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Benchmarking is generally accepted as an important element in demonstrating the correctness of
computer simulations. In the modern sense, a benchmark is a computer simulation result that has
evidence of correctness, is accompanied by estimates of relevant errors, and which can thus be used as a
basis for judging the accuracy and efficiency of other codes. In this paper, we present four benchmark
cases related to capacitively coupled discharges. These benchmarks prescribe all relevant physical and
numerical parameters. We have simulated the benchmark conditions using five independently developed
particle-in-cell codes. We show that the results of these simulations are statistically indistinguishable,
within bounds of uncertainty that we define. We, therefore, claim that the results of these simulations
represent strong benchmarks, which can be used as a basis for evaluating the accuracy of other codes.
These other codes could include other approaches than particle-in-cell simulations, where benchmarking
could examine not just implementation accuracy and efficiency, but also the fidelity of different physical
models, such as moment or hybrid models. We discuss an example of this kind in the Appendix. Of
course, the methodology that we have developed can also be readily extended to a suite of benchmarks
with coverage of a wider range of physical and chemical phenomena. VC 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4775084]

I. INTRODUCTION

This paper takes a first step towards a suite of bench-
marks that can be used to evaluate computer simulations for
low-temperature plasmas operated in the low-pressure re-
gime. We say a first step because the scope of the present
benchmarks is limited to simulations of capacitive dis-
charges with a simple geometry and a simple chemistry. This
limitation, however, is not immediately important to our
purpose—which is to demonstrate a rigorous approach to
benchmark development that is readily generalized to more
complex cases. Although our initial focus is on particle-in-cell
simulations, we aim to supply a benchmark that is relevant to
all practitioners of low-temperature plasma simulation. We
begin with particle-in-cell simulations because that approach
directly solves the Boltzmann equation, which is usually
accepted as the most fundamental physical description of a
low-temperature plasma. Other methods are either equivalent
in physical content to a particle-in-cell simulation, or involve
approximations that are not required in a particle-in-cell simu-
lation. Consequently, we maintain that the results of particle-
in-cell simulations are at least as accurate as those produced
by any other technique, assuming, of course, that the numeri-
cal parameters are well chosen. Our approach has three steps.
The first is to define physical conditions for the benchmarks
that are fully prescriptive. The second is to show that, when
applied to these benchmark cases, several independently

developed particle-in-cell simulations give statistically indis-
tinguishable results. This step requires that we also specify all
the numerical parameters required by the particle-in-cell simu-
lations. We take success in this step as a demonstration that
the codes are accurately implemented. The last step is to
investigate the influence of the numerical parameters on the
simulation results, so that an estimate can be supplied of the
residual uncertainty that remains in the benchmark simulation
data. Thus, we have simulation results for the benchmark
cases that we claim to be correct in a strong sense, and which
have well-defined bounds of uncertainty. These data are avail-
able as an electronic supplement to this paper,1 and may be
used as a basis for evaluating the accuracy and efficiency of
computer simulations.

There is a broader context for this initiative. In recent
years, evidence has been accumulating that the accuracy of
computer simulations is not what one might hope. For exam-
ple, outright errors in scientific computer programs have
been shown to be common,2,3 even in professionally main-
tained codes, and informal benchmarking exercises typically
show a wider range of results than is easily accounted for,
even when the algorithms implemented are nominally identi-
cal (see Oberkampf and Trucano4 for examples from a vari-
ety of fields). Responses to these disconcerting observations
include calls for more rigor in developing and testing com-
puter simulation programs, through clearly articulated and
published “verification and validation” activities.2–6 Some
communities have gone so far as to require evidence that
computer simulations are correct as a routine precondition ofa)Electronic address: miles.turner@dcu.ie.
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publication.7–9 This body of work has thus far had little
impact on the low-temperature plasma physics community,
whose literature shows slight evidence of interest in demon-
strating the formal correctness of computer simulations, or
quantifying the errors in simulation results. Partial excep-
tions are Lawler and Kortshagen10 in which careful bench-
marks for positive columns were developed, and the swarm
physics community, which has historically been deeply
engaged in questions of modeling accuracy including exten-
sive code comparisons11–16—but even there, modern ideas
about systematic verification and validation have yet had lit-
tle influence. Of course, many authors of low-temperature
plasma physics computer simulations doubtless test their
codes extensively, but such testing is of limited value while
unpublished.

