.

A hallmark of the binary system is the emergence of—one
or more—optic modes with a k = 0 gap frequency. In the
liquid state there is only one gap frequency, corresponding
to the two—longitudinal and transverse—modes that become
degenerate at k = 0, due to the isotropy of the liquid. In
the crystal lattice this degeneracy may or may not be lifted,
depending on the local environment: it is in the SR crystal,
but it survives in the HC crystal. In addition, in the crystal
lattice the number of optic modes increases with the number
of particles in the unit cell, which increases in order to
accommodate density ratios n2/n1 �= 1: hence the additional
degenerate gap frequency in the HC crystal. This latter is the
invariant mode whose gap frequency is independent of the
mass of the lower-density component, which remains inert
in this mode. The mode does not have an equivalent in the
liquid. The other, “normal” mode does reappear in the liquid,
with the gap frequency in the vicinity of the crystal equivalent
(for the HC lattice) or between the longitudinal and transverse
gaps (in the SR lattice). It should be emphasized though that
the approximation of the liquid dispersion by angle averaging
the lattice phonons is not equivalent to the QLCA. This
difference was already demonstrated for the YOCP; here it
is much more pronounced.

The gap frequencies are not related to the VAA. In the
liquid they can be expressed in terms of the nominal Einstein
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frequencies �̄AB [Eq. (15)] and thus they follow the parallel
connection rule.

In the liquid state one can identify two upper (�̄I) and lower
(�̄II) Einstein frequencies [Eq. (19)]. For high k values the two
“acoustic” (longitudinal and transverse) modes of the liquid
merge into �̄II, while the two optic modes merge into �̄I. These
latter cannot be directly identified in the crystal lattice, but they
appear in the expressions for its gap frequencies, showing a
good agreement with the QLCA-calculated liquid �̄I and �̄II

quantities.
According to the MD simulation result (Fig. 6) the slopes

in the vicinity of k = 0 of the longitudinal acoustic and
longitudinal optic modes match and the two modes fuse
into a single acoustic mode. There is no indication of this
phenomenon within the QLCA formalism.

As to the dependence on the screening constant κ , we see
(Fig. 17) that the qualitative features of the dispersion remain

unaffected over a wide range of κ values, down to and including
the κ = 0 Coulomb limit.

A number of problems relating to the collective dynamics
of the system have been identified, but have not been studied
in this paper: the damping of the modes, the detailed structures
and the links between the various fluctuation spectra, the nature
of the underlying order in the liquid phase, lattice stability, and
structures, etc. These problems will have to be investigated in
future work.
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(unpublished).
[64] A. Vora, Frontiers Mater. Sci. China 2, 311 (2008).
[65] H.-C. Poon and A. Bienenstock, Phys. Rev. 142, 466 (1966).
[66] R. J. Elliott, J. A. Krumhansl, and P. L. Leath, Rev. Mod. Phys.

46, 465 (1974).
[67] J. S. Langer, J. Math. Phys. 2, 584 (1961).
[68] A. A. Likalter, in Strongly Coupled Coulomb Systems, edited

by G. Kalman, J. Rommel, and K. Blagoev (Plenum Press,
New York, 1998), pp. 303–306.

043103-15

http://dx.doi.org/10.1109/TPS.2011.2153878
http://dx.doi.org/10.1109/TPS.2011.2153878
http://dx.doi.org/10.1063/1.2996515
http://dx.doi.org/10.1063/1.2996515
http://dx.doi.org/10.1209/0295-5075/80/48001
http://dx.doi.org/10.1002/ctpp.201100093
http://dx.doi.org/10.1103/PhysRevLett.107.175003
http://dx.doi.org/10.1103/PhysRevLett.107.175003
http://dx.doi.org/10.1002/ctpp.200310022
http://dx.doi.org/10.1002/ctpp.200310022
http://dx.doi.org/10.1016/0378-4371(85)90022-6
http://dx.doi.org/10.1103/PhysRevB.52.3280
http://dx.doi.org/10.1103/PhysRev.142.466
http://dx.doi.org/10.1063/1.1703742
http://dx.doi.org/10.1103/PhysRevE.56.7166
http://arXiv.org/abs/arXiv:1204.6099
http://dx.doi.org/10.1103/PhysRevA.11.1025
http://dx.doi.org/10.1103/PhysRevA.11.1025
http://dx.doi.org/10.1109/TPS.2007.893259
http://dx.doi.org/10.1103/PhysRevB.78.045304
http://dx.doi.org/10.1103/PhysRevB.78.045304
http://dx.doi.org/10.1007/s11706-008-0039-z
http://dx.doi.org/10.1103/PhysRev.142.466
http://dx.doi.org/10.1103/RevModPhys.46.465
http://dx.doi.org/10.1103/RevModPhys.46.465
http://dx.doi.org/10.1063/1.1703742