An element in a systematic verification and validation
campaign may be a “benchmark.”5 Other kinds of tests typi-
cally exercise only parts of a code, or introduce artificial
elements for the purposes of testing, but a benchmark is a
test of the code on a problem of practical interest. Usually,
and almost necessarily, a benchmark problem can be solved
only by computer simulation. We note that a “benchmark” in
this sense is rather more than an informal comparison of
codes: The aim is to demonstrate a solution of the bench-
mark problem that can be widely accepted as “correct.” A
powerful way of increasing confidence in a benchmark of
this kind is to repeat the calculation with several independent
codes, and show that the results “agree.” In general, one may
find a definition of “agreement” difficult to discover, but for
inherently probabilistic methods, such as particle-in-cell sim-
ulations, we can helpfully define “agreement” in terms of
“statistical indistinguishability,” as we do below.

In the remainder of this paper, we will present the physi-
cal parameters characterizing the benchmarks, describe the
particle-in-cell codes that have been used in the comparison
together with a methodology for demonstrating statistical
indistinguishability, show the results obtained for each of the
benchmark cases, and discuss the residual numerical uncer-
tainty in these data. In the Appendix, we present solutions of
the benchmark problem using a moment model. These data
define a reasonable expectation for the ability of such models
to reproduce the benchmark results. We have not, however,
subjected the moment model to any searching critical exami-
nation, and we are not advancing strong claims concerning
the correctness of these data. This is in contrast to the parti-
cle-in-cell data, which we assert are correct solutions of the
benchmark problems within the error bounds that we supply.
We conclude the paper with a short discussion followed by
some final remarks.

II. BENCHMARK DESCRIPTION

We have chosen the basic benchmark conditions to rep-
resent the experiments of Godyak et al.17 This is with a view
to future validation against experiments, and also has the
advantage of similarity with the earlier benchmark of Sure-
ndra.18 We note that this pioneering benchmark falls into the
category alluded to above, where the difference between
codes is larger than perhaps expected, and the origin of the

differences remains mysterious. In the present work, four
benchmark cases have been selected, with parameters that
are shown in Table I. We assume a discharge between two
plane and parallel electrodes, where the electrodes are nor-
mal to the x axis. This is, therefore, a one-dimensional Carte-
sian model. The space between the electrodes is filled with
helium gas at a density that is fixed for each benchmark case,
at a temperature of 300 K. Both the gas density and tempera-
ture are unchanging in space and time. A sinusoidally vary-
ing voltage is applied between the electrodes at a frequency
of 13.56 MHz, with the phase convention that the voltage is
zero at time zero. The voltage amplitudes are different for
each of the four benchmark cases, and have been chosen to
give approximately the same current density amplitude of
10 A m!2 at each of the four pressure points. The pressure
points have been chosen to span approximately the range of
values that can conveniently be used—below the lower limit,
no discharge can be sustained, while above the upper limit,
the collisionality is such that the conventional particle-in-
cell approach is less appropriate. We assume that fluxes of
charged particles reaching the electrodes are completely
absorbed, and no secondary particles (electrons, for example)
are emitted.

The benchmark assumes that the plasma is composed only
of electrons and helium monomer ions. Collisional processes
are, therefore, limited to interactions between these species
and neutral helium. For electron-neutral collisions, the cross
section compilation known as Biagi 7.1 is used.1,19 This con-
sists of an elastic momentum transfer cross section, two excita-
tion cross sections, and an ionization cross section. These cross
sections assume isotropic scattering in the centre of mass
frame, and are consistent with transport data when used in con-
junction with such scattering. The benchmark, therefore,
requires isotropic scattering for all electron collision processes.
After an ionizing collision, the residual energy is divided
exactly equally between the primary and secondary electrons.
For ion-neutral scattering, we adopt the proposal of Phelps,20

which approximates the anisotropic scattering cross section as
an isotropic scattering component and a backward scattering
component, both in the centre of mass frame. Such cross sec-
tions for helium have been given as analytic expressions,21

which have been developed into tables for use in the present
benchmark.1 These tables represent the cross sections as func-
tions of the centre of mass energy. The tabulated cross sections
for both electrons and ions are to be interpolated linearly
whenever intermediate values are required. In the (unlikely)
event that data are needed beyond the maximum tabulated
energy, the last value in the table is to be substituted. Both sets
of cross sections are available as electronic supplements to this
paper,1 and are shown for reference in Figure 1. Further funda-
mental constants are to be represented by the 2006 CODATA
values,22 expressed to at least four places of decimals.

The procedure for running the benchmarks is the follow-
ing. The simulation is initialized with the conditions speci-
fied in Table I. The system is then integrated in time for the
indicated interval, and an average is taken over a sub-
interval at the end of the calculation. These time intervals
are also specified in Table I. The average values obtained in
this way are the benchmark results. In the discussion
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following, we focus on the ion density distribution as the pri-
mary benchmark result. This is because this quantity has an
unambiguous definition in any likely simulation procedure,
and is highly sensitive to both numerical effects and imple-
mentation details.

III. SIMULATION PROCEDURE

Each of the simulation codes implements the classical
particle-in-cell algorithm with Monte Carlo collisions.23–25 As
is well-known, in this approach, the charged particles of the
plasma are represented by a set of so-called superparticles,
which are much smaller in number than the physical particles.
These superparticles are immersed in self-consistently gener-
ated electric fields obtained by solving Poisson’s equation in a
finite difference form on a uniform spatial grid. In the conven-
tional expression of the method, the time integration of parti-
cle trajectories uses the explicit leap-frog scheme, which is
second order accurate in the time step, Dt, and the solution of
the Poisson equation is second order accurate in the cell size,
Dx. All the present codes use bi-linear weighting for mapping
grid quantities to particle positions and vice versa.23–25 The
particle-in-cell method is subject to stability and accuracy
conditions. Generally accepted accuracy conditions for the
cell size and time step are

xpDt ! 0:2; (1)

kD

Dx
" 2; (2)

FIG. 1. Cross sections for electron-neutral collisions (upper panel) and ion-
neutral collisions (lower panel). The energies shown in the lower panel are
expressed in the centre of mass frame.

TABLE I. Physical and numerical parameters for the benchmarks.

Physical parameters

1 2 3 4

Electrode separation L (cm) 6.7

Neutral density N (1020 m!3) 9.64 32.1 96.4 321

Neutral temperature Tn (K) 300

Frequency f (MHz) 13.56

Voltage V (V) 450 200 150 120

Simulation time tS (s) 1280/f 5120/f 5120/f 15 360/f

Averaging time tA (s) 32/f 32/f 32/f 32/f

Physical constants

1 2 3 4

Electron mass me (10!31 kg) 9.109

Ion mass mi (10!27 kg) 6.67

Initial conditions

1 2 3 4

Plasma density n0 (1014 m!3) 2.56 5.12 5.12 3.84

Electron temperature Te (K) 30 000

Ion temperature Ti (K) 300

Particles per cell NC 512 256 128 64

Numerical parameters

1 2 3 4

Cell size Dx (m) L/128 L/256 L/512 L/512

Time step size Dt (s) ð400f Þ!1 ð800f Þ!1 ð1600f Þ!1 ð3200f Þ!1

Steps to execute NS 512 000 4 096 000 8 192 000 49 152 000

Steps to average NA 12 800 25 600 51 200 102 400
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where xp is the plasma frequency and kD is the Debye length.
These results are derived from extensive computer experi-
ments.23 Conditions 1 and 2 can be combined to form a de-
pendent constraint

Dt

Dx

ffiffiffiffiffiffiffiffiffi
kBTe

me

s

! 0:4; (3)

showing that thermal electrons are displaced by much less
than one cell per time step when these conditions are satisfied.
There is a third numerical parameter, which controls the ratio
between the superparticle density and the physical particle
density. This is often called the particle weight. The particle
weight is not defined uniformly by the codes employed in this
study. The data given in Table I, however, implicitly specify
the particle weight for all such definitions. No universal rule
exists for selecting the particle weight, and indeed the evi-
dence suggests that a wide range of values may be appropriate
to different contexts,26 so that a “rule-of-thumb” cannot be
given at present. The numerical parameters for particle-in-cell
simulations given in Table I have been chosen conservatively
according to the information available, and after some experi-
mentation. This topic will be revisited below when we discuss
numerical uncertainty in the benchmark results.

Monte Carlo collisions are handled in the usual way,25,27,28

by testing for collisions once per time step. This procedure is
appropriate when the collision frequency is small compared
with the plasma frequency, which is the usual situation in low-
pressure discharges. In general, the collision frequency for each
particle species varies in some arbitrary way with relative speed.
However, appreciable algorithmic simplification is achieved by
adopting the so-called null collision method, in which a fictitious
collision process is introduced in order to render the total colli-
sion frequency a constant for each particle species, denoted by
!e;i. One then has a constant collision probability per time step
for each species

Pe;i ¼ 1! expð!!e;iDtÞ % !e;iDt: (4)

Once a particle is deemed to have collided, a second Monte
Carlo step is needed to select a process. Since a particle is
only permitted to collide once per time step, this procedure
introduces another constraint, namely

!e;iDt& 1: (5)

During a collision, the momentum and energy of the particle
are appropriately adjusted, and any necessary new particles
are added to the simulation. Further discussion of Monte
Carlo procedures for particle-in-cell simulations can be
found elsewhere.25,27,28

Each of the codes used in this study implements the ba-
sic algorithm outlined above and discussed in detail in the
references. We have foregone complications that introduce
additional numerical parameters and perhaps variation in
implementation, such as subcycling.29 Within this frame-
work, each of the codes has been implemented independently
and without consultation between the authors prior to the
benchmarking exercise. Consequently, the codes differ in

many details. They are implemented in different computer
languages, use different data structures, are designed for dif-
ferent computer architectures, and doubtless differ in many
other respects owing to the varied practical and philosophical
views of the authors. The most salient features of the five
codes we have employed are summarized in Table II. For
convenience of later reference, each code has been assigned
a distinguishing letter. During the course of the benchmark-
ing, certain minor imprecisions were discovered, and these
have been corrected. We think it unlikely that these would
have been exposed outside the context of the present study,
since the effects on the results were subtle. But these were,
nevertheless, implementation errors that came to light as
consequence of benchmarking. We note also that certain
inconsistencies that emerged during the development of the
benchmarks were traced to deficient pseudo-random number
generation. This was a surprise. The detailed issues involved
are not well understood by us, but we urge caution when
choosing a source of random numbers.

Particle-in-cell calculations are evidently stochastic.
Even in temporal equilibrium, fluctuations will occur around
some average value. These fluctuations are driven by the
stream of pseudo-random numbers consumed by the Monte
Carlo elements in the simulation, but may also be affected
by other factors, such as round-off error in finite precision
arithmetic. Pseudo-random number generators typically are
deterministic algorithms initialized with a seed value, yield-
ing a different sequence of values for every unique seed.
Consequently, every simulation program gives results that
depend at least on the seed value. Moreover, even computers
that nominally implement standard floating point arithmetic
do not always respect the rounding rules strictly, with the
result that the same program executed on different computers
or using different software tools is likely to give different
results. Consequently, for these and other reasons, we do not
expect that the diverse implementations available to this
study can give identical results, even for the same physical
conditions and numerical parameters. We can, however, ask
whether the results from the different codes can be statisti-
cally distinguished. We approach this problem by treating
the ion densities computed at the mesh points as a set of ran-
dom variables. If we can characterize the density at mesh
point j by an average value #niðxjÞ and a standard deviation
riðxjÞ, then, for a particular set of mesh densities niðxjÞ
drawn from the simulation, we can compute

X2 ¼
X

j

½niðxjÞ ! #niðxjÞ(2

riðxjÞ2
: (6)

TABLE II. Summary characteristics of the five simulation programs employed

in this study.

Code Author(s) Language Architecture

A Derzsi and Donk!o C CPU

B Eremin C for CUDA GPU

C Lafleur MATLAB CPU

D Mussenbrock C CPU

E Turner C CPU (multithreaded)
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If the random variables are uncorrelated and normally dis-
tributed, and the set of values niðxjÞ is actually drawn from
the distribution defined by #niðxjÞ and riðxjÞ, then the value
of X2 is drawn from a well-known distribution function
[Ref. 30, Sec. 26.4]. If we find that the value of X2 that we
calculate is far into the tail of this probability distribution,
we will conclude that the values niðxjÞ were likely not drawn
from the assumed distribution. By this means, we can estab-
lish whether the results of two simulation programs are stat-
istically distinguishable or not.

There is a difficulty, in that we have no grounds for
assuming that the densities at the mesh points have the prop-
erties assumed above of being uncorrelated and normally
distributed. This, however, only means that the distribution
of values of X2 is not the one usually assumed. We can pro-
ceed using one simulation to generate the values of #niðxjÞ
and riðxjÞ, and the distribution of X2 values, and we can pro-
ceed to test the other simulations against these results in the
manner described above. We expect a different distribution
of X2 for each benchmark case. Fig. 2 shows the distribution
functions that are determined in this way. Each has been nor-
malized such that

ð1

0

f ðX2ÞdX2 ¼ 1: (7)

We note that the conventional X2 distribution is character-
ized by the number of degree of freedom, k, which is in this
case equal to the number of mesh points. When k) 1, the
distribution of X2 is approximately normal, with mean value
k and standard deviation

ffiffiffiffiffi
2k
p

. The distributions shown in
Fig. 2 indeed have a mean close to k, but evidently have a
larger standard deviation and considerable skew. We have
not investigated the origin of these features, but we speculate
that the cause is correlations between the density fluctuations
at neighbouring mesh points, produced by plasma dynamical
effects.

Our procedure, therefore, begins by generating values of
#niðxjÞ and riðxjÞ, such that the standard deviation of the
mean values #niðxjÞ is negligible compared to the population
standard deviation riðxjÞ. We obtain these results by observ-
ing fluctuations around a stationary state in an extended cal-
culation using code E. From this extended calculation, we
also find the X2 distributions shown in Fig. 2. We can then

take a result from any of the other codes, compute X2 using
Eq. (6), and refer to the data in Fig. 2 and Table IV to deter-
mine the significance of the result. If we find no unlikely val-
ues, we can declare that the test codes indeed are statistically
indistinguishable. On the sensitivity of this test, we can say
that a consistent difference between two simulations results
of about 0.5% will produce a X2 value that should occur by
chance only about once in 10 000 trials. A difference of this
magnitude should, therefore, be easily detected. On the other
hand, a systematic difference of 0.1% shifts the value of X2

by an amount small compared to the normal ranges indicated
in Fig. 2 and Table IV, so that a difference of this magnitude
cannot be discerned.

If we were concerned to demonstrate only that the test
codes give practically identical results, then we could stop
here. However, we intend our results to be of value to
authors of other kinds of codes than particle-in-cell codes,
and for this reason we need to go a step further and estimate
the numerical errors remaining in our calculations. We have
done this using a refinement strategy. Since the convergence
of particle-in-cell simulations with Monte Carlo collisions,
as a function of the numerical parameters, has never been
fully investigated (some indications are give by Vahedi
et al.31 and Turner26), the optimal refinement procedure is
not clear. Our procedure is a simple one. At each refinement,
we halve the time step and the cell size. Since the algorithm
is second order in these quantities, this should reduce the
associated numerical errors by a factor of four. Numerical
errors associated with the number of particles per Debye
length, ND, vary as N!1

D or N!2
D , depending on the collisional-

ity and nature of the error.26 To achieve a reduction of these
errors by at least a factor four, then, we should increase the
number of particles by a factor of four. This procedure
appears reasonable, but is not guaranteed to reduce the error
in the solution by a factor four, because the relationship
between the velocity space diffusion effects regulated by ND

and the global error in the solution is not clear. Nevertheless,
by comparing solutions at different levels of refinement we
can form some view on the magnitude of the errors.

IV. RESULTS

A summary of the main physical parameters for each
benchmark case, together with numerical figures of merit, is
presented in Table III. These data show that the benchmark
cases conservatively satisfy the conventional accuracy condi-
tions discussed above. The first four figures show the ioniza-
tion source term (Figure 3), the electrical power coupled to
electrons (Figure 4), the electrical power coupled to ions
(Figure 5), and the electron energy distribution functions for
each of the cases (Figure 6). We see that as the pressure
increases from case 1 to case 4, both ionization and power
transfer become increasingly concentrated in the sheath
region. Much of this behavior is determined by the electron
energy relaxation length. For electrons below the threshold
for inelastic processes, the energy relaxation length is large
compared with the electrode spacing in all four cases. Conse-
quently, we expect that the gross electron mean energy
varies rather little in space. Above the inelastic threshold,FIG. 2. Distribution of X2 values for the four benchmark cases.
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however, the energy relaxation length is larger than the elec-
trode separation in case 1, but smaller in case 4. Hence, we
find that in case 4, power absorption and dissipation have
become more locally balanced, with maxima in the sheath
regions. The electron energy distribution functions shown in
Figure 6 exhibit no striking structures. At the lowest pres-
sure, the distribution function is close to Maxwellian, but at
higher pressure there is an increasing depression of the high
energy tail caused by inelastic collisions. None of these dis-
tribution functions show in a marked form any of the more
exotic structures that are sometimes seen, such as bumps,
holes, or super-thermal high energy tails.17,32–34 These fea-
tures are commonly symptomatic of strongly non-local inter-
actions between the electrons and the fields. The absence of
such interactions means that simplified models using approx-
imate treatments of the electron kinetics have a reasonable
chance of reproducing the present benchmarks with tolerable
accuracy.

In the next group of figures, we present the comparisons
between the ion densities for the four benchmark cases. Fig-
ures 7–10 compare the densities calculated using each of the
five codes. Of course, the densities in each code fluctuate
around some mean value, and we also show in these figures

TABLE III. Physical and numerical characteristics for the four benchmark

cases. In the upper section of the table, ni and Te are the ion density and
electron temperature in the mid-plane of the discharge, Se and Si are the line
integrated electrical power coupled to electrons and ions, respectively, and

Ji is the ion current collected at either electrode. All these quantities are
time averaged. The lower table shows numerical figures of merit, which are

evaluated at the mid-plane of the discharge using time averaged data, apart
from the total number of particles NP, which figure refers to the entire dis-
charge volume.

Physical characteristics

1 2 3 4

ni ð1015 m!3Þ 0.140 0.828 1.81 2.57

kBTe ðeVÞ 9.36 4.69 3.95 3.65

Se ðW m!2Þ 34.3 51.6 85.2 193

Si ðW m!2Þ 90.6 43.3 32.0 27.1

Ji ðA m!2Þ 0.219 0.215 0.195 0.186

Numerical characteristics

1 2 3 4

xpDt 0.121 0.150 0.110 0.066

kD=Dx 3.72 2.14 2.66 2.14

!eDt 0.0158 0.0262 0.0391 0.0643

!iDt 0.00688 0.0114 0.0171 0.0283

ND 1042 886 1204 917

NP 31 900 118 000 283 000 329 000

FIG. 3. Time averaged ionization source term for the four benchmark cases.

FIG. 4. Time averaged power density (hJe * Ei) coupled to electrons for the
four benchmark cases.

FIG. 5. Time averaged power density (hJi * Ei) coupled to ions for the four
benchmark cases.

FIG. 6. Time and space averaged electron energy probability functions for
the four benchmark cases. These data are normalized such that

Ð1
0

ffiffi
"
p

f ð"Þd"
¼ 1: A Maxwell-Boltzmann distribution would appear as a straight line on
this plot.
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FIG. 7. Ion density distribution for case 1. The curves labelled A to E show
the results obtained by the indicated code. The points with error bars
show the standard deviation obtained from an extended calculation using
code E.

FIG. 8. Ion density distributions for case 2. Refer to the caption of Fig. 7 for
further explanation.

FIG. 10. Ion density distributions for case 4. Refer to the caption of Fig. 7
for further explanation.

FIG. 9. Ion densities distributions for case 3. Refer to the caption of Fig. 7
for further explanation.
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error bars which denote one standard deviation of this fluctu-
ation. All the figures show a global view of the data, and an
expanded region around the discharge mid-plane. From the
global view, the agreement between the codes is evidently
excellent, in the sense that no disagreement within the error
bars can be discerned. This is also true of the expanded
view, where the size of the fluctuations is more clearly evi-
dent. As we have suggested above, the coincidence of the
codes can be examined objectively using a statistical
test. The results of these statistical tests are summarized in
Table IV. We note that since code E was used to generate
the X2 distributions, the results for that code are presented
essentially as a methodological test. These data can be exam-
ined in conjunction with the distributions shown in Figure 2,
but for convenience we have shown in the table the range of
values that can be accepted as being likely to have occurred
by chance. One of the twenty values shown here is outside
the 95% confidence limits, which is of course the expected
outcome.

The evidence we have shown above strongly suggests
that the codes under discussion are statistically indistinguish-
able, and from this result we wish to urge the conclusion that
the codes are also correct in some usefully strong sense. Of
course, the basis for this claim is the assumption that five in-
dependently developed codes are unlikely to be united in

error. Even if this is so, the benchmark results obtained from
these codes have an accuracy that is limited by numerical
effects arising from finite time steps, cell sizes, and particle
density. Figure 11 shows evidence relevant to the question of
estimating the size of this residual error. As we explained
above, we have approached this issue using a sequence of
computations with increasingly refined numerical parame-
ters. In each case, the most refined solution has the cell size
and time step reduced by a factor four, and the number of
particles increased by a factor sixteen, for an increase in
numerical exertion by a factor of about sixty four. By com-
paring intermediate stages in the refinement process, we esti-
mate that the numerical uncertainty is reduced by a factor of
approximately ten in the most refined solutions, relative to
the base cases detailed in Table I. In Figure 11, we show the
difference between the base case solutions and the most
refined solutions. As we note in the figure caption, we have
compared the solutions at coincident spatial points, and this
procedure leads to apparently large errors in regions where
there are strong spatial gradients. A more significant estima-
tor of the error in each solution is the difference in the mid-
plane, which is seen to be rather uniformly a few percent.
The error in the refined solutions is approximately ten times
smaller than this. These data provide some guidance to
authors of simulation codes other than particle-in-cell codes
as to whether their results are consistent with the benchmark
or not. Electronic supplements to this paper contain tabula-
tions of the benchmark results and the refined solutions dis-
cussed above.1

V. DISCUSSION

The results obtained in the present work are appreciably
more consistent than those found in the earlier benchmark
comparison of Surendra.18 For example, results from the
three particle-in-cell implementations considered in that
exercise were typically different by +5%, and differences in
excess of 15% occurred. Larger divergences were found
between the particle-in-cell simulations and other kinetic
solvers—as much as 100% in some cases. The range of all
the simulations considered spanned approximately a factor
of two in electron temperature and a factor of three in den-
sity. On the evidence available, these differences are not
easy to understand—but the kinetic simulations, at least, are
all supposedly solving the same physical model, so we must
assume either implementation error or operator error (i.e.,
inappropriate physical or numerical parameters). As evi-
dence from other fields shows, errors of these types occur
commonly, and are difficult to eliminate. In the present
work, we cannot claim with certainty that we have eradicated
all such mistakes, but we can make a limited claim based on
the statistical arguments presented above: Any remaining
errors affect the results systematically by appreciably less
than 1%. The residual numerical errors in the base cases are
significantly greater than this, so we have also provided data
using more refined numerical parameters that reduce the
overall precision to about the 1% level. These data provide a
basis for authors of other simulation codes to evaluate the

FIG. 11. Estimation of the residual numerical errors in each of the four
benchmark cases. These data have been obtained by comparing the base
cases with additional calculations using substantially more refined numerical
parameters. Since we have compared the solutions at coincident mesh
points, this presentation overstates the significance of the errors where there
are strong spatial gradients (cf. Figures 7–10).

TABLE IV. X2 values for each of the simulation programs applied to each

of the benchmark cases. The lines at the bottom of the table show the ranges
of values that encompass 95% and 99% of the area under the distributions
shown in Figure 2.

1 2 3 4

A 240 199 540 606

B 192 310 503 543

C 328 408 503 703

D 242 209 425 517

E 57 219 592 542

95% 55–303 177–435 405–693 417–665

99% 48–405 160–548 382–798 392–730
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accuracy of their own results, which of course is one of our
central aims.

A precision much better than 1% is perhaps of limited
practical value. In the end, the primary purpose of simulations
is to predict the outcome of experiments, and not many rele-
vant experiments (if any) approach an accuracy of 1%. More-
over, the accuracy of the simulations is limited by the
available physical data as well as by numerical considerations.
The most accurate cross section data available at present prob-
ably have an uncertainty of at least a few percent. The base
case numerical parameters shown in Table I, therefore, prob-
ably entail an appropriate level of numerical exertion for most
purposes. Indeed, we note that the difference between the
present benchmark results and comparable experiments17,33 is
far larger than any reasonable estimate of the error due to nu-
merical effects or faulty cross section data—roughly a factor
of two in density and voltage, for a given current density. We
assume that this is due to an incomplete physical model. For
example, we have neglected emission of particles from elec-
trodes and all effects of excited states.35 This topic will be fur-
ther explored in future work.

Although the principal aim of the benchmarks that we
present here is to facilitate verification of codes, we note that
a secondary objective can be achieved, and this is to compare
the performance of different implementations. The interest of
this activity is increased by knowing that the codes are per-
forming the same calculation (within some tolerance, at least)
so that any difference in execution time is due to hardware
and implementation strategy. The codes under investigation
take different approaches. Code C, for example, is imple-
mented in MATLAB, a high level language that generally favors
ease of programming over efficiency. Codes A and D are tra-
ditional implementations in the C language, and as such simi-
lar in concept to the well-known PDP1.36 Codes B and E both
target features of modern computer architectures such as
multi-threaded execution, symmetric multi-processing, and
vectorisation. These are, relatively speaking, complex imple-
mentations aiming at high performance. Developing a basis
for verifying such codes was a major motivation of the present
work. On the benchmark cases discussed here, codes B and E
perform comparably, and are each about a factor of twenty
faster than the serial codes A and D, which are themselves
about twice as fast as the MATLAB code C. These differences
are of considerable practical significance. For example, when
all the calculations are carried out using reasonably modern
desktop computers, benchmark 4 takes approximately six
hours to execute using codes B and E, but almost three weeks
using code C.

VI. CONCLUDING REMARKS

Our aim in this work was to develop benchmarks for
low-temperature plasma physics simulations. We approached
this problem by specifying four benchmark cases, each with
comprehensively defined physical and numerical conditions.
We have then shown that five independently developed parti-
cle-in-cell simulations produce results for these benchmarks
that are indistinguishable on a statistical basis. A more pre-
cise statement would be that the implementation uncertainty

is less than 0.5%. We proceeded to investigate the numerical
uncertainty in the benchmark results, and we have presented
a second set of benchmark results in which the numerical
uncertainty is reduced to approximately the same level as the
implementation uncertainty. Thus, we claim that these latter
results have an uncertainty at about the 1% level. We do not
think that there is any advantage in attempting to further refine
these results at the present time, allowing for the uncertainty
in both basic data and experimental characterization. Our
intention is that these data can be used by developers of parti-
cle-in-cell codes to verify their work in a rather rigorous fash-
ion, using the statistical procedures that we have discussed,
while authors of codes based on other principles can evaluate
the accuracy of their work by less formal methods.

Of course, the present benchmarks exercise only a
subset of the features likely to be desired in comprehensive
simulation packages. For example, we have not treated
multi-dimensional effects or electro-magnetic effects, and
plasma chemistry only in a limited fashion. Nevertheless, we
think that the methodology we have developed represents a
powerful platform for future developments encompassing
these more advanced aspects.
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APPENDIX A: MOMENT MODELS

In this appendix, we simulate the benchmark conditions
using a moment model, and we compare the data so obtained
with the particle-in-cell simulation results presented above.
A moment model is based on a greatly simplified physical
model. Instead of calculating the phase space distribution
functions of the particles, as a particle-in-cell simulation
does, a moment model solves conservation equations for a
limited number of macroscopic physical quantities, such
number density, momentum, and thermal energy. These
equations incorporate a set of rate constants and transport
coefficients, which are, in principle, dependent on the energy
or speed distributions of the particles. Moreover, the moment
equations are themselves developed by computing velocity
space moments of the Boltzmann equation, and this proce-
dure leads, in principle, to an infinite set of mutually coupled
partial differential equations. If we solve for only the first
two or three moments (as implied above) then this hierarchy
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of equations must be truncated by some means—the so-
called “closure problem.” So although a solution of the
moment equations is computationally economical, compared
to solving the Boltzmann equation, there is considerable
underlying theoretical complexity. Indeed most moment mod-
els include informally developed elements, such as transport
and rate coefficients injected from a Monte Carlo simulation,
a Boltzmann equation solution, or experimental data. There
may also be differences in detail on the formulation of the
moment equations themselves, the implementation of bound-
ary conditions and the choice of numerical procedure. How
the many decisions involved in designing a moment model
affect the accuracy of the results is not well understood, and
this is an issue that benchmarking can address. Our intention
here, however, is more modest. We aim only to offer an exam-
ple of applying a moment model to the benchmark cases
described in the main text. The moment model that we have
employed is a commercial one, offered by COMSOL MULTIPHY-

SICS [Ref. 37 version 4.2a]. The “plasma module” was used
for the present calculations. In most respects, this is a conven-
tional formulation, calculating three moments for electrons
and two for ions. An unusual feature is that the species den-
sities are expressed in a logarithmic form—details of this as-
pect and others are to be found in documentation for the
package, and will not be discussed here. For electrons, rate
constants and transport coefficients were computed from the
cross sections specified above using BOLSIGþ,38 while the
ion mobility li was expressed using the result given by Patter-
son39 for a gas temperature of 300 K

liN ¼ 2:69½1þ 1:2- 10!3ðE=NÞ2 þ 4:2- 10!8ðE=NÞ4(!
1
8;

(A1)

where E/N is expressed in Td. This result is in reasonable
agreement (within 5% over the range 1 Td < E=N < 900 Td)
with Monte Carlo transport calculations using the ion scattering
cross sections given above. Naturally, the numerical parameters
specified for the particle-in-cell simulations are inapplicable to
the moment model, which has different stability and accuracy
conditions.

Comparisons between these moment calculations and
the particle-in-cell simulation data are shown in Figure 12.
In general, there is qualitative agreement concerning the
spatial distribution of the ion density, but disagreement about
the maximum density. Perhaps surprisingly, this disagree-
ment increases with neutral gas pressure, and is about 50%
in case 4. Such variations cannot reasonably be attributed to
numerical effects, and we assume that modeling issues are in
play, such as the procedure for computing rate and transport
coefficients, and use of the drift-diffusion approximation.
The trend of these differences is generally similar to observa-
tions in the earlier benchmark of Surendra,18 where the
moment models generally gave smaller densities than the
particle-in-cell simulations. A more comprehensive enquiry
would be of interest. This is beyond the scope of the present
study, but may be the subject of future work.
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